
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING INVARIANCE IN IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In-Context Learning (ICL) has emerged as a pivotal capability of auto-regressive
large language models, yet it is hindered by a notable sensitivity to the ordering
of context examples regardless of their mutual independence. To address this
issue, recent studies have introduced several variant algorithms of ICL that achieve
permutation invariance. However, many of these do not exhibit comparable perfor-
mance with the standard auto-regressive ICL algorithm. In this work, we identify
two crucial elements in the design of an invariant ICL algorithm: information non-
leakage and context interdependence, which are not simultaneously achieved by
any of the existing methods. These investigations lead us to the proposed Invariant
ICL (InvICL), a methodology designed to achieve invariance in ICL while ensuring
the two properties. Theoretically, we prove that InvICL approximates standard
gradient descent, which possess the best convergence properties among all the
gradient descent variants of existing ICL algorithms. Empirically, our findings
reveal that InvICL surpasses previous models, both invariant and non-invariant, in
most benchmark datasets, showcasing superior generalization capabilities across
varying input lengths.

1 INTRODUCTION

In-Context Learning (ICL) has shown to be a key emergent property of large language models (LLMs)
(Brown et al., 2020). By utilizing a sequence of examples as the context, LLMs can be adapted
quickly and accurately to new tasks without parameter tuning. Despite its impressive potential, ICL
exhibits a crucially unusual behavior: sensitivity to the order of context examples (Lu et al., 2022;
Zhao et al., 2021; Xie et al., 2021; Agrawal et al., 2022). Although context examples are independent,
the order in which they are presented can dramatically influence ICL predictions, with variations
from about 90% to 50% on the SST-2 dataset (Lu et al., 2022).

It is easy to note that the auto-regressive (AR) nature of LLMs is the root of order sensitivity. AR-
LLMs often utilize a so-called causal mask in the attention module, which breaks the permutation
invariance property of the de facto Transformer architecture1. As the context examples are intrinsically
equivalent under different permutations, a model that respects this data symmetry tends to enhance
both learning and generalization (Sokolić et al., 2016; Bietti et al., 2021; Tahmasebi & Jegelka, 2023).
Therefore, recent works have proposed several variant algorithms of ICL to achieve the invariance by
modifying the Transformer architecture (e.g., Prefix ICL (Raffel et al., 2020), PCW (Ratner et al.,
2022), and BatchICL (Zhang et al., 2024)). However, they often perform inferior to non-invariant
counterparts like AR ICL, as we extensively observed in practice shown in Figure 1.

We note that although desirable, the invariance property alone is insufficient for good ICL performance
(e.g., a model with constant output f(·) = c is invariant yet provides no useful information). Therefore,
to ensure the performance of ICL, we need to satisfy the following two properties while making ICL
invariant: 1) Information Non-leakage: it prevents the query from accessing its answer, thereby
avoiding shortcuts and enabling dense learning signals for ICL by allowing the prediction of every
context example in the input. 2) Context Interdependence: Each context example interacts with all
preceding examples. As the sequence lengthens, more information is provided, thereby enhancing
prediction accuracy. However, existing methods more or less compromise these properties when
making ICL invariant (Table 1), resulting in the lack of a well-performing invariant ICL method.

Motivated by the analysis above, we design an effective Invariant In-context Learning (InvICL)
algorithm that maintains these essential properties, ensuring both invariance and high performance.

1Besides, sequential positional encodings (PEs) of the prompt also introduce order sensitivity.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Performance of existing ICL
algorithms under the settings of (Zhang
et al., 2024), including auto-regressive
(AR) ICL, Prefix ICL (Raffel et al., 2020),
BatchICL (Zhang et al., 2024) and PCW
(Ratner et al., 2022). Task prompts are
removed for fair comparison.

Table 1: Comparisons of different ICL types (details in
Section 2) on permutation invariance, information non-
leakage, context interdependence, and performance.

ICL Type Invariance Non-leakage Interdependence Performance
Auto-regressive ✗ ✓ ✓(partial) A (baseline)
Prefix (full attn.) ✓ ✗ ✓ A-
Bag-of-Examples ✓ ✓ ✗ A-
InvICL (ours) ✓ ✓ ✓ A/A+

InvICL addresses the issue of order sensitivity (invariance), not only avoiding information leakage
but also enhancing context interdependence beyond what is achievable with AR-LLMs. To facilitate
practical implementation, we also develop a fully parallel version of InvICL, capable of obtaining all
Leave-One-Out (LOO) embeddings and predictions in a single forward pass using a novel LOO-type
attention mask. Theoretically, from an optimization perspective, we prove that InvICL implicitly
approximates the standard gradient descent algorithm, which possesses the best convergence proper-
ties among the gradient descent variants implemented by all existing ICL algorithms. Empirically,
InvICL outperforms existing invariant ICL versions, and even surpasses AR-ICL (non-invariant) on
most tasks of both synthetic and real-world datasets. We summarize our contributions as follows:

• We undertake a comprehensive exploration into designing invariant ICL algorithms, high-
lighting the importance of preserving information non-leakage and context interdependence.

• We propose InvICL, which synergizes the goals of invariant ICL algorithms by utilizing
leave-one-out embeddings to achieve invariant predictions and information non-leakage
while maximizing context interdependence.

• Theoretically, we prove that InvICL approximates standard gradient descent, possessing
the best convergence properties among the gradient descent variants implemented by all
existing ICL algorithms. Empirically, InvICL indeed achieves superior performance across
a range of tasks on both synthetic and real-world datasets.

2 PRELIMINARIES

Consider a classification task with a few i.i.d. training examples D = {x̃i := (xi,yi)}ni=1, where xi

denotes the input and yi denotes the classification target. An ICL algorithm f takes these training
examples (a.k.a. context examples) together as input and then predicts a new test example xt. A
general formulation of f is

[ŷ1, . . . , ŷn, ŷt] = f(xi,yi, . . . ,xn,yn,xt), (1)

where ŷi denotes the label prediction for xi. Note the predictions for context example, {ŷi}ni=1, are
optional but they are generally available for AR-LLMs.

A popular model choice for ICL is Transformer (Vaswani et al., 2017), where the self-attention layer
is the elementary module. Denote H = (h1, ...,hn)

⊤ be the input hidden state of a self-attention
layer, it outputs

H← H+AHWvP, where A = softmax
(
HWq(HWk)

⊤ +M
)
. (2)

where Wq,Wk,Wv,P denotes the query, key, value, and projector matrices, respectively. M ∈
{0,−∞}n×n is an attention mask. For a standard (or full) self-attention layer, M is a zero matrix,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Query

Key

(a) Auto-regressive ICL

Query

Key

(b) Prefix ICL

Query

Key

(c) Bag-of-Example ICL

Query

Key

Leave-one-out BoE Pre-encoding
for 𝑛 context examples

BoE Encoding for test example

(d) Invariant ICL

Figure 2: The attention masks of four types of ICL, corresponding to different types of ICL methods.

while a causal self-attention layer utilizes the following causal mask:

M =


0 −∞ · · · −∞
0 0 · · · −∞
...

...
. . .

...
0 0 · · · 0

 . (3)

As a result, the softmax attention A only has nonzero weights in its lower triangular terms. Notably,
the form of Eq. (2) can be generalized to other attention types, as will be discussed later.

Revisiting existing Transformer-based ICL algorithms, they can be categorized into three families
depending on their aggregation scheme over the context examples: 1) Auto-regressive ICL, 2) Prefix
ICL, and 3) Bag-of-Example ICL.

Auto-regressive ICL (AR ICL). A naive way to perform ICL is to adopt the original auto-regressive
Transformer (Radford et al., 2018), which admits the following aggregation rules

hxk
← aggr

{
{(hxi

,hyi
)}k−1

i=1 ,hxk

}
, k ∈ [n+ 1], (4)

where hxi
,hyi

,hk denote the encodings of xi,yi, (xk,yk), respectively. Here we let xn+1 := xt

for notation simplicity. Therefore, every example hk only attends to the previous ones h≤k =
{h1, . . . ,hk}, which introduces a sequential order to the input examples. As former examples have a
smaller context, later examples in the sequence enjoy higher accuracy, as shown in (Liu et al., 2022;
Wu et al., 2022). Figure 2(a) illustrates the implementation by applying a causal mask M, which is
exactly the form in Eq. (3).

Prefix ICL. To fully utilize the information of every context example, the causal mask is discarded in
Prefix LM (Raffel et al., 2020). Therefore, it aggregates over all context examples as

hxk
← aggr {{(hxi

,hyi
)}ni=1} ,∀ k ∈ [n]; (5a)

hxt ← aggr {{(hxi ,hyi)}ni=1,hxt} . (5b)

Figure 2(b) illustrates the implementation by modifying the attention mask M in Eq. (2), where it
utilize full attention among the context examples {x̃i}ni=1 and causal attention on the test example x̃t.

Bag-of-Example ICL (BoE ICL). In addition to the two conventional designs above, there is a new
variant of ICL. Methods like PCW (Ratner et al., 2022), SAICL (Cai et al., 2023), and BatchICL
(Zhang et al., 2024) encode each context example (xi,yi) independently (without considering
other context examples), similar to the “bag-of-word” representation. Its aggregation rules can be
formulated as

[hxk
,hyk

]← aggr {(hxk
,hyk

)} ,∀ k ∈ [n]; (6a)
hxt ← aggr {{hxi ,hyi)}ni=1,hxt} . (6b)

Figure 2(c) illustrates an implementation (PCW (Ratner et al., 2022)) by modifying the attention
mask M. It restricts attention to occur only within each context example x̃i, i ∈ [n], preventing
cross-attentions between them, while retaining attention between the test example x̃t and context
examples.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THE PROPOSED INVARIANT IN-CONTEXT LEARNING (INVICL)

We begin with formalizing the desiderata of invariant ICL (Section 3.1), and explore how to meet all
these desiderata (Section 3.2). Next, we introduce how to implement our proposed InvICL method in
practice (Sections 3.3).

3.1 INVARIANT ICL AND ITS DESIDERATA

We begin with a formal characterization of three important desiderata in invariant in-context learning.

1) Invariance. In an ICL task, we have the prior knowledge of data symmetry that the n context
examples x̃i are independently identical distributed (i.i.d.). We define an ICL algorithm that preserves
this symmetry property as an invariant ICL algorithm:
Definition 3.1. An ICL algorithm f is said to be (permutation) invariant if its last prediction
ft satisfies ft(x̃1, ..., x̃n,xt) = ft(x̃i1 , ..., x̃in ,xt) for any (i1, . . . , in) ∈ Sn, a permutation of
[n] = {1, 2, . . . , n}.

2) Information Non-leakage. During training, AR-LLMs learn to dynamically predict each interme-
diate context example xi based on its previous tokens x<i as its own context, leading to n prediction
tasks that provide rich learning signals for ICL. To achieve this, an essential architectural inductive
bias is the causal mask, which ensures that the prediction of each query xi, such as ŷi, does not
have access to its ground-truth answer yi; otherwise, the prediction task would become trivial. We
believe this principle should be generally adhered to when designing ICL algorithms. We name this
the information non-leakage principle, formally described below.
Definition 3.2. An ICL algorithm f has no information leakage if its prediction of every example
xi is invariant to its label yi (with others fixed), i.e., f(. . . ,xi,yi, . . . )i = f(. . . ,xi,y

′
i, . . . )i holds

for any two labels yi,y
′
i ∈ Y , where f(·)i denotes the i-th element of f(·).

3) Context Interdependence. Another advantage of AR-LLMs is that they allow the encoding of
each example xi to depend on other (previous) examples. These examples provide the context for
better encoding of xi, which in turn improves the prediction of future examples when xi serves as
their context. We name this property as context interdependence. Unlike the information non-leakage
principle, this property requires that the prediction of each example xi should flexibly depend on as
many other context examples as possible.
Definition 3.3. An ICL algorithm f is context-interdependent for xi if the prediction of xi

is dependent on other examples. Formally, for any j ̸= i, there exists (x′
j ,y

′
j) such that

f(. . . ,xi,yi, . . . ,xj ,yj , . . . )i ̸= f(. . . ,xi,yi, . . . ,x
′
j ,y

′
j , . . . )i with other examples fixed.

Limitations of Previous Methods. Through a close examination, we find that no existing ICL
methods satisfy all these principles: 1) AR ICL avoids information leakage and has partial context
interdependence, but its sequential structure breaks permutation invariance; 2) Prefix ICL maintains
permutation invariance and full context interdependence, but it leaks information; 3) BoE ICL
achieves permutation invariance and prevents information leakage through independent encoding,
but it sacrifices context interdependence and limits the flexibility of context representations. These
properties are summarized in Table 1. Motivated by the limitations of previous methods, we aim to
design an ICL algorithm that achieves all three properties.

3.2 A PRINCIPLED DESIGN OF INVARIANT ICL

In this section, we explore how to design ICL algorithms that preserve all three principles: permutation
invariance, information non-leakage, and context interdependence. In a Transformer, the only
interaction among different examples occurs in the self-attention layer (Eq. (2)). Conceptually,
self-attention can be viewed as a message-passing scheme on a digraph of n examples, denoted as G,
with the adjacency matrix defined by the attention score matrix A ∈ Rn×n:

A = softmax
(
HWq(HWk)

⊤ +M
)
, (7)

where M ∈ {0,−∞}n×n is a constant mask matrix. Under this definition, Aij represents the
message passed from the j-th example to the i-th example. The message passing then updates with
H← AH (informal) using A as the propagation matrix. Here, we only consider the graph of context
examples {x̃i}ni=1, as we always want the test example x̃t to be fully aware of the context examples,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

making these edges trivial. A straightforward way to design invariant ICL algorithm, commonly used
by existing works (such as Prefix ICL (Raffel et al., 2020), PCW (Ratner et al., 2022), and SAICL
(Cai et al., 2023)), is to modify the attention mask M as it is the only controllable factor in Eq. (7).
Therefore, in the following, we discuss how to design the attention mask M to meet these desiderata.
All the proofs are in Appendix C.

Permutation Invariance by Three-choice Mask. Intuitively, permutation invariance requires the
attention mask M to exhibit some form of symmetry. Notably, both the Prefix and BoE masks (Fig.
2(b, c)) satisfy permutation invariance, while the causal mask (Fig. 2(a)) does not. The following
proposition explores whether other attention masks can also achieve this property.
Proposition 3.4. Given an input matrix H = (h1, ...,hn)

⊤ ∈ Rn×d with the features of the context
examples only. The permutation invariance of ICL outputs (Definition 3.1) holds if and only if the
attention mask on the context examples, M, belongs toM = {M1,M2,0}, where

M1 =


0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,M2 =


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 .

Proposition 3.4 demonstrates that to achieve permutation invariance, the attention mask on the context
example must fall into one of the three choices in M: 0 corresponds to full attention in Prefix
ICL; M1 corresponds to BoE ICL; and the attention score before softmax under M2 is the linear
combination of that of M1 and 0 (only cross-attention between tokens without self-attention).

Information Non-leakage by Lower Triangular Mask. According to (Zheng et al., 2018), ensuring
information non-leakage is equivalent to guaranteeing the message-passing process through the graph
is acyclic (except for self-loops). This imposes the following restriction on the attention mask M.
Proposition 3.5. An ICL algorithm realizes information non-leakage if and only if it is possible to
reorder context examples such that the attention mask on context examples M is lower triangular.

Combining the conditions for attention masks outlined in Propositions 3.4 & 3.5 (belong toM and
lower triangular), we find that the attention mask on context examples must be a diagonal matrix, as
concluded in the following proposition.
Proposition 3.6. The message-passing scheme respects permutation invariance and information
non-leakage if and only if the attention mask on context examples M is diagonal.

Therefore, we conclude that if an ICL algorithm preserves both permutation invariance and infor-
mation non-leakage, its attention mask not only can be, but has to be in the form depicted in Figure
2(c). Specifically, it must take the form of a bag-of-examples (BoE) ICL, encoding each example
individually before aggregation as in Eq. (6), denoted as:

hxt ← BoE {{(hxi ,hyi)}ni=1,hxt} . (8)

However, as discussed in Section 3.1, BoE lacks context interdependence.

Context Interdependence through Pre-encoding. While context interdependence cannot be imple-
mented within a single propagation step among context examples, it can still be achieved by encoding
each context example with the context of other samples, a process we term pre-encoding. To ensure
the three principles simultaneously, the pre-encoding step must also adopt the form of a BoE ICL
scheme, where it aggregates independent encodings of all other samples (i.e., , a leave-one-out
encoding):

hxk
← BoE

{
{(h̄xi

, h̄yi
)}i ̸=k,hxk

}
, k ∈ [n] (9)

where h̄xi
, h̄yi

are the independent encoding (similar to Eq. (6a)). Therefore, we arrive at a two-stage
ICL method as follows. First, we encode each context example with a leave-one-out (LOO) BoE
encoding as in Eq. (9). Then, in the second stage, we utilize these contextual encodings to predict the
test examples as in Eq. (8). This approach guarantees the three desiderata of invariant ICL.

Symmetric Positional Encoding. As a minor point, to ensure the symmetry of the model, it is
also necessary to incorporate permutation invariance into the positional encoding. We adopt an
independent position encoding scheme that treats each example as an independent sequence. It is also
applicable to BoE ICL and Prefix ICL for ensuring permutation invariance. Details are in Appendix
A.1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, we reach our proposed InvICL (Invariant In-context Learning). The propagation pro-
cess for InvICL is outlined in Algorithm 1, where h

(k)
xi is the encoding of xi at the k-th layer of

Transformer.

Algorithm 1 Invariant In-context Learning

Require: {(h(0)
xi ,h

(0)
yi )}ni=1: embedding of context examples; h(0)

xt : embedding of the ICL query
1: for k = 1 to #TransformerLayers do
2: for i = 1 to n do
3: Compute the independent encoding of context examples: (h̄

(k)
xi , h̄

(k)
yi ) =

aggr{(h̄(k−1)
xi , h̄

(k−1)
yi )} (where h̄

(0)
xi = h

(0)
xi )

4: end for
5: for i = 1 to n do
6: Compute the leave-one-out pre-encoding of the i-th context example: (h

(k)
xi ,h

(k)
yi ) =

aggr{{(h̄(k−1)
xj , h̄

(k−1)
yj )}j ̸=i,h

(k−1)
xi }

7: end for
8: Update h

(k)
xt = aggr{{(h(k−1)

xi ,h
(k−1)
yi )}ni=1}

9: end for

3.3 PARALLEL IMPLEMENTATION

In Section 3.2, we have developed a truly invariant ICL algorithm achieving the three desiderata.
However, a significant drawback of the encoding scheme in Algorithm 1 is its computational cost. For
each sequence of n context examples, it requires n LOO forward passes to pre-encode each example,
plus an additional forward pass for the final prediction. This results in a total of n+ 1 forward passes
for a single prediction. In contrast, AR ICL, BoE ICL, and Prefix ICL can all be implemented in
parallel using a single forward pass by modifying the attention mask to the form illustrated in Figure
2(a, b, c).

Parallel Computation via Unrolling. To address the computational cost issue, we propose a parallel
implementation for InvICL, leveraging the chain-of-thought idea from LLM reasoning (Wei et al.,
2022). While implementing InvICL within a single forward pass of the input sequence (x̃1, ..., x̃n) is
challenging, this difficulty can be overcome by unrolling the input sequence twice. As illustrated
in Figure 2(d), we duplicate the context examples twice as (x̃1, ..., x̃n, x̃1, ..., x̃n,xt) and perform a
two-step forward process in parallel to encode the context examples. In the first step, we perform a
BoE-style encoding of each context example (h̄(k)

i in Algorithm 1). In the second step, we apply a
LOO-style attention mask to obtain the LOO encodings of each example (h(k)

i in Algorithm 1) that
are aware of all other context examples. At last, we use the LOO encodings {h(k)

i } to predict the test
example xt. This unrolling scheme enables us to accomplish InvICL in a single forward pass, which
results in the same complexity order O(n2) as the baselines.

4 THEORETICAL UNDERSTANDING INVICL FROM AN OPTIMIZATION
PERSPECTIVE

In this section, we further characterize the advantages of InvICL from an optimization perspective.

InvICL Approximately Implements Gradient Descent. Consider a linear regression task with
instances (X,y), where X consists of row vectors x⊤

i ∈ Rd, and y consists of labels yi ∈ R, i ∈ [n].
The goal is to find the optimal weight vector w that minimizes the LSE loss L(w) = ∥Xw− y∥2. A
standard gradient descent (GD) algorithm updates the weights iteratively as follows:

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y), (10)

where ℓ stands for the iteration step, and η is the step size.

Consider the ICL-style model input, formulated as Z = (z1, ..., zn, z1, ..., zn, zt), where zj =(
xj

yj

)
, j ∈ [n] are the context examples, and zt =

(
xt

0

)
is an arbitrary test example. Here we

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Prefix ICL
BoE ICL
NoPE
Least Squares

(a) 50k Epochs

0 25 50 75 100 125 150 175 200
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Prefix ICL
BoE ICL
NoPE
Least Squares

(b) 200k Epochs

Figure 3: ICL performance of different models that are trained with (a) 50k epochs and (b) 200k
epochs. “Least Squares” is the optimal algorithm for the linear regression task.

duplicate the input as required by InvICL and expect the model to predict
(

xt

x⊤
t w

)
at the last token.

The theorem below illustrates the evolution of the prediction through the Transformer layer of InvICL.
Theorem 4.1. With the attention weight matrices configured as in (Von Oswald et al., 2023), i.e.,

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w0 −1

)
,P = ηI, (11)

InvICL implements the following weight updating rule: at the ℓ-th layer of the Transformer, the last

token outputs z(ℓ)t =

(
xt

x⊤
t wℓ

)
, where

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2∆wℓ−1. (12)

Here, ∆wℓ = X⊤(XX⊤ − diag(XX⊤))(Xwℓ − y).

Theorem 4.1 shows that the weight updating rule implemented by InvICL (Eq. (12)) is very similar
to that of standard GD (Eq. (10)), differing only by a second-order term. For gradient descent to
converge, the step size η should be at most the inverse of the largest eigenvalue of XX⊤. Under
this condition, the term η2∆wℓ−1 is dominated by ηX⊤(Xwℓ−1 − y), ensuring that InvICL closely
approximates the standard GD algorithm in this linear regression task.

Discussion to Other ICL Methods. We provide a comprehensive comparison of all the ICL methods
considered in this paper from the optimization perspective: 1) AR ICL emulates the online GD
algorithm (with a constant learning rate) (Ding et al., 2023), which is not guaranteed to converge; 2)
Prefix ICL implicitly implements the standard GD algorithm under a specific set of parameters for
attention (Von Oswald et al., 2023; Ding et al., 2023); and 3) BoE ICL can only update the weight
vector of the test (last) example (not the context examples) without context interdependence. This
leads to a constant gradient computed at the initial point, causing it to fail to converge (detailed
discussion is in Appendix C.1). Compared with these ICL algorithms, InvICL has several distinct
advantages: 1) InvICL surpasses AR ICL in terms of convergence to optimal solutions; 2) Similar to
Prefix ICL, InvICL approximately implements the standard GD algorithm while avoiding information
leakage; and 3) Unlike BoE ICL, InvICL effectively incorporates context interdependence, allowing it
to emulate a more efficient GD algorithm. These advantages underscore the theoretical superiority of
InvICL, which synergizes information non-leakage and context interdependence within an invariant
ICL framework.

5 EMPIRICAL VALIDATION OF INVICL

5.1 EXPERIMENTS ON SYNTHETIC SCENARIO

To evaluate the in-context capability of InvICL, we conduct a series of experiments inspired by Garg
et al. (2022). Taking the linear regression task for example, we train a model to perform linear
regression using in-context learning, i.e., the model takes the sequence (x1, g(x1), ...,xn, g(xn),xt)
as input and predicts g(xt) where g is a linear function. Detailed experimental settings are provided
in Appendix A.3. We compared the ICL performance across five models: 1) Auto-regressive (AR)
(Radford et al., 2019); 2) Prefix (Raffel et al., 2020); 3) Bag-of-Examples (BoE) (Ratner et al., 2022);

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4) NoPE (i.e., removing the positional encoding) (Kazemnejad et al., 2024); and 5) InvICL. The MSE
loss was reported for models trained over various epochs, as illustrated in Figure 3. The key insights
from our experiments are as follows:

• InvICL converges fast. At 50k epochs, only InvICL demonstrates good ICL performance
(Figure 3(a)), while other models perform well at later epochs (Figure 3(b)).

• InvICL has a strong length extrapolation ability. The models are trained with a sequence
length of 40. As shown in Figure 3(b), when the test sequence length exceeds 40, it is clearly
that InvICL > AR ICL > Prefix ICL ≈ NoPE > BoE ICL in terms of performance. This
indicates the strong length generalization capability of InvICL. On one hand, this result
confirms the conventional conclusion that a model that respects the data symmetry enjoys
better generalization capability. On the other hand, it highlights that preventing information
leakage and maintaining context interdependence are crucial for an invariant ICL algorithm.

In Appendix B.1, we conduct further experiments demonstrating that InvICL also performs well in
out-of-distribution tasks and other function settings.

5.2 EXPERIMENTS ON REAL-WORLD DATASETS

In this part, we conduct experiments to evaluate the capacity of InvICL on real-world datasets. Since
ICL tasks are generally different from the pertaining one and some ICL methods introduce new
masking schemes for aggregation (significantly different from the masking in pretrained model), a
short finetuning of the pretrained model on the ICL tasks using these new ICL methods is necessary
to fully utilize the pretrained model’s capacity for ICL (Min et al., 2022b; Wei et al., 2021; Iyer et al.,
2022; Cai et al., 2023). Here, we follow MetaICL (Min et al., 2022b) to do the short finetuning and
evaluation.

As in MetaICL, we utilize 142 tasks including text classification, question answering (QA), natural
language inference (NLI), and paraphrase detection. For each training iteration, we first sample a task
Ti from the C meta-training tasks, and then sample k+1 training examples (x1,y1), ..., (xk+1,yk+1)
from Ti. Given the model parameter θ, the training objective is maximizing prediction accuracy of
yk+1 under the formatting of ICL: maxθ LCE(ŷk+1,yk+1), where LCE is the cross-entropy loss, and
ŷk+1 is the in-context prediction defined in Eq. (1). We evaluate the meta-trained models on the 7
settings of MetaICL. For each setting, we test two cases: 1) all target tasks; 2) target tasks in the
training unseen domains (OOD generalization). More details in Appendix A.4.

Baselines. Following MetaICL, we use GPT-2 Large (762M) (Radford et al., 2019) as base model, and
also includes GPT-Neo 2.7B (Black et al., 2021) and Pythia-2.8B (Biderman et al., 2023) (Appendix
B.2). For non-invariant methods, we select AR ICL (Radford et al., 2019) and NoPE2 (Kazemnejad
et al., 2024). For invariant methods, we select Prefix ICL (Raffel et al., 2020) and three types of BoE
ICL: PCW (Ratner et al., 2022), SAICL (Cai et al., 2023), and BatchICL (Zhang et al., 2024). We
adopt 8 context examples for training and evaluation.

InvICL Outperforms Baselines. We report the results in Table 2. Compared to non-invariant
methods, InvICL outperforms in 4 out of 7 tasks in the “All target task" setting and all the 7 tasks in
the “Target tasks in unseen domains" setting. This indicates that permutation invariance is indeed
an crucial property for ICL algorithm, which incorporate the inductive bias of symmetry into the
model architectures, resulting in an extraordinary improvement on performance, especially when
generalizing to OOD tasks.

Compared to invariant methods, InvICL outperforms 5 out of 7 tasks in the “All target task" setting
and 6 out of 7 tasks in the “Target tasks in unseen domains" setting. Although being permutation
invariant, these baselines exhibit poor performance (none of them surpasses AR ICL on average). This
highlights the crucial properties of information non-leakage and context interdependence implemented
by InvICL.

Length Generalization. The generalization ability to different input lengths is a crucial property
of the language model. In the context of ICL, the ability to adapt to varying numbers of context
examples can be perceived as a dimension of its length generalization capability. However, in the
main experiments, the number of context examples remains consistent throughout both the training
and evaluation phases. Hence, we vary the number of context examples, as illustrated in Figure 4.

2Although NoPE alone is invariant, it still utilizes an auto-regressive LLM which breaks the invariance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: The in-context learning performance with language models based on GPT-2 Large. We
changed the causal mask and positional encoding to implement different types of ICL models. The
models are finetuned under the framework of MetaICL (Min et al., 2022b).

METHOD
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
Non-invariant
AR ICL (RADFORD ET AL., 2018) 43.4±0.76 43.4±1.36 40.2±1.64 44.0±0.22 37.9±0.42 50.3±0.84 34.1±1.78 41.9±1.15

NOPE (KAZEMNEJAD ET AL., 2024) 41.7±0.47 30.0±0.82 40.3±0.99 44.5±0.11 36.6±0.05 26.8±0.68 38.8±1.49 37.0±0.81

Invariant
PCW (BOE) (RATNER ET AL., 2022) 39.7±1.30 37.7±0.51 35.2±0.37 40.8±0.12 37.7±0.30 40.7±1.32 35.1±1.65 38.1±0.98

SAICL (BOE) (CAI ET AL., 2023) 43.4±0.45 43.2±0.74 37.5±0.74 45.1±0.15 37.6±0.15 49.8±2.01 33.3±1.44 41.4±1.03

BATCHICL (BOE) (ZHANG ET AL., 2024) 31.7±0.21 25.4±0.30 27.1±0.22 32.2±0.12 34.4±0.26 28.9±0.48 35.3±0.97 30.7±0.45

PREFIX ICL (RAFFEL ET AL., 2020) 40.3±0.89 39.6±0.73 35.1±0.54 43.6±0.12 36.8±0.33 45.4±1.65 34.9±2.03 39.4±1.11

INVICL(OURS) 45.1±1.31 42.9±0.86 39.4±0.44 45.3±0.15 38.3±0.27 51.6±0.85 34.7±1.36 42.4±0.87

Target tasks in unseen domains
Non-invariant
AR ICL (RADFORD ET AL., 2018) 31.5±2.98 35.7±0.50 28.1±1.65 56.5±0.89 39.2±1.78 80.3±1.80 34.1±0.00 43.6±1.65

NOPE (KAZEMNEJAD ET AL., 2024) 32.9±1.32 23.4±0.39 26.9±1.44 63.6±0.78 38.2±0.34 33.2±0.26 32.6±0.16 35.8±0.83

Invariant
PCW (BOE) (RATNER ET AL., 2022) 35.6±2.54 31.3±0.29 26.9±1.59 65.3±1.16 33.7±1.21 66.7±1.60 34.4±0.31 42.0±1.44

SAICL (BOE) (CAI ET AL., 2023) 30.7±1.67 29.7±1.98 26.4±1.01 56.2±0.50 41.5±1.60 64.3±2.21 37.1±1.89 40.8±1.65

BATCHICL (BOE) (ZHANG ET AL., 2024) 24.2±0.21 22.3±0.15 23.0±0.11 31.9±1.20 29.4±0.54 37.8±0.78 36.8±1.02 29.3±0.70

PREFIX ICL (RAFFEL ET AL., 2020) 31.0±2.43 33.0±1.53 29.6±2.20 63.8±0.47 36.4±1.29 52.6±2.54 34.0±0.23 40.1±1.75

INVICL(OURS) 44.4±2.17 35.8±2.01 29.0±1.99 67.6±0.22 42.6±1.53 81.8±0.65 37.5±2.30 48.4±1.72

1 2 4 8 16
Number of Demonstrations

36

38

40

42

44

46

Ac
cu

ra
cy

AR ICL
InvICL

Figure 4: The length generalization behavior of InvICL
and AR ICL on HR→LR setting. The models are meta-
trained by sequences with 8 context examples.

Table 3: The inference time of different
models.

Method Inference time (ms)

AR ICL 21.9
PCW (BoE ICL) 21.7
Prefix ICL 22.0
InvICL 22.0

We observe that InvICL is much more robust than AR ICL when the length of the test data differs
from that of the training data, indicating its strong capability for length generalization.

Computational Cost. In Section 3.3, we claim that our parallel implementation of InvICL has the
same computational complexity order as full self-attention and AR self-attention. In Table 3, we
empirically verify this by evaluating the inference time of different ICL models, showing that InvICL
enjoys roughly the same inference speed as other models. Besides, a question worth considering is
the memory cost of InvICL since it duplicates the input sequence. We find that when the inputs size
of the GPT-2 Large model increases from 512 to 1024, the GPU memory overhead increases by 14%
(from 4.2 GB to 4.8GB). We consider this acceptable given the clear improvements in performance.

6 DISCUSSION

The mechanism behind InvICL’s strong length generalization ability. We consider that the
mechanism primarily stems from InvICL achieving invariance. As mentioned in the introduction,
previous studies have found that respecting data symmetry in models helps improve generalization.
For example, Sokolić et al. (2016) demonstrated that when the input data exhibits invariance under
certain transformations (such as rotation or translation), utilizing an invariant classifier can achieve
lower generalization error compared to a regular classifier. Bietti et al. (2021); Tahmasebi & Jegelka
(2023) concluded that encoding invariances into model improves the effective number of samples,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

thereby enhance generalization ability. These theoretical results could help explain why InvICL
demonstrates stronger length generalization ability.

Theoretical complexity of InvICL. Suppose there are n context examples and 1 test example
(considering the examples as attention units), and let M ∈ {0,−∞}(n+1)×(n+1) be the attention
mask defined in Figure 2(d). The complexity of InvICL is determined by the number of “0” elements
in M . The attention computation for InvICL includes: 1) Independent self-encoding of the first-time
input (corresponding to M[:n, :n]), which requires n self-attention calculations; 2)LOO pre-encoding
(corresponding to M[n: 2n, :2n]), which requires n2 calculations; 3)aggregation to the test example
(corresponding to M[2n+1, n: 2n+1]), which requires n+1 calculations. In total, there are n2+2n+1
attention calculations, which is of the same order as Prefix ICL (n2 + 1) and twice that of AR ICL
(n2/2 + 3n/2 + 1).

Practicality of Theorem 4.1. Theorem 4.1 is an existence proof which illustrate that the Transformers
have the potential to implement complex optimization mechanisms like gradient descent. In fact, The
actual weight may not be strictly follow its parametrization. However, empirical studies including
Von Oswald et al. (2023); von Oswald et al. (2023), have shown that pre-trained Transformers exhibit
behaviors akin to gradient descent in certain scenarios, thereby providing empirical evidence for the
theory. And we will also consider exploring the connection between InvICL’s training dynamics and
gradient descent in future work.

The ICL training objective. In the synthetic experiments, we utilize the ICL objective to train the
Transformers, which does not align with how LLMs are pre-trained. However, our paper focuses on
improving the ICL capability of LLMs, rather than investigating the reasons behind the emergence
of ICL ability. Therefore, we train the model using the ICL objective to demonstrate that InvICL
can achieve stronger ICL capability compared to traditional AR ICL. This is also aligned with the
objective we use in the real-world experiments.

7 CONCLUSION

In this paper, by distilling the advantages of auto-regressive language models, we identified two
additional desiderata for invariant ICL: information non-leakage and context interdependence. Since
existing invariant ICL algorithms cannot achieve these desiderata simultaneously, we proposed a
novel invariant ICL scheme called Invariant In-context Learning (InvICL), which accomplishes these
goals concurrently. We also proposed an efficient parallel implementation of InvICL. From the
theoretical perspective, we prove that InvICL can approximately implement the gradient descent
algorithm, which possesses the best convergence properties among the gradient descent variants
implemented by all existing ICL algorithms. Empirically, we show that InvICL outperforms both
invariant and non-invariant ICL methods on most tasks, and demonstrates good length generalization
abilities. These results sparked the unique advantages of the principled design of invariant ICL.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed explanations of our experiments in
both the main paper and the appendix. The implementation details of the experiments are outlined in
Section 5 and Appendix A. We will release the code as soon as the paper is accepted.

REFERENCES

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad. In-
context examples selection for machine translation. arXiv preprint arXiv:2212.02437, 2022.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv: 2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In ICLR, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In ICML, 2023.

Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under geometric
stability. Advances in neural information processing systems, 34:18673–18684, 2021.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Tianle Cai, Kaixuan Huang, Jason D Lee, and Mengdi Wang. Scaling in-context demonstrations with
structured attention. In Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. On the relation between
sensitivity and accuracy in in-context learning. arXiv preprint arXiv:2209.07661, 2022.

Yongqiang Chen, Binghui Xie, Kaiwen Zhou, Bo Han, Yatao Bian, and James Cheng. Positional
information matters for invariant in-context learning: A case study of simple function classes.
arXiv preprint arXiv:2311.18194, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-
context? language models secretly perform gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Nan Ding, Tomer Levinboim, Jialin Wu, Sebastian Goodman, and Radu Soricut. Causallm is not
optimal for in-context learning. arXiv preprint arXiv:2308.06912, 2023.

Deqing Fu, Tianqi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In NeurIPS, 2022.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. In NeurIPS, 2024.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In ACL, 2022.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Noisy channel language
model prompting for few-shot text classification. In ACL, 2022a.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. In NAACL, 2022b.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

11

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Omri Abend, Ehud Karpas, Amnon Shashua,
Kevin Leyton-Brown, and Yoav Shoham. Parallel context windows improve in-context learning of
large language models. arXiv preprint arXiv:2212.10947, 2022.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Jure Sokolić, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of invariant classifiers. In
AISTATS, 2016.

Behrooz Tahmasebi and Stefanie Jegelka. The exact sample complexity gain from invariances for
kernel regression. In NeurIPS, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
ICML, 2023.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. In
EMNLP, 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In ICLR, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning.
arXiv preprint arXiv:2212.10375, 2022.

Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He. Addressing order sensitivity of in-context
demonstration examples in causal language models. arXiv preprint arXiv:2402.15637, 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In ICLR, 2021.

Zeping Yu and Sophia Ananiadou. How do large language models learn in-context? query and key
matrices of in-context heads are two towers for metric learning. arXiv preprint arXiv:2402.02872,
2024.

Kaiyi Zhang, Ang Lv, Yuhan Chen, Hansen Ha, Tao Xu, and Rui Yan. Batch-icl: Effective, efficient,
and order-agnostic in-context learning. arXiv preprint arXiv:2401.06469, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In ICML, 2021.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and E. Xing. Dags with no tears: Continuous
optimization for structure learning. In NeurIPS, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 SYMMETRIC POSITIONAL ENCODING

In this paper, we mainly focus on the absolute positional encoding which is used in the GPT family.
As shown in Figure 5, we adopt an independent position encoding scheme that treats each example
as an independent sequence, which follows the design in (Ratner et al., 2022). For each context
example x̃i, we always allocate the positional encoding as it starts from the first position. Denote
the maximal sequence length among x̃i as lmax. For the test example xt, we assign its positional
encodings starting from the index ℓmax. This implementation is applicable to BoE ICL, Prefix ICL,
and InvICL.

𝑧!,! 𝑧!,#!
Token

Embedding
+

Positional
Embedding

…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

𝑧%,!

𝑝%

𝑧%,&

𝑝%'!
(𝑡 = max 𝑘! + 1)

… …

ICL input … …

Input:Aa, answer:x. Input:Bb, answer:y. Input:Cc, answer:

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"… 𝑥%,! 𝑥%,&… … … …Tokens

Tokenizing

Embedding

(a) Symmetric PE for standard input

𝑧!,! 𝑧!,#!…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

𝑧%,!

𝑝%

𝑧%,&

𝑝%'!
(𝑡 = max 𝑘! + 1)

… …

… …

Input:Aa, answer:x. Input:Bb, answer:y. Input:Cc, answer:

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"… 𝑥%,! 𝑥%,&… … … …

𝑧!,! 𝑧!,#!…

𝑝! 𝑝#!…

… …
𝑧$,! 𝑧!,#"…

𝑝! 𝑝#"…

… …

Input:Aa, answer:x. Input:Bb, answer:y.

𝑥!,! 𝑥!,#!… 𝑥$,! 𝑥!,#"…… …

Token
Embedding

+
Positional
Embedding

ICL input

Tokens

Tokenizing

Embedding

(b) Symmetric PE for the duplicated input of InvICL

Figure 5: The symmetric positional encoding applied in our work. pi refers to the learned absolute
positional embeddings that are added to the token embeddings at position i. Figure (a) shows the
positional encoding under the standard ICL input sequence. As for the duplicated input of InvICL,
we apply the same positional encoding for the original and the repeated examples, as shown in Figure
(b).

A.2 BAG-OF-EXAMPLES ICL

We introduce the implementation detail of two BoE ICL methods mentioned in the main text, PCW
(Ratner et al., 2022), SAICL (Cai et al., 2023) and BatchICL (Zhang et al., 2024).

PCW (Parallel Context Window). PCW is a work originally aimed at improving the acceptable
length of language models. Denote N be the maximal length of a language model, and n > N be the
input length. PCW divides the input into context windows with length N , and separately puts them
into the LM. Finally, it utilizes a “bag-of-window" method (similar to Figure 2(c), where each block
in the mask refers to a context window) to generate the predictions. We note that by considering each
context example as a window in PCW, it can implement the Bag-of-Examples ICL algorithm.

SAICL (Structured Attention for ICL). SAICL is a method proposed to improve the inference
efficiency and order-sensitivity of in-context learning. Similar to PCW, they also encode the context
examples independently but are also aware of the test example. The original method is based on T5
(Raffel et al., 2020), a language model with the encoder-decoder architecture. We transfer its design
to the GPT family by directly taking its attention mask and use the symmetric PE proposed above.

BatchICL. Instead of conducting N -shot encoding for all context examples, BatchICL utilizes N
separate 1-shot encodings for each context example. It then aggregates the intermediate hidden states
of the respective last token, which is subsequently incorporated into the forward computation of a
zero-shot query to generate the final prediction. We basically follows all the setting introduced in the
original paper. As for the layer to extract the aggregated vector, we simply takes the 15-th layer, since
they found that any intermediate or later layer is a fair choice.

A.3 SETTING OF THE EXPERIMENTS ON LINEAR REGRESSION TASKS.

Denote G = {g : X ∈ Rd → R, g(x) = w⊤x + b} as the linear function class. Let DG be a
distribution on G, and DX be a distribution on X . In the training phase, we iteratively sample
a random function g ∈ G from DG , and sample i.i.d. x1, ...,xk+1 from DX . Then, we produce
a prompt in the ICL manner P = (x1, g(x1), ...,xk, g(xk),xk+1), and train a model θ to output
[ĝ(x1), ..., ĝ(xk), ĝ(xk+1)] = fθ(P ) (as equation Eq. (1)), where ĝ(xi) is the prediction for g(xi).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The training objective is

min
θ

EDG ,DX

[
1

k + 1

k∑
i=0

ℓ(ĝ(xi), g(xi))

]
, (13)

where ℓ is the MSE loss. In the experiments in Section 5.1, we set d = 20, k = 40,DX = N (0, Id),
and DG : w ∼ N (0, Id), b = 0.

The architecture selection follows (Garg et al., 2022), where a 12-layer GPT-like Transformer decoder
is utilized. We implement the four model types by using the symmetric attention mask and PE.

A.4 IMPLEMENTATION DETAILS OF EXPERIMENTS ON REAL-WORLD DATA.

Evaluation. Following MetaICL (Min et al., 2022b), we consider 7 evaluation settings: 1)
HR→LR, which means training with high resource data and testing on low resource data; 2) X→X
(X={Classification, QA}), which means training and testing on the same task type, but with no overlap
in tasks; 3) Non-X→X (X={Classification, QA, NLI, Paraphrase}, which means training and testing
on different task type. The last settings are the most challenging, which require strong generalization
capacities of language models (Min et al., 2022b). For each setting, we make evaluations both on all
target tasks and a subset that contains target tasks in the unseen domains of the source tasks, e.g.,
medical, financial, and climate. This setting also challenges the out-of-distribution generalization
capability of models.

Truncation. Since MetaICL (Min et al., 2022b) truncates the training sequence when it exceeds the
maximum input length of the LM, and the ICL prompt sequence is duplicated in our implementation
of InvICL, the training sequences differ between InvICL and other methods because of different
truncate rates. As shown in Table 4, there is a significant gap in the dataset size between the standard
input and the duplicated input under the truncating setting. To make the comparison fair, we apply
the same truncate rate in InvICL to the normal training sequence so that all the methods share the
same training set. Additionally, we reduce the number of context examples in the training phase from
16 to 8 to control the truncate rate of InvICL to the same level as standard ICL.

Table 4: Ratio of the remaining data between different input types under the truncating setting of
MetaICL (Min et al., 2022b). Here the number of context examples is set to 8.

INPUT TYPE
HR

→ LR
CLASS

→CLASS
NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

Remaining ratio of training dataset
STANDARD 70% 90% 71% 59% 80% 85% 85%
DUPLICATED 53% 79% 55% 40% 62% 75% 71%

Direct & Channel. Besides the standard ICL paradigm, MetaICL (Min et al., 2022b) adopts
a new inference paradigm called noisy channel (“Channel”) (Min et al., 2022a) and achieves a
better experimental performance. Contrary to the standard ICL paradigm (also called “Direct”
in (Min et al., 2022b)) that takes (x1,y1, ...,xn,yn,xt) as input, the Channel paradigm takes
(y1,x1, ...,yn,xn,yt) and try to generate xt. Note that in order to generate the prediction, Channel
ICL needs to perform n forward passes conditioned on each of the n labels yt and regard the label
with minimum perplexity as the prediction. This will, on the one hand, increase the computational
complexity and, on the other hand, reduce its applicability to the generative tasks where the label
space is large, e.g., Question Answering. Therefore, we adopt the “Direct” setting in our experiments,
i.e., the standard ICL paradigm.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 SYNTHETIC EXPERIMENTS ON OTHER SETUPS

In this section, we conduct additional synthetic experiments on more functions and out-of-distribution
setups, to further showcase the generalization capability of InvICL.

Other function settings. We consider two other function settings proposed by (Garg et al., 2022) —
sparse linear regression and decision tree, to illustrate the ability of InvICL to learn algorithms to
solve other tasks. Results are given in Figure 6.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1. Sparse linear regression. In this task, a random linear function y = w⊤x+ b is sampled
to be predicted, yet the efficient has only 3 non-zero coordinates out of 20 dimensions.
Although it is also a linear regression task, its optimal algorithm is no longer least squares
but Lasso, which involves solving the least squares objective with an l1-norm regularizer for
the weight vector. This demands the in-context learners to learn an algorithm different from
that in linear regression to solve this task. Following the experimental settings in our paper,
we test the performance of AR ICL and InvICL which are trained with 200k epochs. We
can still observe the consistent results of our paper that InvICL possesses fast convergence
(InvICL converges while AR ICL does not).

2. Decision tree. We follow the setting in (Garg et al., 2022), where the class of depth 4
decision trees with 20-dimensional inputs is considered. We evaluate the performance of AR
ICL and InvICL that are trained with 200k epochs. We find that although AR ICL performs
better than InvICL for short inputs, as the length of the input sequence increases, InvICL
gradually outperforms AR ICL, indicating the strong extrapolation ability of InvICL.

(a) Sparse linear regression (b) Desicion tree

Figure 6: ICL performance on sparse linear regression and decision tree.

Out-of-distribution Setups. We consider three out-of-distribution setups proposed by (Garg et al.,
2022; Chen et al., 2023), to showcase the generalization capability of InvICL to out-of-distribution
(OOD) tasks. We consider a distribution shift between the training and test datasets. The training data
remain consistent with Section A.3. However, for the test data, we apply the following modification:

1. Add random noise to the labels by altering b = 0 to b ∼ N (0, 1).

2. Scale the data sampling by altering DX = N (0, Id) to DX = N (0, 32Id).
3. Sample the data xi from a random 10-dimensional subspace (out of 20 dimensions).

In Figure 7, we report the testing MSE loss with the models trained for respectively 50k and 200k
epochs. We omit Prefix ICL and BoE ICL for their poor performance. We find that InvICL continues
the advantages mentioned earlier, i.e., the fast convergence and strong extrapolation ability, indicating
its strong capacity on OOD tasks.

B.2 REAL-WORLD EXPERIMENTS BASED ON GPT-NEO AND PYTHIA

We also conduct experiments with models based on GPT-Neo 2.7B (Black et al., 2021) and Pythia-
2.8B (Biderman et al., 2023) with other hyper-parameters unchanged, as shown in Table 6. The result
is similar to what is demonstrated in the main text: InvICL outperforms the baseline in most of the
tasks and especially performs well in the OOD settings. This indicates the applicability of InvICL to
different base models.

Besides, we note that the three LLMs (GPT-2, GPT-Neo and Pythia) studied in our work utilize three
different kinds of PE — trainable PE, Alibi and Rotary PE, respectively. Therefore, our design of
symmetric PE is applicable to a wide range of PEs.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 50 100 150 200
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(a) Random noise, 50k epochs.

0 50 100 150 200
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

1.50

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(b) Random noise, 200k epochs.

0 50 100 150 200
in-context examples

0.0

2.5

5.0

7.5

10.0

12.5

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(c) Scaling, 50k epochs.

0 50 100 150 200
in-context examples

0.0

2.5

5.0

7.5

10.0

12.5

sq
ua

re
d 

er
ro

r

InvICL
AR ICL
Least Squares

(d) Scaling, 200k epochs.

(e) Half subspace, 50k epochs. (f) Half subspace, 200k epochs.

Figure 7: ICL performance on OOD tasks. The training dataset remains consistent with Section
5.1, but we change the distribution of the test dataset. Random noise: changing the distribution
of the linear bias from b = 0 to b ∼ N (0, 1). Scaling: changing the sampling distribution of xi

from DX = N (0, Id) to DX = N (0, 32Id). Half subspace: Sample the data xi from a random
10-dimensional subspace (out of 20 dimensions).

Table 5: The in-context learning performance on GPT-Neo 2.7B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 45.8 41.2 40.1 46.4 36.8 45.2 33.1 41.2
INVICL(OURS) 46.1 40.2 40.2 48.6 35.8 44.7 33.7 41.3

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 39.1 33.1 31.8 66.5 34.7 56.7 33.1 42.1
INVICL(OURS) 39.6 33.9 32.7 68.1 31.4 56.9 36.0 42.7

B.3 ABLATION STUDY FOR INVICL

In Table 7, we conduct an ablation study to demonstrate the effect of the two components of
InvICL: the invariant mask and the symmetric positional encoding. The experiments show that either
component is important for invariant ICL.

Besides, Table 7 also demonstrates the permutation invariance property of InvICL. Following (Chen
et al., 2022), we measure the order sensitivity as the frequency that the prediction is changed under

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: The in-context learning performance on Pythia-2.8B.

METHOD HR → LR CLASS
→CLASS

NON-CLASS
→CLASS

QA
→QA

NON-QA
→QA

NON-NLI
→NLI

NON-PARA
→PARA

AVG.

All target tasks
AUTO-REGRESSIVE ICL 31.3 22.3 27.8 33.4 33.7 29.7 37.6 30.8
INVICL(OURS) 31.5 26.3 28.5 33.0 35.6 28.0 40.2 31.9

Target tasks in unseen domains
AUTO-REGRESSIVE ICL 20.8 21.0 21.0 43.5 39.7 33.5 34.2 30.5
INVICL(OURS) 20.9 24.2 21.1 44.6 43.7 33.5 38.6 32.4

Table 7: Ablation study of invariant mask and symmetric positional encodings (PE) on ICL perfor-
mance and order sensitivity.

METHOD HR→LR (↑) SENSITIVITY (↓)
AR ICL 43.4+1.5 0.25+0.05

+SYM PE 38.4−5.0 0.30+0.05

+INV MASK 44.8+1.4 0.10−0.15

+BOTH (INVICL) 45.1+1.7 0.00−0.25

random permutation. We observe that both the invariant mask and PE are important for achieving
invariance, and a lower sensitivity indicates better performance.

Besides, we conduct experiments to test the baselines (AR ICL, PCW, Prefix ICL) using the same
duplicated data as InvICL. As shown in Table 8, InvICL still outperforms the baselines when they are
given the doubled input as InvICL does.

B.4 DETAILED RESULTS FOR SYNTHETIC EXPERIMENTS

In this section, we provide detailed results for the synthetic experiments in section 5.1. In figure
8, we demonstrate the error curves of AR ICL and InvICL at different training epochs. In figure
9, we present the error at different training epochs when the number of context examples is 100.
Both experiments demonstrate that InvICL’s OOD in-context performance (length > 40) consistently
outperforms AR ICL across all epochs. Specifically, as shown in figure 9, in the early stages of
training, the error of InvICL decreases rapidly, while the error of AR ICL only shows significant
reduction after approximately 100k epochs. Furthermore, after 200k epochs, the error of InvICL
stabilizes, whereas the error of AR ICL increases.

B.5 LINEAR PROBING EXPERIMENTS

In this section, we conduct a linear probing experiments based on the synthetic setting, to further
explore how the architecture of InvICL impacts the model’s internal representations. For a pre-trained
model on the synthetic linear regression dataset, we freeze the model parameters and trained a single
linear layer on the hidden states of the 3rd, 6th, 9th, and 12th layers, respectively.

As shown in Figure 10, the linear probing error of InvICL is consistent and close to the error curve of
the pre-trained model across all tested layers. In contrast, for AR ICL, only the error curve of layer
12 converges to that of the pre-trained model. This indicates that InvICL encodes task features in the
model much faster than AR ICL. We believe this is closely related to its context interdependence
property, which allows it to utilize richer context example information for encoding.

C PROOFS

C.1 PROOF OF THEOREM 4.1

Proof. We mainly adopt the setting of (Von Oswald et al., 2023) and (Ding et al., 2023). Let Z =

(z1, ..., z2n, z2n+1) ∈ R(d+1)×(2n+1) be the duplicated input of InvICL, where zj =

(
xj

yj

)
,xj ∈

Rd,yj ∈ R, and zi = zn+i for i ∈ [n]. Consider the linear self-attention layer in the scheme of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Ablation study of using doubling input for the baseline methods. We report the result on
HR→LR. InvICL still outperforms the baselines.

METHOD DOUBLED INPUT ORIGINAL INPUT

AR ICL 43.8 43.4
PCW (BOE ICL) 40.6 39.7
PREFIX ICL 41.7 40.3
INVICL 45.1 -

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

50k
80k
100k
120k
150k
180k
200k
300k
400k
500k

(a) InvICL.

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

50k
80k
100k
120k
150k
180k
200k
300k
400k
500k

(b) AR ICL.

Figure 8: Intermediate results for InvICL and AR ICL on the linear regression setting. The line colors
represent the models trained with different epochs.

InvICL. Given the query, key, value matrix Wq,Wk,Wv ∈ R(d+1)×(d+1) and the projection matrix
P ∈ R(d+1)×(d+1), the updating rule of the layer is as follows:

zj ← zj +PWvzj(z
⊤
j W

⊤
k Wqzj),

zn+j ← zn+j +PWv

∑
i∈[n]\{j}

zi(z
⊤
i W

⊤
k Wqzn+j),

z2n+1 ← z2n+1 +PWv

n∑
i=1

zn+i(z
⊤
n+iW

⊤
k Wqz2n+1),

(14)

where j ∈ [n]. Following the setting of (Von Oswald et al., 2023) and (Ding et al., 2023), we let

Wk = Wq =

(
Id×d 0
0 0

)
,Wv =

(
0d×d 0
w(0) −1

)
,P = ηI. (15)

Now, we hope to see what kind of iterative algorithm can naturally be implemented by InvICL. Before
that, we first give the L2

2 loss after doing one step of gradient descent

∥X(w − ηX⊤(Xw − y))− y∥2

= ∥Xw − y − ηXX⊤(Xw − y)∥2

= ∥(I− ηX⊤X)(Xw − y)∥2.
(16)

To compare InvICL with the conventional attention heads for ICL linear regression, here we investigate
the convergence properties of the leave-one-out scheme in Eq. (17) viewed as an optimization
algorithm for solving the regression problem, and compare it to that of gradient descent. It turns out
that if we use the same weighting strategy as (Von Oswald et al., 2023) but with InvICL, then we
obtain a similar iterative algorithm for in-context linear regression according to which the last row of
Z evolves, but the update rule transforms into

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′), (17)

where
y′ = y − ηXX⊤(Xwℓ−1 − y) + η[x⊤

i xi(x
⊤
i wℓ−1 − yi)]

n
i=1 (18)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Training epoch (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

InvICL
AR ICL

Figure 9: The squared error at different training epochs. We set the number of context examples to
100.

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

Layer 3
Layer 6
Layer 9
Layer 12
Pretrain

(a) InvICL.

0 50 100 150 200 250
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d 

er
ro

r

Layer 3
Layer 6
Layer 9
Layer 12
Pretrain

(b) AR ICL.

Figure 10: The linear probing results on InvICL and AR ICL.

is the label updated by the leave-one-out scheme. This equation is obtained by first perform a gradient
descent step w.r.t. the whole dataset with gradient update ηX⊤(Xw − y) and then minus the term
w.r.t the i-th data point xi(x

⊤
i w − yi).

Expanding Eq. (17), we get that the global update becomes

wℓ = wℓ−1 − ηX⊤(Xwℓ−1 − y′)

= wℓ−1 − ηX⊤(Xwℓ−1 − y + ηXX⊤(Xwℓ−1 − y)

− η[x⊤
i xi(x

⊤
i wℓ−1 − yi)]

n
i=1)

= wℓ−1 − ηX⊤(Xwℓ−1 − y) + η2X⊤XX⊤(Xwℓ−1 − y)

− η2X⊤Diag(XX⊤)(Xwℓ−1 − y).

(19)

This delivers Eq. (12).

Remark. In BoE ICL, since the context examples cannot interact with each other, the GD algorithm
implemented by it can only update the weight vector w of the test (last) example, but not the context
examples. Particularly, this means the gradient update process is wℓ = wℓ−1 − g(w0, {xi, yi}),
where g is the update function of BoE ICL. This means that the gradients are always computed at the
initial point of the algorithm, thus the algorithm cannot converge.

C.2 PROOF OF PROPOSITION 3.4

Proof. We will first demonstrate that the attention score matrix A needs to adhere to a specific form
when constrained by the attention mask M, in order to guarantee the permutation equivariance of
the embeddings of the context examples. Subsequently, we will establish that this requirement is
equivalent to the permutation invariance of the ICL prediction with respect to the context examples.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma C.1. Given an input matrix H = (h1, ...,hn)
⊤ ∈ Rn×d and its attention score matrix

A ∈ Rn×n defined in Eq. (7). Denote SA(H) = AHWvP be the self-attention operation, where A
is defined in Eq. (7). Then, SA(H) is permutation equivariant to {hi} iff the attention mask M is
equal to 

0 −∞ · · · −∞
−∞ 0 · · · −∞

...
...

. . .
...

−∞ −∞ · · · 0

 ,


−∞ 0 · · · 0
0 −∞ · · · 0
...

...
. . .

...
0 0 · · · −∞

 , or 0.

Proof. Denote T ∈ Rn×n be a permutation matrix on the row vectors of H. This implies that
T ∈ {0, 1}n×n and 1⊤

nT = 1⊤
n , T1n = 1n. Then the permutation equivariant condition can be

stated as TSA(H) = SA(TH). Since SA(H) = softmax
(
HWq(HWk)

⊤ +M
)
HWvP, the

condition can be expanded as

T softmax
(
HWq(HWk)

⊤ +M
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤T⊤ +M
)
THWvP.

(20)

It can be easily verified that 1) the permutation and softmax operations are commutative, and 2) T is
orthogonal. Therefore, the above equation can be transformed to

softmax
(
THWq(HWk)

⊤ +TM
)
HWvP

=softmax
(
THWqW

⊤
k H

⊤ +MT
)
HWvP.

(21)

This is equivalent to
TMT−1 = M (22)

for arbitrary permutation matrix T. Next, we will discuss what kind of matrix M satisfies this
condition. For notation simplicity, we denote T(i, j) as the permutation performed only between the
i-th and j-th index.

• Assume Mi,i = c1. Taking T = T(i, j), from Eq. (22) we have Mj,j = c1. By iterating
over j, we have Mk,k = c1 for every k ∈ [n].

• Assume Mi,j = c2, i ̸= j. Taking T = T(i, k), k ̸= j, from Eq. (22) we have Mk,j = c2;
taking T = T(j, k), k ̸= i, we have Mi,k = c2. Hence, by iterative applying permutations
in this way, we can conclude that Mk,l = c2 for every k ̸= l.

In conclusion, M = c1In + c2(1n×n − In). Since the elements of an attention mask can only take
the value of either 0 or −∞, M can only be one of the three forms demonstrated in Lemma C.1 (an
all −∞ attention mask is meaningless).

Now we prove the equivalence between the desired permutation invariance property and the equiv-
ariance property discussed in Lemma C.1. As the permutation invariance property involves the ICL
prediction, which relies on the test embedding ht, it is necessary to incorporate it into the discussion.
We denote the full input matrix of ICL as H̃ = (h1, ...,hn,ht) ∈ R(n+1)×d, and the corresponding
matrices in the self-attention process as Ã, M̃.

Lemma C.2. Let the output embeddings of the Transformer be H′ = (h′
1, ...,h

′
n,h

′
t). Then, h′

t
is invariant to the permutation of (h1, ...,hn) iff (h′

1, ...,h
′
n) is equivariant to the permutation of

(h1, ...,hn).

Proof. First, we need to extend existing results to the circumstance of the full input H̃. Consider the
attention mask M̃ ∈ R(n+1)×(n+1) of the full input, whose n× n submatrix at the upper-left is equal
to M, i.e., M̃1:n,1:n = M. From the condition in the Proposition we have that M̃n+1,: = 0⊤

n+1.
Besides, it is evident that Proposition 3.5 also satisfies for M̃, we have M̃1:n,n+1 = −∞ · 1⊤

n . Other
variables can be naturally extended.

In Lemma C.1, we have proved that the equivariance property is equivalent to the attention mask M
being one of three specific forms. Now we prove the contrapositive statement of Lemma C.2.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

If (h′
1, ...,h

′
n) is not equivariant to the permutation of (h1, ...,hn), by Lemma C.1, the mask on

context examples M must satisfy either 1) ∃i ̸= j,Mii ̸= Mjj , or 2) ∃i ̸= j, k ̸= l,Mij ̸= Mkl.
We separately demonstrate that these properties will break the property of permutation invariance.
For the following circumstances, we uniformly let Wq = Wk = Wv = P = In+1. Denote the
embedding of hi after k self-attention layer as h(k)

i . Then, the embeddings are updated as

h
(k+1)
i =

∑
j=1,...,n,t

[s(h
(k)
i ,h

(k)
j ) + M̃ij ]h

(k)
j , (23)

where s(·, ·) is the similarity function calculated by their inner product and softmax normalization,
which is defined in 2.

• ∃i ̸= j,Mii ̸= Mjj . Without loss of generality, since the elements of M only take the value
of either 0 or infty, we let M11 = 0,M22 = −∞. Then we construct the input matrix as
h1 = e1,h2 = e2,hi = 0(i > 2),ht = 0, where ei denotes the i-th unit vector (i ∈ [d]).
Since M22 = M2,n+1 = −∞, following Eq. (23), we find that h(1)

2 = c1e1. And since
M11 = 0, we have h

(1)
1 = c2e1 + c3e1.

Now we permute the first and second examples, i.e., h1 = e2,h2 = e1. Although we find
that the first update of the test embedding remains unchanged since Eq. (23) is permutation
invariant for hk

t , the second update differs. Since we have h
(1)
2 = c1e2 and h

(1)
1 =

c3e1+c2e1, the aggregation h
(2)
i changes. Therefore, the property of permutation invariance

is broken.

• ∃i ̸= j, k ̸= l,Mij ̸= Mkl. Without loss of generality, let Mij = 0,Mkl = −∞.
We construct hi = e1,hk = e2, h̸=i,k = 0. Then, we have h

(1)
j = c1e1 + c2e2, and

h
(1)
l = c3e1. Similar to the above process, we can prove that ht is not permutation invariant

w.r.t. the index exchange (i, j)↔ (k, l).

In conclusion, any attention mask M that violates Lemma C.1 will break the property of permutation
invariance. Thus Lemma C.2 is proved.

Finally, by combining Lemmas C.1 and C.2, we can deliver Proposition 3.4.

C.3 PROOF OF PROPOSITION 3.5

Proof. Consider the case that G has no self-loops. Since G is a digraph with no cycles, it is a directed
acyclic graph (DAG). According to the graph theory (Cormen et al., 2022), DAG can be topologically
ordered, which means in this ordering, any vertex is not reachable from later vertices in the graph.
Therefore, if we reorder the vertices in this way, we have Aij = 0 for i ≤ j, which infers that A is
strictly lower diagonal. Since the original graph allows self-loop, which corresponds to the diagonal
elements, the adjacency matrix is lower triangular. This is equivalent to that the attention mask on
context examples M is lower triangular.

D DISCUSSION TO BATCHICL

BatchICL (Zhang et al., 2024) is a concurrent work with ours. Instead of performing N-shot encoding
for all context examples, it separately encodes each context example in a 1-shot manner. It then
aggregates the intermediate hidden states of the last token of each 1-shot block, which are subsequently
injected into the forward computation of a zero-shot query to generate the final prediction. This
approach ensures permutation invariance, as the encodings of the context examples are independent.

Although it lacks context interdependence, BatchICL demonstrates better performance than AR ICL,
which seems contradictory to our insight. However, upon examining the implementation of BatchICL,
we find that they design a specific instruction for each task. During the inference process of BatchICL,
each 1-shot block is concatenated with a task instruction (e.g., for SST2 sentiment classification task,
the task instruction is "The following are multiple film reviews with answers(← or →).", where ←
and → are the labels.). As shown by Figure 1, by removing the task instructions, BatchICL no longer
demonstrates a consistent gain compared to AR ICL. This can prove that context interdependence

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

plays a crucial role in helping each context example identify the task, similar to the role of task
instructions.

The same phenomenon is also observed under the evaluation framework of MetaICL. Since MetaICL
incorporates 142 evaluation tasks in total, designing task instructions is difficult. Thus, we evaluate
BatchICL in the same manner of other ICL algorithms, i.e., directly concatenating xi and yi without
any natural language instructions. Table 2 shows that under the evaluation framework of MetaICL,
BatchICL performs far worse than the other ICL algorithms. We think this is also because in the
experiments of (Zhang et al., 2024), all the labels are set to be one token. In this case, extracting the
task vector from the last token of each context example is reasonable since previous work have shown
that the encoding of context label consists of task information (Wang et al., 2023; Yu & Ananiadou,
2024). However, in more complex tasks such as question answering, the label may consists of
several tokens, resulting in the one-token vector fail to extract task information, leading to inferior
performance of BatchICL.

E RELATED WORK

The order-sensitivity of ICL. The phenomenon that ICL is sensitive to the permutation of context
examples has been observed in several works. (Zhao et al., 2021) and (Lu et al., 2022) used GPT-3 to
perform in-context learning on classification tasks such as SST-2 and observe a high variance w.r.t.
the permutation of the context examples. Besides, (Xie et al., 2021) and (Agrawal et al., 2022) found
the same phenomenon on a generated synthetic dataset and machine learning tasks, respectively.
Additionally, (Chen et al., 2022) empirically showed that the order-sensitivity is negatively correlated
to the performance of ICL. To address this issue, (Zhao et al., 2021) proposed a calibration module
to make the output distribution consistent with prior knowledge. (Lu et al., 2022) filtered out the
best prompt ordering by investigating their calibration on a generated set. (Xiang et al., 2024)
utilizes contrastive learning to align representations of in-context examples across different positions,
resulting in the alleviation of order sensitivity. Besides, there are works that focuses on implementing
the concept of permutation invariance from an architectural perspective. For example, SAICL
(Cai et al., 2023) proposed a structured attention mechanism that achieves permutation invariance.
However, their work is based on improving the ICL performance of T5 (Raffel et al., 2020), a
language model based on an encoder-decoder architecture, which did not address the order-sensitivity
issue of auto-regressive LMs. BatchICL (Zhang et al., 2024) is the work that is most relevant to
us. Instead of conducting N -shot encoding for all context examples, it utilizes N separate 1-shot
encodings for each context example. It then aggregates the intermediate hidden states of the respective
last token, which is subsequently incorporated into the forward computation of a zero-shot query
to generate the final prediction. In this way, the model achieves permutation invariance since the
encoding of the context examples are independent.

The connection between ICL and Gradient Descent. Early stage formal theoretical investigation
of the linear regression in-context learners includes (Akyürek et al., 2022; Von Oswald et al., 2023).
They first showed that Transformers learn in context via gradient descent, where one layer performs
one gradient update. In subsequent work, (von Oswald et al., 2023) further argued that Transformers
are strongly biased towards learning to implement gradient-based optimization routines. (Ahn
et al., 2023) showed Transformers can learn to implement preconditioned Gradient Descent, where
the pre-conditioner can adapt to the data. (Bai et al., 2023) provided detailed constructions for
how Transformers can implement a range of learning algorithms via gradient descent. (Dai et al.,
2022) conducted experiments on NLP tasks and concluded that Transformer-based language models
performing ICL behave similarly to models fine-tuned via gradient descent; however, concurrent
work argued that real-world LLMs do not perform ICL via gradient descent (Shen et al., 2023). (Fu
et al., 2023) argued that Transformers actually learn to perform in-context learning by implementing
a higher-order optimization method, not gradient descent. Predictions made by different Transformer
layers match iterations of higher-order optimization methods better than they match iterations of
gradient descent.

22


	Introduction
	Preliminaries
	The Proposed Invariant In-context Learning (InvICL)
	Invariant ICL and Its Desiderata
	A Principled Design of Invariant ICL
	Parallel Implementation

	Theoretical Understanding InvICL from an Optimization Perspective
	Empirical Validation of InvICL
	Experiments on Synthetic Scenario
	Experiments on Real-world Datasets

	Discussion
	Conclusion
	Reproducibility Statement
	Implementation Details
	Symmetric Positional Encoding
	Bag-of-Examples ICL
	Setting of the Experiments on Linear Regression tasks.
	Implementation details of Experiments on Real-world Data.

	Additional Experimental Results
	Synthetic Experiments on other setups
	Real-world Experiments based on GPT-Neo and Pythia
	Ablation study for InvICL
	Detailed Results for Synthetic Experiments
	Linear Probing experiments

	Proofs
	Proof of Theorem 4.1
	Proof of Proposition 3.4
	Proof of Proposition 3.5

	Discussion to BatchICL
	Related Work

