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ABSTRACT

Large language models (LLMs) have been enormously successful in solving a
wide variety of structured and unstructured generative tasks, but they struggle to
generate procedural geometry in Computer Aided Design (CAD). These difficul-
ties arise from an inability to do spatial reasoning and the necessity to guide a
model through complex, long range planning to generate complex geometry. We
enable generative CAD Design with LLMs through the introduction of a solver-
aided, hierarchical domain specific language (DSL) called AIDL, which offloads
the spatial reasoning requirements to a geometric constraint solver. Additionally,
we show that in the few-shot regime, AIDL outperforms even a language with
in-training data (OpenSCAD), both in terms of generating visual results closer to
the prompt and creating objects that are easier to post-process and reason about.

1 INTRODUCTION

Parametric Computer-Aided Design (CAD) systems revolutionized manufacturing-oriented design
by introducing a paradigm where geometry is created through a sequence of constructive operations.
This approach enables both accuracy and precision in modeling and offers flexibility in design edit-
ing. Essentially, CAD systems use domain-specific languages (DSLs) to express geometry as a
program, with CAD GUIs as end-user programming interfaces.

Recent advances in generative AI have significantly enhanced the creation of 2D and 3D geometry,
yet achieving the precision, detail, and editability provided by CAD models remains a challenge.
To bridge this gap, one promising strategy is to harness the powerful code generation capabilities
of pre-trained large language models (LLMs) and the geometry-as-a-program paradigm from CAD.
Rather than generating the geometries directly, we generate CAD programs that produce the geo-
metric structures. However, this raises a crucial question: How can we reimagine the traditional
CAD DSL principles, which have been designed for a constant visual feedback loop, to craft
innovative languages for design in an age where code is generated with support from AIs?

In this work, we address this question and propose a new DSL for CAD modeling with LLMs, which
we call AIDL: AI Design Language. Through experiments with different existing models and prior
work that analyzes their observed behavior, we identify four key design goals for our DSL. Namely,
we propose a solver-aided approach that enables LLMs to concentrate on high-level reasoning that
they excel at while offloading finer computational tasks that demand precision to external solvers.
For CAD, this means that the DSL should enable implicitly referencing previously constructed ge-
ometry (dependencies) and specifying relationships between parts that can then be solved by the
solver (constraints). Further, we aim to create semantically meaningful abstractions that leverage
the LLM’s proficiency in understanding and manipulating natural language (semantics). Finally,
we advocate for a hierarchical design approach, which allows for encapsulating reasoning within
different model parts and enhancing editability (hierarchy).

Our analysis of existing CAD DSLs reveals that none achieve all four design goals, and supporting
all goals simultaneously presents challenges due to conflicting requirements. For example, the abil-
ity to unambiguously reference all intermediate parts of the geometry (dependencies) is a known
challenge in CAD. While recent work proposes a language that supports unambiguous referenc-
ing, it requires semantic complexity (semantics). Additionally, while constraints are widely used
in specific aspects of CAD design, such as assembly modeling (constraints), supporting them in a
complex model with hierarchically defined constraints (hierarchy) is computationally challenging.
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Our key insight is that we can address these challenges by both limiting and expanding different
language constructs from prior CAD DSLs. While we limit the use of references to constructed
geometry, without losing geometric expressivity, we expand the use of constraints to hierarchical
groups of geometry, so called structures. We support these novel language constructs with a re-
cursive constraint solver that leverages the hierarchical structure to tractably solve global constraint
systems.

We present a series of text-to-CAD results in 2D generated with our language, and we evaluate the
importance of different aspects of AIDL by comparing it to OpenSCAD, a popular CAD language,
and subsets of the AIDL language that has hierarchy or constraints disabled. For these methods,
we report CLIP scores of the generated results and conducted a perceptual study on the generated
CAD renderings. Our experiments show that AIDL programs are visually on-par with or better than
their OpenSCAD counterparts despite the LLM not seeing AIDL code in its training data, while
having superior editability, and our ablations demonstrate that introducing hierarchy contributes to
local editability, while constraints allow complex multi-part objects to be composed precisely. With
AIDL we show that language design alone can improve LLM performance in CAD generation.

Figure 1: A 2D CAD program in AIDL, generated using the prompt “old-school telephone”.
The LLM generates AIDL code in a hierarchical fashion, adding constraints using naturally named
operators. AIDL’s backend solver produces the final CAD shape rendered on the right.

2 RELATED WORK

2.1 CAD GENERATION

The compilation of large CAD datasets in recent years (Koch et al., 2019; Willis et al., 2021b; Jones
et al., 2021; Willis et al., 2022) has inspired a wealth of research on synthesizing CAD models.
These efforts fall into two broad categories; those which generate CAD geometry directly (Willis
et al., 2021a; Guo et al., 2022; Jayaraman et al., 2023; Nash et al., 2020; Xu et al., 2024; Liu et al.,
2024), and those which generate a procedure that generates CAD geometry (Wu et al., 2021b; Ellis
et al., 2017; 2018; Ganin et al., 2021; Ren et al., 2022; Li et al., 2023a; Xu et al., 2022; Lambourne
et al., 2022; Para et al., 2021a; Seff et al., 2022; Willis et al., 2021b; Ma et al., 2024; Li et al.,
2024; Khan et al., 2024). A fundamental challenge with these tools is the ability to control the
generation. While many methods can be conditioned on an input allowing for reverse engineering
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applications (Lambourne et al., 2022; Guo et al., 2022), the few methods that directly focus on
generation give limited control over their output (Jayaraman et al., 2023; Wu et al., 2021a; Xu et al.,
2024; Seff et al., 2022). The highest degree of control is afforded by those that take sketches as
input, such as Free2CAD (Li et al., 2022) but these are effectively reverse reverse engineering an
existing geometric design rather than enabling high level guidance. The goal of AIDL is to enable
control without direct geometric supervision, and to incorporate semantic understanding beyond
that of existing CAD programs. We have thus chosen to design our system around general purpose
language models rather than CAD specific models, and focus on DSL design rather than the design
or training of a generative model. Importantly, all prior works use CAD DSLs that have limitations
when it comes to LLM needs, as we discuss in Section 3.1.

2.2 CODE GENERATION WITH LLMS

Software engineering has been one of the marquee applications of LLMs, so a detailed enumeration
of works in the field is beyond the scope of this paper. We instead refer the reader to a survey Zhang
et al. (2024), and reserve this section to position AIDL within the space. The majority of research on
using LLMs for coding focus on how to make LLMs work more effectively with existing program-
ming languages. A popular approach is to specifically train or fine-tune a model on code repositories
and coding specific tasks (Li et al., 2023b; Lozhkov et al., 2024; Grattafiori et al., 2023), or more
recently to use LLMs to generate higher complexity training examples (Xu et al., 2023; Luo et al.,
2023). Other approaches tackle prompt complexity through system design, exploring prompt en-
gineering and multi-agent strategies for pre-planning or coordinating a divide-and-conquer strategy
(Dong et al., 2023; Bairi et al., 2023; Silver et al., 2023). AIDL approaches LLM code generation
from an entirely different perspective, by asking which language features will best enable an LLM
to work with a programming system. Most similar is BOSQUE, a proposed general purpose pro-
gramming language (Marron, 2023). In particular, BOSQUE’s embrace of pre and post conditions
mirrors AIDL’s use of constraints and strong validation, but does not go so far as to employ a solver
to enforce constraints.

2.3 CAD DSLS

While there are many CAD DSLs, they can be grouped intro three broad categories:

Constructive Solid Geometry (CSG) In CSG, users can specify 2D and 3D parametric primitives,
such as rectangles or spheres, directly in global coordinates. Using boolean operations, such as
union or intersection, users then combine these primitives in a hierarchical tree structure to achieve
complex designs. While some CSG languages, such as OpenSCAD, allow the use of variables or
expressions for primitive parameters, they do not support specifying relationships or dependencies
between different parts of the geometry. This absence of dependencies simplifies the abstraction,
making CSG widely used in inverse design and reconstruction tasks (Du et al., 2018; Nandi et al.,
2020; Yu et al., 2022; Michel & Boubekeur, 2021). However, this limitation also makes modeling
more challenging, which is why CSG is not commonly used in most commercial CAD tools.

Query-based CAD Most commercial CAD tools use query-based languages, such as Feature-
Script (Onshape, 2024), which employ a sequence of operators to create and modify models (e.g.,
extrude, fillet, chamfer). These operators reference intermediate geometry—e.g., a chamfer operator
takes a reference to an edge. This referencing creates implicit dependencies, simplifying modeling
and enabling easy editing as operations propagate when intermediate geometry is updated. However,
a challenge arises when edits lead to topological changes, making reference resolution ambiguous.
For example, if an edge gets split or disappears, where should the chamfer be applied? To address
this, these languages do not reference geometry explicitly. Instead, geometric references are speci-
fied implicitly via a language construct called queries. These queries are resolved during runtime by
a solver (CadQuery, 2024; Onshape, 2024), which typically uses heuristics to resolve ambiguities.
This makes automating design challenging, and generative tools that use CAD operators restrict
themselves to sequences where references are not needed, such as sketch and extrude (Wu et al.,
2021a; Willis et al., 2021b; Lambourne et al., 2022). While recent work allows for the unambiguous
direct specification of references (Cascaval et al., 2023), mastering this language is complex and
demands significant expertise.
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Constraint-based CAD As the name implies, constraint-based CAD DSLs natively enable users
to create geometric constraints between geometric primitives. This frees designers from specify-
ing parameters consistently, allowing for freeform design while ensuring that relationships between
parts are preserved. This approach is used in content creation languages like Shape-Assembly (Jones
et al., 2020), GeoCode (Pearl et al., 2022), and SketchGen (Para et al., 2021b). In typical commer-
cial CAD tools, constraint-based abstractions are used in sketches—2D drawings that get extruded
to form 3D geometry—and during assembly modeling, but not during solid modeling which uses
queries. These languages do not provide operations to modify primitives or to create intermediate
geometry and therefore they reference geometry directly. Designs specified in these languages are
non-hierarchical, all constraints are being solved simultaneously.

3 AIDL - A LANGUAGE FOR AI DESIGN

In this section, we present AIDL, a CAD DSL for LLM-generated designs.

3.1 LLM ANALYSIS AND DESIGN GOALS

We review the strengths and weaknesses of LLMs and formulate design goals that our DSL should
support.

Direct vs. indirect computation Findings by Bubeck et al. (2023) and Makatura et al. (2023)
suggest LLMs perform better with external solvers. For CAD, we aim to enable LLMs to express
design intent by specifying geometric relationships instead of performing direct computation. In
modern CAD tools, geometric relationships can be defined using implicit dependencies or explicit
constraints, each with trade-offs. Geometric dependencies create implicit constraints that are easy
to enforce, but long chains of references are challenging to reason over (Makatura et al., 2023).
Users typically avoid this issue by generating references automatically through CAD state inter-
action rather than writing CAD code directly. Explicit constraints, like those in CAD sketches or
assemblies are easier to reason about, but harder to solve. It is also challenging to add just the right
number of constraints so that the system is neither often under-or over-constrained. To achieve the
best of both worlds, we aim to support both implicit constraints through geometric dependencies
(dependencies) and specification of geometric relationships via constraints (constraints).

Named variables and semantic cues LLMs are designed to manipulate words, i.e., terms with
semantic meaning. In their experiments, Makatura et al. (2023) reparametrize CSG programs
with and without informing the LLM about the modeled object. Their results suggest that bet-
ter reparametrizations are obtained by providing additional semantic knowledge. Our CAD DSL
should use intuitively named terms (semantics) for design operations, references and constraints.
Our language should also expose geometric entities easily, without many semantic indirections.

Design complexity and modularity Bubeck et al. (2023) observe that GPT-4 can generate “syn-
tactically invalid or semantically incorrect code, especially for longer or more complex programs.”
Similarly, Makatura et al. (2023) note that complex designs may miss components or have them
incorrectly placed. To address this, our CAD DSL should treat hierarchical design that supports
modularity (hierarchy) as a first-class construct, enabling the breakdown of complex problems into
manageable units. This hierarchy should facilitate planning and iteration in code generation.

Table 1: We review how well the three major CAD DSL groups align with our design goals. Neither
of the existing paradigms complies with all of the desiderata.

Language dependencies constraints semantics hierarchy
CSG - - ✓ ✓

Constraint-based - ✓ ✓ -
Query-based ✓ - - -
AIDL (Ours) ✓ ✓ ✓ ✓
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None of the existing CAD DSLs fully support all of these design goals, as shown in Table 1. CSG
DSLs are inherently hierarchical and can have intuitively named operations, but they do not support
constraints, either implicitly through references or explicitly. Query-based DSLs allow implicit
constraints via dependencies, but since references must be solved for though queries, they cannot
be named directly, reducing semantic clarity. This also impacts modularity, as queries create chains
of dependencies between distant parts of the program. Constraint-based CAD DSLs use intuitively
named constraints, such as “coincident” or “symmetric,” but they do not generate dependencies and
lack hierarchy, as constraint solving is performed globally over a flat design.

3.2 KEY CHALLENGES AND DSL DESIGN DECISIONS

Combining all of the goals above in a single CAD DSL requires addressing two key challenges.

The first challenge is creating dependencies on previously constructed geometry (dependencies)
without increasing the semantic complexity of operators (semantics). As explained in Sec. 2.3,
previously constructed geometry cannot be persistently named because parametric variations of-
ten lead to topological changes. DSLs that reference previously constructed geometry use
queries—algorithms that retrieve the geometry at a given state. However, this solution prevents
assigning persistent semantic names to geometric entities, increasing semantic complexity and, our
analysis shows that LLMs struggle to reason about queries with long chains, motivating our choice
to disable them by design.

Our solution to enable dependencies without queries arises from the observation that all geometric
primitives in CAD are created either through constructive operations that instantiate primitives or
through boolean operations (e.g., when two edges intersect, a new vertex is generated). While this is
evident for CSG DSLs we note that query-based CAD DSLs are not more expressive than CSG DSLs
since all CAD operators (e.g. chamfering) can be expressed as a combination of a constructive and
a boolean operation Cascaval et al. (2023). Reference challenges emerge from boolean operations,
as changes in parameters can lead to a varying number of generated primitives.

While we still want the geometric expressivity enabled by boolean operations, we want to reference
geometry without queries. To overcome this problem, we decide to restrict our DSL to only use ref-
erences for geometry created before boolean operations. In our DSL, boolean operations are applied
to structures, which is an intermediate type to create tree-structured hierarchies, see Fig. 5. The
result of these booleans cannot be referenced, just as with CSG DSLs, however, we can reference
constructed geometry and structures themselves. Although this introduces a language limitation, it
does not affect 1) geometric expressivity, since in the worst case, you can have one geometry per
structure, achieving the same expressiveness as CSG, and 2) dependency expressivity, as AIDL al-
lows for arbitrary parametric expressions, meaning that in the worst case, dependencies can still be
expressed manually, albeit with more effort.

Second, using constraints (constraints) to specify the relationship between elements within hierar-
chical designs (hierarchy) is computationally challenging. Hierarchical designs encourage growing
complexity and an increasing number of constraints, driving down solver performance. Query-
based languages deal with this complexity by solving constraints in intermediate, flat designs, e.g
constraints between sketch elements in a CAD sketch are first solved before the user can extrude
the sketch. Solving constraints from all CAD operations simultaneously is computationally too ex-
pensive for these systems. To tackle this challenge, we introduce (1) two types of constraints, one
between geometry and one between structures, and (2) a custom recursive solver to hierarchically
solve constraints in a design. This strategy allows us to explicitly define the hierarchy of constraints
and to practically solve it, without providing intermediate feedback to the LLM.

3.3 AIDL BY EXAMPLE

Next, we showcase AIDL by example and show how the different language constructs fulfill our
design goals. First, we will illustrate the basic constructs of AIDL with the phone handset example
in Fig. 2. An AIDL program starts by defining the high-level logic of a design. These high-level
building blocks are called structures and they are of different types, such as Solid and Hole, and
they can be empty, a list of primitives, a list of substructures or any combination of these, see Fig. 5.
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Figure 2: AIDL allows LLMs to express constraints using semantically meaningful operators. This
figure demonstrates how adding constraints (highlighted in red) in an AIDL program for a phone
handset eliminates geometrical flaws in the generated 2D sketch. (Left) AIDL code for handset
design. (Top right) Design before constraints applied. (Bottom right) Design after constraints
applied.

In the handset example, we first define an empty structure, L.2, which we populate with primitives,
such as rectangles, lines and arcs, L.3-L.8. Next, we add unary and binary geometric constraints,
e.g. Horizontal and Coincident, between these primitives, L.10-L.16. Finally, we solve the constraint
system to optimize for the final parameters of each geometric primitive, L.18.

References In AIDL, references are pointers to geometry, parameters or structures. They have
various usages.

First, instead of specifying coordinates directly such as in L.3, we can use references to reuse already
defined geometry. For example, in L.4, we define an Arc, which in the AIDL API is defined via
Arc(center, start, end). The left_round arc starts at the upper left corner of the
base rectangle via the reference handset.base.top_left. This strategy lowers the risk of
erroneously recomputing coordinates of the upper left point. Second, this reference ensures that
base and left_round stay attached during the constraint solving process. Indeed, by sharing a
common point, we implicitly define a coincidence constraint between them.

Geometric primitives can also be referenced within constraint calls. In L.10, we explicitly define
a coincidence constraint between the upper right corner of base and the end point of the arc
right_round. The arc right_round has been defined with explicit coordinates in L.6, which,
without further constraints, is not necessarily connected to the rest of the shape, see Fig. 2 (top right).

Lastly, as can be seen in Fig. 5, references can also point to parameters of geometric primitives. This
allows for more control and more expressivity when defining geometry and constraints. Consider
L.12, where we used equation constraints to express a symmetric design intent on the two lines
left_line and right_line. L.12 declares that both lines should have the same length,
which is a parameter of the Line primitive. Parameters are referenceable on the same level as
geometry and structures, making them first-class constructs in our language.

Constraints Constraints express design intent, i.e., the way that geometry should behave under
change. As we have already seen, in AIDL, constraints can be implied by sharing a reference, see
L.4, or by explicitly adding them to the design via AddConstraint calls. Constraint operations
have a certain constraint type and they take as input references. Depending on the constraint type,
either equality or inequality constraints will be enforced on the geometric parameters specified by
the input references. For example, in L.14, the Equal constraint type enforces the diameter of
the two arcs left_fillet and right_fillet to be the same.

Using references and constraints, we can explicitly state the design intent, which will be realized by
an external solver, L.18, (dependencies), (constraints).
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Synonymous operators References and constraints in a DSL are useful if they are easy to
use. For human users, learning a new DSL can be challenging if its API is long and re-
dundant. Concise APIs are usually preferred. However, designing a DSL for LLMs in-
troduces a different criteria, which is that the LLM might write a function call which is
not part of the API, but which is semantically equivalent. For example, consider the two
constraint calls: (1) AddConstraint(Perpendicular( line_1, line_2)) and (2)
AddConstraint(Orthogonal( line_1, line_2)).

Intuitively, both Perpendicular and Orthogonal should enforce the same angle between
the two lines, i.e., they are synonyms. However, to reduce redundancy, most APIs will choose
only one of them. In AIDL, we expose both constraint types, to account for syntactical weak-
nesses of LLMs and to take advantage of their semantic versatility (semantics). More generally,
we opt for a robust API vocabulary, allowing for different ways of constructing primitives, e.g.
Triangle(center, base, height) vs. Triangle(pt_a, pt_b, pt_c).

Note that even though we have synonymous references in AIDL, they are all being compiled to
unique identifiers. During the interpretation of the program, we include only referenced entities in
the model.

Hierarchical designs Next, we illustrate the use of hierarchical designs with a complete phone
design, see Fig. 1. The phone is an assembly made out of three different structures, the base,
receiver and dial_plate, which are all Solid structures. These structures are directly at-
tached to the telephone structure on lines 5, 9 and 13. As for the handset design in Fig. 2, each
structure defines its own geometry and and constraints, e.g. the constraints for the receiver, L.20-21.
Constraints can also be enforced between structures, which will be solved iteratively in tandem with
structure-internal constraints, see Sec. 3.4.

Finally, in AIDL, the result of a boolean operation cannot be referenced, since the parameter-
dependent topological outcome requires queries, see Sec. 3.1. To implement this, boolean operations
are implied by using different structure types and then applied after constraint solving in a boolean
post-process.

3.4 COMPILATION AND CONSTRAINT SOLVING

The hierarchical organization of AIDL models allows for recursive constraint solving. We employ
an iterative deepening, recursive solver strategy that allows AIDL to solve a minimal constraint
problem at each stage, and also keeps substructures fixed as much as is possible to avoid unintuitive
changes to substructures due to higher-level constraints. (translations of substructures are preferred
over modification of internal geometry to satisfy constraints). To facilitate this recursive solving,
AIDL models are first validated to ensure that each substructure is independently solvable, then
compiled into a hierarchy of geometric constraint problems that we solve with an iterated Newton’s
method solver. The solved model is then post-processed to perform boolean operations and generate
the final geometry.

When an AIDL program is run as a Python program, it generates a Structure tree data structure.
An AIDL model is valid if Geometry only references other Geometry belonging to the same Struc-
ture, and Constraints only reference Geometry, Parameters and Structures within the same subtree.
Definition of constraint equations in AIDL is deferred until after the tree structure is finalized be-
cause bounding boxes and some geometric constraints are not well defined until the model topology
and initial parameters are fixed. Two non-inversion constraints are added to each bounding box,
height >= 0 and width >= 0, using a slack variable formulation borrowed from linear program-
ming (e.g. height+ s == 0 ∧ s− |s| == 0).

The constraint system of an AIDL model is solved hierarchically as described in Appendix B using
an iterated Newton’s method solver (based on SolveSpace Westhues (2022)). Iteration is used to
support bounding boxes; at each iteration we fix the expression of each bounding box limit relative
to the initial positions of its geometry, then re-check and re-solve if a different piece of geometry now
defines the limit. Solved AIDL models are post-processed to apply boolean operations defined by
Solid and Hole Structures. Curve geometry is recursively aggregated to discover closed faces which
are boolean unioned or subtracted from each other depending on the type of Structure they belong

7
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to. We use the OpenCascade Modeling Kernel OCCT3D (2021) to perform boolean operations and
generate output in the CAD standard STEP format.

4 EXPERIMENTS

Implementation For our experiments, we perform LLM-driven 2D CAD generations with AIDL.
AIDL enables LLM-driven text-to-CAD through a front-end generation pipeline. The pipeline fol-
lows a common validate-until-correct pattern. We first prompt the LLM with a detailed language
description of AIDL, which includes AIDL’s syntax, primitive geometry types, and available con-
straints. Then the LLM is prompted with six manually designed example programs in AIDL for
these objects: bottle opener, ruler, hanger, key, toy sword, and wrench. Please refer to the sup-
plemental material for the full list of prompts. Finally, it is prompted to generated the full AIDL
program of the desired model. The front-end then executes the generated program, returning trace-
backs directly to the LLM in case of failure and prompting the LLM to fix the error. This generation
loop is repeated until either a syntactically correct program is found or after N = 5 failed attempts,
taking advantage of incomplete executability to give feedback on partial generations. For all our
experiments, we use the OpenAI’s gpt-4o model without finetuning, and we run each prompt ten
times with different seeds and collect the runs that generated a valid program.

Results We report both the rendering and program of all runs of on 36 manually generated prompts
in the supplemental material. In Figure 3, we show renderings for a diverse subset of the generated
AIDL programs. Despite the LLM not being finetuned with our AIDL language, it successfully
generates accurate CAD geometry based on its prior knowledge of these objects. Furthermore,
the geometries are grouped hierarchically by semantically meaningful structures and constraints,
making them easy to edit. See appendix D for an illustration of how an AIDL model can be modified.

Figure 3: A sample of LLM-guided 2D CAD generations using AIDL. An untuned general pur-
pose LLM is able to generate a diverse range of objects with accuracy after being prompted by the
AIDL language syntax and a few example programs.

Comparisons For comparison, we perform 2D text-to-CAD with the OpenSCAD language, the
most common language for directly coding geometries in CAD, unlike other languages that are
typically used with GUIs for end-user programming. We directly prompt the LLM to generated CAD
geometry in the OpenSCAD language since the gpt-4o model has prior knowledge about its syntax.
We used the same 36 prompts and report all results in the supplemental material. Despite the LLM’s
familiarity with OpenSCAD, we observe that AIDL results are often closer to the prompt and achieve
higher CLIP scores (see Table 2). In addition to better prompt alignment, AIDL results exhibit more
semantic structure. In particular, the OpenSCAD language does not support specifying relationships
or dependencies between components, thus the LLM would often opt to generate polygons of the
desired shape by specifying explicitly the vertex coordinates (see Figure 4), making the resulting
program highly difficult to edit.
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We also attempted using FeatureScript and the DSL from the recent work Cascaval et al. (2023) for
LLM-drive 2D CAD generations. However, the LLM failed to generate syntactically correct pro-
grams in almost all cases. This issue was not rectified even when prompting the LLM with example
programs and code documentations in those languages. These two languages are not syntactically
based on common programming languages usually found in LLM training sets. This indicates the
importance of designing a semantically rich language that is easy for the LLM to use and manipulate.

Ablations We ablate our language design choices by comparing AIDL against two variants:
AIDLno hierarchy and AIDLno constraints, which disable hierarchy and constraints respectively. In
AIDLno hierarchy, all the geometries of a program will live on the same level under a single Struc-
ture instance, and all constraints will also be attributed to this single Structure. On the other hand,
AIDLno constraints is a subset of AIDL where we have simply removed the ability to specify any con-
straints. For these language subsets, we modify our initial prompts to the LLM to reflect the altered
language features. We report all runs on the same 36 prompts in the supplemental material.

While AIDLno constraints occasionally places components correctly, editing such programs is difficult
because scaling requires individual adjustments for each component, whereas constraints allow a
single edit to affect all geometries. Additionally, it often produces detached components due to the
lack of constraints (see Figure 4 and the “fountain pen” example in the supplemental material).

Programs generated with AIDLno hierarchy, while being visually similar to the ones generated with
AIDL, are harder to refine, since the user cannot choose a particular part of the CAD shape to make
local edits, as shown in Figure 4.

We observe that neither variation of AIDL significantly impacts CLIP scores for the renderings
(Table 2), because that CLIP scores do not take into account editability and they place more emphasis
on local semantics than having precisely connected geometries.

Results Across Multiple Runs All methods produced at least one valid output per prompt, with
success rates as follows: ours: 64%, AIDLno constraints: 94%, AIDLno hierarchy: 77%, and OpenSCAD:
79%. Notably, our method’s success rate is only slightly lower than OpenSCAD, which is included
in the training data. To showcase the highest-quality output for each method side by side, considering
that LLMs produce varying outputs across runs, we conducted a perceptual study to rank the valid
CAD programs generated from the 10 runs per method and prompt. The study details are discussed
in appendix C, and the results are provided in the supplemental material.

Limitations Our experiments revealed limitations of our system, particularly around model com-
plexity and underused language features. AIDL supports rectangle rotation, yet all rectangles used
in generated examples are axis-aligned. Looking at the generated code and conversation history (see
supplemental) shows that the LLM did frequently specify that rectangles were rotatable (a flag in
the Rectangle constructor), but failed to rotate them. One shortcoming of the AIDL library is that
rectangles can only be rotated by the constraint solver, so an appropriate constraint (usually Angle)
must be imposed to cause a rectangle to rotate. In cases where the LLM attempted to do this, it hal-
lucinated a non-existent constraint like Rotate instead. When errors are reported to the LLM, the
most common response is to try removing constraints or structures until the error goes away. Since
we apply a validate-until-correct pattern, this means that the removed design intent (e.g. rectangle
rotation) is never returned to the model. These limitations stem from our choice to focus on DSL de-
sign rather than the complementary approaches of model training or tuning, or prompt engineering.
Fine-tuning a model on AIDL code could reduce the incidence of language feature hallucination,
and crafting a more interactive prompting and feedback system could allow an LLM to recover lost
complexity and design intent in the face of errors.

5 CONCLUSION

AIDL is an experiment in a new way of building graphics systems for language models; what if,
instead of tuning a model for a graphics system, we build a graphics system tailored for language
models? By taking this approach, we are able to draw on the rich literature of programming lan-
guages, crafting a language that supports language-based dependency reasoning through semanti-
cally meaningful references, separation of concerns with a modular, hierarchical structure, and that
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Figure 4: Comparison and Ablation. For the task of text-to-CAD, we compare our language to
OpenSCAD and ablate on our language design choices. (Top Left) In particular, generated Open-
SCAD programs exihibit manually drawn polygons with explicit vertex positions which are difficult
to edit. (Bottom Left) Programs generated with AIDLno constraints has detached parts due to not being
able to constrain the relative positions of part geometries. (Right) When an AIDL model is created
with a structure hierarchy it is easier to locally edit because of modular substructures (left), while
a similar edit on a non-hierarchical model (right) results in the model breaking (the dial moves
without the dial holes). Performing the same edit in a non-hierarchical model requires multiple,
non-concurrent edits.

Table 2: Average CLIP scores for all prompts. We perform text-to-CAD generation with AIDL,
AIDLno hierarchy, AIDLno constraints, and OpenSCAD on our list of prompts for ten iterations each and
show the average CLIP scores over the ones that produced valid programs.

AIDL AIDLno hierarchy AIDLno constraints OpenSCAD
↑ CLIP Score Avg. 28.90 28.64 28.89 27.32

CLIP Score Var. 2.24 1.98 2.05 1.87

compliments the shortcomings of LLMs with a solver assistance. Taking this neurosymbolic, pro-
cedural approach allows our system to tap into the general knowledge of LLMs as well as being
more applicable to CAD by promoting precision, accuracy, and editability. Framing AI CAD gen-
eration as a language design problem is a complementary approach to model training and prompt
engineering, and we are excited to see how advance in these fields will synergize with AIDL and
its successors, especially as the capabilities of multi-modal vision-language models improve. AI-
driven, procedural design coming to CAD, and AIDL provides a template for that future.

REFERENCES

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, C. VageeshD, Arun Shankar Iyer, Suresh
Parthasarathy, S. Rajamani, B. Ashok, and Shashank P. Shet. CodePlan: Repository-level Coding
using LLMs and Planning. September 2023. URL https://www.semanticscholar.
org/paper/f81a1b4510631d14b5b565c4701ee056f8d5c72f.
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Wenhan Xiong Grattafiori, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. ComplexGen: CAD
reconstruction by B-rep chain complex generation. ACM Transactions on Graphics, 41(4):129:1–
129:18, July 2022. ISSN 0730-0301. doi: 10.1145/3528223.3530078. URL https://dl.
acm.org/doi/10.1145/3528223.3530078.

Pradeep Kumar Jayaraman, Joseph George Lambourne, Nishkrit Desai, Karl Willis, Aditya
Sanghi, and Nigel J. W. Morris. SolidGen: An Autoregressive Model for Direct B-
rep Synthesis. Transactions on Machine Learning Research, February 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=ZR2CDgADRo&referrer=
%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR).

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and Adriana Schulz.
AutoMate: a dataset and learning approach for automatic mating of CAD assemblies. ACM
Transactions on Graphics, 40(6):227:1–227:18, December 2021. ISSN 0730-0301. doi: 10.1145/
3478513.3480562. URL https://dl.acm.org/doi/10.1145/3478513.3480562.

R Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J
Mitra, and Daniel Ritchie. Shapeassembly: Learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics (TOG), 39(6):1–20, 2020.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4713–4722, 2024.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: A Big CAD Model Dataset for
Geometric Deep Learning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9593–9603, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-
72813-293-8. doi: 10.1109/CVPR.2019.00983. URL https://ieeexplore.ieee.org/
document/8954378/.

Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang, Aditya Sanghi,
and Kamal Rahimi Malekshan. Reconstructing editable prismatic CAD from rounded voxel
models. In SIGGRAPH Asia 2022 Conference Papers, SA ’22, pp. 1–9, New York, NY, USA,
November 2022. Association for Computing Machinery. ISBN 978-1-4503-9470-3. doi: 10.1145/
3550469.3555424. URL https://dl.acm.org/doi/10.1145/3550469.3555424.

11

https://arxiv.org/abs/2304.07590
http://doi.acm.org/10.1145/3272127.3275006
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1707.09627
https://papers.nips.cc/paper/2018/hash/6788076842014c83cedadbe6b0ba0314-Abstract.html
https://papers.nips.cc/paper/2018/hash/6788076842014c83cedadbe6b0ba0314-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2e92962c0b6996add9517e4242ea9bdc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2e92962c0b6996add9517e4242ea9bdc-Abstract.html
https://dl.acm.org/doi/10.1145/3528223.3530078
https://dl.acm.org/doi/10.1145/3528223.3530078
https://openreview.net/forum?id=ZR2CDgADRo&referrer=%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR)
https://openreview.net/forum?id=ZR2CDgADRo&referrer=%5BTMLR%5D(%2Fgroup%3Fid%3DTMLR)
https://dl.acm.org/doi/10.1145/3478513.3480562
https://ieeexplore.ieee.org/document/8954378/
https://ieeexplore.ieee.org/document/8954378/
https://dl.acm.org/doi/10.1145/3550469.3555424


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. Free2CAD: parsing freehand drawings
into CAD commands. ACM Transactions on Graphics, 41(4):1–16, July 2022. ISSN 0730-0301,
1557-7368. doi: 10.1145/3528223.3530133. URL https://dl.acm.org/doi/10.1145/
3528223.3530133.

Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-ming Yan. SECAD-Net: Self-Supervised CAD
Reconstruction by Learning Sketch-Extrude Operations. 2023a. doi: 10.48550/ARXIV.2303.
10613. URL https://arxiv.org/abs/2303.10613. Publisher: arXiv Version Number:
1.

Pu Li, Jianwei Guo, Huibin Li, Bedrich Benes, and Dong-Ming Yan. Sfmcad: Unsupervised
cad reconstruction by learning sketch-based feature modeling operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4671–4680, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor,
Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean
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A LANGUAGE SYNTAX

structure = ⟨ frame, sketch, [ref〈structure〉], [constraint] ⟩
frame = ⟨ type ∈ { Assembly, Solid, Hole, Drawing }, orientation ∈ { Top, Front, Side }, . . . ⟩
sketch = ⟨ [ref〈geometry〉], [ref〈parameter〉] ⟩

parameter = ⟨ val ∈ R, mutable ∈ B ⟩
ref〈τ〉 = ⟨ name ∈ String, ptr ∈ τ ⟩

geometry = Point — Line — Arc — Circle — ⟨ [ref〈geometry〉], [ref〈parameter〉] ⟩

primitives ::= make point — make line — make arc — make circle — make rectangle — . . .
constraint ::= logical expr — structural constraint (ref〈τ〉, ref〈τ〉)

— unary geometric constraint (ref〈τ〉) — binary geometric constraint (ref〈τ〉, ref〈τ〉)
structural constraint ::= above — center inside — left of — taller — ...

unary geometric constraint ::= horizontal — diameter — fixed — ...
binary geometric constraint ::= coincident — tangent — equal — symmetric —...

logical expr ::= arith expr = arith expr — arith expr ≤ arith expr — arith expr ≥ arith expr
— logical expr ∧ logical expr

arith expr ::= c ∈ R — parameter — u op arith expr — arith expr b op arith expr
u op ::= − — sin — cos — arcsin — arccos — sqrt — abs — norm — square
b op ::= − — + — × — ÷ — min — max

Figure 5: Types and operations of AIDL. τ represents the union type (struc-
ture—parameter—geometry). [θ] is the notation used to represent an array or list of θ.

B SOLVER DETAILS

Iterative Deepening Recursive Solve Constraint problems in AIDL are solved recursively over
the structure tree in a post-order traversal, illustrated in the left half of Figure 6. At each step of this
recursive solve, AIDL attempts to find a solution where only the geometry and parameters of the
structure being solved, and not its substructures, are free parameters in the solve; everything deeper
is initially treated as constants. This is done to minimize both the size of the constraint problem being
solved, and to minimize perturbations to previously solved substructures. The validity condition
that constraints can only reference geometry, structures, and parameters within a structure subtree
ensures that if the constraints defined at the root of a subtree are satisfied, then the whole subtree is
fully solved because child structure constraints cannot reference variables that would have changed.

Some constraint problems cannot be solved entirely locally, especially when a constraint in used
to relate geometry between children. This is where we apply iterative deepening, in two stages.
First we iteratively allow child structures at deeper levels to be translated by adding their translation
frame parameters into the solver’s set of free variables. As this search deepens, it also necessitates
re-adding the constraint sets of the parent structures of translatable structures into the constraint set
to be satisfied, since moving a child structure could invalidate a previously solved constraint. If
translating structures is insufficient to satisfy the constraint system, then we repeat a similar iterative
deepening, this time allowing all parameters, translation and otherwise to be solvable at each level.
In this second iterative deepening it is necessary to include the constraints at the same level as the
frontier of solver parameters, rather than the parent level, since geometric parameter changes could
invalidate previously solved constraints. Iterative deepening continues until a valid solution is found,
or all levels of the hierarchy have been exhausted (in which case the solve has failed because the
constraint system is inconsistent or intractable.)

Deferred Expressions While some constraints and expressions are well-defined mid-execution
of an AIDL program, others can only be explicitly specified after the full topology and initial-
ization of the model has been finalized by running the Python DSL code. The primary exam-
ples of these are bounding box coordinates, because they could depend on dynamically gener-
ated geometry, and ambiguous geometry constraints. An example ambiguous constraint is one like
Angle(L1, L2, theta), which constraints the angle between lines L1 and L2 to be equal to
theta. The meaning of this constraint depends on the angle convention in use; is the angle measured
clockwise or counter-clockwise between these two lines? In a traditional constraint language, a
single consistent convention would be applied and programmers expected to learn and follow this
convention, but a design principle of AIDL is to be flexible in calling conventions. To allow this, we
infer the calling convention intended by picking the convention that is nearest to being satisfied by

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

b b

c c1 2

3 4

5 a
b b

c c

a a

Solve Order
Translation
Deepening

Geometric
Deepening

a

c c

b b

b b

c c

c c

Ite
ra

tiv
e 

D
ee

pe
ni

ng

Re
cu

rs
iv

e 
So

lv
e

Parameters
in Solves n+

n

n
Translation

in Solves n+

n
Constraints
in Solves n+

Key

Figure 6: Constraint solving order for an AIDL model. (Left) The recursive solve order of the
entire model. (Right) Iterative deepening of the constraint solver’s scope for the root node (5 on left),
in two stages, first translation deepening, then geometric deepening. Letters indicate the parameters
and constraints included at each level attempted, and are accumulative within a stage (a, a and b,
etc.)

the initial parameters of the constrained geometry. Since parameters are dynamically mutable, these
determinations must also be deferred until immediately before constraint solving.

Bounding box expressions are also deferred until the context of their use in a constraint is
known, and their exact formulation varies depending on which structures’ bounding boxes
are used in the same constraint. The rationale for this behavior is that constraints such as
struct.bb.top == struct.substruct.bb.top leave an unbounded range for the sub-
structure’s top edge, since it is satisfied as long as that substructure has the highest top edge of
any substructures. It is more likely that the intent of such a constraint is to align the top edge of
a substructure with the top edge of its parent’s sketch. To support this, bounding box expressions
for structures coexisting in the same constraint expression as their descendants ignore those descen-
dants’ bounding boxes when computing the expressions for their coordinates.

Iterated Newton Solve for Branching Expressions AIDL expressions support the min and max
operators, primarily to allow the use of bounding boxes. These create discontinuities in the constraint
equation’s Jacobians that use bounding box properties, which can cause a Newton solver to fail to
converge. To combat this, we prune branches not used in constraint expressions given the pre-
solve (initialization) parameter values, removing these discontinuities and increasing the chance of
convergence. This effectively re-writes constraints to remove such functions: min(e1, e2) → e1
(assuming e1 < e2 in the initial parameterization). The issue with this approach is that a solution to
the re-written constraint problem may not be a solution to the original problem. We therefore check
if the solution is valid for the original constraint problem and, if not, iteratively repeat this process
using the rewritten constraint problem’s solution as a new initialization until we find a valid solution.

C PERCEPTUAL STUDY

For our perceptual study, we presented users with all valid renderings of CAD programs generated
for a particular prompt, asking them to select the best one for each method. Given the high number of
prompts, the study was divided into four blocks, one for each method, with users randomly assigned
to one block. We collected a total of 32 responses, with an average of 8 per method. The aggregated
results are provided in supplemental material.

One limitation of this study was a small bug in the renderer that removed some lines from the im-
ages. While this compromised the results slightly, the study remains useful for observing differences
across methods.

D EDITABILITY

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Editability of AIDL. Programs generated with AIDL have semantically meaningful parts.
By changing the geometry of a single part in the original ”lighthouse” (left), we can modify the entire
appearance of the CAD shape in various ways to produce a wide variety of semantically related, but
visually distinct models.
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