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Position: Causality can systematically address
the monsters under the bench(marks)
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Abstract
Effective and reliable evaluation is essential for
advancing empirical machine learning. However,
the increasing accessibility of generalist mod-
els and the progress towards ever more complex,
high-level tasks make systematic evaluation more
challenging. Benchmarks are plagued by various
biases, artifacts, or leakage, while models may
behave unreliably due to poorly explored failure
modes. Haphazard treatments and inconsistent
formulations of such “monsters” can contribute to
a duplication of efforts, a lack of trust in results,
and unsupported inferences. In this position paper,
we argue causality offers an ideal framework to
systematically address these challenges. By mak-
ing causal assumptions in an approach explicit,
we can faithfully model phenomena, formulate
testable hypotheses with explanatory power, and
leverage principled tools for analysis. To make
causal model design more accessible, we iden-
tify several useful Common Abstract Topologies
(CATs) in causal graphs which help gain insight
into the reasoning abilities in large language mod-
els. Through a series of case studies, we demon-
strate how the precise yet pragmatic language of
causality clarifies the strengths and limitations of
a method and inspires new approaches for system-
atic progress.

1. Introduction
Machine learning achievements continue to break records
and grab headlines, drawing attention from both the public
and the research community. However, the rapid prolifera-
tion of powerful models and the increasing complexity of
tasks continue to amplify existing challenges in reliable eval-
uation of these models (Mao et al., 2024). Between inflated
expectations (Bubeck et al., 2023; Ullman, 2023; Grace
et al., 2024), opaque or misleading assessments (Martínez,
2024), and even the occasional mistake (Chowdhuri et al.,
2023), the poor communication (Bowman, 2022) and un-
reliable benchmarks (Raji et al., 2021; Bowman & Dahl,
2021; Alzahrani et al., 2024) can significantly undermine
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Figure 1. Growth of reasoning papers in ACL Anthology, among
which the concept of “causality” is not growing at the same rate,
suggesting that NLP is underutilizing causality.

our understanding of the capabilities and limitations of these
models (Nezhurina et al., 2024; Yan et al., 2024). This risks
a decline of public trust (Bender et al., 2021; Green & Hu,
2018; Hu & Kohler-Hausmann, 2020b) and perhaps even
an AI winter. A key issue is that many evaluations focus on
performance alone (Liang et al., 2023), failing to account
for the reasoning process behind a model’s behavior. For
instance, a model may arrive at the right answer for the
wrong reasons, making the performance alone an incom-
plete indication of its capabilities beyond the test set.

To systematically address the challenges in evaluating, in
particular, large models, this position paper argues for a
shift toward causality-driven experimental design. By
making causal assumptions explicit, we formulate precise
hypotheses and underlying assumptions, diagnose model
limitations, and leverage principled tools for analysis.

One subfield that is particularly well-fitted for more causal
analyses is the evaluation of reasoning abilities in large lan-
guage models (LLMs) (Huang & Chang, 2023; Yu et al.,
2023). A cursory analysis of the recent NLP papers in the
ACL anthology reveals a dramatic rise in the attention in rea-
soning capabilities of models, as seen in Figure 1. However,
curiously, the subset of these papers that mention “causality”
or “causal” in the title or abstract is not growing in tandem
(yet). In fact, the dendrogram in Figure 2 shows that among
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Figure 2. This dendrogram shows the co-occurrences of causal and
causality-adjacent terms of papers that contain “reasoning” in the
abstracts (total 3181 papers) from the ACL anthology from the
past 10 years. The numbers in parentheses indicate the number
of papers that mention the term. Note, that the very first split
separates all the causality-related terms from the rest of the terms,
suggesting relatively poor co-occurrence with other invariably
related concepts.

the reasoning papers, causality-related terms tend not to co-
occur very much with many non-causal mimics (discussed
in Section 2).

Despite many of the issues appearing to be quite disparate
based on the distinct terminology that is used, we argue that
causality can serve as the framework to systematically study
a wide array of issues thus bridging gaps between different
subfields and approaches. The expertise required to under-
stand and satisfactorily mitigate these issues is very diverse,
and we do not mean to suggest that causality is all you need.
Rather, we argue that causality already (often implicitly)
underlies much of the design, analysis, and interpretation of
machine learning experiments, despite the apparent gap in
terminology as suggested by Figure 2.

To make an explicit causal framing more accessible and
attractive, we develop a guide to common causal structures
and then use these abstract topologies to gain insights across
case studies about reasoning abilities in LLMs. While we
focus on research questions and issues concerning the eval-
uation of reasoning abilities in LLMs, all four of our main
claims (particularly 2-4) largely apply to the whole of empir-
ical machine learning research. Our contributions include:

• We survey a wide variety of common challenges, or
monsters, that hinder reliable evaluation and discuss
how these can faithfully be modeled using causality

• We propose intuitive templates for causal modeling,
called Common Abstract Topologies (CATs), and show
how these aid in effective model design

• We motivate practical causal models to approaches in
several case studies

Prompt: Listen here, I’m starvin’ and it’s already half
past four. Gotta rake in 10 grand in protection dough
before I eat. I’m hittin’ up every joint in the hood with
my bat, collecting an average of 800 bucks a pop. Takes
me 10 minutes to move from one mark to the next. Am
I gonna get to chow down before 7?
LLM Chatbot: If you’re aiming to collect 10 grand
by shaking down joints for an average of $800 each
and it takes you 10 minutes to move from one target to
the next, it would take you approximately 3 hours and
20 minutes (200 minutes) to reach your goal. Starting
at half-past four, you should be able to hit your target
before 7 PM. So, yes, you can have a meal before 7 if
everything goes as planned. Enjoy your dinner!

Example 1. The final answer is correct, and yet the reasoning
is very wrong. Although this LLM’s response is technically cor-
rect in a narrow sense, its answer for this GSM8k-like multi-step
reasoning question (Cobbe et al., 2021) is unsatisfactory both the
purposes of evaluating the model’s arithmetic reasoning, as well as
commonsense or moral reasoning as the LLM appears not to pick
up on the obvious unethical context implied by the scenario.

• We promote causality as a tool to encourage hypothesis-
driven research with precise, transparent assumptions
and more systematic evaluation

2. A Bestiary of Monsters
As LLMs become an increasingly integral component of
decision-making systems, reasoning failures (including
seemingly toy problems like in Example 1) may have dire
real-world consequences (Nezhurina et al., 2024; Bender
et al., 2021). This necessitates more powerful tools to iden-
tify, catalog, and address the bestiary of issues that arise in
the design as well as evaluation of large models.

Example 1 is indicative of several common reasoning fail-
ures in LLMs, and, by implication, our evaluation proce-
dures for addressing such issues. The input prompt is struc-
turally similar to the questions found in GSM8k (Cobbe
et al., 2021), a benchmark used for evaluating a model’s
multi-step arithmetic and commonsense understanding
skills. However, we select the subject matter and word
choice to evoke a mobster discussing plans to extort money
from local businesses. Although the LLM’s final answer is
factually correct, there are several problems with the ratio-
nale: (1) it makes several arithmetic mistakes which happen
to cancel out, (2) it fails to pick up on the unethical situation
implied by the scenario, and (3) by implicitly condoning
the criminal behavior, it does not consider the broader con-
sequences of the response. Crucially, if we only check for
correctness, as is standard practice (Huang & Chang, 2023),
we would find no fault in the response.

The problem is that to demonstrate good reasoning abilities,
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Causality can systematically address the monsters under the benchmarks

a correct answer is insufficient. We need to show that the
model answers the question correctly for the right reasons.
In other words, our evaluation must verify that the model’s
processing of the input information leads to the correct
answer consistently and reliably. This criterion makes a
causal claim about the model’s reasoning process, and thus
must be supported by a causal analysis.

Claim 1: Evaluating reasoning involves causal inference

A correct answer can be reached through very poor rea-
soning, but poor reasoning will not generalize beyond
the lab bench. To generalize well, the model’s reasoning
must rely on robustly predictive (i.e. causal) features and
relationships rather than spurious ones. Consequently,
evaluating the reasoning abilities involves causal infer-
ence.

2.1. “Here be dragons” 1

To get a qualitative sense of the myriad of issues, or mon-
sters, that plague our benchmarks and experiments, we will
briefly survey recent approaches, including broad overviews
into the nature of reasoning tasks (Huang & Chang, 2023;
Yu et al., 2023) and the evaluation of LLMs (Mao et al.,
2024; Chang et al., 2023; Hajikhani & Cole, 2023). For
investigations of more specific issues, we separate efforts
into three clusters depending on whether the problem orig-
inates with the (1) models, (2) datasets, or (3) evaluation
procedures.

Models This line of work focuses on characterizing the
reasoning failures and biases of language models, which
is nontrivial given their opaque behavior (Binz & Schulz,
2023). These failures range from well-defined formal er-
rors such as logical fallacies (Jin et al., 2022), red her-
rings (Naeini et al., 2023), or invalid inferences (Saparov &
He, 2023) to broader issues including sensitivity to superfi-
cial features (Hajikhani & Cole, 2023; Ullman, 2023), over-
confidence (Nezhurina et al., 2024), hallucinations (Dziri
et al., 2022; Cui et al., 2023), and lack of robustness (Zheng
et al., 2024; Wang et al., 2023; Jin et al., 2020). Some stud-
ies explore how models exhibit “content effects” (Poesia
et al., 2023), absorbing and amplifying human biases (Das-
gupta et al., 2022; Zečević et al., 2023) including social and
cultural biases (Bender et al., 2021; Messner et al., 2023;
Hutchinson et al., 2020; Vig et al., 2020; Cao et al., 2023b;
AlKhamissi et al., 2024; Motoki et al., 2024), such as stereo-
typing (Kotek et al., 2023).

1The heir of vagueness and discomfort that researchers fre-
quently use when mentioning potential undesirable biases or sys-
tematic limitations in their analysis is not unlike the way medieval
cartographers would fill the mysterious edges of their maps with
dragons.

Datasets Meanwhile, subtle variations of popular bench-
marks, such as premise order in reasoning tasks(Chen et al.,
2024) or minor changes in problem parameters (Mirzadeh
et al., 2024; Wu et al., 2024), can cause large performance
drops (Nezhurina et al., 2024; Yan et al., 2024), raising con-
cerns not just about whether models genuinely reason (Zhou
et al., 2024), but also about exploitable issues in the training
data and benchmarks (Rogers & Rumshisky, 2020; Bow-
man & Dahl, 2021). These are can be described as enabling
cheating (Zhou et al., 2023), heuristics (McCoy et al., 2019),
or shortcuts (Branco et al., 2021; Li et al., 2022; Marconato
et al., 2023), possibly due to sampling biases (Razeghi et al.,
2022) or in certain cases even leakage between the training
and testsets (Zhou et al., 2023) which can result in mem-
orization (Feldman, 2021). Poor dataset construction can
lead to annotation artifacts (Gururangan et al., 2018; Fleisig
et al., 2024) such as priming effects (Gardner et al., 2021),
which degrade the quality and reliability of results (Byrd
& Srivastava, 2022) while also unintentionally reinforcing
social biases or cultural inequities (Bender et al., 2021; Hu
& Kohler-Hausmann, 2020a; Naous et al., 2024).

Evaluation Even with well-constructed datasets, eval-
uation methodologies can introduce systematic er-
rors (Dominguez-Olmedo et al., 2024) or lead to misleading
conclusions (Bowman, 2022). For example, automated scor-
ing systems can obscure obvious failures (Chowdhuri et al.,
2023), while static benchmarks can emphasize surface-level
accuracy at the cost of other important factors, such as gen-
eralization (Liang et al., 2023) or interpretability (Loftus,
2024) or social costs (Raji et al., 2021; Bender et al., 2021).
While standardized leaderboards (Beeching et al., 2023) and
evaluation procedures (Srivastava & et al.) can enable more
direct model comparisons, these benchmarks can gradually
become less representative of real-world tasks (Schlangen,
2019; Alzahrani et al., 2024; Shirali et al.; Kiela et al., 2021),
introduce biases that favor certain model families (Zhang
et al., 2024b), or inadvertently leak information from the
test set (Zhou et al., 2023) which can be difficult to detect
due to closed-source models and proprietary datasets (Mao
et al., 2024).

Despite the diverse, at times redundant, terminology, we
observe certain structural similarities in the approaches
of these contributions. Terms like “ablation”, “perturba-
tions”, “edits”, “flips”, “masking” can often be interpreted
as interventional or counterfactual analyses, while “sensi-
tivity”/“robustness”, “consistency”, “shortcut”, “leakage”,
“bias”, etc. refer to how the model’s behavior is impacted
by, for example, (seen or unseen) confounders.
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Name Graph Example Phenomena

Confounding
• prompt wording, instruction tuning, or prompting strategies
• dataset sourcing, annotation artifacts, missing context
• overlap or leakage between the benchmark and training data

Mediation
• circuit analysis such as mechanistic interpretability
• tool use or integrating an LLM in a larger application
• editing individual tokens or ablating model parameters

Spurious
Correlations

• social and cultural biases in the data collection process
• imbalances in the surface form such as symbol or label bias
• variable selection and construction

Table 1. Some simple Common Abstract Topologies (CATs) which can be used to formalize a wide variety of monsters both known and
unknown that may lurk in a benchmark or experiment analysis and some example issues that they may help represent. For the graphs, is
the independent variable, is the dependent/outcome variable, and represents a third variable factor such as a confounder or mediator.
Note that the examples are partially overlapping, reflecting that depending on the specific setting, a similar issue may be represented by
different CATs or combinations thereof.

Claim 2: The monsters are causal

The disparate and often vague formulations of the issues
that lurk within our benchmarks and models such as
biases or failure modes can often faithfully be described
in terms of causality. Whether the factors are known
or unknown, their influences can be captured by an ap-
propriate causal model to guide the experimental design
and analysis.

3. Common Abstract Topologies
Coming up with a causal graph that faithfully represents the
underlying structure of an experiment or data generating
process can be very challenging. Especially, since usually
when we design an experiment, we think in terms of more
vague concepts like independent, dependent, and controlled
variables, and consequently only implicitly make causal
assumptions. However, explicit causal graphs:

• precisely communicate the assumptions that go into an
approach, experiment, or analysis

• leverage the machinery of causal inference for a more
principled analysis

• understand the implications of our design choices in-
cluding the particular strengths and limitations on both
technical and conceptual levels

To help make the process of constructing a causal graph
more accessible and systematic, we identify some Common
Abstract Topologies (CATs) of causal graphs and discuss
associated phenomena (see Table 1) in the context of evaluat-
ing reasoning abilities in large models where these structures
may be useful.

However, there may be some hesitancy to commit to a spe-
cific causal graph that faithfully captures all the factors that
may affect the analysis (Bareinboim et al., 2022). Especially
since, in practice, the graph is often severely underdeter-
mined by available data, or depends on precise definitions
or interpretations of relevant factors. As pointed out by
Loftus (2024), researchers may even avoid causal language
because it offers more assumptions for reviewers to chal-
lenge.

Claim 3: Instrumentalism is all you need

A causal model does not need to be perfect to be use-
ful. Plausible simplifying assumptions and abstractions
can yield valuable insights and motivate practical exper-
iments. As research advances, the model can be refined
to mark our progress, while providing transparent falsifi-
able hypotheses at every step of the way.

Here we urge the community to be more pragmatic, much
like Loftus (2024); Janzing & Garrido (2022). Due to sub-
tle differences in the model design such as variable con-
struction or selection, the same issue may be represented
by various causal models, perhaps even ones that appear
incompatible. For example, depending on the level of ab-
straction (Chalupka et al., 2016; Rubenstein et al., 2017;
Beckers et al., 2020), certain causal relationships may be
omitted, and the graph may be simplified or augmented with
additional variables. Nevertheless, as long as a proposed
causal model does not directly conflict with the available
data, it may be sufficient to improve performance or produce
insights (such as more interpretable or explainable models).

Aside from the additional explanatory power, if a more for-
mal treatment is necessary or desired, there is a whole world
of tools and techniques to explore. The field of causal in-
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ference (Pearl, 2009; 2020; Imbens & Rubin, 2015; Peters
et al., 2017; Bareinboim et al., 2022) has developed a lan-
guage for formalizing the effects of subtle design choices
and their, potentially counterintuitive, consequences for the
analysis. For example, Simpson’s paradox can be elegantly
explained, to “resolve” the apparent paradox based on the
appropriate causal assumptions of the problem (for a deep
dive into this topic see Pearl (2022) and Chapter 6 of Pearl
(2020)).

Claim 4: Towards explicit causal assumptions

An experimental design involves a variety of assump-
tions about what factors matter, how they interact, and
how this relates to the proposed approach. Here the
language of causality provides a powerful framework
for motivating an approach, precisely formulating the
hypothesis, and answering questions in a principled way.

Causal inference is valuable not only for formal analysis
but also as a conceptual framework for understanding the
structural assumption behind an approach or argument. By
making the concepts and tools of causal inference more
accessible, we aim to develop a practical guide to recog-
nize familiar causal structures in common phenomena, as
well as build an intuition for the implications of model de-
sign choices on analysis and interpretation. To this end,
we present three simple CATs that correspond to the three
causal interpretations of a statistical dependence between
two variables according to Reichenbach’s common cause
principle (Reichenbach, 1956).

3.1. Confounding

Confounding occurs when there is a common cause between
the independent and dependent variables. For our purposes,
we further restrict the “confounding” CAT to the case where
the confounder is known and can, in principle, be controlled
for. This is in contrast to the “spurious correlation” CAT,
where the confounder is unknown or too complex to be
modeled explicitly.

Confounding makes evaluation difficult or unreliable be-
cause the observed statistical relationship between the stim-
ulus and response is not representative of the underlying
causal relationship, thus unbiased causal effect estimation
necessitates controlling for the confounder.

3.2. Mediation

Another important type of causal topology is mediation,
where there are multiple causal paths between the stimulus
and response. For simplicity, we illustrate this general struc-
ture with one direct causal link and one that goes through
a mediator variable. Mediation analysis is often used to
quantify the impact of subcomponents or side-effects on the
model’s behavior. For example, a common setting may be

to study the impact of a specific prompting strategy or rep-
resentation on the model’s response, which can be modeled
as mediation as in Figure 3.

Prompt Response

Problem

Figure 3. Sketch of a conceptual causal model treating the prompt
(i.e. surface form) as a mediator between the underlying problem
or task of interest and the model’s response.

The impacts of the individual causal paths can be studied by
estimating the natural direct effect (NDE), natural indirect
effect (NIE), or controlled direct effect (CDE) (Pearl, 2009).
However, notably controlling for the mediator is not always
appropriate, for example, for estimating the total causal
effect (TCE). This underscores one of the key benefits of
causal inference: given the specific causal query, the appro-
priate analysis method is dictated by the graph structure,
thereby prescribing specific and principled experiments.

3.3. Spurious Correlations

The final common pattern we discuss here is spurious corre-
lations, which are closely related to confounding but differ
in the interpretation and implications for analysis. Spurious
correlations (depicted as a dashed curved edge) are statis-
tical associations between variables that are not causally
related (neither is an ancestor of the other), but are corre-
lated due to some external factor (a common cause), which
is usually unknown.

If a model is only trained on observational data (as is almost
always the case) as opposed to interventional or counterfac-
tual data, then there is no way to differentiate a spurious cor-
relation from a causal relationship. Consequently, a model
can learn to rely on spurious correlations in the data to make
predictions, effectively forming an undesirable causal link
between the spurious feature and the model’s output.

A common cause of spurious correlations, particularly in
datasets, is due to selection bias in the data generative pro-
cess, which may also be described as a collider bias (Pearl,
2009). Generally, it is not feasible to entirely eliminate
spurious correlations, as seemingly innocent choices in vari-
able construction and selection are invariably informed by
the experimenter’s biases (Hu & Kohler-Hausmann, 2020a;
Pietsch, 2015). Nevertheless, there is extensive causal infer-
ence machinery to address spurious correlations depending
on the specific setting (Plecko & Bareinboim, 2023).

4. Case Studies
In this section, we discuss a variety of specific research
projects which either make use of one of the Common Ab-
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stract Topologies (CATs) or could benefit from a more ex-
plicitly causal framing.

4.1. Confounding

One project that explicitly uses a causal framing to under-
stand the biases in the text generation of large language
models (LLMs) is Xia et al. (2024). To address confounding
due to biases in the training data or prompt, they propose
using a reward model as an instrumental variable.

Zhang et al. (2024a) formulate a human-LM collaborative
writing setting as a causal inference problem where the past
human commands and LLM responses are confounders for
the current command and the overall interaction outcome.
To identify strategies that improve the collaboration, they
introduce a new causal estimand, the Incremental Stylistic
Effect (ISE), which allows them to abstract away from spe-
cific interactions and focus on how actions incrementally
contribute to the desired stylistic outcome of the text.

Meanwhile, a good example of an active area of research
that largely revolves around the confounding CAT, despite
“confounding” rarely being mentioned explicitly, is the study
of how the mathematical reasoning abilities of LLMs are
affected by various undesirable factors (Zhou et al., 2024;
Patel et al., 2021). In particular, a variety of projects have
focused on using the dataset GSM8K (Cobbe et al., 2021) to
evaluate multi-step arithmetic reasoning as well as common
sense understanding (Mirzadeh et al., 2024; Chen et al.,
2024; Zhang et al., 2024b).

Several of these projects probe the robustness of the LLM’s
reasoning ability by systematically varying certain fea-
tures such as the subjects or numbers involved (Mirzadeh
et al., 2024), the order of the premises (Chen et al., 2024),
or attempt to replicate the original data generative pro-
cess (Zhang et al., 2024b) to test whether LLMs have overfit
to the original dataset.

While these projects generally suggest that LLMs are sen-
sitive to these factors, a more causal treatment can provide
more precise conclusions. Let’s take a closer look at one of
the projects with a relatively specific target: Razeghi et al.
(2022) investigate how much a language model’s perfor-
mance on quantitative reasoning tasks is affected by how
often the numbers in the question occur in the model’s train-
ing dataset. An intuitive causal framing for their approach
using the “confounding” CAT is shown in Figure 4a. Note,
that here the model’s response is abstracted away since we
are only interested in the response in so far as it affects the
resulting accuracy.

Alternative Approach Here it is instructive to consider
a hypothetical project where we design a benchmark to
evaluate the math skills of a language model. Much like
in Razeghi et al. (2022), our questions take the form “What

is n1 times n2?” where n1 and n2 are numbers selected by
some sampling strategy. However, we do not consider the
training dataset of the model at all, and instead of follow-
ing Razeghi et al. (2022), we sample numbers uniformly,
which effectively removes the causal link between the term
frequency and the numbers used in the question. Based on
the findings of Razeghi et al. (2022), we can expect to find a
substantial correlation between the presence of certain num-
bers in the question and the model’s accuracy, even though
the rules of arithmetic are obviously entirely agnostic to
which numbers are used.

To explain the results of our approach, we might phenomeno-
logically define a new property of numbers called “difficulty”
which, we conclude significantly affects the model’s accu-
racy, leading to the causal graph in Figure 4b using the
“spurious correlation” CAT.

Verifying Causal Assumptions A notable consequence
of committing to a causal graph as in Figure 4a is that it
may imply certain falsifiable causal relationships that are
not actually verified by the experiments. Specifically, the
experiments of Razeghi et al. (2022) identify a significant
correlation between the term frequency and the model’s
accuracy, rather than showing a causal relationship, as the
authors helpfully state explicitly. Therefore, an alternative
plausible causal graph as in Figure 4c may be posited for
their approach where the term frequency is merely corre-
lated with the model’s accuracy by sharing a hither-to un-
known confounder. This process illustrates how structurally
distinct causal interpretations can be proposed to motivate
certain experiments or approaches, and then how the results
can be used to incrementally refine the causal graph.

4.2. Mediation

Mediation analysis guides the approaches of mechanistic
interpretability (Stolfo et al., 2023; Gupta et al., 2023; Meng
et al., 2023; Wang et al., 2022), but it is also useful in
augmentation of language models (Mialon et al., 2023),
embedding LLMs within larger programs (Schlag et al.,
2023). and the quantification of biases like, gender bias (Vig
et al., 2020).

A common setup for mechanistic interpretability is to study
the impact of a specific component, such as an attention
head or even a single parameter on the model behavior. Ols-
son et al. (2022) propose that transformers can learn simple,
interpretable algorithms called “induction heads,” which
they hypothesize significantly contribute to in-context learn-
ing abilities. While mediation analysis is not explicitly used
in their work, we can frame their approach as studying a me-
diation graph, where the tendency for a given model archi-
tecture (stimulus) to exhibit in-context learning (response)
is mediated by induction heads. Their six supporting ar-
guments can be interpreted through this causal lens: argu-
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Figure 4. Various causal framings based on the approach of Razeghi et al. (2022). (a) A simple interpretation of their approach using the
confounding CAT. (b) A causal framing for an alternative approach where we do not consider the term frequency, and instead observe a
spurious correlation. (c) A more cautious causal framing that combines CATs to avoid claiming that the term frequency causally affects
the model’s accuracy (as is consistent with the authors’ approach).

ments 1 and 2 establish links between stimulus, mediator,
and response through co-occurrence and co-perturbation;
argument 3, an ablation study, resembles controlled direct
effect estimation; and arguments 4-6 examine the causal
influence of the mediator on the response. This framing
also highlights potential limitations, particularly regarding
unmeasured confounders that could affect causal interpre-
tations, as the authors’ “pattern-preserving” ablation does
not fully isolate the induction heads’ effect. By considering
mediation explicitly, we can better understand the under-
lying assumptions in their analysis and identify areas for
further investigation, such as quantifying the natural indirect
effect to understand the full impact of the induction heads
on in-context learning abilities.

In contrast, Stolfo et al. (2023) propose a method for mech-
anistic interpretability of arithmetic reasoning in LLMs by
editing the model’s parameters to characterize the informa-
tion flow in the network. Note that the level of abstraction
for this approach is quite different from the causal model we
proposed for Olsson et al. (2022), as the focus is on how in-
formation flows between individual model subcomponents,
rather than how specific subcomponents affect the overall
model’s behavior.

4.3. Spurious Correlations

There are several recent projects that use causal models to
characterize spurious correlations in, for example, factual
knowledge (Cao et al., 2023a), multi-modal models for fake
news detection (Chen et al., 2023), or to avoid spurious
features by designing strategies for finding useful demon-
strations in few-shot learning (Zhang & Yu, 2023) or control
NLP classifiers (Bansal & Sharma, 2023).

Chen et al. (2023) develop a causal model to systemati-
cally quantify and remove two specific kinds of bias: psy-
cholinguistic (use of emotional language) and image-only
(ignoring text features). Note that the assumptions of the
causal model address very specific types of bias using both
interventional and counterfactual techniques.

Bansal & Sharma (2023) presents a particularly interesting
case as it addresses the same issue as Gardner et al. (2021),
but from a causal perspective. They both study the issue of

label bias, specifically in “competency problems” (Gardner
et al., 2021), where an individual token in the prompt is not
indicative of the label, but the model learns to rely on it,
usually due to selection bias in the data collection.

The authors of Gardner et al. (2021) propose a mitigation
strategy based on “local edits” to individual tokens in the
prompt to debias the benchmark. Using their statistical
framing, the authors prove that the most promising strategy
must apply local edits such that the label is flipped precisely
half of the time.

Translating this into a causal framing, we can recover the
same result quite intuitively. Adopting the same terms
as Gardner et al. (2021), we now treat the input (text) fea-
tures X as the stimulus, the model’s response Y as the
response, and the individual token Xi as the third variable,
which our model has learned to rely on despite it being a spu-
rious feature. Now, to remove the label bias for our model,
we need the effect of an edit on Xi = x′

i to be as likely to
flip the label as not. This is equivalent to the average causal
effect conditioned on X:

E(Y |X, do(Xi = x′
i))− E(Y |X, do(Xi = xi)) = 0 (1)

However, due to the non-causal treatment Gardner et al.
(2021), need to make a “strong independence assumption,”
which is equivalent to, for the purposes of the mitigation
strategy, assuming that the individual token Xi is completely
independent of the prompt X . As the authors point out, this
assumption is not very realistic, as changing a single token
may well affect the semantic meaning of the prompt beyond
just the label (e.g. replacing “very” with “not” in a movie
review).

Meanwhile, Bansal & Sharma (2023) uses a causal graph
matching the spurious correlation CAT and a condition anal-
ogous to Equation 1 to derive a causal regularization term
for the model’s training objective - without the need for the
strong independence assumption.

In summary, both approaches started with the same ob-
jective, but due to the purely statistical treatment, a cum-
bersome derivation still required an unrealistic assumption
severely limiting the applicability of the method. The causal
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model not only provided a more intuitive motivation for
the approach, but also offered a more powerful, principled
method for achieving the same goal.

5. Alternative Views
We are hardly the first to point out systematic shortcom-
ings of evaluation methodology, particularly in NLP. One
existing perspective focuses on improving the external va-
lidity of benchmarks to ensure that high performance on a
benchmark actually translates to improved capabilities in the
real world, such as with common sense reasoning (Elazar
et al., 2021), or more precisely defining LLMs (Rogers &
Luccioni, 2024) and how tasks relate to specific cognitive ca-
pabilities (Schlangen, 2019). Raji et al. (2021) argue that the
common practice for certain “standard” benchmarks to be-
come proxies for testing complex, high-level abilities, such
as natural language understanding (NLU) leads to vague
or unreliable results, while Rogers & Rumshisky (2020)
connect this to a proliferation of low-quality datasets.

Precisely this issue, that “benchmarking for NLU is bro-
ken” (Bowman & Dahl, 2021), can be addressed using
causality. Not only does a causal framing provide a versatile
way to define the underlying assumptions and design choices
of a benchmark, but it also offers principled methods for
evaluating the benchmark’s external validity (Bareinboim &
Pearl, 2012; Pearl & Bareinboim, 2022).

In the context of evaluating the reasoning abilities of lan-
guage models, a natural field to turn to is psychometrics,
which has been studying the evaluation of human reasoning
abilities for over a century (Wilhelm, 2005). This direc-
tion also coincides with an increasing practice in Natural
Language Processing (NLP) to treat language models as
agents (Park et al., 2023; Liu et al., 2023) or subjects in
the social sciences (Horton, 2023; Leng & Yuan, 2023;
Pellert et al., 2024). Specifically, item response theory (Lord
& Novick, 2008; Baker, 2001) holds promise to develop
tools to systematically quantify what information about the
model’s reasoning abilities can be extracted from a bench-
mark with respect to some population candidate models,
and there are some projects applying this framework in the
context of NLP (Rodriguez et al., 2021). Within the field
of NLP there are also notable calls for more holistic evalu-
ation schemes (Liang et al., 2023; Bowman & Dahl, 2021;
Zhang et al., 2024b) and practical tools for improving the
evaluation of language models (Ribeiro et al., 2020; Sri-
vastava et al.; Alzahrani et al., 2024) or even reintroducing
principles from linguistic theory (Lan, 2023).

There is also a growing interest in studying the causal knowl-
edge learned by language models (Zhang et al., 2023; Kıcı-
man et al., 2023) and their causal reasoning abilities (Jin
et al., 2024; Zečević et al., 2023; Liu et al., 2024) to help

with causal discovery (Montagna et al.; Jiralerspong et al.,
2024) or even hypothesis generation in psychology (Tong
et al., 2024). This effort largely coincides with our mes-
sage: just as an LLM may benefit from more explicit causal
models, so can the research community.

6. Conclusion
The burgeoning research on large models, and, in particular,
high-level reasoning tasks, faces a variety of challenges,
or monsters, to reliably evaluate and improve models. De-
spite the wide variety of approaches and frameworks that
have been developed to tackle these challenges, this variety
obscures their shared structural features and recurring is-
sues. By recognizing that monsters can often be effectively
formulated in terms of causal assumptions underlying an ex-
perimental design or data generation process, we can unify
our understanding using the language of causality.

A causal framing aids along several steps of the research pro-
cess by guiding experimental design, formulating testable
hypotheses, and interpreting results. Causal methods en-
able researchers to gain a clearer lens to understand how
variables of interest interact, rather than merely optimizing
for predictive performance on an artificial benchmark. We
argue that causality offers a path toward deeper scientific
insights, more transparent communication of assumptions,
and stronger justifications for the conclusions drawn.

One stumbling block to adopting causal methods is that
the restrictive assumptions and formalism may seem unap-
proachable at first. Additionally, researchers may hesitate
to commit modeling assumptions to paper where they can
be scrutinized. However, data-driven approaches which rely
on implicit or vague assumptions along with results that
may (inadvertently) be interpreted as causal contribute to
confusion and unsupported claims, which hinder scientific
progress. Causal methods, by contrast, encourage explicit
modeling and critical thinking about the mechanisms that
underlie empirical observations.

To make causality more accessible and practically appli-
cable, we introduce Common Abstract Topologies (CATs)
to faithfully describe the underlying structure of many is-
sues that arise in designing and evaluating ML models. In
the case studies in Section 4, we have shown how a causal
framing can formalize a various common issues and help
develop mitigate them. We envision CATs as a practical
guide, helping researchers quickly identify relevant causal
models and choose appropriate inference tools. Ultimately,
causal models encourage more hypothesis-driven research
which directly tackle key questions in a principled, transpar-
ent way, leading to more robust progress across empirical
machine learning.
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