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ABSTRACT

Unsupervised object-centric scene decomposition models can learn compositional
and hierarchical representations of multi-object scenes that allow abstraction into
object entities and spaces. However, previous approaches, either based on VAE or
GAN frameworks, have no guarantee of preserving particular aspects of the image
in scene reconstruction. In this work, we propose the first probabilistic model
based on normalizing flows. The scene is represented as mixture of bidirectional
flows that map a set of structured prior distributions into the scene data distribution.
The bijective mapping of our algorithm (DeNF) yields an efficient sampling and
density evaluation in training time. Furthermore, it improves the fidelity of the
scene’s visual contents in the reconstruction process. In our experiments on real
and synthetic image data for unsupervised scene decomposition, DeNF achieves
competitive results.

1 INTRODUCTION

This paper is about learning disentangled representations from images depicting one or more fore-
ground objects without using any labeled data. This problem is known as unsupervised object-centric
scene representation. We consider two tasks, namely to both decompose a given image and generate a
new image from a structured latent representation by bidirectional normalizing flows. The structured
latent space may include the disentangled geometric representation of objects such as position and
scale and the photometric representation such as color and texture. Structuring the latent variables in
the learning model introduces an inductive bias to decompose the input scene into object instances
and spaces. This explicit representation of objects, in contrast to the implicit representation of deep
learning methods with unstructured latent spaces, is beneficial as it can generalize better to novel
compositions Greff et al. (2020).

Although unsupervised learning of object-centric scene decomposition continues to be a challenging
task, there has been impressive progress in the past few years with promising results on multi-
object synthetic datasets. These methods are primarily based on generative adversarial networks
(GAN) Goodfellow et al. (2014) or deep variational auto-encoders (VAE) Kingma & Welling (2014).

In GAN-based object-centric generative models Phuoc et al. (2020); Ehrhardt et al. (2020); Kodali
et al. (2017); Radford et al. (2016); Niemeyer & Geiger (2021); Stelzner et al. (2021), the generator
network receives structured noise and transforms it into images by minimizing a discrepancy loss
between the real examples and the generated ones. Due to their adversarial setting, these models
may produce complex visual scenes with cluttered backgrounds. However, they are not capable of
decomposing a scene. Moreover, these models are computationally expensive and hard to train.

VAE-based object-centric generative models Burgess et al. (2019); Greff et al. (2019); Engelcke
et al. (2019); Crawford & Pineau (2019); Lin et al. (2020); Zhu et al. (2021) can decompose the
scene by structuring the latent variables at the output of an encoder network. By imposing a set
of prior distributions on the latent variables and maximizing the evidence lower bound (ELBO),
the representations of objects and background are encoded into the latent variables used by the
decoder network to reconstruct the scene. While VAE-based models have been shown to attain
proper decompositions, they provide no guarantee in preserving any particular aspect of the scene.
This is mainly due to decomposing and generating the image through two separate encoder and
decoder modules. Although minimizing the reconstruction loss forces the decoder to learn the reverse
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Figure 1: A mixture of flows (i.e., bijective mappings f i) generates the scene image (x) from a set of
latent variables. The latent space of the model is partitioned into the foreground (zfg) and background
(zbg) components that generate non-overlapping regions of the image. The foreground component is
further decomposed into a set of structured latent variables that represent the objects.

mapping of the encoder on the training data, any unseen variations to the scene may be considered
out of distribution and might not be preserved in the reconstruction.

In contrast to existing frameworks, we establish our work on flow-based generative models Rezende
& Mohamed (2015); Dinh et al. (2014; 2016); Papamakarios et al. (2021). We present a scene-
decompositional normalizing flow (DeNF), an unsupervised probabilistic model that formulates the
distribution of scene data with a mixture of prior distributions on a set of structured latent variables
(see Figure 1). To the best of our knowledge, this is the first approach in which normalizing flows are
decomposed into structured latent variables. The invertible architecture of DeNF makes it possible
to perform both sampling and density evaluation in an efficient and exact way for decomposing
and reconstructing the scene. For training, two forward and backward processes are involved. By
mapping the given scene images into a set of base (i.e., prior) distributions which represent the
background and foreground components, density estimation is used for updating the parameters of
mapping. Reversely, the scene is reconstructed and compared with the original data by constraining
and sampling from the base distributions and inverting the mapping. Once trained, DeNF is capable
of reconstructing a diverse set of scene data by preserving only a subset of objects without losing
information pertaining to the background. Such fidelity to original scene reconstruction is inherently
a result of the bijective mapping of DeNF Liu et al. (2020).

2 RELATED WORK

Several methods have been proposed to perform unsupervised object-oriented image (de)composition
in the last few years. These methods can be roughly categorized into (1) GAN-based frameworks and
(2) VAE-based models.

GAN-based object-oriented scene generation approaches Radford et al. (2016); van Steenkiste et al.
(2020); Phuoc et al. (2020); Ehrhardt et al. (2020); Niemeyer & Geiger (2021); Stelzner et al.
(2021) mostly generate the visual scene from a set of structured latent variables (i.e., noise) that
introduce interpretable representations for the objects in the scene. Depending on the architecture, the
generator can be implemented by a convolutional network or by a Neural Radiance Fields (NeRFs)
renderer Mildenhall et al. (2020). Often, it is trained along with a discriminator network by playing
a minimax game. Although these approaches can generate complex scenes with multiple objects
and cluttered backgrounds, they are not capable of decomposing an image. Moreover, GAN-based
approaches are computationally expensive and have stability issues during optimization.

Recent object-centric scene decomposition models based on VAE frameworks have shown promising
results Burgess et al. (2019); Greff et al. (2019); Engelcke et al. (2019); Crawford & Pineau (2019);
Lin et al. (2020); Zhu et al. (2021). MONet Burgess et al. (2019) relies on training a VAE together
with a deterministic recurrent attention network to provide attention masks around image regions.
However, the recurrent attention causes a propensity for scalability issues Engelcke et al. (2019).
IODINE Greff et al. (2019) models the scene as a spatial mixture of objects and the background, then
uses amortized iterative refinement of latent object representations within the variational framework,
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which is expensive both in terms of computation and memory, limiting its practicality and utility.
GENESIS Engelcke et al. (2019) also employs a spatial mixture model, which is encoded by
component-wise latent variables. It parameterizes a spatial GMM over images decoded from a
set of object-centric latent variables that are either inferred sequentially in an amortized fashion
or sampled from an autoregressive prior. In GENESIS-V2 Engelcke et al. (2021), a modified
expectation-maximization is used to infer the latent structure.

Other VAE-based models utilize a spatial attention mechanism for learning the latent structure that
represents objects with what, where, and presence semantics. The AIR Eslami et al. (2016) uses an
RNN to process the objects in the scene sequentially. This process does not scale well to images
with many objects. SPAIR Crawford & Pineau (2019) addresses this shortcoming by replacing the
RNN with a CNN. At the core of SPAIR is a convolutional object detector, similar to that used in
YOLO Redmon et al. (2016), which maps from image to objects. This allows the model to specify
the locations of objects relative to local grid cells rather than the entire image that facilitates spatially
invariant computations. Based on this, the encoder maps the images into the feature volume with a
predefined grid. Then, all the cells in the grid are processed sequentially to produce the objects in
the scene. Similar to SPAIR, SPACE Lin et al. (2020) detects foreground objects on a grid, but the
process is performed in parallel, thus it scales well to a larger number of objects. In GMAIR Zhu
et al. (2021), a spatial attention mechanism combined with a Gaussian mixture prior clusters the input
into discovered objects in a VAE-based model. This allows the model to categorize the what latent
variables of objects additionally.

Structuring the latent variables in DeNF was inspired by prior attention-based works Eslami et al.
(2016); Crawford & Pineau (2019); Lin et al. (2020). The objects are represented in the scene by
what, where, and their presence latent variables. That being said, DeNF is based on a normalizing
flows framework quite different from previous works.

Our contributions are as follows.

• We introduce DeNF, a novel unsupervised scene decompositional model, by formulating the
probability distribution of images as a mixture of base distributions over a set of structured
latent variables. The bijective mapping of the neural architecture enables both density
estimation and sampling to be jointly used for training. In contrast to VAE-based methods,
DeNF has high fidelity to the input image contents by preserving the visual information due
to its bijective mapping.

• Inspired by prior attention-based models, DeNF employs a spatial transformer that is scalable
to a large number of objects in the scene. Unlike previous works, the spatial transformer is
used for disentangling the structured latent variables.

In the following, we describe the proposed DeNF model in detail.

3 DECOMPOSITIONAL NORMALIZING FLOWS

The main idea of DeNF, illustrated in Figure 2, is to decompose and then reconstruct the scene
with a mixture of objects and background latent variables. Each object is represented with a set of
structured latent variables through bijective mappings in its architecture. The model learns a mapping
between the probability distribution of the scene images and a set of base probability distributions
(e.g., Gaussian distributions). To describe the probabilistic modeling of the DeNF, we briefly explain
the mechanism of normalizing flows next.

3.1 PROBABILISTIC SCENE MODELING

3.1.1 NORMALIZING FLOWS

Normalizing flows (NFs) Dinh et al. (2014); Rezende & Mohamed (2015) provide a general way of
constructing flexible probability distributions over continuous random variables. Let x ∈ Rd be a real
vector, and suppose we would like to define a distribution p(x) over x. The main idea of flow-based
modeling is to express x through a learned invertible transformation x = fθ(z) that warps a real
vector z sampled from a base distribution pz(z). Making use of the change of variables, p(x) can be
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Figure 2: DeNF (de)composes the scene with a mixture of flows by stacking bijective mappings
(f (k) = f1◦...◦fk). The probability distribution of input p(x) is partitioned into background (p(zbg))
and foreground p(zfg) probabilities. The foreground components are a mixture of structure latent
variables characterizing the objects in the scene. A spatial transformer (ST) is used to disentangle the
representations learned by the structured variables.

written:

log pθ(x) = log pz(z) + log

∣∣∣∣det(∂f−1
θ (x)

∂x

)∣∣∣∣ . (1)

Typically in flow-based models, fθ : Rd → Rd is constructed by stacking several invertible and
differentiable mappings, i.e., fθ = f1

θ ◦ ... ◦ fL
θ and obtain the log-determinant as the sum of the

log-determinants of all the mappings. Equation 1 allows for exact maximum likelihood learning,
which is not tractable in VAE and GAN-based generative models.

DeNF represents the measured data from a scene as the composition of two independent generative
processes that construct the background and foreground parts of the scene. We extend the mapping fθ
to a mapping of background (zbg) and foreground (zfg) components to the non-overlapping elements
of x ∈ {xi}i∈I e.g. pixels of an image. This many-to-one transformation Papamakarios et al. (2021)
can be specified as:

px(x) =
∑
i∈I

pz(f
−1
i (x))

∣∣∣detJf−1
i

(x)
∣∣∣

= pzfg
(f−1

fg (x))
∣∣∣detJf−1

fg
(x)

∣∣∣+ pzbg (f
−1
bg (x))

∣∣∣detJf−1
bg

(x)
∣∣∣ , (2)

where Jf (.) is Jacobian of map f . The base distributions pzbg and pzfg
correspond to background

and foreground, respectively, and are explained in sections 3.1.2 and 3.1.3.

DeNF has a hierarchical architecture in mixing the latent variables of scene background with the
structured latent variables that represent objects (see Figure 2). Inspired by the multi-scale architecture
in Dinh et al. (2016), DeNF has squeeze and split layers for implementing a hierarchical flow-based
neural architecture. An invertible flow-based model requires the dimensionality of z and x to be
identical. To this end, a multi-scale transformation is used to reduce the computational cost and
memory requirement of implementing fθ by L layers. It clamps the number of subdimensions of
zk<L and leaves them out for applying further transformations. This also provides a natural choice
for granular data types such as images and waveforms Papamakarios et al. (2021); Dinh et al. (2016).
Building upon this concept, the background representation is branched off earlier in the DeNF flows
while the foreground flow undergoes further transformations. Coupling layers Dinh et al. (2016) are
used for the invertible blocks in DeNF. A detailed explanation of the proposed architecture can be
found in the Appendix.

3.1.2 BACKGROUND GENERATIVE FLOW

In the hierarchical DeNF architecture, the input image (x ∈ Rd) is first mapped through four invertible
blocks to a latent space (z ∈ Rd) and is then split into two partitions. The first part is identified
as background component zbg ∈ R<d while the second part is further processed through deeper
layers of the network. The variables zbg that are factored out at a finer scale (in an earlier layer)
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are Gaussianized zbg ∼ N(0, 1). The flow-based formulation allows for exact maximum likelihood
learning. The forward Kullback-Leibler (KL) divergence between flow-based model px(x; θ) and a
target distribution p∗x(x) can be written:

Lforward
bg (θ) = DKL [p∗x(x) ∥ px(x; θ)]

= −Ep∗
x(x)

[log px(x; θ)] + const.
(3)

Having access to a set of training samples {xn}Nn=1 from p∗x(x), the expectation over p∗x(x) can be
estimated by Monte Carlo Papamakarios et al. (2021). For estimating the background scene, the first
term in the RHS of Eq.2 becomes zero (pzfg

(zfg) = 0). By inserting that into Eq. 3 we obtain

Lforward
bg (θ) ≈ − 1

N

N∑
n=1

log pzbg (f
−1
bg (xn))− log

∣∣∣detJf−1
bg

(xn)
∣∣∣+ const. (4)

For evaluating Eq. 4, a set of samples {xn}Nn=1 that only contain the background scene are needed.
This is usually not possible as foreground objects may exist in all training samples. For constraining
the network to map nothing but the background features into zbg, we additionally optimize the
parameters during the backward flow by sampling zbg ∼ N(0, 1) and reconstructing the background.
By assembling the data tensors using random batch selection, the likelihood of having at least one
background pixel in the tensor across the batch dimension increases. Thus, the network can generate
the background scene through its reverse operations from (zbg, zfg) = f−1(x) computed in the
forward pass by ignoring the foreground components. Using this idea, we formulate the backward
reconstruction loss for the background scene over all samples in the batch B as follows.

x̂bg = f(ẑbg, zfg = O), where ẑbg = zbg + ϵ and ϵ ∼ N(0, σϵ)

Lbackward
bg (θ) =

1

M

M∑
j=1

min
∀x∈B

∥xj − x̂j
bg∥

2
2,

(5)

where O is a null tensor being all zero and xj denotes the jth pixel of the sample x in the training
batch. In Eq. 5, adding a small variation ϵ to the zbg and then minimising the difference between
the generated image with all the images in the batch for all M pixels, forces the zbg to belong to
the common part of the scene across the batch. In case that the training dataset includes diverse
backgrounds, for instance images captured by multiple cameras with different poses, Eq. 5 is still
valid if the training batch is sampled from the same background scene.

The background loss is computed by aggregating the losses of forward and backward flows:

Lbg(θ) = Lforward
bg + Lbackward

bg (6)

3.1.3 FOREGROUND GENERATIVE FLOW

After splitting the latent tensor z into two parts along the channel dimension and assigning one to the
background zbg, the other part is further transformed through four invertible blocks to generate the
foreground component zfg that represents the objects in the scene. Similar to SPAIR Crawford &
Pineau (2019), we consider zfg as structured variable. Given color images of size H ×W × 3, the
variable zfg has a lower spatial resolution due to the squeeze layer of the network. For instance, with
one squeeze layer, zfg is a feature map of size h×w× c, where h = 1

2H and w = 1
2W . Afterwards,

the zfg is partitioned into four parts along its channel dimension by applying a split operator. Each
part is transformed through four invertible blocks (i.e. head branches) and yields a set of latent maps.
Hence, each cell with indices (i, j), i ∈ {0, ..., h − 1}, j ∈ {0, ..., w − 1} and of length c in the
output of size h× w is associated with a set of (zpres, zscale, zloc, zwhat) variables.

Note that the variable zpres ∈ {0, 1} represents whether a specific cell belongs to the foreground
or not. For foreground cells (zpres = 1), the variables zscale ∈ R2 and zloc ∈ R2 represent the size
and displacement vector to the center of the object. The variable zwhat ∈ Rc−5 corresponds to other
object attributes like appearance and color for visual data. We impose base distributions to each of
these structured variables.

The binary variable zpres is modeled by a Bernoulli distribution using Gumbel-Softmax zijpres ∼
RelaxedBernoulli(βij

pres) Jang et al. (2017). See the Appendix for more details. We impose
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Gaussian priors for the latent variables zscale and zloc. Since zijloc represents the relative displacement
vector of cell (i, j) from the closest object in the image, we impose a prior zloc ∼ N(0, 1) to the
normalized displacement vectors. Here, unit one means the diagonal size of the image. The scale
of objects are configured based on normalized mean and variance of object sizes in images by
imposing a prior zscale ∼ N(µscale, σscale). We assign a bimodal Gaussian distribution to zwhat

as it represents the attributes of each cell depending on whether it belongs to the background or
foreground. Depending on whether the cell (i, j) contains an object or not, it is sampled from one of
two Gaussian distributions:

zwhat ∼
{
N(µfg, σfg), if zpres = 1

N(µbg, σbg), otherwise

The base distribution on the foreground components zfg can be defined as:

pzfg
(z) =

∏
ij

p(zijpres) ·
(
p(zijscale) · p(z

ij
loc) · p(z

ij
what)

)pij
pres

. (7)

Consequently, we can write:

log pzfg
(z) =

∑
ij

[
log p(zijpres) + p(zijpres) ·

(
log p(zijscale) + log p(zijloc) + log p(zijwhat)

)]
. (8)

Similar to what we showed earlier for the background components, we optimize the parameters of
DeNF both via its forward and backward flows. As in Eq.4, we compute the forward loss for the
foreground components by using Eq. 8 during the forward flow by having access to the training data:

Lforward
fg (θ) ≈ − 1

N

N∑
n=1

log pzfg
(f−1

fg (xn))− log
∣∣∣detJf−1

fg
(xn)

∣∣∣+ const. (9)

In the backward flow, we sample from the model by considering only the foreground components for
reconstructing the image. The reconstructed image is compared with input images for those regions
where objects are present (zpres = 1). So the backward loss can be written as:

x̂fg = fθ(zpres, zscale, zloc, zpres ◦ zwhat, zbg = O),

x̂ = zpres · x̂fg + (1− zpres) · x̂bg,

Lbackward
fg (θ) = ∥x− x̂∥22,

(10)

Here, the symbol ◦ denotes the Hadamard product. By minimizing both forward and backward losses
(Eq. 9 and 10), the model learns to decompose the representation of objects into a set of structured
latent variables and to generate the images reversely.

Lfg(θ) = Lforward
fg + Lbackward

fg (11)

3.1.4 DISENTANGLEMENT OF STRUCTURED LATENT VARIABLES

For disentangling the representations of the objects via structured latent variables, two constraints are
applied. The first constraint is imposing two different prior distributions on the elements of zwhat,
conditioned on their corresponding zpres. To maximize the likelihood of foreground and background
elements on the zwhat, the model explores generating a binary map for zpres that masks the objects
in the images.

The second constraint is the prediction of zpres from the (zloc, zscale) variables. According to
our definitions of the structured latent variables, we expect that for cells (i, j) belonging to the
foreground, the pair of vectors (zijscale, z

ij
loc) indicates the bounding box of the object that cell (i, j)

belongs to. Hence, rendering a fixed-size glimpse of unity values (i.e. matrix of ones) inside the
detected bounding boxes and zero values outside should partially resemble the binary map of zpres
corresponding with the cell (i, j). In order to construct a differentiable binary object mask, a spatial
transformer (T ) Jaderberg et al. (2015) is used. The spatial transformer (ST) can be considered as an
adaptive spatial sampler from a map. It receives the bounding box coordinates, interpolates inside
the bounding box in a given map, and returns the re-sampled region with the specified dimension.
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Applying the ST in a reverse mode (T −1), scales and locates a given glimpse of unity values into a
map initialized by zero values. Generating such a mask for all foreground cells based on (zloc, zscale)
values and superposing them yields a binary image, called ẑpres. Contingent upon whether the
representation of objects’ scale and location are in agreement with their presence map, the ẑpres
should resemble zpres. This results in introducing a compatibility loss as follows.

Lcom(θ) =

∑
ij(ẑ

ij
pres − zijpres)

2∑
ij ẑ

ij
pres +

∑
ij z

ij
pres

, where ẑijpres = min
(
1,
∑
ij

T −1(1, zijscale, z
ij
loc)

)
. (12)

Here, 1 denotes a matrix of ones and the minimum operator clamps all elements of superposed binary
maps into the range [0, 1].

3.1.5 INFERENCE AND TRAINING

The learning parameters of DeNF are optimized through the background and foreground generative
flows by simultaneously minimizing Eqs. 6, 11, and 12 using gradient descent.

Ltotal(θ) = Lbg + Lfg + Lcomp. (13)

We provide pseudo code of the training procedure, details of the proposed architecture and the
hyperparameters in the supplementary material.

Scene reconstruction with single object: After training the model, we can generate the scene by
preserving only one specific object and masking the others. During inference, the pair of vectors
(zscale, zloc) of each cell that contains any object (zpres = 1) represents a bounding box in the scene.
For detecting how many objects are in the scene, we apply a non-maximum suppression algorithm on
all detected bounding boxes to have a single bounding box per object. For masking other objects,
we construct a binary mask that is identical with zpres inside the target object bounding box and
zero elsewhere. By mixing xbg and xfg similar to what has been shown in Eq.10, the scene can be
generated while preserving only a single object.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND EVALUATION METRICS

We evaluate our proposed model on two visual scene datasets. We compare DeNF with recent,
competitive methods based both on VAEs and GANs. For evaluating the performance on a scene
decomposition task, we use CLEVR Johnson et al. (2017), a data set of 3D rendered objects, as it is
widely used for object-centric scene representation. Similar to prior works Monnier et al. (2021);
Greff et al. (2019), we measure the similarity between ground-truth (instance) segmentations and our
predicted object masks using the Adjusted Rand Index (ARI) Rand (1971); Hubert & Arabie (1985)
to quantify segmentation quality. ARI is a measure of cluster similarity that can handle arbitrary
permutations of the clusters.

For evaluating the performance of DeNF on real scene images, we compare the proposed model with
both VAE and GAN-based models on the scene generation task with respect to the Fréchet Inception
Distance (FID) Heusel et al. (2017). In this experiment, DeNF decomposes the input scene into the
object instances and space (i.e. background). Then, by sampling from the foreground latent variables,
it generates new examples of the input scene by preserving only a subset of objects.

4.2 DATASETS

CLEVR data Johnson et al. (2017): This dataset contains 70, 000 images. They have a resolution of
240×320 pixels but are scaled to 128×128 pixels following˜Greff et al. (2019). Each scene contains
between three and ten objects, characterized in terms of shape (cube, cylinder, or sphere), size (small
or large), material (rubber or metal), color (8 different colors), position (continuous), and rotation
(continuous). The subset of images which contain 1-6 objects (inclusive) is used in our experiments;
we refer to it as CLEVR6.
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Table 1: Average foreground ARI (higher is
better) on CLEVR6, compared with values
reported in the literature.

Method Framework Metric

IODINE Greff et al. (2019) VAE+RNN 98.8± 0.0
MONet Burgess et al. (2019) VAE+RNN+CNN 96.2± 0.6
Slot Att. Locatello et al. (2020) Transformer 98.8± 0.3
ObSuRF Stelzner et al. (2021) NeRF 98.3± 0.8
Sprites Monnier et al. (2021) DTI 97.2± 0.2
DeNF (ours) NF 96.3± 0.2

Figure 3: Visualized examples of CLEVR6
data. The rows from top to bottom show the
original images, detected objects, segmented
foreground, zpres map, norm of zscale, norm
of zloc, and the generated background.

Table 2: FID score (lower is better) on the Real-
Traffic data sets, compared with values reported in
the literature.

Method Metric

GENESIS Engelcke et al. (2019) 167.1
BlockGAN Phuoc et al. (2020) 57.9
DCGAN Radford et al. (2016) 47.6
RELATE Ehrhardt et al. (2020) 42.0
DRAGAN Kodali et al. (2017) 38.8

DeNF (ours) 25.6

Figure 4: Visualized examples of Real-Traffic data;
The rows from top to bottom show the original im-
ages, detected bounding boxes, zpres map, norm
of zscale, norm of zloc, and the generated back-
ground.

Real-Traffic data Ehrhardt et al. (2020) is a publicly available real-world image data, including five
hours of footage of a busy street intersection, divided into fragments containing from one to six cars.
All images are resized to have a size of 128× 128 pixels. Similar to Ehrhardt et al. (2020), we keep
the images of 560 videos as training set and the images of 123 videos for testing.

4.3 RESULTS

Object Instance Segmentation. For the object instance segmentation task, we compare DeNF with
state-of-the-arts on the CLEVR6 dataset. Table 1 shows the ARI score for different methods. DeNF
shows competitive performance in term of the ARI score. While some prior works such as IODINE
and ObSURF show a slightly a higher score, their underlying RNN and NeRF architectures are
expensive both in terms of computation and memory, limiting their practicality and utility. Differently,
the proposed DeNF contains only 12 invertible blocks and a parallel spatial transformer that is
scalable in terms of number of objects in the scene. Furthermore, while some of those methods
present results on scene synthesis, they use simple scenes with sprites and a constant non-textured
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background. In contrast, the proposed algorithm works also well in a hard generative task as will be
shown in the following section.

Scene Image Generation. Figure 4 shows some input images of the Real-Traffic dataset along with
the structured variables that DeNF learns. For comparing the quality of scene decomposition and
generation, we report the FID score in Table 2. DeNF outperforms the best state-of-the-art method by
a wide margin. The obtained higher score of DeNF can be explained by its fidelity to image contents
due to its invertible mapping. To demonstrate this property, we show the predicted background scene
for different images in Fig. 5. As can be seen, there are only minor differences across background
context, for instance the pole shadows on the surface of the road. DeNF preserves the visual context
in its backward background generative process that is challenging for VAE or GAN-based approaches.
In supplementary material additional examples of scene reconstruction are shown.

Ablation experiments. We conduct some experiments for an ablation study. The first ablation
reduces the spatial dimensions of latent structured variables from 64×64 into 32×32 cells by adding
another squeeze operator before the last split block to the network. In the second ablation the binomial
Gaussian prior of the zwhat is replaced by a unimodal Gaussian distribution. It is worth mentioning
that by removing the spatial transformer from the DeNF, the model does not work as it cannot
disentangle the latent variables anymore. As shown in Table 3, by reducing the size of latent space,
the ARI score drops. This is mainly due to representing small objects in a scene with only a few cells
in the latent space that causes inaccurate bounding-box estimation and ẑpres prediction. Imposing a
Gaussian prior only to the foreground elements of zwhat does not degrade the ARI score significantly.
This small reduction in performance may happen since the background elements of zwhat are masked
(see Eq. 10) and filled by zeros in the backward process by sampling from the foreground. Therefore,
the model learns to produce zero values for the background elements of zwhat in the forward flow.

Figure 5: Examples of some generated backgrounds for the Real-
Traffic dataset. DeNF learns to generate various background
images (for instance with corresponding shadows on the road
surface) with a high fidelity to the input images.

Table 3: Ablation study. ARI
score (higher is better) on
CLEVR6 data.

Experiment ARI

smaller latent space 94.4
(32×32 cells)

w/o bimodal prior 95.8

DeNF (full) 96.3

5 DISCUSSION

Decomposable representations are an active area of research, being a key step towards composi-
tionality. This work is a step towards that goal, showing the benefit of using normalizing flows
for visual scene decomposition. The proposed unsupervised algorithm (DeNF) leverages recent
advancements in normalizing flows to formulate the scene decomposition as a probabilistic modeling.
DeNF consists of a mixture of bidirectional flows which decompose the scene into a set of structured
latent variables. Due to its invertible neural architecture, it is able to reversely combine the extracted
variables to generate the input scene with a high fidelity to the visual contents of the input scene. By
experiments on synthetic and real image data, DeNF shows competitive performance, compared to
other generative frameworks, based on VAE or GAN models. While it performs comparably with
state-of-the-art methods in scene decomposition, those methods only use simplistic data for scene
generation. In contrast, the proposed algorithm is evaluated on a challenging real-image dataset
for scene generation and in terms of fidelity to the scene’s visual contents, is superior to the best
competing methods by a wide margin.
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– Supplementary Materials –

A IMPLEMENTATION DETAILS

In this section, we provide further details to ensure the reproducibility.

A.1 BERNOULLI PRIOR ON zpres

The binary variable zpres for a cell with indices (i, j) is modeled by a Bernoulli distribution using
Gumbel-Softmax zijpres ∼ RelaxedBernoulli(βij

pres) Jang et al. (2017). A concrete distribution Jang
et al. (2017); Maddison et al. (2017) with a relaxation to a categorical distribution based on Gumble-
Softmax trick makes the base distribution differentiable during training. According to Maddison et al.
(2017), the sampling procedure for zijpres can be described as

zijpres =
1

1 + exp− logα+L
λ

, (14)

where L = logU − log(1− U) and U ∼ Uniform(0, 1). The temperature parameter λ ∈ (0,∞)
controls the degree of approximation. As λ→ 0, the zijpres converges to Bernoulli with parameter
α

1+α .

A.2 PSEUDO CODE OF TRAINING DENF

Algorithm 1 describes the steps of training the DeNF.

Algorithm 1 Training procedure of DeNF
Input x ∈ {x}Nn=1
Output Parameters of network (θ)

1: while t ≤Max do
2: (zbg, zfg) = f−1

1 (x)

3: (zlogitpres , zscale, zloc, zwhat) = f−1
2 (zfg)

4: x̂bg = f1(zbg +N(0, ϵ), zfg = O)
5: zpres ∼ Bernoulli(zlogitpres , λ)
6: ẑfg = f2(zpres, zscale, zloc, zpres ◦ zwhat)
7: x̂fg = f1(ẑfg, zbg = O)
8: x̂ = zpres · x̂fg + (1− zpres) · x̂bg ▷ Reconstruct input image
9: ẑpres = min

(
1,
∑

ij T −1(1, zijscale, z
ij
loc)

)
▷ Predicting zpres using ST

10:
11: Lforward

bg ← −log-likelihood(pzbg ) ▷ Eq. 4
12: Lbackward

bg ← (x, x̂bg) ▷ Eq. 5
13: Lforward

fg ← −log-likelihood(pzfg
) ▷ Eq. 8

14: Lbackward
fg ← (x, x̂) ▷ Eq. 10

15: Lcom ← (ẑpres, zpres) ▷ Eq. 12
16: Ltotal ← (Lbg,Lfg,Lcom) ▷ Eq. 13
17: θ(t+1) ← θ(t) + η ∂Ltotal

∂θ ▷ update
18: end while

A.3 ARCHITECTURE DETAILS

For implementing the invertible blocks in DeNF, we use coupling layers Dinh et al. (2016). We
followed the same choice of neural architecture for coupling layers as Liu et al. (2021) with residual
convolutional operators.
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Table 4: Architecture details of DeNF

Layer name Layer type Input size output size Kernel size Activation
Coupling 1 Residual 128× 128× 3 128× 128× 3 3× 3 LeakyReLU
Coupling 2 Residual 128× 128× 3 128× 128× 3 3× 3 LeakyReLU
Coupling 3 Residual 128× 128× 3 128× 128× 3 3× 3 LeakyReLU
Coupling 4 Residual 128× 128× 3 128× 128× 3 3× 3 LeakyReLU
Squeeze - 128× 128× 3 64× 64× 12 - -
Split - 64× 64× 12 64× 64× [1, 11] - -
Coupling 5 Residual 64× 64× 11 64× 64× 11 3× 3 LeakyReLU
Coupling 6 Residual 64× 64× 11 64× 64× 11 3× 3 LeakyReLU
Coupling 7 Residual 64× 64× 11 64× 64× 11 3× 3 LeakyReLU
Coupling 8 Residual 64× 64× 11 64× 64× 11 3× 3 LeakyReLU
Split - 64× 64× 11 64× 64× [2, 2, 2, 5] - -
Coupling 9 Residual 64× 64× k 64× 64× k 3× 3 LeakyReLU
Coupling 10 Residual 64× 64× k 64× 64× k 3× 3 LeakyReLU
Coupling 11 Residual 64× 64× k 64× 64× k 3× 3 LeakyReLU
Coupling 12 Residual 64× 64× k 64× 64× k 3× 3 LeakyReLU

A.4 TRAINING HYPERPARAMETERS

For both experiments on the Clevr and Real-Traffic data sets, images are resized to a size of 128×128
pixels. We use a batch size of 12. We use a learning rate (η) of 1e−4 with an Adam optimizer and
gradient clipping with a maximum norm of 1.0. For quantitative results, DeNF is trained up to 20
epochs. Other hyperparameters are shown in Table 5. The temperature zpres was linearly reduced
starting at epoch 3.

Table 5: DeNF hyperparameters

Parameter Symbol Value (Clevr exp.) Value (Real-Traffic exp.)
zbg prior (µbg, σbg) (0, 1.0) (0, 1.0)
Additive noise to p(zbg) σϵ 0.2 0.2
zpres temperature λ 0.1 → 0.01 0.1 → 0.01
zloc prior (µloc, σloc) (0, 1.0) (0, 1.0)
zscale prior (µscale, σscale) (0.20, 0.1) (0.25, 0.1)
zwhat prior for foreground (µfg, σfg) (1.0, 0.1) (1.0, 0.1)
zwhat prior for background (µbg, σbg) (0.0, 0.1) (0.0, 0.1)

A.5 EVALUATION DETAILS

For computing the ARI scores on the CLEVR data, similar to previous methods, we measured the
instance segmentation quality by treating each foreground pixel and ignored the background region
and its segmentation as cluster assignment. For computing the FID scores, 10,000 samples from
DeNF were drawn which have been compared against the same number of images drawn from the
test set.

A.6 INFRASTRUCTURE AND FRAMEWORK

All experiments were done by using PyTorch 1.10 on a single NVIDIA Tesla V100 GPU.
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B DECOMPOSITION RESULTS

As described in section 3.1.5, the model is able to decompose and reconstruct the scene by preserving
only one object at a time. Figure 6 visualizes some examples of scene reconstruction.

Figure 6: Visualized scene reconstruction with a single object using DeNF. The first column shows
the original images. Other columns show the decomposed images.
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