Agility Meets Stability:
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Fig. 1: Introducing AMS (Agility Meets Stability), one single policy that performs diverse motions with stability and agility
simultaneously on a humanoid robot. The robot can execute challenging balance motions such as (a) Ip Man’s Squat, a
Kung Fu-style single-leg squat, unseen during training (zero-shot); (b) single-leg balance stances which humans
find hard to perform; (c) balanced stretching; as well as expressive motions and high-mobility movements with precise
control, such as (d) dancing and (e) running. More examples are provided in the appended video.

Abstract— Humanoid robots are envisioned to perform a
wide range of tasks in human-centered environments, requiring
controllers that combine agility with robust balance. Recent
advances in locomotion and whole-body tracking have enabled
impressive progress in either agile dynamic skills or stability-

critical behaviors, but existing methods remain specialized,
focusing on one capability while compromising the other. In
this work, we introduce AMS (Agility Meets Stability), the
first framework that unifies both dynamic motion tracking
and extreme balance maintenance in a single policy. Our key
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insight is to leverage heterogeneous data sources: human motion
capture datasets that provide rich, agile behaviors, and physically
constrained synthetic balance motions that capture stability
configurations. To reconcile the divergent optimization goals of
agility and stability, we design a hybrid reward scheme that
applies general tracking objectives across all data while injecting
balance-specific priors only into synthetic motions. Further, an
adaptive learning strategy with performance-driven sampling
and motion-specific reward shaping enables efficient training
across diverse motion distributions. We validate AMS extensively
in simulation and on a real Unitree G1 humanoid. Experiments
demonstrate that a single policy can execute agile skills such as
dancing and running, while also performing zero-shot extreme
balance motions like Ip Man’s Squat, highlighting AMS as a
versatile control paradigm for future humanoid applications.

I. INTRODUCTION

Humanoid robots hold great promise for performing
diverse tasks in human-centric environments, from household
assistance to industrial applications [1]. Realizing this vision
requires robots to emulate the remarkable capabilities that
humans naturally master, i.e., versatile, coordinated whole-
body skills that seamlessly blend dynamic motion with precise
balance. Recent progress in locomotion and whole-body
tracking has enabled robust outdoor walking [2], [3], [4],
multi-modal control [5], [6], [7], sequential movements [8],
and challenging agile behaviors [9], [10], [11]. Despite these
advances, humanoid robots still struggle to integrate dynamic
motion with precise balance in a unified manner. Humans, by
contrast, naturally demonstrate such capabilities, for example,
by maintaining a stable single-leg stance while reaching
for an object using a free limb as temporary support, or
performing precise placement after dynamic walking. En-
dowing humanoids with such integrated versatility, however,
remains a fundamental challenge. Current work typically
adopts reinforcement learning (RL) to train whole-body
tracking (WBT) policies with human motions as references
to accumulate rewards. They focus on single-sequence policy
training, either fitting dynamic movements such as ASAP [10]
or balance motions like HuB [12], rather than achieving both
capabilities in a unified and generalized manner.

The underlying reasons for this situation can be divided into
two aspects: data limitation and divergent optimization objec-
tives. Existing approaches [13], [14], [15] predominantly rely
on human motion capture (MoCap) data for training. While
such datasets provide rich dynamic behaviors, they suffer from
long-tailed distributions in which extreme balance scenarios
are underrepresented. Further, they inherently restrict the
robot to motions that humans can perform, constraining the
exploitation of the robot’s unique mechanical capabilities.
In addition, dynamic and balanced motions exhibit distinct
distributions and thus require separate optimization objectives.
In an RL-based paradigm, reward functions designed to
guide one motion type can inadvertently hinder the learning
of the other, leading to conflicts when combined within
a unified learning framework. For instance, restricting the
center of mass to remain above the support foot provides
precise guidance for balance tasks but is overly restrictive
for dynamic motions that rely on natural momentum transfer

and coordinated whole-body movements. A desirable solution
would allow a single policy to learn both dynamic agility and
balance robustness without compromising either objective.

To address these challenges, we propose AMS (Agility
Meets Stability), a unified framework that trains a single
policy capable of both dynamic motion tracking and extreme
balance maintenance through adaptive learning on heteroge-
neous data.

Our approach addresses the data limitations by generating
constrained synthetic balance motions that complement ex-
isting human MoCap data [16]. Unlike MoCap data, which
suffers from sensor noise and kinematic retargeting errors,
these synthetic motions are sampled from the humanoid
motion space directly while ensuring physical plausibility. By
integrating these heterogeneous data sources, our approach
alleviates the long-tailed distribution problem and broadens
the range of physically achievable behaviors, complementing
and going beyond what traditional human motion datasets
can provide.

To resolve conflicting optimization objectives, we employ
a hybrid reward scheme that combines two complementary
components for policy training. General rewards encourage
robust motion tracking across all data, while balance-specific
rewards are applied exclusively to the controllable synthetic
data, providing precise guidance for stability without inducing
conflicts with dynamic tracking objectives.

We further introduce an adaptive learning strategy with two
key components for effective learning from heterogeneous
data. Adaptive sampling prioritizes challenging motions by
automatically adjusting sampling probability for effective hard
sample mining. In the meantime, adaptive reward shaping
maintains motion-specific error tolerances based on individual
performance rather than treating all motions uniformly.

We evaluate AMS through extensive experiments on a
Unitree G1 humanoid robot. As demonstrated in Fig. 1, our
unified policy effectively executes both dynamic motions such
as dancing and challenging balance motions like Ip Man’ s
Squat in a zero-shot manner. The versatile framework
also enables real-time teleoperation for various motions,
highlighting its potential as a foundational control model
for autonomous humanoid applications.

To summarize, our contributions are threefold: (1) We
introduce AMS, the first framework that successfully unifies
dynamic motion tracking and extreme balance maintenance
in a single policy. (2) We develop a learning approach that
leverages both human-captured motion data and controllable
synthetic balance motions, coupled with hybrid rewards
and adaptive learning for effective policy training. (3) We
showcase that a single policy can execute both dynamic
motions and robust balance control on a humanoid in the
real world, outperforming baseline methods and enabling
interactive teleoperation.

II. RELATED WORK

A. Learning-based Humanoid Whole-body Tracking

Learning-based whole-body tracking has enabled humanoid
robots to achieve increasingly versatile behaviors and is



(a) General Whole-body Tracking Pipeline

Human MoCap Data

‘;. {' v%! g, 4 2 .

;{ i AV F Vg & Retargeting

& % e REE S = Y & Filtering <
B & &8 g 3 Training Datu—»
3 ﬁ' \ & A T8
F: B /{\ & 4 (\ '{y /‘{rf\l

P v & 8 (B

' o BB #

Pren] gl 71 J;

[

i

(b) Balance Data Synthesis (c) Adaptive Learning

2
e -] 2 2 4 Ls
2 S - Be BN I .

s i v LAy Q}‘ A F |l Balance Prior Rewards ‘&
A S Y <“} ¥ L3 "‘; //?\ Modulates 4 ?
el 2 e v ~ General Rewards &/
St A ia _’I:‘* Vi 2 ' Sampling Probability & ~

- 3 [==3 "é\ Shaping Coefficient

Performance

Proprioception o, a8

inleged Info i¢

¢
9t G415+ Gt+20 ! ”\;i

Proprioception

Teoc.her ates ——
Policy |
|

Motion Target Behavior Cloning e

v b,
Siud.ent ast ‘\‘QQ‘

Policy

Ot—hs Ot—h+15--,0t ﬁ

(d) Hybrid Rewards

Fig. 2: Overview of AMS. (a) The general whole-body tracking pipeline retargets human MoCap data to reference motions
and adopts a teacher-student-based strategy for reinforcement learning (Sec. III-A). To address data limitations and conflicting
optimization objectives, AMS introduces three key components as follows. (b) Synthetic balance data is generated to
complement human MoCap data and address data limitations (Sec. III-B). (¢) Adaptive learning is employed with adaptive
sampling and reward shaping based on individual motion performance (Sec. III-D). (d) Hybrid rewards are designed with
general rewards for all motions and balance prior rewards exclusively for synthetic motions (Sec. III-C).

promised as a method to collect humanoid data for embodied
policy training. Building upon DeepMimic [17], recent work
has demonstrated agile controllers capable of expressive skills
such as dancing [15], [18], martial arts [19], and general
athletic maneuvers [13], [20], [21]. Other approaches scale
to large motion libraries, where universal policies trained on
MoCap datasets [22], [14], [13] provide broad coverage of
human-like movements.

In parallel, another research thrust targets robust balance
control, focusing on quasi-static stability rather than agility.
HuB [12], for example, introduces motion filtering and task-
specific rewards to train policies for extreme balancing poses
that are typically absent from human datasets. While effec-
tive for maintaining stability, such methods often constrain
dynamic motions that inherently require momentum and
transient instability.

These two directions, agility and stability, have so far been
pursued largely in isolation. AMS aims to bridge this gap
by training a single policy on heterogeneous motion data
that integrates both dynamic and balance-critical examples,
thereby achieving high-fidelity tracking and robust stability
within a unified framework.

B. Motion Targets for Policy Learning

The capabilities of a learned controller are fundamentally
shaped by the reference motions it is trained to imitate.
Most works rely on human demonstrations, either from
large-scale motion capture datasets [16], [23] or from
monocular video through pose estimation [24], [25], which
provide diverse and natural kinematics for general-purpose
policies [13], [20], [26]. However, such data inevitably
reflects the bias of human movement and exhibits a long-
tail distribution that undersamples balance-critical or robot-
specific behaviors [27]. Complementary to this, optimization-

and sampling-based approaches generate feasible trajectories
directly in the robot’s configuration space, thereby expanding
policy coverage toward versatile locomotion [28] and loco-
manipulation [29], [30]. Recent advances further leverage
generative models conditioned on high-level commands,
enabling motion synthesis from language or vision-language
prompts [31], [32]. Motivated by these prior efforts, our work
adopts a heterogeneous data strategy. We combine the natural
movement of MoCap-derived motions with a controllable
generator that produces physically verified, balance-critical
behaviors, providing broad supervision for training a single
policy that can handle both agility and stability.

III. METHODOLOGY

A. Problem Setup

We formulate humanoid whole-body tracking as a goal-
conditioned reinforcement learning (RL) task, where a policy
7 is optimized to track a reference motion sequence in real
time. The pipeline is illustrated in Fig. 2(a). Human MoCap
data is initially retargeted to the humanoid motion space and
erroneous or infeasible motions for humanoids are filtered
out [14]. At timestep ¢, the system state s; contains the agent’s
proprioceptive observations o;, while g; denotes the target
motion state from reference motions. The reward is defined
as r; = R(sy, a4, 8;), encouraging alignment between executed
and reference motions. The action @, € R?® specifies desired
joint positions, applied through a PD controller. We train a
teacher policy with privileged information i, using Proximal
Policy Optimization (PPO) [33], and distill it into a student
policy that depends only on deployable sensory inputs with
supervision from the teacher policy [14], [34].
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Fig. 3: Motion space analysis of human data and generated balance data. (a) Humans and humanoids feature distinctive
balance motion spaces, leading to limited reference motions for training whole-body balancing skills. (b) Sensor noise and
kinematic retargeting errors greatly affect the reference motion quality from human MoCap data. (¢) Constrained synthetic
balance data guarantees physical realism, such as the foot contact state and center of mass. (d) Example of a generated
synthetic balance motion, with the swinging foot trajectory shown in green.

B. Synthetic Balance Motion Generation

Analysis of Balance Motion References. Due to kinematic
and morphological differences between humans and humanoid
robots, their balance motion spaces only partially overlap,
as illustrated in Fig. 3(a). Prior works [10], [13], [12],
[14] predominantly rely on human motion data, which
inherently constrains the policy’s capabilities to this shared
space. However, humanoid robots possess unique mechanical
features—different joint limits, actuator capabilities, and mass
distributions—that enable balance configurations different
from human physical constraints. Additionally, as shown in
Fig. 3(b), human data combined with retargeting introduces
noise from sensor measurements and the retargeting process,
further limiting the quality of training data. To address these
limitations, we propose generating synthetic balance data by
directly sampling from the humanoid balance motion space,
as shown in Fig. 3(c) and (d), complementing human-centric
datasets with a broader range of feasible behaviors.

Motion Generation. To enhance the training dataset with
physically plausible and diverse whole-body motion se-
quences, we propose a motion generation framework that syn-
thesizes balanced whole-body trajectories for single-support
maneuvers, as shown in Fig. 2(b). The method synthesizes
trajectories that transition the ungrounded swinging foot to
a target pose while maintaining the center of mass (CoM)
within a valid support region, ensuring kinematic feasibility
and smoothness.

Given a robot model, a designated support foot, and a time
horizon N, we first sample a target pose for the swinging foot,

Algorithm 1 Controllable Balance Motion Generation

Input: Robot model Z, support foot index s, target foot pose
Ty, pelvis height h,, horizon N, cost weights A
Output: Motion sequence .7 = {(X;,q/)}'
Reference construction:
1. Ty(t) + constant(T?) {Support foot trajectory}

2. Ts(t) « interp(TY, Ty, /N) {Swinging foot trajectory}

Tp(r) + interp(TS, TR 1 /N) {Pelvis trajectory}
Stage-1 optimization:

(98]

4. Solve minJ;(X,q) where:
5 Jl = }vtrack ||T - TrefH%V +)Llim Cllp(‘L Qlim>2
—_— ——_— ——
tracking limits
6:

+)'rest Hq - (llnlt”2 +Asmoot_h SmOOth(X7 q)
— —_——

., Test smoothness
Stage-2 optimization:

7. Solve minJ,(X,q) where:
8: Jo =J1 4+ Apar Zﬁ\,:?)l max(0,d; — €)
9 dy = |[|max(0,[p; — ¢/ —s)|2

10:  p; =1L, CoM(X;,q:; %), ¢; = I, Trans(Ts(z))
Validation:
1:  return .7 if max,d; < € else fail

—

a target pelvis height, and an initial joint configuration biased
toward natural lower-limb postures with randomized upper-
body joints. These samples induce diversity in end-effector
goals and whole-body configurations.



We then construct reference trajectories for three key links,
including the support foot, swinging foot, and pelvis, using
SE(3) interpolation. To compute the motion, we employ a two-
stage batch trajectory optimization as outlined in Algorithm 1.

The first stage minimizes a composite cost J; that includes
pose tracking, soft joint limits, rest-pose regularization, and
temporal smoothness. This yields a kinematically consistent
and smooth trajectory. In the second stage, we augment the
cost with a balance-enforcing term:

N—1
D=1+ Xa ZmaX(O,HPz—Cz—Snz—&'), (1)
1=0
where p, and ¢, are the 2D projections of the CoM and
support foot center, s = (sy,sy) defines the support rectangle,
and € is a small tolerance. This penalty encourages the CoM
to remain within a valid support area. The optimization is
solved using Levenberg—Marquardt solver [35], [36], [37],
[38]. Only trajectories that satisfy max; d; <= € are accepted,
ensuring physical feasibility.

The two-stage approach hierarchically separates kinematic
feasibility from balance constraints, where the first stage
establishes a robust and smooth trajectory, while the second
stage safely refines it for balance, enabling stable convergence.

C. Hybrid Rewards

A central challenge in training a single policy for both
dynamic motion tracking and balance-critical behaviors is
the conflicting objectives: rewards emphasizing balance could
restrict dynamic motions, while rewards for agility may
compromise stability. To address this, we introduce a hybrid
reward scheme that distinguishes between general motion
tracking and balance-specific guidance based on the motion
source, as shown in Fig. 2(d).

For human motion capture data [16], [39], we rely on
general motion-tracking terms solely, such as joint positions,
velocities, and root orientation, which encourage natural,
human-like movements while maintaining coarse stability. In
contrast, for synthetic balance-critical motions, we augment
the supervision with balance-specific priors, including center-
of-mass alignment and foot contact consistency [12]. These
priors provide physically grounded guidance, ensuring a
feasible balance without overly constraining the agility
captured from human MoCap data.

By selectively applying balance priors rewards only to
synthetic data, the hybrid reward design enables the pol-
icy to capture agile behaviors from human motions while
maintaining reliable stability in challenging postures.

D. Adaptive Learning

To further address both data limitations and conflicting
objectives, we introduce an adaptive learning strategy compris-
ing two key components, i.e., adaptive sampling and adaptive
reward shaping, as shown in Fig. 2(c).

Adaptive Sampling. We propose a performance-driven
adaptive sampling strategy that dynamically adjusts motion
sequence sampling probabilities based on tracking perfor-
mance assessment. Unlike uniform sampling that treats all

motion data equally, our approach implements a multi-
dimensional performance evaluation mechanism to prioritize
poorly-tracked samples while reducing emphasis on well-
tracked motions.

The adaptive sampling strategy evaluates tracking perfor-
mance across three key dimensions: (1) motion execution
failure, (2) mean per-joint position error (MPJPE), and (3)
maximum joint position error. For each motion sequence i,
we maintain a sampling probability p; that is dynamically
updated based on periodic evaluation results.

Let .# denote the set of failed motions during evaluation,
and e . e . represent the mean and maximum joint
position errors for motion i, respectively. For successful
motions, we define performance thresholds using percentiles
of the error distribution: T, = Pys5(e) and Tgp0q = Pas(e),
where P, denotes the k-th percentile.

The probability update mechanism operates as follows:

‘ e o

Pt Yrait, ifi€F,

pirt =g . @
Di " 8i, otherwise,

where p! is the current sampling probability for motion i at
training iteration ¢, Y, is the failure boost factor, and the
adjustment factor g; is computed as:

& = 1+ Wmean (fmean(einean) - 1)+Wmax(fmaX(efnax) - 1)7 (3)

where Wyeqn and wyqy are weighting coefficients that control
the relative importance of mean and maximum error adjust-
ments. The error-specific adjustment functions fiueqn(-) and
Smax(+) are defined identically as:

ﬁmin + (ﬁmax - ﬁmin) *I'poor
Oin + (amax - (Xmin) . (1 - rgood)a
1, otherwise,

4)
where Biin, Bnax > 1 are the minimum and maximum boost
factors for poor-performing motions, Qyy, Cuax < 1 are the
minimum and maximum reduction factors for well-performing
motions. The normalized ratios are computed as:

if e > Tpoor,

fle) =

if e < Tgo0d 5

Toood — €
__Tgoo
Fe0od = ) (5)
Teood — €min

€ — Tpoor
Ypoor = ————
max — Tpoor
with e,,4 and ey,;; being the maximum and minimum errors
observed in the current evaluation.

To ensure exploration and prevent any motion from
being completely ignored, we enforce a minimum sampling
probability constraint. After updating all probabilities, they
are first normalized, then clamped to a minimum threshold:

pfinal_max Pﬁ“ Dmi 6)
[ - y Fmin )

l ):IJY:lpf;rl

1

where pyi, = A - 5 with A being the minimum probability
factor and N the total number of motions. The probabilities
are then re-normalized to ensure they sum to unity.

This adaptive sampling mechanism enables AMS to
automatically focus on poorly-tracked motion patterns by
continuously adjusting the training data distribution based



on tracking performance, thereby improving both sample
efficiency and generalization performance.

Adaptive Reward Shaping. Existing universal WBT meth-
ods [20], [14], [40], [41] typically employ uniform and fixed
shaping coefficients to modulate reward functions for all
motions. Typically, the reward is defined as:

err

r=exp (—?), @

where err represents the tracking error for a given motion and
o serves as the shaping coefficient controlling error tolerance.
However, this uniform treatment presents two challenges:
(1) fixed tolerance does not adapt to improving tracking
performance; (2) identical parameters create conflicting
objectives between dynamic and balance motions that require
different shaping strategies.

Inspired by PBHC [19], we extend their adaptive strategy
from single-motion tracking to general multi-motion tracking
scenarios. Specifically, we maintain motion-specific o param-
eter sets, with separate adjustments for different body parts.
For stable and responsive adaptation, we employ Exponential
Moving Average (EMA) to update these parameters:

Opew = (1 - OC) * Ocurrent T & * €ITcyrrent, 8)

where « is the update rate controlling adaptation responsive-
ness, and erreyrent represents the current tracking error.

This motion-specific adaptive reward shaping mechanism
enables AMS to simultaneously adapt to training progress and
motion diversity, significantly improving learning efficiency
in general motion tracking scenarios.

IV. EXPERIMENT
Our experiments aim to answer the following questions:

¢ Q1: How well does AMS perform on both dynamic and
balance motions compared to existing approaches?

+ Q2: How do the synthetic data and training strategies
contribute to the overall performance?

¢ Q3: Can AMS generalize to unseen scenarios and real-
world deployment?

A. Experimental Setup

We evaluate AMS in both simulation and real-robot
experiments. In simulation, we use IsaacGym [42] as our
physics simulator. Our training dataset comprises a filtered
subset of the AMASS [16] and LAFAN1 [39] datasets,
containing over 8,000 motion sequences and 10,000 synthetic
balance motion sequences generated by our methods. For
real-world experiments, we deploy our policy on Unitree
G1 [43], a humanoid robot with 23 DoFs and a height of 1.3
meters, weighing about 35kg.

Metrics. We evaluate the motion tracking performance using
five metrics [12], [14]. (1) Success rate (Succ., %). Imitation
fails if the average deviation from reference exceeds 0.5m
at any point, measuring whether the robot can maintain
tracking without losing balance. (2) Global MPJPE (E;_mpjpe,
mm) measures global position tracking accuracy. (3) Root-
relative MPJPE (Ei,., mm) evaluates local joint position

tracking performance. To assess policy stability and fidelity
on balance motions, we additionally employ (4) Contact
mismatch (Cont., %), measuring the percentage of frames
where foot contact states differ from the reference motion;
and (5) Slippage (Slip., m/s), which quantifies the ground-
relative velocity of the support foot, where higher values
indicate unstable foot contact.

B. Comparison with Existing Methods

To address Q1, we compare our method against two
representative baselines:

« OmniH20 [14] is a general humanoid whole-body
motion tracking framework that employs a teacher-
student learning paradigm. We adapt OmniH2O to the
G1 robot and optimize its curriculum parameters for our
experimental setup.

« HuB [12]. Building upon the OmniH20 framework, we
re-implement HuB by replacing the reward function with
HuB’s stability-focused reward design, which emphasizes
balance motions and contact-aware tracking.

For fair comparison, all baselines are trained from scratch
with consistent domain randomization. We evaluate the
teacher policies in simulation experiments, and the student
policies are derived through direct imitation learning from
their respective teachers. Table I(a) shows that the proposed
method significantly outperforms both OmniH20O and HuB.
The approach achieves improvements in tracking performance
(Eg-mpjpe and Eypipe), while simultaneously maintaining high
stability (Cont. and Slip.).

C. Ablation Study

To address Q2, we conduct comprehensive ablation studies
on each key component of AMS.

Ablation on Synthetic Balance Data.

As shown in Table I(b), the variant w/o Synthetic Balance
Data demonstrates that training exclusively on MoCap data
results in poor performance on balance motions. Incorporating
synthetic balance data maintains comparable performance
on MoCap data while significantly improving tracking
performance and stability on balance-critical motions. To
further answer Q3 regarding generalization capability, we
collect 1000 unseen motions as out-of-distribution (OOD) test
data, including self-recorded random motions and single-leg
motions generated by our proposed method. As shown in
Table II, adding synthetic balance data to the training set
effectively improves OOD performance.

Ablation on Hybrid Rewards. As shown in Table I(c),
removing balance prior rewards and using only general
rewards (Ww/ General Rewards Only) leads to degraded
performance on balance motions, with higher tracking errors
and more frequent contact mismatches. Conversely, applying
balance prior rewards uniformly across all motions (w/ All
Rewards for All Data) shows certain improvement on balance
tasks, but creates conflicting objectives that harm overall
policy performance. As evidenced in the table, this approach
causes performance degradation on MoCap data, which



TABLE I: Simulation performance comparison on different datasets and ablation study. Our method consistently achieves
lower tracking errors and higher success rates across both agile motion and challenging balance motions, demonstrating

strong generalization and robustness.

MoCap Data (AMASS+LAFAN1) Synthetic Balance Data All
Method Tracking Error Completion Stability Tracking Error Completion Tracking Error Completion
Egmpipe + Empjpe Suce. 1 Cont. | Slip. |  Egmpjpe + Empjpe | Suce. T Egmpjpe +  Empjpe + Suce. T
(a) Main Results
OmniH20 [14] 68.31 37.23 98.49% 0.24 0.038 72.51 56.88 99.76% 69.84 44.18 98.93%
HuB [12] 158.80 82.13 67.03% 0.10 0.030 137.44 128.22 99.82% 151.26 98.42 77.23%
AMS (Ours) 48.60 24.48 99.69 % 0.12 0.030 64.03 37.30 99.95% 54.06 29.02 99.78%
(b) Ablation on Synthetic Balance Data
AMS w/o Synthetic Balance Data 50.25 24.10 99.64% 0.69 0.047 112.20 71.89 94.54% 72.20 40.99 98.09%
AMS (Ours) 48.60 24.48 99.69 % 0.12 0.030 64.03 37.30 99.95% 54.06 29.02 99.78 %
(c) Ablation on Hybrid Rewards
AMS w/ General Rewards Only 49.70 25.41 99.72% 0.39 0.036 65.39 45.98 99.46% 55.31 32.75 99.65%
AMS w/ All Rewards for All Data 54.09 27.30 99.60% 0.31 0.095 71.62 40.56 99.89% 60.32 31.99 99.70%
AMS (Ours) 48.60 24.48 99.69% 0.12 0.030 64.03 37.30 99.95% 54.06 29.02 99.78 %
(d) Ablation on Adaptive Learning
AMS w/o Adaptive Learning (AS+ARS) 78.88 27.74 98.21% 0.09 0.029 87.86 43.21 99.95% 82.11 33.22 98.75%
AMS w/o Adaptive Sampling (AS) 52.92 24.60 98.85% 0.09 0.030 66.51 39.15 99.69% 57.74 29.74 99.14%
AMS w/o Adaptive Reward Shaping (ARS) 74.45 26.86 99.49% 0.13 0.030 89.03 47.27 99.90% 79.76 34.11 99.61%
AMS (Ours) 48.60 24.48 99.69 % 0.12 0.030 64.03 37.30 99.95% 54.06 29.02 99.78 %

TABLE II: Out-of-distribution (OOD) performance com-
parison. Our method achieves the lowest tracking errors
and highest completion rate, showing better generalization to
unseen motions.

Method Tracking Error Completion
Eg-mpipe + Empipe 4 Suce.f
AMS w/o Synthetic Balance Data 86.61 46.43 96.0
OmniH20 [14] w/ All Data 76.26 49.57 99.1
AMS (Ours) 63.48 32.06 99.7

contains substantial dynamic motions. Our hybrid reward
approach provides strong balance guidance while avoiding
these conflicts, delivering improved overall performance by
applying balance-specific rewards exclusively to synthetic
data while preserving dynamic motion agility through general
rewards.

Ablation on Adaptive Learning. We separately evaluate
the two main components of our adaptive learning strategy:
Adaptive Sampling (AS) and Adaptive Reward Shaping
(ARS), as shown in Table I(d). AS adaptively mines hard
samples by automatically prioritizing difficult motions, lead-
ing to improved success rates and tracking performance on
challenging and underrepresented samples. ARS provides
targeted reward adjustments for each individual motion,
significantly reducing tracking errors. When both components
are removed (W/o Adaptive Learning), the performance
degradation is most pronounced, demonstrating that uniform
treatment of all motions fails to address the inherent data
diversity and difficulty distribution.

D. Real-World Deployment

To further address Q3, we deploy our unified policy on
the Unitree G1 humanoid robot, demonstrating execution of

Fig. 4: RGB camera-based real-time teleoperation.

a wide range of motions that span both dynamic and balance-
critical behaviors. As illustrated in Fig. 1, the robot can
execute challenging balancing motions unseen during training,
such as Ip Man’s Squat and single-leg balancing stances,
as well as high-mobility movements and expressive motions
like running and dancing. To further validate generalizability,
we conduct real-time teleoperation with an off-the-shelf
human pose estimation model [44], as shown in Fig. 4. The
poses’ keypoints captured by the RGB camera are scaled to
humanoid sizes for tracking. Though not strictly optimized
like the complex retargeting process, this simple teleportation
still shows robust adaptation to diverse motions.



V. CONCLUSION

In this work, we introduce AMS, the first framework that

successfully unifies dynamic motion tracking and extreme
balance maintenance in a single policy. Through leveraging
heterogeneous data sources, hybrid rewards, and adaptive
learning, our approach enables effective policy training across
diverse motion distributions. Our real-world demonstrations
on the Unitree G1 robot showcase that a single policy can
execute both dynamic motions and robust balance control,
outperforming baseline methods and enabling interactive
teleoperation.
Limitations and Future Work. While our approach shows
promising results, it lacks precise end-effector control, limit-
ing its applicability to manipulation and contact-rich tasks.
Additionally, our RGB-based pose estimation teleoperation
system introduces significant noise in global motion esti-
mation, making agile locomotion operations challenging.
Future work will explore adopting more precise teleoperation
systems, incorporating online retargeting algorithms.
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