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Abstract
Season length estimation is the task of identifying the number of observations in the
dominant repeating pattern of seasonal time series data. As such, it is a common pre-
processing task crucial for various downstream applications. Inferring season length
from a real-world time series is often challenging due to phenomena such as slightly
varying period lengths and noise. These issues may, in turn, lead practitioners to dedi-
cate considerable effort to preprocessing of time series data since existing approaches
either require dedicated parameter-tuning or their performance is heavily domain-
dependent. Hence, to address these challenges, we propose SAZED: spectral and
average autocorrelation zero distance density. SAZED is a versatile ensemble of mul-
tiple, specialized time series season length estimation approaches. The combination
of various base methods selected with respect to domain-agnostic criteria and a novel
seasonality isolation technique, allow a broad applicability to real-world time series of
varied properties. Further, SAZED is theoretically grounded and parameter-free,with a
computational complexity ofO(n log n), which makes it applicable in practice. In our
experiments, SAZED was statistically significantly better than every other method on
at least one dataset. The datasets we used for the evaluation consist of time series data
from various real-world domains, sterile synthetic test cases and synthetic data that
were designed to be seasonal and yet have no finite statistical moments of any order.
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1 Introduction

In present days, an abundance of temporal data, such as time series or data streams,
is produced by a vast number of sources, waiting to be analyzed. Seasonality is a
common behavior of many time series datasets, which is generally interpreted in lit-
erature as a regular pattern occurring at a fixed frequency (Fuller 2009; Hyndman and
Athanasopoulos 2018), such as daily, weekly, monthly or yearly. When working with
such seasonal patterns, it is of crucial importance to know the number of observa-
tions within a seasonal pattern. Many algorithms for mining or forecasting seasonal
patterns require this as an input parameter, e.g. function fitting (Jönsson and Eklundh
2002), seasonality clustering (Kumar et al. 2002), decomposition (Cleveland et al.
1990; Wang et al. 2006b), and embeddings (Cerqueira et al. 2017). However, only a
small fraction of all time series data is labeled, and often additional work is required
to determine the length of seasonal patterns. To that end, an automated approach for
detecting the length of seasonal patterns would be beneficial for downstream tasks,
such as forecasting, pattern recognition, classification and outlier detection in sea-
sonal time series. Such methods are commonly applied in medicine, econometrics,
engineering and many other domains. Consequently, a domain-agnostic approach
for automated season length estimation would be of value to practitioners in many
fields.

Baseline statistical methods address season length estimation by modeling time
series data as cyclo-stationary processes and estimating the period of these pro-
cesses, such as variability estimation (Wang et al. 2006a) or minimum description
length (Ramírez et al. 2014). While such approaches are theoretically grounded,
they are difficult to apply in practice since they impose assumptions and restric-
tions with regard to data or setup. These range from requiring human assistance
for season length estimation to needing several time series realizations from the
same process. Both of these can be problematic in an automated setting, in which
data are available but cannot be generated on demand or ensured to follow the same
process.

Machine learning techniques have been researched in the context of season length
estimation, as exemplified by Pierson et al. (2018), who trained learning systems such
as Hidden Markov Models on a labeled time series dataset and typically optimized
them towards a local minimum. Subsequently, the learned decision weights were used
to detect the season length of time series instances from a related dataset. While
supervised machine learning has yielded outstanding results in this context, it has one
inherent prerequisite: it requires a labeled dataset based on which it can learn to solve
the estimation problem for the data at hand. Acquiring such datasets is associated with
tedious and costly manual labeling and, if done improperly, carries the risk of poor
generalization. To this end, it seems advantageous to have a complementary method
in one’s toolbox for detecting the season length of a phenomenon represented by a
single univariate time series.

In this work, we introduce spectral and average autocorrelation zero distance den-
sity (SAZED), a parameter-free domain-agnostic ensemble method for season length
estimation in a single univariate time series. We formally argue why our method
works effectively with univariate seasonal time series and show that it improves
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Parameter-free season length estimation

upon the existing baselines by a considerable margin. Additionally, all methods
in the ensemble are theoretically grounded, enabling us to arrive at the following
contributions:

– No dependency on parameters, empirical constants or domain-specific pre-
processing,

– Coverage of a wide variety of time series properties with which the existing meth-
ods struggle,

– Worst-case computational complexity of O(n log n).

Due to these characteristics our methods can be used in an automated setting. No
parameters have to be tuned to achieve an acceptable performance in a wide variety of
cases. The computational complexity is reasonably low, making our approach broadly
applicable. Moreover, the combination of these properties allows our method to be
applied in practical settings.Anopen-source implementation of ourmethod is available
in the R package sazedR (Toller et al. 2019) and we provide a script to reproduce our
results.1

2 Background

In the literature, season length estimation is mostly referred to as (segment) periodicity
detection, which is the problem of splitting a sequence of observations into segments
of equal length while maximizing their similarity. However, as Elfeky et al. (2005a)
pointed out, many publications simply use the term periodicity detection, which has
many other possible interpretations. For example, symbol periodicity refers to the
more specific problem of finding a single particular type of observation that repeats at
a specific interval.

More recent examples of detecting the periodicity of a single observation or event
include the works by Yuan et al. (2017), Ghosh et al. (2017), and Pierson et al. (2018)
and references therein. Yuan et al.’s method is based on an heuristic algorithm for
maximizing a period pattern scoring function, which extracts multiple periods from
incomplete and noisy data. A key aspect of Yuan et al.’s work, pursued in more
detail by Lijffijt et al. (2012), is the extraction of periods at varying granularities. In
this work, we focus on estimating a single dominant period. Ghosh et al. propose
a particle-filter-based approach to estimating a period length and its rate of change.
The Hidden Markov Chain-based approach presented by Pierson et al. recovers cycle
length in human health-related applications, thereby coping with multivariate cyclic
data with continuous and discrete dimensions. The works by these authors address
challenges beyond the periodic pattern detection problem, such as shifting and noisy
period lengths, online periodicity detection and clustering of time series via period
length. While we also address some of the same real-world challenges tackled by
these authors, e.g. noise and heterogeneous properties of seasonal data, our approach
focuses on segment periodicity time series data rather than on symbol or event period-
icity in event streams. An event may be periodic by itself without causing a sequence
of observations to be overall periodic. Segment periodicity and in a wider sense sea-

1 https://github.com/mtoller/autocorr_season_length_detection/blob/master/r/reproduceResults.R.
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sonality assumes that the process that generates the time series data contains a singular
influential component that causes periodic fluctuations in all observations.

For detecting time series segment periodicity, several different solutions have been
proposed in various publications, e.g. a convolution-based algorithm (Elfeky et al.
2005a), suffix-trees (Rasheed et al. 2011) and spectral analysis (Vlachos et al. 2005).
While these solutions work well in synthetic settings, their performance often drops
in the presence of irregularities, such as noise or outliers, as pointed out by Elfeky
et al. (2005b). To address this issue, Elfeky et al. suggested an algorithm based on
dynamic time warping, which is resilient to various types of noise. However, all of
the above-mentioned approaches still require non-trivial preprocessing steps, such
as symbolization, or parametrization before they can work with raw data. This lim-
its their general applicability since it is difficult to avoid overfitting when learning
a parametrization from a dataset. Further, a parametrization might impose the user’s
bias onto the data, which can lead to misinterpretations of the data behavior (Keogh
et al. 2004). To address this issue, a few works have focused on developing more
robust approaches to segment periodicity detection, e.g. the analysis of autocorrelation
peaks (Wang et al. 2006b), spectral density estimation (Hyndman 2012), and autocor-
relation zero-distances (Toller and Kern 2017). However, while these approaches are
non-parametric and require a small preprocessing effort, they still depend on internal
empirical constants, which is essentially equivalent to using one default parameter-
ization for any input. Our approach extends such methods, combining them with
additional techniques in an ensemble setting to improve upon them.

3 Problem statement and notation

Seasonality is a behavior that many time series from domains such as econometrics
or climatology exhibit.

An example of a seasonal time series is provided in Fig. 1, which features data with
seasonal peaks and troughs. Informally, season length can be estimated as the number
of observations between such peaks. We formalize this notion mathematically below.
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Fig. 1 A seasonal time series of monthly sunspots since 1750 (Andrews and Herzberg 2012). The periodic
peaks and troughs correspond to a seasonality with almost constant season length of approximately 132
observations per season
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Let {Xt |t ∈ Z} be a theoretic time series process of the form

Xt = St + Dt + Yt (1)

where St = St+m is a deterministic seasonality with season length m, Dt a determin-
istic linear trend and Yt the stochastic remainder. Further, let x = {x1, x2, . . . , xn} be
a realization of process X . Season length estimation is the problem of finding m̂ such
that St = St+m̂ given time series data x .

However, this definition is insufficient for practical applications since the theoretic
process X that generated x is typically unknown. Therefore, we focus on seasonality
of process realizations and define this seasonality as follows:

Definition 1 Time series data {xt |t ∈ 1, . . . , n} is seasonal if there exists m ∈ Z such
that xt ≈ xt+km for all t ∈ N, k ∈ Z with t + km ∈ [1, n].

In other words, x is seasonal if it can be split into segments of length m that are all
approximately equal to each other. One can summarize the subsequences of x in a
matrix

xk :=

⎡
⎢⎢⎢⎣

x (1)

x (2)

...

x (k)

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

x1 x2 . . . xm
xm+1 xm+2 . . . x2m

...
...

. . .
...

x(k−1)m+1 x(k−1)m+2 . . . xkm

⎤
⎥⎥⎥⎦ (2)

for an arbitrary m, with k = � n
m �. The observations xkm+1≤t≤n are discarded and are

not part of xk if n �≡ 0 mod m.
To specify approximate equality of subsequences,the sample Pearson correlation

coefficient ρ can be used. In this case, time series data x is considered seasonal
if all subsequences x (i) and x ( j) highly correlate with each other. With Rxk ∈
[−1, 1]k×k , we denote the matrix of correlations between all subsequences x (i) and
x ( j) of x . Based on these definitions, we formalize the season length estimation
problem:

Definition 2 (Problem Statement) Given seasonal time series data {xt |t ∈ 1, . . . , n}
and the correlation matrix of its segments Rxk , find season length

�
m satisfying

�
m = min argmaxm min1≤i≤k,i≤ j≤k Rxk (i, j). (3)

Intuitively, the best season length
�
m candidate is the one that maximizes the smallest

correlation between subsequences of x of length
�
m, and, if there are several val-

ues which maximize this quantity, it is the smallest of these values. It is desirable
to choose the smallest value, since this ensures that multiples of the correct season
length are excluded, although they also maximize the minimum of the correlation
matrix.

Table 1 provides a summary of the notation used in this work.
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Table 1 Overview of the
notation used in this work

Notation Interpretation

t Index of time

X Time series process

St Seasonal component of X

Dt Trend component of X

x Time series data, realization of X

n Length of x

m Season length of x

m̂ Estimate of m
�
m Best estimate of m

ρ Sample Pearson correlation coefficient

xk Matrix of x split into k subsequences

Rxk Correlation matrix of xk
SX Spectral density of X

Ŝx Periodogram of x

R̂xx Sample autocorrelation

Ψ Pairwise linear interpolation

∇d [ f ] d th discrete difference of function f

z Zeros of the autocorrelation function

Z Zeros of the time series

F Discrete Fourier transform

F−1 Inverse discrete Fourier transform

R̂�
xx �-fold composition of R̂xx with itself

4 Basemethods

In this section, we address the theoretical foundation of the components of our ensem-
ble method, which are also commonly used baseline algorithms for period length
estimation in time series.

4.1 Preprocessing

Commonly, time series data contain a trend. In Eq. (1) this is reflected by the compo-
nent Dt . Theoretically, D may be an arbitrary function of t , yet in time series analysis
it is often assumed that Dt is a linear function (Hamilton 1994). We followed this
assumption and detrend all time series data with ordinary least squares linear regres-
sion. Although there are other methods for achieving the same goal, such as filters, in
our setting detrending must preserve the seasonal component St since otherwise no
data will remain for estimating the season length m.

After removing the trend Dt , x is further normalized using yt = xt−μ̂x
σ̂x

, where
μ̂x and σ̂x are the sample mean and standard deviation of x , computed over all
t = 1, . . . , n. Mathematically, μ̂x and σ̂x may not represent the first and second
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moment of process X , since no stationarity or ergodicity was assumed. However,
we still performed the normalization, since it centers and scales data x , thus making
the algorithms presented below more resilient to noise and outliers. In the remaining
sections, it is assumed that x was preprocessed as described above.

4.2 Exhaustive estimation

An obvious solution to season length estimation as defined in Eq. (3) is to simply try
out all m < n. The number of candidates can even be reduced to m ∈ [2, n

2 ] since the
subsequence matrix xk becomes empty for larger m. A procedural description of this
approach can be found in Algorithm 1.

Algorithm 1 Exhaustive season length estimation
Require: x
n ← length(x)
for m ← 2, 3, . . . , � n2 � do

k ← � n
m �

xk ← block(x, k) //Eq. (2)
Rxk ← cor(xk ) //cor := correlation measure Pearson ρ

min_correlationm ← min(Rxk )
end for
solutions ← argmaxm (min_correlation)
return min(solutions)

However, the exhaustive method has two drawbacks. First, for large n, looping
over all m becomes infeasible. This reflects on both the computational complexity
caused by the large parameter space of m, and the space complexity, since computing
the correlation matrix Rxk requires O(k2) space, which is large for m � n. Second,
as m grows, the likelihood of observing spurious correlations increases since the
number of subsequences k decreases, allowing for a coincidentally large minimum
of correlation matrix Rxk due to the increased variance. This effect also makes the

exhaustive algorithm susceptible to integer multiples of the correct season length
�
m,

since it causes larger m to have slightly higher minimum correlation (although in

theory all multiples of
�
m should have the same minimum).

4.3 Spectral density estimation

Perhaps the most natural approach to season length estimation is Fourier analysis.
Since seasonality is approximately periodic according to Definition 1, it is meaningful
to analyze the spectral density SX , which is can be estimated via periodogram Ŝ,
defined as

Ŝx (ω) = 1

n

∣∣∣∣
n∑
j=1

x j exp(−i2π jω)

∣∣∣∣
2

(4)
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where exp(2πω j), j ∈ 1, . . . , n are the fundamental frequencies of the Fourier
transform. Spectral density SX maps frequency ω to the density at which it occurs in
time series X . Assuming that data x are sinusoidal,which is a strongly simplifiedmodel
of seasonal data, then season length m corresponds to the period of the sinusoidal and
its maximum likelihood estimate is given by Rife and Boorstyn (1974):

m̂ = 1

argmaxωŜx (ω)
(5)

This agrees with our problem definition since for xt = sin( 2πm t) all entries of the
correlation matrix Rxk will be 1, since

sin

(
2π

m
t

)
= sin

(
2π

m
t + 2π

)
= sin

(
2π

m
(t + m)

)

�⇒ ρ

(
sin

(
2π

m
t

)(r)

, sin

(
2π

m
t

)(s))
= 1 ∀r , s ∈ 1, . . . , k

(6)

The approach presented by Hyndman (2012) is very similar: an autoregressive pro-
cess is fitted to the data and the periodogram of this process and its season length
m̂ are estimated with Eqs. (4) and (5) respectively. Using a periodogram to estimate
the season length is restrictive, since this approach will fail for many non-sinusoidal
signals, such as simple rectangular signals whose Fourier transform will have a max-
imum at frequency 0, leading to a division by 0 in Eq. (5). However, using spectral
density estimates is certainly a valid approach to season length estimation, which has
commonly been used in season length and periodicity estimation. Additionally, the
periodogram can be estimated with a fast Fourier transform, allowing a computation
inO(n log n). A procedural description of this approach can be found in Algorithm 2.

Algorithm 2 Spectral Density Estimation
Require: x
Ŝ ← FFT(x)
Ŝ ← |Ŝ|2
ω̂ ← argmaxωŜ(ω)

return ω̂−1

4.4 Autocorrelation zero density

Another method for season length estimation is based on autocorrelation. The sample
autocorrelation function R̂xx (ACF) of centered and scaled time series data can be
computed as

R̂xx (τ ) =
n−τ∑
i=1

xi xi+τ (7)
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where τ is the lag of interest. In theory, the sample ACF was designed to estimate the
population autocorrelation of a covariance-stationary process, yet it can also be used
for other purposes even if the assumption of covariance-stationarity is not met. As
showed by Box et al. (2015), the sample ACF R̂xx of seasonal data will have peaks
at regular intervals, where the length of the interval corresponds to season length m.
Therefore, the sample ACF R̂xx can be used to estimate m. Let

∇d [ f ](τ ) =
d∑

i=1

(−1)i
(
d

i

)
f (τ − i) (8)

be the d th finite difference of f , which approximates the d th derivative of f . Assuming
that the data are perfectly periodic with xt = xt+km , the theoretical ACF will be 1 for
all integer multiples of m. Hence, m̂ can be computed as

m̂ = argminτ {τ : ∣∣∇1[R̂xx ](τ )
∣∣ < ε,∇2[R̂xx ](τ ) < 0} (9)

where ε is a tolerance interval for the zeros of the first derivative, which is required
since R̂xx is not continuous. Intuitively, Eq. (9) states that season lengthm corresponds
to the lag τ in the sample ACF where its first peak occurs, and that this lag can be
found using the standard optimization procedure of setting the first derivative to zero.

A disadvantage of this method is that the choice of ε will greatly influence the
result. Too high values of ε will report peaks caused by noise, while too low values
will lead to the peak of interest being missed. Further, since real data do not have
infinite observations the sample ACF will decay as time lags increase (regardless of
the data). Both of these aspects complicate identifying peaks in the sample ACF.

To overcome these problems, Toller and Kern (2017) developed a method based on
ACF zeros instead of peaks for a more resilient computation. Intuitively, the distance
between two zeros of a seasonally oscillating ACF corresponds to half the lag at which
the ACF has its first periodic peak, as shown in Fig. 2.
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Fig. 2 Autocorrelation function of the sunspot data depicted in Fig. 1. Every positive peak is enclosed by
two zero transitions (Color figure online)
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Let {z = z1, . . . , zN : Ψ (R̂xx , z) = 0} be the zeros of the pairwise linearly interpo-
lated sampleACFΨ (R̂xx ). Since noisemight aswell cause zeros in the autocorrelation
function, using the distance between two arbitrary consecutive zeros 2(zi − zi+1) for
season length estimation is unreliable. Rather, assuming that seasonality is more likely
to cause zeros in the sample ACF than noise, it is possible to estimate the distribution
of zero-to-zero distances via a kernel density estimate

Kz(r , h) = 1

h(N − 1)

N−1∑
i=1

κ

(
r − (zi+1 − zi )

h

)
(10)

where κ is a kernel function, and h the bandwidth. In this case, the season length
estimate corresponds to half of the most dense zero-to-zero distance and is given by

m̂ = 2 × argmaxr Kz(r , h). (11)

A disadvantage of kernel density estimation is that it requires two parameters that
affect the outcome. For making a data-based selection of bandwidth h, one can use the
derivative-based selector proposed by Sheather and Jones (1991). For kernel function
κ , we suggest a Gaussian kernel. This is a sensible choice, assuming that the sum of all
noise sources in the data converges to a Gaussian distribution according to the Central
Limit Theorem.Aprocedural description of this approach can be found inAlgorithm3.

Algorithm 3 Autocorrelation Zero Density

Require: R̂xx
n ← length(R̂xx )

ψ ← R̂xx
for i ← 1, . . . , n do

if ψ(i) > 0 then
ψ(i) ← 1

else if ψ(i) < 0 then
ψ(i) ← −1

end if
end for
z ← {z = z1, . . . , zr : ∇1[ψ] = 0}
Ψ ← R̂xx (z) × (−(R̂xx (z + 1) − R̂xx (z)))−1

Kz ← density(∇1[Ψ ],SJ(R̂xx )) //SJ is the bandwidth selector proposed by Sheather and Jones (1991)
return 2 × argmaxr Kz(r)

4.5 Average time series zero distances

A third method for season length estimation is based on the distances between zeros
of the original time series x . Assuming that

– x is preprocessed as described above
– x has a single sinusoidal seasonality
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– x has stochastic components whose combined variance is much smaller than the
amplitude of the sinusoidal

– an arbitrary linear combination of the stochastic components of x converges
towards a stable distribution as the number of summands grows

then the stochastic time-displacement of peaks, troughs and zero-crossings of the
sinusoidal will follow the same stable distribution. This makes it possible to use the
distribution’s maximum likelihood estimator of the expected value to compute the
most likely distance between two zero-crossings, which correspond to half of the
season length if the above assumptions are met. A very commonly assumed stable
distribution is the Gaussian distribution, and for this method one also assumes that
zero-crossing displacements in x follow a Gaussian distribution. Since the maximum
likelihood estimator of the expected value of the Gaussian distribution is the sample
average, under the above assumptions season length m̂ can be estimated based on the
zeros of the pairwise interpolated time series {Z = Z1, . . . , Zr : Ψ (x, Z) = 0} with

m̂ = 2

r − 1

r−1∑
i=1

∇1[Z ](i) = 2

r − 1
(Zr − Z1) (12)

Unlike autocorrelation zero distance densities, this method does not require input
parameters such as bandwidth and akernel function.However, the assumeddistribution
can also be viewed as a parameter. Altogether, average time series zero distances is a
methodwith strongly simplifying assumptions, and it is bound to fail if its assumptions
are not satisfied.Aprocedural description of this approach can be found inAlgorithm4.

Algorithm 4 Average Time Series Zero Distances
Require: x
n ← length(x)
ψ ← x
for i ← 1, . . . , n do

if ψ(i) > 0 then
ψ(i) ← 1

else if ψ(i) < 0 then
ψ(i) ← −1

end if
end for
Z ← {Z = Z1, . . . , Zr : ∇1[ψ] = 0}
Ψ ← xZ × (−(xZ+1 − xZ ))−1

return 2
r−1 (Ψr − Ψ1)

5 Ensemble

The previous section presented three base methods that estimate season length as
described in Eqs. (5), (11) and (12). In this section, we describe a method for com-
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Table 2 Base methods Name Abbreviation Defining
equation

Spectral density estimation S (5)

Autocorrelation zero density AZED (11)

Average time series zero distances ZE (12)
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Fig. 3 A comparison of the base methods S (blue), AZED (red) and ZE (green) tested on sine waves with
1800 observations and varying periods (black). As the period to data length ratio increases, S and AZED
become increasingly affected by sampling artifacts since the data are discrete and not continuous (Color
figure online)

bining the base methods into a parameter-free season length estimation ensemble. An
overview of the three methods is provided in Table 2.

5.1 Seasonality isolation

For purely sinusoidal data, all three base methods return the correct period. However,
real data are discrete and finite, and not continuous, which is why in practice one will
never encounter perfectly sinusoidal data. This may cause all three methods to fail
even if the data are sinusoidal. We confirmed this in a simple experiment, where pure
sine-waves of increasing period length with constant total length were presented to all
three methods. The results of this experiment are depicted in Fig. 3.

A standard procedure for countering these effects is a sinc-interpolation, yet we
have found a more promising approach based on autocorrelation composition.

In Eq. (7) we introduced one possible definition of the autocorrelation function
(ACF). Another way to compute the ACF is based on the Wiener–Khinchin theo-
rem, which states that the ACF can be computed based on the periodogram via an
inverse discrete Fourier transform. Let F(x) denote the discrete Fourier transform
of x and F−1(x) the inverse discrete Fourier transform. Then, the (cyclical) sample
autocorrelation function of x can also be computed as

R̂xx (τ ) = 1

n2Var[x]F
−1(∣∣F(x)

∣∣2) = 1

n2Var[x]
n∑

l=1

∣∣∣∣
n∑
j=1

x j exp(−i2π jl)

∣∣∣∣
2

exp(i2πlτ)

(13)
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where Var[x] is the sample variance of x . The computation of the autocorrelation
according to this definition has no other effect on the frequencies in x other than
squaring them. Hence, the spectral density-based method S is not affected by the
computation of the autocorrelation. However, the zero-based methods AZED and ZE
benefit from this since they assume that seasonality consists of a single, powerful
sine-wave. Taking the square of the spectral density followed by a normalization will
isolate a single sine-like behavior from the data since peak-frequencies will be more
strongly affected by squaring than lower frequencies.

One can repeat this procedure and compute the autocorrelation functionR̂R̂xx R̂xx
(τ )

of the autocorrelation function of x . Let R̂�
xx denote the �-fold composition of R̂with

itself. Effectively, computing R̂�
xx is similar to raising the periodogram Ŝ to the power

of 2�, which rapidly approaches zero for positive densities smaller than one. Normal-
ization by the variance Var[R̂�−1

xx ] prevents this, and allows a convergence towards
a single sine-wave whose frequency is equivalent to the most powerful frequency in
x . We have confirmed this in numerous practical simulations, and it appears intu-
itive from the theoretical formulation. However, formulating a simplified yet accurate
closed form for R̂�

xx (τ ) is non-trivial due to the normalization step, and we therefore
leave this for future work.

The spectral density estimation-basedmethod Swill remain unaffected by replacing

x with R̂�
xx , while the zero-based methods AZED and ZE will become more effective

since more of their assumptions are met. Computing the autocorrelation zero density

AZED even simplifies to the zero density of R̂�
xx without an additional computation

of the ACF (ZED), since convergence is already reached in this case.

5.2 SAZED: spectral and average autocorrelation zero distance density

The main disadvantage of the exhaustive season length estimation method presented
above was that it cannot be efficiently estimated. The three other base methods (S,
AZED and ZE) can be computed efficiently via a fast Fourier transform inO(n log n).
However, these methods do not guarantee to return the correct season length if their
assumptions are not met, and some of their assumptions are very restrictive.

A combination of methods, hereafter referred to as ensemble, may be a potential
compromise between high computational complexity and strong assumptions. Instead
of exhausting the parameter-space of season lengthm and evaluating allm according to
Definition 2, one can only evaluate the season length candidates suggested by the three
basemethods. The ensemble then simply constructs the correlationmatrix Rxk for each
of these candidates and checks which suggestion produces the largest minimum in the
matrix. If several candidates result in the same highest minimum, then the smallest
suggested season length m̂ is returned, which is in line with our problem definition.

The ensemble is computationally efficient since a constant number of suggestions
can be evaluated in O(n log n) steps. Another advantage is that only the assumptions
of one of S, AZED and ZE need to be met to guarantee a correct estimate. Moreover,
adding further methods to the ensemble does not worsen the ensemble’s estimates but
rather simply increases computation time by a constant factor. Therefore, one can also
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Table 3 Overview of the
members of the SAZED
ensemble

Method Description

S Spectral maximum of x

SA Spectral maximum of R̂�
xx

ZE Average zero distances of x

AZE Average zero distances of R̂�
xx

ZED Maximum zero distance density of x

AZED Maximum zero distance density of R̂�
xx

SAZED Optimum of above suggestions per Definition 2

afford to include the seasonality isolation technique discussed above. Since the �-fold
self-composed autocorrelation R̂�

xx will converge exponentially, one can reasonably
assume that � � n.

In short, we suggest the following ensemble:

– Collect season length estimates from raw data x with the periodogram (S), zero
distance density (ZED) and average zero distances (ZE).

– Compute the �-fold self-composed autocorrelation R̂�
xx .

– Collect season length estimates from R̂�
xx with the same three estimators.

– For every unique estimate, compute the correlation matrix Rxk .
– Return the estimate with produced the largest minimum in Rxk .
– If multiple estimates are optimal, return the shortest estimate.

An overview of the ensemble is shown in Table 3 and a procedural description can
be found in Algorithm 5.

5.3 Alternative ensembles

The ensemble presented above is only one way of combining the base methods. Alter-
nativemethods are, for instance,majority votes. There, the estimates from the ensemble
members are collected and the most commonly suggested estimate is returned. How-
ever, in our setting, consensus-based ensembles have two clear drawbacks. First, if
there is no clear consensus, one needs an additional method for breaking ties. We
experimented with mean-based downsampling for this purpose, but this adds addi-
tional assumptions to the entire ensemble. Second, the most commonly suggested
season length estimate does not have to be the best estimate in terms of the problem
definition. This second drawback is also true for other ensemble techniques, such as
weighted averages or Bayesian methods.

However, under several scenarios these alternative ensemblemethodsmaybe appro-
priate. For instance, Vlachos et al. (2005) computed a spectral density-based estimate
of a time series’ periodicity, which is comparable to season length estimation with
S. Subsequently, they analyzed if a period suggested from the periodogram coincides
with a peak in the autocorrelation function. Another situation that may require dif-
ferent ensemble methods is when one expects the data to contain multiple different
seasonalities (Lijffijt et al. 2012; Yuan et al. 2017). The SAZED ensemble as pre-
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Algorithm 5 SAZED
Require: x
R̂0

xx ← x

R̂1
xx ← R̂xx //Eq. (13)

i ← 1
while R̂i

xx �= R̂i−1
xx do

R̂i+1
xx ← R̂R̂i

xx×R̂i
xx

//Eq. (13) with xt replaced by R̂i
xx

i ← i + 1
end while
m̂1 ← S(x)
m̂2 ← S(R̂i

xx )

m̂3 ← ZED(x)
m̂4 ← ZED(R̂i

xx )

m̂5 ← ZE(x)
m̂6 ← ZE(R̂i

xx )

for m = m̂1, . . . , m̂6 do
k ← � n

m �
xk ← block(x, k) //Eq. (2)
Rxk ← cor(xk ) //cor := correlation measure Pearson ρ

min_correlationm ← min(Rxk )
end for
solutions ← argmaxm (min_correlation)
return min(solutions)

sented above was not designed for this. If its members suggest different “correct”
season lengths, it will return the shortest solution if all solutions have exactly the
same minimum in the correlation matrix. This is unlikely due to numerical inaccura-
cies, and we expect SAZED to behave similarly to exhaustive evaluation under such
scenarios.

6 Experimental study

In our experiments, we evaluate the performance of SAZED and variations thereof
against commonly used and state-of-the-art baselines using both real-world and syn-
thetic datasets. Subsequently, we discuss our results in terms of the performance of
each algorithm.

6.1 CRAN dataset

For our dataset selection, we start by extracting all open-source univariate time series
of packages listed in the “Time Series Data” section of the CRAN Task View on Time
Series Analysis,2 a comprehensive collection of R packages on time series analysis.
The time series included in those packages span across a wide variety of application
domains, ranging from economic indicators, such as employment rates or retail sales,
to environmental measurements, such as pollution levels or the number of sunspots.
We consider only time series of the R object class “ts”. Further, we discard time

2 https://cran.r-project.org/web/views/TimeSeries.html, retrieved in March 2019.
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Table 4 Packages and names of the time series included in the evaluation for the first dataset

R Package Time series names

AER (Kleiber and Zeileis 2008) BondYield, DutchSales, UKNonDurables

astsa (Stoffer 2016) birth, cmort, flu, gas, hor, part, prodn, qinfl, qintr, rec, so2, soi,
sunspotz, tempr, unemp, UnempRate

expsmooth (Hyndman 2015) bonds, cangas, enplanements, frexport, mcopper, ukcars, usgdp,
utility, vehicles, visitors

fma (Hyndman 2017a) airpass, beer, bricksq, condmilk, dole, elec, fancy, hsales, hsales2,
invent15, labour, milk, motion, pigs, plastics, pollution,

qelec, qsales, shampoo, ukdeaths, usdeaths, uselec, writing

fpp (Hyndman 2013) cafe, euretail

fpp2 (Hyndman 2017b) a10, ausbeer, auscafe, ausgdp, austourists, debitcards, elecequip,
gasoline, h02, hyndsight, qauselec, qcement, qgas, usmelec

TSA (Chan and Ripley 2012) airmiles, beersales, co2, flow, hours, milk, JJ, oilfilters, prescrip,
prey.eq, retail, tempdub, wages, winnebago

series objects without a given “frequency” parameter (in R, this corresponds to a
frequency equal to one), since we take this given frequency as the ground truth sea-
sonality value to evaluate our approach. However, since some of the time series with
given frequency may not exhibit any seasonal patterns (irrespective of the frequency
parameter), we manually inspected all time series with given frequency to check if
there are any such cases. Specifically, three annotators independently annotated all
time series with given frequency as being seasonal or not. We report a substantial
inter-rater agreement for this annotation task (Fleiss’ κ = .77) and we thus discard
only time series which all three annotators agreed to be not seasonal. This procedure
results in a dataset of 82 univariate time series to be evaluated. The lengths of these
time series range from 16 to 3024 observations (mean 290), and their season length
ranges from 2 to 52 observations (mean and mode both equal to 12). For the sake of
completeness, we list the names of the packages and time series of theCRANdataset in
Table 4.

6.2 SL dataset

To make the performance of SAZED comparable to other season length estimation
algorithms, we included the test data used by Toller and Kern (2017) in the evalua-
tion. This SeasonLength (SL) dataset consist of 125 synthetic and 40 real-world time
series. The synthetic time series were designed to assess various aspects of estimation
robustness, ranging from noise and outlier resilience over high result domain variance
to time series without seasonality. This dataset captures characteristics that are dif-
ferent from those found in the CRAN dataset described in Sect. 6.1. The number of
observations of time series in this dataset ranges from 20 to 327,680 (mean 7,586), and
the season lengths range from 3 to 65,536 (mean 1,341). Further, anomalies, novelties
and complex trends are just as common as in this dataset as sterile cosine-like time
series behavior.

123



Parameter-free season length estimation

6.3 Cauchy dataset

In addition to the CRAN and SL datasets, we synthetically generated a third dataset
consisting of 100 randomly sampled sinewaveswith an added linear trend and additive
noise sampled from a Cauchy distribution. In particular, the Cauchy Dataset was
generated as follows:

– Select period and amplitude from the interval [3, 1000] uniformly at random.
– Select a phase shift from the interval [−π, π ] uniformly at random.
– Generate a sin wave with n = 3000 observations and the above properties.
– Select a random linear trend slope from a standard Gaussian distribution and
generate a linear function with that slope and n = 3000 observations.

– Generate a random Autoregressive process of order 1 (AR(1) (Hamilton 1994))
n = 3000 observations and with coefficient φ ∼ U (0, 1) and random innovations
ι ∼ C(0, 1), where U is the uniform distribution and C the Cauchy distribution.

– Add trend and the AR process to the sine-wave.

Since the Cauchy-distribution is a statistical edge case with no finite moments of
any order, many of the assumptions made by SAZED and competing methods are not
met. Beyond these methods, we envision this challenging dataset as a stress test also
for future seasonality estimation methods to improve upon. However, in this Cauchy
dataset (as is the case of the previous ones), when the data are plotted at an appropriate
resolution, finding the correct season length is trivial for humans. We exemplify the
shape of time series in the Cauchy dataset in Fig. 4.

6.4 Setup

Our evaluation setup was designed to directly compare SAZED with findfrequency
by Hyndman (2017b), and the seasonLength algorithm for season length detection
by Toller and Kern (2017). Using the previously described datasets, we compare the
algorithms’ performance with respect to two measures and three different settings.
The first evaluation measure considered is raw accuracy of season length estimation,
i.e. the number of time series in which a season length estimation algorithm detected
the correct season length divided by the total number of estimated season lengths. The
second evaluation measure we consider is based on the absolute distance between the
algorithms’ estimates and the correct season length. This absolute distance also serves
as the input for a Friedman’s rank test (Demšar 2006), which ranks the algorithms
and displays the results in a critical difference plot. In the first setting, season length
suggestions are only considered correct if they are equal to the reference value (cf.
±0% in results Table 5), while in the second setting there is a tolerance interval
of ±20%. In other words, a season length of a time series in this second setting is
considered correctly detected if the estimated value is within a range of ±20% of
the reference value. In the third setting, we count how often an algorithm returned
an integer multiple of the reference value (cf. “mult” in Table 5). All three settings
were applied for all three datasets. Furthermore, we distill SAZED’s performance by
component, evaluating how each member of the SAZED ensemble contributes to its
overall performance.
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Fig. 4 An example of time series data from the Cauchy dataset. The top plot depicts a full view of the data,
while the axis limits of the bottom plot were adjusted to make the underlying seasonality visible

6.5 Results

Table 5provides the season length estimation accuracyoffindfrequency, seasonLength,
SAZEDopt (Sect. 5.2) and SAZEDmaj (Sect. 5.3), as well as SAZED’s individual
members on time series from all of the above-described datasets. There is no singular
best performing method: SAZEDopt and SAZEDmaj share the first place, performing
similarly in terms of estimation accuracy, while almost always scoring higher than all
other methods.

In the Friedman’s rank tests, SAZEDopt has the highest rank on all three datasets.
It is also significantly better than every other method on at least one dataset, as shown
in Figs. 5, 6 and 7. Within the SAZED ensemble, no single member is significantly
better than all other members on all datasets.

6.6 Discussion

The above results indicate that both variants of SAZED performed overall better than
findFrequency and seasonLength.

The performance accuracy of findFrequency appears to be greatly affected by non-
Gaussian noise. This was to be expected since the method fits an AR(1) process
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Table 5 Season length estimation accuracy of findFrequency, seasonLength, SAZED and SAZED’s com-
ponents

Method Accuracy

CRAN dataset SL dataset Cauchy dataset

±0% ±20% mult ±0% ±20% mult ±0% ±20% mult

findFrequency 36 40 1 55 85 2 0 0 0

seasonLength 12 28 6 52 121 7 0 8 0

SAZEDopt 43 51 6 72 120 10 1 27 0

SAZEDmaj 36 40 26 73 122 21 3 23 0

S 34 39 24 66 116 25 1 26 0

SA 34 40 22 65 117 25 1 21 0

ZED 10 16 2 36 76 6 0 0 0

AZED 30 39 7 58 121 6 3 22 0

ZE 17 29 5 33 63 10 0 4 0

AZE 37 39 10 53 117 11 2 22 0

The highest and second highest scores in each column are given in bold and italic, respectively. ±0%
indicates the raw accuracy score per dataset, whereas ±20% states that the results were also considered
correct if they were within a 20% tolerance interval around the correct value. The column “mult” lists
the number of times an integer multiple of the correct solution was returned. SAZEDopt and SAZEDmaj
feature the overall highest estimation accuracy

3 4 5 6 7

CD

sazed_opt

findFrequency

ze

seasonLength

azed

aze

sazed_maj

zed

sa

s

Fig. 5 Critical distance plot for the CRAN dataset. A critical difference plot ranks the algorithms based on
their performance as measured by the distance between their estimated seasonality lengths and the actual
ones. The critical difference plot depicts average ranks in order, where lower is better and the horizontal bars
highlight no significant difference in the compared pairs. SAZEDopt is significantly better than SAZEDmaj
and seasonLength, but not significantly better than findFrequency

to the data during preprocessing and assumes that the process’ residuals follow a
Gaussian distribution. Further, it appears to benefit less from a tolerance interval
around the reference value than all other methods. This suggests that the output of
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Fig. 6 Critical distance plot for the SL dataset. SAZEDopt is significantly better than findFrequency, but
not significantly better than SAZEDmaj and seasonLength. SAZEDmaj is not significantly better than
findFrequency
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Fig. 7 Critical distance plot for the Cauchy dataset. Both variants of SAZED are significantly better than
findFrequency, but not significantly better than seasonLength

this method is likely either “correct” or “incorrect” and seldom “almost correct”.
Its results for the Cauchy dataset make this fact particularly evident, since all other
methods, except ZED, greatly benefited from the more lenient performance measure.
Regarding findFrequency’s ranking, the difference from its rank in the CRAN dataset
when compared to the other datasets can be explained by the large differences in
the input and output domains of these datasets. It appears that findFrequency rarely
suggests long season lengths and is less suited for long time series. This weakness is
likely caused by the fitting of an AR(1) process, since this method otherwise would
be identical to the ensemble member S.
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The high score achieved by seasonLength on the SL dataset in the ±20% setting
does not compensate for its otherwise below-average performance. The results of the
experimental study even suggest that seasonLength might overfit in this one partic-
ular pair of evaluation methodology and dataset since the method’s performance is
low in all other cases. It appears that although this method is parameter-free, it con-
tains hidden assumptions that make it unreliable in a domain-agnostic setting. The
most problematic step in the seasonLength algorithm is likely the application of a
low-pass filter since this implicitly assumes that either the input is noisy or else its
season length is unaffected by filtering. This does not imply that low-pass filters can-
not be beneficial for the purpose of season length estimation. However, as mentioned
in Sect. 5.1, we believe that the �-fold self-composition of the autocorrelation func-
tion has a similar effect while being parameter-free and not assuming any particular
distribution.

A direct comparison between SAZEDopt and SAZEDmaj indicates their similar
performance on both datasets, although it also seems that SAZEDmaj is the less reliable
than SAZEDopt . This becomes evident when one also adds the members S and SA to
the comparison. In all settings, SAZEDmaj performed similar to these two methods.
Since S and SA commonly return the same result, this frequently forms a majority
when there otherwise would be none. SAZEDopt has no such deficiency: all unique
member suggestions are evaluated according to the problem definition and duplicate
suggestions make no difference.

S and SA appear to return an integer multiple of the correct solution particularly
often, and both methods even appear to outperform SAZED in the SL dataset. How-
ever, SAZEDmaj still has a higher combined accuracy if one counts these multiples as
correct solutions and adds them to the accurate ±0% results: e.g., in the SL dataset,
SAZEDmaj and S correctly estimate season length in a total of 94 and 91 cases, respec-
tively. However, we also attribute these performance differences between SAZED and
its ensemble members in the “mult” accuracy measure to the fact that SAZED per
definition (cf. Problem Statement in Definition 2) optimizes season length estimation
towards shorter season lengths (and thus not its multiples).

The fact that no algorithm returned a multiple of a correct solution in the Cauchy
dataset is likely due to the overall bad performance across all algorithms on this
dataset. It appears that the infinite variances generated by heavy-tail distributions
deviate too much from the methods’ assumptions. Developing a season length esti-
mator that remains robust under such conditions seems a promising task for future
work.

7 Conclusion

Time series season length estimation is a common pre-processing task in time series
analysis. Improvements to existing algorithms can benefit a wide array of down-
stream applications and, in general, facilitate future analysis of seasonal data. In this
work, we introduced an ensemble method, SAZED, for detecting the season length
of seasonal time series. SAZED supports practitioners in their time series analysis
pipelines by providing a simple interface, which does not require parameter-tuning
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and domain-specific pre-processing.Moreover, SAZED is theoretically grounded, fea-
tures encouraging theoretical computational complexity ofO(n log n) and copes with
a broad variety of time series properties, such as different period lengths and noise.
In an experimental study with both synthetic and real datasets, our method compares
favorably to state-of-the-art alternatives.

Our approach focused on estimating a single season length in one time series.
Extending our approach to estimate multiple season lengths from a time series (e.g.
daily and monthly temperature cycles) is an interesting avenue for future work.
Further future work includes the development of a season length estimator that is
resilient to data contamination from various sources of non-Gaussian noise. Note
that we did not provide formal justification for our repeated application of the auto-
correlation function. Presenting a closed form for this iterated function is additional
future work. Finally, another interesting extension to SAZED that could benefit prac-
titioners would be adding a module to automatically detect if an input time series
is seasonal or contains enough of a seasonal pattern for SAZED to output sensible
results.

Acknowledgements Open access funding provided byGrazUniversity of Technology.We thank the anony-
mous reviewers for their valuable feedback on the manuscript. Our work was partly funded by the iDev40
project. The iDev40 project has received funding from the ECSEL Joint Undertaking (JU) under Grant
Agreement No. 783163. The JU receives support from the European Union’s Horizon 2020 research and
innovation programme. It is co-funded by the consortium members, grants from Austria, Germany, Bel-
gium, Italy, Spain and Romania. Tiago Santos is a recipient of a DOC Fellowship of the Austrian Academy
of Sciences at the Institute of Interactive Systems and Data Science of the Graz University of Technology.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Andrews DF, Herzberg AM (2012) Data: a collection of problems from many fields for the student and
research worker. Springer, Berlin

Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley,
London

Cerqueira V, Torgo L, Pinto F, Soares C (2017) Arbitrated ensemble for time series forecasting. In: Joint
European conference on machine learning and knowledge discovery in databases, Springer, Berlin,
pp 478–494

Chan KS, Ripley B (2012) TSA: time series analysis. https://CRAN.R-project.org/package=TSA, R pack-
age version 1.01

Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition. J Off
Stat 6(1):3–73

Demšar J (2006) Statistical comparisons of classifiers overmultiple data sets. JMach Learn Res 7(Jan):1–30
Elfeky MG, Aref WG, Elmagarmid AK (2005a) Periodicity detection in time series databases. IEEE Trans

Knowl Data Eng 17(7):875–887
Elfeky MG, Aref WG, Elmagarmid AK (2005b) WARP: time warping for periodicity detection. In: Data

mining, fifth IEEE international conference on, IEEE, pp 8–pp
Fuller WA (2009) Introduction to statistical time series, vol 428. Wiley, London
Ghosh A, Lucas C, Sarkar R (2017) Finding periodic discrete events in noisy streams. In: Proceedings of

the 2017 ACM on conference on information and knowledge management, ACM, pp 627–636

123

http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/package=TSA


Parameter-free season length estimation

Hamilton JD (1994) Time series analysis, vol 2. Princeton University Press, Princeton
Hyndman RJ (2012) Measuring time series characteristics. https://robjhyndman.com/hyndsight/

tscharacteristics/, Accessed 21 Feb 2018
Hyndman RJ (2013) FPP: data for “Forecasting: principles and practice”. https://CRAN.R-project.org/

package=fpp, R package version 0.5
Hyndman RJ (2015) expsmooth: Data Sets from “Forecasting with exponential smoothing”. https://CRAN.

R-project.org/package=expsmooth, R package version 2.3
Hyndman RJ (2017a) FMA: data sets from “Forecasting: methods and applications” byMakridakis, Wheel-

wright & Hyndman (1998). https://CRAN.R-project.org/package=fma, R package version 2.3
Hyndman RJ (2017b) FPP2: data for “Forecasting: principles and practice” (2nd edition). https://CRAN.

R-project.org/package=fpp2, R package version 2.1
Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts
Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data.

IEEE Trans Geosci Remote Sens 40(8):1824–1832
Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of

the tenth ACM SIGKDD international conference on knowledge discovery and data mining, ACM,
pp 206–215

Kleiber C, Zeileis A (2008) Applied econometrics with R. Springer, New York, https://CRAN.R-project.
org/package=AER, ISBN 978-0-387-77316-2

Kumar M, Patel NR,Woo J (2002) Clustering seasonality patterns in the presence of errors. In: Proceedings
of the eighth ACMSIGKDD international conference on knowledge discovery and datamining. ACM,
pp 557–563

Lijffijt J, Papapetrou P, Puolamäki K (2012) Size matters: finding the most informative set of window
lengths. In: Joint European conference on machine learning and knowledge discovery in databases.
Springer, Berlin, pp 451–466

Pierson E, Althoff T, Leskovec J (2018) Modeling individual cyclic variation in human behavior. In: Pro-
ceedings of the 2018 world wide web conference on world wide web, international world wide web
conferences steering committee, pp 107–116

Ramírez D, Schreier PJ, Vía J, Santamaría I, Scharf LL (2014) A regularized maximum likelihood esti-
mator for the period of a cyclostationary process. 48th Asilomar conference on signals. Systems and
Computers, IEEE, pp 1972–1976

Rasheed F, Alshalalfa M, Alhajj R (2011) Efficient periodicity mining in time series databases using suffix
trees. IEEE Trans Knowl Data Eng 23(1):79–94

Rife D, Boorstyn R (1974) Single tone parameter estimation from discrete-time observations. IEEE Trans
Inf Theory 20(5):591–598

Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density esti-
mation. J R Stat Soc: Ser B (Methodological) 53(3):683–690

Stoffer D (2016) astsa: Applied statistical time series analysis. https://CRAN.R-project.org/package=astsa,
R package version 1.7

Toller M, Kern R (2017) Robust parameter-free season length detection in time series. In: Proceedings of
the 3rd SIGKDD workshop on mining and learning from time series

Toller M, Santos T, Kern R (2019) sazedR: parameter-free domain-agnostic season length detection in time
series. https://CRAN.R-project.org/package=sazedR, R package version 2.0.0

Vlachos M, Yu P, Castelli V (2005) On periodicity detection and structural periodic similarity. In: Proceed-
ings of the 2005 SIAM international conference on data mining, SIAM, pp 449–460

Wang J, Chen T, Huang B (2006a) Cyclo-period estimation for discrete-time cyclo-stationary signals. IEEE
Trans Signal Process 54(1):83–94

Wang X, Smith K, Hyndman RJ (2006b) Characteristic-based clustering for time series data. Data Min
Knowl Discov 13(3):335–364

YuanQ, Shang J, CaoX, Zhang C, GengX, Han J (2017) Detectingmultiple periods and periodic patterns in
event time sequences. In: Proceedings of the 2017 ACM on conference on information and knowledge
management, ACM, pp 617–626

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://robjhyndman.com/hyndsight/tscharacteristics/
https://robjhyndman.com/hyndsight/tscharacteristics/
https://CRAN.R-project.org/package=fpp
https://CRAN.R-project.org/package=fpp
https://CRAN.R-project.org/package=expsmooth
https://CRAN.R-project.org/package=expsmooth
https://CRAN.R-project.org/package=fma
https://CRAN.R-project.org/package=fpp2
https://CRAN.R-project.org/package=fpp2
https://CRAN.R-project.org/package=AER
https://CRAN.R-project.org/package=AER
https://CRAN.R-project.org/package=astsa
https://CRAN.R-project.org/package=sazedR


M. Toller et al.

Affiliations

Maximilian Toller1 · Tiago Santos2 · Roman Kern1

Maximilian Toller
mtoller@know-center.at

Roman Kern
rkern@know-center.at

1 Know-Center GmbH, Inffeldgasse 13, 6th floor, 8010 Graz, Austria

2 Institute of Interactive Systems and Data Science, Graz University of Technology, Inffeldgasse
16c/I, 8010 Graz, Austria

123

http://orcid.org/0000-0001-6030-774X

	SAZED: parameter-free domain-agnostic season length estimation in time series data
	Abstract
	1 Introduction
	2 Background
	3 Problem statement and notation
	4 Base methods
	4.1 Preprocessing
	4.2 Exhaustive estimation
	4.3 Spectral density estimation
	4.4 Autocorrelation zero density
	4.5 Average time series zero distances

	5 Ensemble
	5.1 Seasonality isolation
	5.2 SAZED: spectral and average autocorrelation zero distance density
	5.3 Alternative ensembles

	6 Experimental study
	6.1 CRAN dataset
	6.2 SL dataset
	6.3 Cauchy dataset
	6.4 Setup
	6.5 Results
	6.6 Discussion

	7 Conclusion
	Acknowledgements
	References




