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Abstract
We study the computational model where we can
access a matrix A only by computing matrix-
vector products Ax for vectors of the form x =
x1⊗· · ·⊗xq . We prove exponential lower bounds
on the number of queries needed to estimate var-
ious properties, including the trace and the top
eigenvalue of A. Our proofs hold for all adap-
tive algorithms, modulo a mild conditioning as-
sumption on the algorithm’s queries. We further
prove that algorithms whose queries come from a
small alphabet (e.g., xi ∈ {±1}n) cannot test
if A is identically zero with polynomial com-
plexity, despite the fact that a single query using
Gaussian vectors solves the problem with proba-
bility 1. In steep contrast to the non-Kronecker
case, this shows that sketching A with different
distributions of the same subguassian norm can
yield exponentially different query complexities.
Our proofs follow from the observation that ran-
dom vectors with Kronecker structure have expo-
nentially smaller inner products than their non-
Kronecker counterparts.

1. Introduction
Tensors have emerged as a canonical way to represent multi-
modal or very high-dimensional datasets in areas ranging
from quantum information science (Biamonte, 2019) to
medical imaging (Selvan & Dam, 2020; Sedighin, 2024).
Such applications often result in compact representations of
tensors. For instance, applications in quantum information
theory use the so-called PEPS network or other compact
tensor networks, while applications in partial differential
equations often use tucker or tensor train decompositions.
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These applications overcome the curse of dimensionality
by representing an underlying high dimensional linear op-
erator as a network of a series of low dimensional tensors.
Abstractly, in these applications we are given an order 2q
tensor A ∈ (Rn)⊗2q that represents a linear operator from
(Rn)⊗q to (Rn)⊗q, and we often want to approximately
compute some properties of this linear operator, such as its
trace or spectral norm.

By appropriately reordering the entries of A, we can explic-
itly write down a matrix A ∈ Rnq×nq

that describes this
linear operator. Our goal then becomes to estimate the trace,
spectral sum, operator norm, or some other property of A.
However, since we may not know the structure of the un-
derlying compact representation, we would like to estimate
properties of A without explicitly forming A, as doing so
would break our compact representation of A. Instead we
take advantage of our compact representation to efficiently
and implicitly access A through linear measurements, such
as the Kronecker matrix vector product:

Definition 1. Let A ∈ Rnq×nq

. Then Kronecker Matrix-
Vector Product Oracle is an oracle that, given x1, . . . ,xq ∈
Rn, returns Ax ∈ Rnq

where x = ⊗qi=1xi. Here, ⊗ de-
notes the Kronecker product.

For many different compact representations of A, it is pos-
sible to compute some compact representation of the Kro-
necker matrix-vector product Ax efficiently (Lee & Ci-
chocki, 2014; Feldman et al., 2022). This is done in many
algorithms and can go by different names, such as Khatri-
Rao sketching or rank-one measurements. However, these
algorithms tend to make strong assumptions about the struc-
ture of A in order to achieve a polynomial runtime (Al Daas
et al., 2023; Li et al., 2017) or obtain a worst-case runtime
that is exponential in q (Meyer & Avron, 2023; Avron et al.,
2014; Song et al., 2019b). It has been unclear whether this
exponential cost is unavoidable and what structure in A
leads to this expensive runtime. In this paper, we address
this question by demonstrating explicit constructions of A
that elicit these lower bounds.

Algorithms for fast tensor computations are well studied.
There is a large number of randomized algorithms that pro-
vide strong approximation guarantees to a tensor and are
very efficient. Although not all in the Kronecker matrix-
vector model, many such applications involve making linear
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measurements with a rank-one tensor, for which our tech-
niques may apply. Further, there is a body of work on lower
bounds for tensor algorithms. This work often focuses on
complexity classes, for instance showing that computing the
spectral norm of A is NP-Hard. However, it is not clear
how this relates to the number of Kronecker matrix-vector
products it takes to estimate a property of A, which is the
focus of our paper. Relatively little research focuses on
query complexity lower bounds for tensor computations.

In this paper, we leverage a novel observation about the
orthogonality of random Kronecker-structured vectors in
order to prove exponential lower bounds on the number of
Kronecker matrix-vector products needed to approximately
compute properties of A. We show that any algorithm which
can estimate the trace or spectral norm of A to even low
accuracy must use a number of Kronecker matrix-vector
products that is exponential in q, modulo a mild assumption
on the conditioning of the algorithm:

Theorem 2 (Informal version of Theorem 6). Any “well-
conditioned” algorithm must compute t ≥ Cq Kronecker
matrix-vector products with A to return an estimate z ∈
(1± 1

2 )λ1(A) with probability at least 2
3 .

Theorem 3 (Informal version of Theorem 7). Any “well-
conditioned” algorithm must compute t ≥ Cq Kronecker
vector-matrix-vector products with A to return an estimate
z ∈ (1± 1

2 ) tr(A) with probability at least 2
3 .

This explains why methods such as Kronecker JL and Kro-
necker Hutchinson require exponential sketching dimension
as observed by several prior works (Meyer & Avron, 2023;
Ahle & Knudsen, 2019). Phrased another way, this analy-
sis explains why the Kronecker matrix-vector complexity
of linear algebra problems is exponentially higher than the
classical (non-Kronecker) matrix-vector complexity.

Our core orthogonality observation also implies another gap
between Kronecker and non-Kronecker matrix-vector com-
plexities. We show that for the zero testing problem, there
is an exponential gap between sketching with the Kronecker
product of Gaussian vectors versus Rademacher vectors. It
suffices to using a single query with the Kronecker of Gaus-
sian vectors to test if A is zero, but it takes Θ(2q) queries
with Rademacher vectors.

Theorem 4 (Special case of Theorem 18). For any Kro-
necker matrix-vector algorithm whose query vectors v =
⊗qi=1vi are built from the Rademacher alphabet vi ∈
{±1}n, it is necessary and sufficient to use Θ(2q) to test if
A = 0 or if A ̸= 0.

The difference between using “small alphabets” (e.g.,
Rademacher vectors) and “large alphabets” (e.g., Gaus-
sian vectors) almost never asymptotically matters in the
non-Kronecker case, where we expect that all algorithms
that use subgaussian variables achieve the same asymptotic

performance. In contrast, we demonstrate that having sub-
gaussianity does not suffice to understand the complexity of
Kronecker matrix-vector algorithms. Analogously, we show
that there can also be a gap between using complex-valued
and real-valued queries, which again does not typically mat-
ter in the non-Kronecker case. As a byproduct of our analy-
sis, we prove that an algorithm of (Meyer & Avron, 2023)
has a near-optimal sample complexity for trace estimation.

Broadly, our analysis reveals new insights on the fundamen-
tal complexity of linear algebra in the Kronecker matrix-
vector model. We show that basic linear algebra tasks must
incur an exponential sample complexity in the worst case.
So, if we wish to have faster algorithms then we need to
assume that A has some structure that avoids the worst-
case structure imposed by these lower bounds. Further, we
show that when designing randomized algorithms for the
Kronecker matrix-vector model, it is important to examine
our base random variables more closely that we may in the
non-Kronecker case, as the choice of two similar variables
like Rademachers and Gaussians may incur an additional
exponential cost.

The rest of the paper is structured as follows: we first dis-
cuss related work. In Section 2 we introduce notation. In
Section 3 we explain our theorem statements in more detail.
In Section 4 we prove our lower bounds on trace estima-
tion and spectral norm approximation against all Kronecker
matrix-vector algorithms. In Section 5 we prove our lower
bounds against small alphabet algorithms for the zero testing
problem.

1.1. Related Work

Tensors have a long history of study in the sketching liter-
ature, particularly for the problem of ℓ2 norm estimation
(Ahle et al., 2020; Ahle & Knudsen, 2019; Pham & Pagh,
2013). Previously (Ahle & Knudsen, 2019) observed that a
Kronecker-structure ℓ2 embedding cannot work with fewer
than exponential measurements in the number of modes.
This is why (Ahle & Knudsen, 2019) require a more compli-
cated sketch to construct their embeddings for high-mode
tensors. However it does not appear to be known whether a
Kronecker-structured sketch could work for ℓ2 estimation,
using a subexponential number of measurements, if one
drops the requirement that the sketch be an embedding. Our
work partially resolves this by showing that any such sketch-
ing matrix must be extremely poorly conditioned. There is
also a large body of work on sketching Tucker, tensor train,
tree networks, and general tensor networks, see, e.g., (Song
et al., 2019a; Mahankali et al., 2024) and the references
therein.
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2. Preliminaries
We use capital bold letters (A,B,C,...) to denote matrices,
lowercase bold letters to denote vectors (a,b,c,...), and low-
ercase non-bold letters to denote scalars (a,b,c,...). R is the
set of reals, C is the set of complex numbers, and N is the set
of natural numbers. We will let A denote an algorithm. x⊺

denotes the transpose and xH denotes the conjugate trans-
pose. We use bracket notation [a]i to denote the ith entry of
a and [A]i,j to denote the (i, j) entry of A. ∥a∥2 denotes
the L2 norm of a vector. ⊗ denotes the Kronecker product.
tr(A) is the trace of a matrix. We let [n] = {1, . . . , n}
be the set of integers from 1 to n. For probability distri-
butions P and Q on space (Ω,F), DTV (P,Q) is the total
variation distance between P and Q, and DKL(P ∥Q) is the
Kullback-Liebler divergence. We will let L ⊆ C denote an
alphabet.

3. Technical Overview
In this section, we state our core technical results more
precisely and discuss their context while delaying their proof
details to later in the paper. We start with the discussion
of lower bounds against not ill-conditioned algorithms for
trace estimation and spectral norm computation. Then, we
go into the discussion of zero testing and the insufficiency
of subgaussianity to understand Kronecker matrix-vector
complexity.

3.1. Lower Bounds on Trace and Spectral Norm
Estimation

In this section we formally state Theorem 2 and Theorem 3,
our lower bounds against approximating the trace and the
spectral norm of a matrix. Both lower bounds hold against
algorithms that are not ill-conditioned. So, we first take a
moment to formalize this conditioning:

Definition 5. Fix a matrix-vector algorithm Algo. For
any input matrix A, let v(1), . . . ,v(t) be the matrix-vector
queries computed by Algo, and let V := [v(1) · · · v(t)] ∈
Rnq×t be the matrix formed by concatenating these vectors.
If we know that for all inputs A we have that the condi-
tion number of V is at most κ, then we say that Algo is
κ−conditioned.

We prove lower bounds against Kronecker matrix-vector
algorithms that are κ−conditioned. We will momentarily
discuss how mild this conditioning assumption is. First, we
state our formal results:

Theorem 6. Any κ−conditioned Kronecker matrix-vector
algorithm that can estimate the spectral norm of any
symmetric matrix A to multiplicative less than error
C
q/2
τ with probability at least 2

3 must use at least t =

Ω(min{Cq/20 ,
Cq/2

τ

κ2 }) Kronecker matrix-vector products.

Theorem 7. Any κ−conditioned Kronecker vector-matrix-
vector algorithm that can estimate the trace of any PSD
matrix A to relative error (1± ε) with probability at least
2
3 must use at least t = Ω(min{Cq/20 ,

Cq/2
τ

κ2
√
ε
}) Kronecker

matrix-vector products.

Here, Cτ and C0 are constants greater than 1 which are
specified in Lemma 8. Notice that the first result is against
matrix-vector methods where we can compute Ax, while
the second is against vector-matrix-vector methods where
we can compute x⊺Ax. The proofs for these results both fol-
low from strong orthogonality between random Kronecker
structured vectors. Formally, we rely on the following ob-
servation:

Lemma 8. Let u = u1 ⊗ · · · ⊗ uq where ui is a uniformly
random unit vector in Rn. Then, for any v = v1 ⊗ · · ·vq
where each vi is an arbitrary unit vector in Rn, we have
that

Pr
[
⟨u,v⟩2 ≥ C−q

τ

nq

]
≤ C−q

0

For some universal constants Cτ , C0 > 1.

We prove Lemma 8 in Appendix A. What makes Lemma 8
unique is the rate of C−q

τ inside the probability. This
is because for a uniformly random unit vector a ∈ Rnq

and arbitrary unit vector b ∈ Rnq

, we instead expect
that ⟨a,b⟩2 ≈ 1

nq . So, in contrast, Lemma 8 shows
an exponentially smaller inner product between random
Kronecker-structured vectors. We will momentarily explain
how Lemma 8 translates into the lower bounds of Theo-
rems 6 and 7, but first we take a moment to discuss the
strength of the conditioning assumption.

To understand the weight of this conditioning assumption,
we take a moment to examine some of the most common
Kronecker matrix-vector algorithms: Khatri-Rao Sketches.
A Khatri-Rao Sketch is a non-adaptive Kronecker matrix-
vector product and typically takes each query vector to be
the Kronecker product of q iid copies of some subgaussian
vector. That is, v(i) = ⊗qj=1v

(i)
j where v

(i)
j ∼ D for some

isotropic distribution D. For instance, Kronecker JL and
Kronecker Hutchinson use Khatri-Rao Sketching (Jin et al.,
2021; Sun et al., 2021; Feldman et al., 2022; Bujanovic &
Kressner, 2021; Meyer & Avron, 2023; Lam et al., 2024). In
these cases, we should expect V = [v(1) · · · v(t)] to be ex-
tremely well conditioned. This is because the inner products
between the query vectors tensorizes as in Lemma 8:

⟨v(1),v(2)⟩ =
q∏
i=1

⟨v(1)
i ,v

(2)
i ⟩

If the sketching vectors come from a continuous random
distribution, then Lemma 8 tells us that these vectors have
exponentially small inner product. If the sketching vectors
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instead come from a discrete random distribution, then The-
orem 18 in Section 5 shows that the inner product will be
exactly zero with very high probability. Either way, the
matrix V has nearly orthogonal columns with very high
probability, in turn implying that the condition number of V
is at most O(1) with very high probability. So, any Khatri-
Rao sketching method must incur the exponential lower
bounds in Theorems 6 and 7. More broadly, we are not
aware of any Kronecker matrix-vector algorithm that whose
condition number is exponential in q, which is the degree of
ill-conditioning required to avoid incurring the exponential
lower bound.

3.2. Zero Testing

Consider the following very simple problem:

Problem 9. Let A ∈ Rnq×nq

be a matrix. Using only
matrix-vector products with A, decide if A = 0 or if A ̸= 0.
Be correct with probability at least 2

3 .

When we are allowed to use classical (non-Kronecker)
matrix-vector products, then we can solve Problem 9 with
a single Gaussian query with probability 1. The same
holds in the Kronecker matrix-vector case: if we let v =
g1 ⊗ · · ·⊗gq where gi ∼ N (0, I) then Av ̸= 0 with prob-
ability one if A ̸= 0. This is a direct consequence of the
kernel of any nonzero matrix being a set of measure zero.

This low query complexity remains true in the classical (non-
Kronecker) case if we restrict ourselves to use Rademacher
vectors. More formally, if we only allow ourselves to com-
pute Ax for vectors x ∈ {±1}nq

, then using O(1) matrix-
vector products suffices to solve Problem 9. This follows
from many possible results, including applying Hutchin-
son’s estimator to A⊺A to estimate ∥A∥2F to constant factor
accuracy with O(1) queries (Meyer & Avron, 2023).

This story is ubiquitous in matrix-vector complexity – chang-
ing the base distribution we sample with from any subgaus-
sian distribution to any other subgaussian distribution (e.g.
from Gaussian to Rademacher) does not change this asymp-
totic complexity of solving linear algebra problems (Saibaba
& Mikedlar, 2025; Meyer et al., 2021).

We now show that this story fails to hold true in the Kro-
necker matrix-vector setting:

Theorem 10. Consider any Kronecker matrix-vector algo-
rithm that only computes product using query vectors of the
form v = v1 ⊗ · · · ⊗ vq where vi ∈ {±1}n. Then, this
algorithm needs Θ(2q) queries to solve Problem 9.

Not only does building queries with the Kronecker product
of Rademacher entries not suffice, but no algorithm that uses
{±1} entries can efficiently test if a matrix is zero. This
steeply violates the story we would expect to hold from the
classical (non-Kronecker) case. We prove a generalization

of this results in Theorem 18 of Section 5, where we only
allow the entries of vectors to belong to a fixed alphabet
L ⊂ R. For large enough n, we show that (1 − Θ( 1

|L| ))
q

queries are necessary and sufficient to solve the zero-testing
problem. In other words, we must pay a cost that is ex-
ponential in q unless |L| = Ω(q). Broadly this tell us the
following:

Knowing that a random vector is subgaussian does not
suffice to tightly bound the query complexity of the

Kronecker matrix-vector algorithm using that variable.

We also note that any algorithm that can estimate the trace
of a PSD matrix to relative error O(1) can be used to solve
Problem 9. In particular, it is worth comparing Theorem 10
to Table 1 from (Meyer & Avron, 2023). (Meyer & Avron,
2023) show an algorithm that uses the Kronecker product of
Rademacher vectors to estimate the trace of a PSD matrix
to constant factor error using O(2q) queries when n = 2.
They also show that the same algorithm run with uniformly
random unit vectors instead of Rademacher vectors achieves
the same result in just O(1.5q) queries.

We can therefore conclude from Theorem 10 that the op-
timal query complexity of any algorithm that solves trace
estimation while using the {±1} alphabet is therefore Θ(2q)
when n = 2. Since we know that O(1.5q) is possible with
continuous variables, we prove for the first time that the
task of trace estimation cannot be solved with optimal query
complexity using Rademacher vectors.

Again, this reinforces how the choice of base subgaussian
distribution can exponentially change our final sample com-
plexity. The core of the proofs here also rely on orthogonal-
ity. We show that with overwhelming probability, random
Kronecker-structured vectors built from a small alphabet are
almost surely perfectly orthogonal:

Lemma 11. There exists a distribution over random vectors
u ∈ Rnq

such that every fixed vector v = v1 ⊗ · · · ⊗ vq
with vi ∈ {±1}n has ⟨u,v⟩ = 0 with probability at least
1− 1

2q .

Again, we prove this result in broader generality in Section 5,
with respect to an arbitrary alphabet.

We also take a moment to reflect further on another observa-
tion from (Meyer & Avron, 2023): the complex Kronecker
matrix-vector oracle is different from the real Kronecker
matrix-vector oracle. That is, if we allow v = ⊗qi=1vi
where vi ∈ Cn, this model is more expressive than the
real-valued Kronecker matrix-vector model. In particular, it
takes up to 2q real-valued Kronecker matrix-vector products
to simulate computing a single complex Kronecker matrix-
vector product. We also analyze the complex case for the
zero-testing problem, and show that zero testing with the
{±1,±i} alphabet requires Ω(1.25q) queries, establishing
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that this is easier than the zero testing in the real {±1} alpha-
bet. However, this difference in base of exponent between
2q and 1.25q may also be attributed to the difference in the
size of the alphabet, and so it remains unclear how to make
an apples-to-apples comparison of the real and complex
models and show that the complex model is fundamentally
more query efficient.

4. Proving Theorem 6 and Theorem 7
In this section, we outline the proof techniques for Theo-
rem 6 and Theorem 7. Both lower bounds rely on Lemma 8
as a starting point, as we can plant a very large random
Kronecker-structured vector on some Gaussian data. Since
the inner product between our queries v ∈ Rnq

and the
planted vector u ∈ Rnq

is tiny, our queries cannot reli-
ably identify the planted structure u. More specifically, the
noise from the Gaussian data hides the impact of the inner
product between v and u on our queries. In the following
subsections, we formalize this idea.

More broadly, our proofs hold against adaptive algorithms.
That is, the algorithm is allowed to use previous responses
from the oracle to decide what query to compute next. We
handle adaptivity by generalizing the proof techniques in
(Simchowitz et al., 2017), who propose an information-
theoretic structure to lower bound the number of matrix-
vector products needed to solve certain linear algebra prob-
lems. In Appendix D, we generalize their techniques in
order to give lower bounds against arbitrary constrained
matrix-vector models. For instance, while we constrain
ourselves to use Kronecker-structured matrix-vector prod-
ucts, we could instead analyze sparse query vectors instead
though this model. We leave the broader implications of
this generalized lower bound as future work.

4.1. Proof Sketch of Trace Estimation Lower Bound

We now outline the proof of Theorem 7. We start by invok-
ing a related but different query complexity problem in a
related but different computational model.
Definition 12. Fix a vector a ∈ Rnq

. The Kronecker-
Structured Linear Measurement Oracle for a is the oracle
that, given any vectors v1, . . . ,vq ∈ Rn, returns the inner
product ⟨a,x1 ⊗ · · · ⊗ xq⟩ ∈ R.

(x1, · · · ,xk)
input
====⇒ ORACLE

output
====⇒ ⟨a,x1⊗· · ·⊗xq⟩

Theorem 13. Any κ−conditioned Kronecker-Structured
Linear Measurement algorithm that can estimate the
squared L2 norm ∥a∥22 to relative error (1± ε) with proba-

bility 2
3 must use at least t = Ω(min{Cq/20 ,

Cq/2
τ

κ2
√
ε
}) queries.

First note that Theorem 13 suffices to prove Theorem 7. This
is because any vector-matrix-vector trace estimation method

can be used to construct a linear measurement algorithm.
That is, suppose that some vector-matrix-vector algorithm
can estimate the trace of any PSD matrix A ∈ Rnq×nq

with
probability 2

3 using t queries. We can then fix the input
matrix A = aa⊺, where a is the vector as in Theorem 13.
Then, a vector-matrix-vector product with A is v⊺Av =
⟨v,a⟩2, which is the square of a linear measurement with
a. Further, tr(A) = tr(aa⊺) = ∥a∥22. So, we must have
that the number of vector-matrix-vector queries made by
A cannot violate the linear measurement lower bound in
Theorem 13.

So, our goal is now to prove Theorem 13. The crux of the
proof is to use Lemma 8 to show that no Kronecker matrix-
vector method can distinguish between linear measurements
between two vectors:

Problem 14. Fix n, q ∈ N and λ = 6
√
ε. Let g ∈ Rnq

be
a N (0, I) vector, and let u = u1 ⊗ · · · ⊗ uq where each
ui ∈ Rn is distributed uniformly on the set of vectors with
∥ui∥22 = n. Further, let

a0 := g and a1 := g + λu.

Suppose that nature samples i ∈ {0, 1} uniformly at ran-
dom. An algorithm then computes t linear measurements
with a := ai and has to guess if a = a0 or a = a1.

In Appendix B we formally prove the exponential lower
bound against Problem 14 as stated in Theorem 13. We do
take a moment to sketch the proof here though.

Consider a non-adaptive Kronecker-structured linear mea-
surement algorithm for Problem 14. If a method is non-
adaptive, then we can think of it as a method that picks a
matrix V with Kronecker-structured columns and computes
V⊺a = [⟨v(1),a⟩ · · · ⟨v(t),a⟩]. So, to prove our lower
bound against non-adaptive algorithms, we need to show
that for all V with t Kronecker-structured columns and con-
dition number at most κ, it is not possible to distinguish
w0 := V⊺a0 from w1 := V⊺a1.

We start by examining these two distributions. Because g is
Gaussian, we know that w0 ∼ N (0,V⊺V). Similarly, for
a fixed value of u, we know that w1 ∼ N (λV⊺u,V⊺V).
These two distributions differ only in their means and share
the same covariance matrix. In particular, we can easily
bound the KL Divergence between w0 and w1 for a fixed
value of u:

DKL(w0∥w1|u) =
λ2

2
u⊺V(V⊺V)−1V⊺u. (1)

This follows from the KL divergence between N (µ,Σ)
and N (0,Σ) being exactly 1

2µ
⊺Σ−1µ. We can then use

a union bound with Lemma 8 to say that ∥V⊺u∥22 =∑t
i=1⟨v(i),u⟩2 ≤ tC−q

τ with probability at least 1− tC−q
0 .
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So, we can bound

DKL(w0∥w1|u) =
λ2

2
u⊺V(V⊺V)−1V⊺u

≤ λ2

2
∥V⊺u∥22 ∥(V

⊺V)−1∥2

≤ λ2

2
(tC−q

τ )κ2

where the last line uses that we can take the columns of V
to be unit vectors without loss of generality, so that

∥(V⊺V)−1∥2 =
1

σmin(V)2
≤ σmax(V)2

σmin(V)2
≤ κ2.

By Pinsker’s Inequality and the Neyman-Pearson Lemma
(Csiszár & Körner, 2011; Neyman & Pearson, 1933), we
know that w0 and w1 cannot be distinguished with prob-
ability 2

3 so long as their KL divergence is at most O(1),
which happens when t = O(

Cq
τ

κ2λ2 ) = O(
Cq

τ

κ2ε ). Mixed with
the requirement that our union bound earlier hold with high
probability, we also require that t = O(Cq0). This yields
our overall lower bound, showing that w0 and w1 cannot
be distinguished when both t = O(Cq0) and t = O(

Cq
τ

κ2ε ),
completing the lower bound.

We note the above lower bound holds only against non-
adaptive algorithms. In Appendix B, we adapt a proof strat-
egy from (Simchowitz et al., 2017) to show that adaptiv-
ity cannot help much. That proof is much more involved,
and the fundamental intuitions unique to our method are
well captured by the analysis above. In brief, the proof
against adaptive methods shows that at every point of time
i ∈ [t], the algorithm does not suddenly learn new informa-
tion about the direction of u, owing to Lemma 8. This anal-
ysis gives us the benefit of proving a lower bound against
adaptive methods, but comes with the downside of having
slightly worse rates, giving t = Ω(min{Cq/20 ,

Cq/2
τ

κ2
√
ε
} in the

adaptive case as opposed to t = Ω(min{Cq0 ,
Cq

τ

κ2ε} in the
non-adaptive one.

4.2. Proof Sketch of Spectral Norm Estimation Lower
Bound

In this section, we outline the proof of Theorem 6. We
follow the proof strategy in (Simchowitz et al., 2017) again
here. In (Simchowitz et al., 2017), the authors show lower
bounds against distinguishing between two matrices from
matrix-vector products. Specifically, they let G ∈ RD×D

be a matrix with iid N (0, 1) entries and let u ∈ RD be a
random unit vector in RD. They show that distinguishing
between

A0 =
G+G⊺

√
2D

and A1 =
G+G⊺

√
2D

+ λuu⊺

requires computing at least t = Ω( log(D)
log(λ) ) classical (non-

Kronecker) matrix-vector products. We take D = nq. We
abstract out their analysis in Appendix D, allowing us to
pick a different distribution over unit vectors u and restrict-
ing the set of matrix-vector query vectors to be Kronecker-
structured. Fundamentally, by taking u to instead be the
Kronecker product of iid unit vectors in Rn, we can against
take advantage of Lemma 8 much like in trace estimation
lower bound of Section 4.1. Intuitively, we again have that
the inner products between our query vectors and the planted
random vector are exponentially small, and therefore at ev-
ery time step i ∈ [t] of the algorithm, it is exceedingly
unlikely that the matrix-vector algorithm suddenly goes
from having small inner product with u to having a large
inner product with u.

Formally, we prove the following distinguishing lower
bound:
Theorem 15. Consider the problem using Kronecker matrix-
vector products to test if A = A0 or A = A1 as shown
above, where u = u1 ⊗ · · · ⊗ uq for iid uniformly ran-
dom unit vectors ui ∈ Rn. Then, any κ−conditioned
Kronecker matrix-vector algorithm needs at least t =

Ω(min{Cq/20 ,
Cq

τ

λ2κ2 }) queries to correctly identify A with
probability 2

3 .

We prove Theorem 15 in Appendix C. The key payoff from
this testing lower bound comes from comparing the spectral
norms of A0 and A1. The spectral norm of A0 is at most
O(1) while the spectral norm of A1 is Ω(λ) for large λ. In
particular, if we take λ = C

q/2
τ then we get the following

lower bound:
Corollary 16. There exists a number C > 1 such that any
κ-conditioned Kronecker matrix-vector algorithm that can
determine if ∥A∥2 ≤ 3 or ∥A∥2 ≥ Cq with probability at
least 2

3 must use at least t = Ω(C
q/2
0 , C

q

κ2 ) queries.

This means that even computing an overwhelmingly coarse
approximation to the spectral norm of a matrix must incur
an exponential query complexity. This corollary directly
implies Theorem 6.

5. Zero Testing
In this section, we consider the zero-testing problem with
Kronecker measurements. That is, we suppose that we
have a nonzero tensor A ∈ (Rn)⊗q. How many Kronecker
structured measurements of the form v1 ⊗ . . .⊗ vq do we
need to show that A is nonzero?

As it turns out, the most difficult case for zero-testing is
when A itself has Kronecker structure. When we can write
A = a1 ⊗ . . . ⊗ aq, then each measurement of A gives
a result of the form

∏
i(v

⊺
i ai), which is 0 as long as at

least one of the terms in the product is 0. This suggests

6
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that we should first study the zero-testing problem in the
non-Kronecker setting.

Here, we make the additional assumption that the entries of
each ai come from a fixed “alphabet” that we call L ⊆ C.
This assumption may seem strange at first, but one motiva-
tion is that in the non-Kronecker setting, trace estimators
such as Hutchinson typically only require that one sketch
using Rademacher random vectors. If one attempts to use a
Kronecker product of Rademacher vectors, then trace esti-
mation turns out to require a number of measurements that
is exponential in q. The zero-testing problem gives a sim-
pler setting in which to observe this exponential dependence.
Indeed the reason is quite similar to our norm-estimation
results – Kronecker products of Rademacher can be orthog-
onal to a fixed tensor with high probability, just as how
Kronecker products of Gaussians are typically very nearly
orthogonal to one another.

To set up some notation, suppose we have a tensor A ∈
(Rn)⊗q. For v ∈ Rn say that the measurement of A along
mode i by v is the tensor in (Rn)⊗q−1 that results from
taking the inner product of v against each of the mode i
fibers. We use the notation A ×i v. This is the Modal
Product as defined in (Golub & Van Loan, 2013).

The following definitions will be useful for writing our upper
and lower bounds with respect to given alphabets.

Definition 17. For a given alphabet L, and a field F, either
R or C, let

PF(L, n) = min
D

max
u∈Ln

Pr
v∼D

[v⊺u ̸= 0],

where D ranges over all probability distributions on the
nonzero vectors in Fn. When F is not specified, we assume
that F = R.

Similarly, we define

QF(Σ, n) = max
DL

min
v∈Fn

Pr
u∼DL

[v⊺u ̸= 0],

where DL ranges over distributions on Ln.

Intuitively, P captures highest success probability that we
can achieve for zero-testing on the hardest input distribution.
So upper-bounding P can be used to give a zero-testing
lower bound.

Similarly a lower bound on Q shows that there is a distribu-
tion over measurements that has good success probability
of giving a nonzero measurement on all inputs. So a lower
bound on Q can be used to give an upper bound for the
zero-testing problem.

Theorem 18. We have the following.

1. P ({−1, 1}, 2) ≤ 1
2

2. For an arbitrary finite alphabet L, P (L, n) ≤ 1 −
1
|L|

n−|L|
n−1

3. For an arbitrary finite alphabet L, Q(L, n) ≥ 1− 1
|L|

4. PC({−1, 1, i,−i}, 2) = QC({−1, 1, i,−i}, 2) = 3/4

Proof. 1. Choose D to be uniform over {(1, 1), (1,−1)}.
Then any vector u in {−1, 1}2 has dot product 0
with one element of {(1, 1), (1,−1)}. So if v is uni-
form from {(1, 1), (1,−1)}, then with probability 1/2,
v⊺u = 0.

2. Choose D to be the uniform distribution over vectors
of support size 2 whose first nonzero value is 1 and
whose second nonzero value is −1. Let v be drawn
from D and let i, j be the coordinates of its support.
Now suppose that u has entries in L. Then v⊺u = 0
precisely when [u]i = [u]j .

For each k ∈ L, let nk denote the number of entries of
u that take value k. The probability that [u]i = [u]j is
then(

n

2

)−1
((

n1
2

)
+

(
n2
2

)
+ . . .+

(
nL
2

))
.

We can bound this sum as

|L|∑
i=1

(
ni
2

)
=

1

2

|L|∑
i=1

(n2i − ni)

=
1

2
(

|L|∑
i=1

n2i − n) ≥ 1

2
(
n2

|L|
− n).

In the last line we used the bound
∑|L|
i=1 n

2
i ≥

1
|L|

(∑|L|
i=1 ni

)2
, which is a special case of Cauchy-

Schwarz. It follows that

Pr([u]i = [u]j) ≥
1

|L|
n− |L|
n− 1

.

3. Choose DL to to have i.i.d. entries over L and let u be
drawn from DL Let i be the first nonzero coordinate
of v. Conditioned on all coordinates of u except i, the
value of v⊺u is uniform over a set of size |L|. Therfore
v⊺u is 0 with probability at most 1

|L| .

4. To bound PC , choose the distribution D to be uniform
over {(1, 1), (1,−1)(1, i), (1,−i)}. Now observe that
any two-dimensional vector with entries in {±1,±i}
is orthogonal to one of these four vectors. So PC ≤ 3

4 .

Similarly, for QC we choose our measure-
ment distribution DL to be uniform over

7
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{(1, 1), (1,−1)(1, i), (1,−i)}. These vectors are
pairwise linearly independent, so any fixed u is
orthogonal to at most one of them. Thus QC ≥ 3/4.

The following gives a general lower bound for the zero-
testing problem via Kronecker measurements. The idea
is effectively to boost the analogous lower bound for non-
Kronecker-structured measurements. We also give a corre-
sponding upper bound that works by reducing to the analo-
gous upper bound for non-Kronecker-structured measure-
ments inductively along each mode.
Theorem 19. (i) Zero-testing of an arbitrary vector v ∈

(Rn)⊗q with 2
3 success probability, using Kronecker

structured measurements in (Ln)⊗q requires at least
2
3Ω(PF(L, n)−q) measurements.

(ii) Suppose that L ⊆ F. There is a zero-tester using
Kronecker-structured measurements over the alpha-
bet Σ, that succeeds with 2

3 probability and uses
2QF(L, n)−q measurements.

Proof. For the lower bound, let D be the distribution that
achieves the minimum in the definition of p(L, n). Let
v1, . . . ,vq be drawn independently from D. Let x1, . . . ,xq
be arbitrary fixed vectors in Ln. Then we have

(x1 ⊗ . . .⊗ xq)
⊺(v1 ⊗ . . .⊗ vq) = (x⊺

1v1) . . . (x
⊺
qvq).

Note that x⊺
i vi ̸= 0 with probability at most p(L, n). Each

of the terms x⊺
i vi is independent, and so the probability that

the product is nonzero is at most p(L, n)q.

Suppose that an algorithm makes m Kronecker-structured
measurements. Then by a union bound, the probability
that at least one of the measurements is nonzero is at most
mp(L, n)q. The claim follows.

For the upper bound, choose our measurement vectors to be
of the form u1 ⊗ . . .⊗ uq where the ui’s are i.i.d. from the
distribution DL. Then for a nonzero tensor A have〈

A,u1 ⊗ . . .⊗ uq
〉
= A×1 u1 ×2 u2 . . .×q uq.

Since A is nonzero, A has some nonzero fiber along mode
1, and therefore A×1u1 is nonzero with probability at least
QF(L, n). Continuing inductively, the measurement above
is nonzero with probability at least QF(L, n)q. Given m
measurements of this form, the probability that all of them
are 0 is at most

(1−QF(L, n)q)m ≤ exp(−mQF(L, n)q),

which is at most 1/4 for m ≥ 2QF(L, n)−q.

Lemma 20. An algorithm that performs constant-factor
trace estimation requires at least 2

3PF(L, n)−q Kronecker-
structured vector-matrix-vector queries.

Proof. Let x1, . . . ,xq be drawn from the distribution D in
the definition of PF(L, n). Set x = x1 ⊗ . . .⊗xq . Take our
matrix A to be xx⊺.

Suppose that we make t measurements of the form Av(i),
where v(i) for i ∈ [t] has Kronecker structure and uses
the alphabet L. The result of the measurement is nonzero
precisely when x⊺v(i) ̸= 0. The probability that this is
nonzero is exactly (PF(L, n))q. By a union bound, the
probability that at least one of the matrix-vector products
is nonzero is at most t(PF(L, n))q. On the other hand, a
constant factor trace estimator must distinguish A from the
0 matrix with probability 2

3 , so we need t(PF(L, n))q ≥ 2
3 .

from which the claim follows.

Combining the previous results give the following bounds
for zero-testing.

Corollary 21. Zero testing for a tensor in (Rn)⊗q with
success probability 2

3

1. requires at least Ω(2q) measurements over the alpha-
bet {−1, 1} when n = 2.

2. Requires at least Ω((1− 1
|L|

n−|L|
n−1 )q) for an arbitrary

alphabet L.

For zero testing for a tensor in (Cn)⊗q, it is necessary and
sufficient to use Θ((4/3)q) measurements for the alphabet
{−1, 1, i,−i} when n = 2.

Proof. Combine Theorem 18 with Theorem 19.

We obtain a similar corollary for trace estimation.

Corollary 22. Constant-factor trace estimation of a real
PSD matrix requires Ω(2q) measurements when n = 2
and when using Rademacher Kronecker-structured matrix-
vector queries, i.e. with vectors in ({−1, 1}2)⊗q.

Constant-factor trace estimation of a complex PSD matrix
requires Ω((4/3)q) measurements when n = 2 and when
using complex Rademacher Kronecker-structured matrix-
vector queries, i.e. with vectors in ({−1, 1, i,−i}2)⊗q.

Proof. Combine Corollary 21 with Lemma 20.

6. Conclusion
We addressed several fundamental linear algebraic problems
in the Kronecker matrix-vector query model. A number of
interesting questions remain. Some of Our lower bounds
have a dependence on the condition number of the mea-
surement matrix. Is this dependence necessary? This is
open even in the case of non-adaptive measurements. Rigor-
ously, we know that proving the following corollary would

8
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suffice to remove the conditioning assumption in both the
non-adaptive and adaptive cases:
Conjecture 23. Let u = u1 ⊗ · · · ⊗ uq where each
ui is a uniformly random unit vector in Rn. Let V =
[v(1) · · · v(t)] where each v(i) is an arbitrary (non-random)
Kronecker-structured vector. Let P be the orthogonal pro-
jection onto the range of V. Then, so long as t ≤ poly(n, q),
we have that

∥Pu∥22 ≤ c−q1

nq
with probability at least 1− c−q2

for some c1, c2 > 1.

The above conjecture is a direct generalization of Lemma 8.
To see this, note that taking t = 1 in Conjecture 23 exactly
recovers Lemma 8.

In the case that Conjecture 23 does not hold, this suggests
that a ill-conditioned might be efficient in the Kronecker
matrix-vector model. Namely, does there exist a Khatri-Rao
sketching matrix that allows for ℓ2 norm estimation (and is
extremely poorly conditioned)? It would also be interesting
to obtain tight bounds for trace estimation in the Kronecker
matrix-vector model. Lower bounds for Hutchinson-style
estimators are known, but could there be better estimators,
perhaps analogous to the Hutch++ (Meyer et al., 2021) al-
gorithm?
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A. Near-Total Orthogonality with Real Vectors
In this section, we prove Lemma 8 and related concentrations and lemmas that characterize the near-total orthogonality of
the Kronecker product of random unit vectors with respect to otehr Kronecker-structured vectors. We conclude with a short
lemma showing how conditioning relates to projections of Kronecker-structured vectors.

Lemma 24. Let X be disitributed as the first entry of a uniformly random vector in
√
nSn. Let Y = log |X|. Then Y is

subexponential with subexponential norm ∥Y ∥ψ1
≤ O(1).

Proof. Recall that the β( 12 ,
n−1
2 ) distribution has pdf given by

Γ(n/2)

Γ(1/2)Γ((n− 1)/2)
x−1/2(1− x)(n−3)/2 := f(x)

on the interval [0, 1], and that 1√
n
|X| is distributed as the square root of a β(1/2, n−1

2 ) random variable.

By the change of variables formula, the pdf of 1√
n
|X| is given by

f(x2) · d
dx
x2 = 2

Γ(n/2)

Γ(1/2)Γ((n− 1)/2)
(1− x)(n−3)/2,

which is is uniformly bounded by C
√
n on [0, 1/2] for an absolute constant C.

We then have that for t ≥ log 2 that,

Pr(Y ≤ −t) = Pr(|X| ≤ e−t) = Pr(
1√
n
|X| ≤ 1√

n
e−t) ≤ 2√

n
e−t sup

x∈[0,1/2]

fX(x) ≤ 2Ce−t.

Also X is subgaussian with constant subgaussian norm indedendent of n (see for example Theorem 3.4.6 in (Vershynin,
2018).) Thus X is also subexponential with constant subexponential norm. So for positive t, X satisfies a right tail bound of
the form

Pr(X ≥ t) ≤ exp(−ct).

Since Y ≤ X, we obtain the same right tail bound for Y , and our claim follows.

Lemma 8 Restated. Let u = u1 ⊗ · · · ⊗ uq where ui is a uniformly random unit vector in Rn. Then, for any kronecker-
strucutred unit vector v = v1 ⊗ · · · ⊗ vq we have that τ ≤ C−q

τ has

f(τ) := Pr

[
⟨u,v⟩2 ≥ τ

nq

]
≤ C−q

0

for some universal constants Cτ , C0 > 1.

Proof. We start by letting X := ⟨u,v⟩2, Xi := ⟨ui,vi⟩2, and Yi := ln(Xi), so that Y := ln(X) =
∑q
i=1 Yi is a sum

of iid terms. We will argue the concentration of X via the concentration of Y . By Lemma 24, we know that log |Z| has
sub-exponential norm K, where Z is the first entry of a random on the unit sphere of radius

√
n. Since the mean of log |Z|

is at most 1.32 + 1
n ≤ 1.4 for n ≥ 13, we know that log |Z| − E[log |Z|] has sub-exponential norm at most K + 1.4. Then,

by Bernstein’s Inequality (as written in Proposition 4.2 of (Zhang & Chen, 2020)),

Pr

 q∑
i=1

log |Zi| ≥ q E[log |Zi|] + 2t

 ≤ e
− 1

4 min{ t2

8q(K+1.4)2
, t
2(K+1.4)

}

Since Yi = 2 log |Zi| − log(n), we can equivalently take µ := E[Yi] and write

Pr[

q∑
i=1

Yi ≥ qµ+ t] ≤ e
− 1

4 min{ t2

8q(K+1.4)2
, t
2(K+1.4)

}

11
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Recalling that X = e
∑

i Yi and that µ ≤ 0,

Pr
[
X ≥ et−q|µ|

]
≤ e

− 1
4 min{ t2

8q(K+1.4)2
, t
2(K+1.4)

}

Next we need to compute µ = E[Yi] = E[log(Xi)]. Letting ψ denote the digamma function, we can write E[log(Xi)] =
ψ(α)− ψ(α+ β) = ψ( 12 )− ψ(n2 ), and therefore that

1.27 + ln(n)− 2

n
≤ |µ| ≤ 1.271 + ln(n)

Then, we know that X ≥ et−q|µ| implies that X ≥ et−q(1.271+ln(n)) = n−qet−1.271q . So, we have

Pr

[
X ≥ et−1.271q

nq

]
≤ e

− 1
4 min{ t2

8q(K+1.4)2
, t
2(K+1.4)

}

Taking t = 16(K + 1.4)2(
√
1 + 1.271

8(K+1.4)2 − 1)q then gives us

Pr

[
X ≥ e−αq

nq

]
≤ e−αq

where α = 1.271− 16(K + 1.4)2(
√
1 + 1.271

8(K+1.4)2 − 1) ∈ (0, 0.006). From Lemma 24, we know that K = O(1), which
completes the proof.

We will also need the following result on the MGF of the inner product of Kronecker-structured vectors.

Lemma 25. Let u = u1 ⊗ · · · ⊗ uq where ui is a uniformly random unit vector in Rn. Then, for any kronecker-strucutred
unit vector v = v1 ⊗ · · · ⊗ vq and η ∈ (0, 1),

E[eη|⟨u,θ⟩|] ≤ 1 +
2η

nq
≤ e2ηn

−q

.

Proof. We approach this bound via linearization. Since η|⟨u,θ⟩| ≤ η ≤ 1, we know that eη|⟨u,θ⟩| ≤ 1 + 2η|⟨u,θ⟩|. So, we
bound

E[eη|⟨u,θ⟩|] ≤ 1 + 2η E[|⟨u,θ⟩|]
= 1 + 2η(E[|⟨u1,θ1⟩|])q

Since ⟨u1,θ1⟩ is a distributed as a Beta( 12 ,
n−1
2 ) random variable, and since ⟨u1,θ1⟩ ≥ 0, we know that E[|⟨u1,θ1⟩|] =

E[⟨u1,θ1⟩] = 1
n . So,

E[eη|⟨u,θ⟩|] ≤ 1 +
2η

nq
≤ e2ηn

−q

where the last inequality uses that 1 + x ≤ ex for x ≤ 1.

Lastly, we show the following lemma that relates conditioning to the constants C0 and Cτ from Lemma 8.

Lemma 26. Let v(1), · · · ,v(t) ∈ Rnq

be unit vectors. Suppose that V = [v(1) · · · v(t)] ∈ Rnq×t has condition number
less than κ. Let X = [x(1) · · · x(t)] ∈ Rnq×t be an orthogonal matrix that spans V. Then, for any unit vector u, we have

|⟨x(i),u⟩|2 ≤ κ2 ∥V⊺u∥22 .

Proof. There exists some invertible map R such that V = XR (for instance, if we built X as the Q factor of the QR of V).
Letting V = UΣZ⊺ be the SVD of V, notice that

R = X⊺V = (X⊺U)ΣZ⊺

12
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is also an SVD and therefore that R has the same singular values as V. Since x(i) = Xei = VR−1ei where ei is the ith

standard basis vector, we can bound

⟨u,x(i)⟩2 = (u⊺VR−1ei)
2 ≤ ∥u⊺V∥22 ∥R

−1∥22 ∥ei∥
2
2 =

1

(σmin(V))2
∥V⊺u∥22

where we use that R and V share singular values in the last equality. Next, since V has unit vector columns, we know that
σmax(V) ≥ 1. So, 1

(σmin(V))2 ≤ (σmax(V))2

(σmin(V))2 = κ2. Therefore, we have

⟨u,x(i)⟩2 ≤ κ2 ∥V⊺u∥22

completing the lemma.

B. L2 Estimation via Linear Measurements
Problem 27. Fix a vector a ∈ Rnq

. Then, the Kronecker-structured linear measurement oracle for a is the oracle that, when
given any Kronecker structured vector v ∈ Rnq

, returns ⟨a,v⟩. In the L2 Estimation via Kronecker Measurements problem,
we have to use a few oracle queries as possible to return a number z ∈ R such that (1− ε) ∥a∥22 ≤ z ≤ (1 + ε) ∥a∥22 with
probability 2

3 .

Theorem 28. Any (possibly adaptive) algorithm A that solves Problem 27 with probability 2
3 using κ−conditioned

Kronecker-structured queries must use at least t = O(min{Cq/20 ,
Cq/2

τ

κ2
√
ε
}) queries.

Our proof methodology mirrors that of Section 6 in (Simchowitz et al., 2017), but applied to this linear measurements
framework instead of the matrix-vector framework as studied in their paper (and partially explained in Appendix D). The
crux of this section is to show that Lemma 8 implies the lower bound in Theorem 28. We prove this lower bound by
appealing to the following testing problem:

Problem 29. Fix n, q ∈ N and λ > 1. Let g ∈ Rnq

be a N (0, I) vector, and let u = u1 ⊗ · · · ⊗ uq where each ui ∈ Rn

vector is uniformly distributed on the set of vectors with ∥ui∥22 = n. Further, let

a0 = g and a1 = g + λu.

Suppose that nature samples i ∈ {0, 1} uniformly at random. Then, an algorithm A computes t linear measurements with
a := ai and then guesses if i = 0 or i = 1.

The result Theorem 28 follows from combining two results: showing that any L2 estimating algorithm can distinguish a0
from a1, and that distinguishing a0 from a1 requires exponential query complexity. We start with the former result.

Lemma 30. Let A be any linear measurement algorithm that can solve Problem 27 with probability 2
3 for some ε ∈ (0, 0.25).

Then A can solve Problem 29 when λ = 6
√
ε and nq = Ω( 1

ε2 ) with probability at least 3
5 .

Proof. Throughout this proof, we let C > 0 be a large enough constant that both of the concentrations required simulta-
neously hold with probability 9

10 . We will concretely assume that 1
nq/2 ≤ min{ λ

2

4C ,
λ
8C }. Note that ∥g∥22 is a chi-squared

random variable with parameter nq. So, ∥a0∥22 = ∥g∥22 ∈ (1 ± C
nq/2 )n

q ⊆ (1 ± λ2

4 )nq. We also know that ∥h∥22 = nq

exactly. Further, since g is Gaussian, we know that ⟨g,h⟩ ∼ N (0, ∥h∥22) = N (0, nq), and therefore that |⟨g,h⟩| ≤ Cnq/2.
This lets us expand

∥a1∥22 = ∥g∥22 + λ2 ∥h∥22 − 2λ⟨g,h⟩

≥ (1− λ2

4 )nq + λ2nq − 2λC
nq/2n

q

≥ (1− λ2

4 )nq + λ2nq − λ2

4 n
q

= (1 + λ2

2 )nq

So, we have that
∥a0∥22 ≤ (1 + λ2

4 )nq and ∥a1∥22 ≥ (1 + λ2

2 )nq.

13
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In particular, since λ = 6
√
ε, we have that

(1 + ε) ∥a0∥22 ≤ (1 + ε)(1 + 36ε
4 )nq < (1− ε)(1 + 36ε

2 )nq ≤ (1− ε) ∥a1∥22

holds for all ε ∈ (0, 0.25). In particular, this means that any algorithm A that can estimate (1±ε) ∥a∥22 from tmeasurements
can distinguish a0 from a1 with high probability, completing the proof

Next, we show the crux of the lower bound – that Problem 29 has exponential sample complexity lower bound. We show
this by applying Imported Lemma 43 to our setting. In order to instantiate this theorem though, we have to introduce some
further notation.

Setting 31. Fix an algorithm A that solves Problem 29. Let v(1), . . . ,v(t) be the (possibly adaptive) query vectors computed
by A. Let w1, . . . , wt be the responses from the oracle. That is, wi = ⟨v(i),a⟩. Let Zi = (v(1), w1, . . . ,v

(i), wi) be the
transcript of all information sent between A and the oracle in the first i queries. By Yao’s minimax principle, we assume
without loss of generality that A is deterministic. Therefore, v(i) is a deterministic function of Zi−1.

We let Q denote the distribution of Zt when a = a0. We let Pu denote the distribution of Zt when a = a1 conditioned on a
specific value of u. We let P̄ denote the marginal distribution of Pu over all u, or equivalently that P̄ is the distribution of
Zt when a = a1. Lastly, we let Aiu be the event that {∀j ∈ [i], ⟨vj ,u⟩2 ≤ τj} for some numbers 0 ≤ τ1 ≤ . . . ≤ τt that
will be clear from context.

Following this notation, to show that no algorithm can distinguish a0 from a1, it suffices to show that there is low total
variation between P̄ and Q. We will do this by applying Imported Lemma 43. In particular, specialized to our context, the
lemma says the following:

Corollary 32. Consider Setting 31. Fix any numbers 0 ≤ τ1 ≤ . . . ≤ τt. If we are given that

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 ≥ τi] ≤ z (2)

and that

E
Zt∼Q

(Eu[dPu(Zt ∩Atu)]
dQ(Zt)

)2
 ≤ 1 + z (3)

then the total variation distance between P̄ and Q is at most
√
3z. In particular, if we take z = 1

27 then A cannot distinguish
between a0 and a1 with probability at least 2

3 .

This corollary follows directly from plugging in Setting 31 into Imported Lemma 43. In order to prove Theorem 28, we just
need to prove that both Equations (2) and (3) hold with z = 1

27 . This will be the focus of the rest of the subsection.

First, we will need the following claim about divergences:

Lemma 33. Let Pa denote the distribution N (a,Σ), Pb the distribution N (b,Σ), and Q the distribution N (0,Σ). Then,

E
z∼Q

[(
dPa(z)
dQ(z)

)2
]
= ea

⊺Σ−1a

and

E
z∼Q

[
dPa(z)dPb(z)
(dQ(z))2

]
= ea

⊺Σ−1b

Proof. We prove only the second claim as the first claim follows from taking b = a. We directly expand the expectation
using the corresponding PDFs, nothing that the terms outside the expectation all exactly cancel since our distributions all

14
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share the same covariance matrix.

E
z∼Q

[
dPa(z)dPb(z)
(dQ(z))2

]
= E

z∼Q

[
e−

1
2 (z−a)⊺Σ−1(z−a)− 1

2 (z−b)⊺Σ−1(z−b)+z⊺Σ−1z
]

= E
z∼Q

[
e−

1
2 (a

⊺Σ−1a+b⊺Σ−1b)+(z⊺Σ−1a+z⊺Σ−1b)
]

= e−
1
2 (a

⊺Σ−1a+b⊺Σ−1b) E
z∼Q

[
ez

⊺(Σ−1(a+b))
]

= e−
1
2 (a

⊺Σ−1a+b⊺Σ−1b)e
1
2 (Σ

−1(a+b))⊺Σ(Σ−1(a+b)) (Gaussian MGF)

= e−
1
2 (a

⊺Σ−1a+b⊺Σ−1b)e
1
2 (a+b)⊺Σ−1(a+b)

= e−
1
2 (a

⊺Σ−1a+b⊺Σ−1b)e
1
2 (a

⊺Σ−1a+b⊺Σ−1b+2a⊺Σ−1b)

= ea
⊺Σ−1b

We will also need the following information-theoretic claim from (Simchowitz et al., 2017):

Imported Theorem 34 (Proposition 5.1 of (Simchowitz et al., 2017)). Let P be a prior distribution over parameters θ ∈ Θ.
Let {Pθ}θ∈Θ be a family of distributions on space (X ,F) parameterized by θ. Let {Aθ}θ∈Θ be a set of events defined on
F . Let V be an action space (i.e. an arbitrary set). Let L : V × Θ → {0, 1} be a binary loss function. Let A denote a
determinstic algorithm that observes data and picks an action; that is A is any map from X to V . Let V0 be the probability
an algorithm can achieve loss 0 without observing data:

V0 = sup
v∈V

Pr
θ∼P

[L(v, θ) = 0],

and let Vv be the probability that A achieves loss 0 after observing a sample from Pθ while event Aθ happens:

Vv = E
θ∼P

Pr
x∼Pθ

[L(A(x), θ) = 0, Aθ].

Then, for any probability distribution Q also on (X ,F),

Vv ≤ V0 +

√
V0(1− V0) E

θ∼P
E
x∼Q

[(
dPθ[x]
dQ[x]

)2
1[Aθ]

]
.

This result will suffice to bound Equation (2):

Lemma 35. Consider Setting 31, where τ1 = · · · = τt = C−q
τ . Then, we have that

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 ≥ τi] ≤ 1
27

so long as t = O(min{Cq/20 ,
Cq/2

τ

κ2
√
ε
}).

Proof. We start by expanding the target probability into a probabilistic claim for each query made by the algorithm:

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 ≥ τi] ≤
t∑
i=1

Pr[⟨v(i),u⟩2 ≥ τi : ∀j ∈ [i− 1] ⟨v(j),u⟩2 ≤ τj ]

Now, we bound each summand on the right by using Imported Theorem 34. We take θ := u, so that P is the distribution of
u. Then, Pθ becomes Pu from Setting 31, and Q is exactly Q as in Setting 31. We take the truncation event Aθ = Ai−1

u .
The set of actions V is conditioned on the prior query vectors v(1), . . . ,v(i−1) already made by the algorithm:

Vi := {v(i) : v(i) = ⊗qj=1v
(i)
j , ∥v(i)∥2 = 1, cond([ v(1) ... v(i) ]) ≤ κ}
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Lastly, we take L(v(i),u) = 1[⟨v(i),u⟩2≤τi]. Therefore, Imported Theorem 34 takes

V0 = sup
v(i)∈Vi

Pr
u
[⟨v,u⟩2 ≥ τi] ≤ C−q

0

where the last inequality uses Lemma 8, recalling that τi = C−q
τ . So, Imported Theorem 34 tells us that

Vv = E
u

Pr
Zi∼Pu

[L(A(x), θ) = 0, Aθ]

= Pr[⟨v(i),u⟩2 ≥ τi : ∀j ∈ [i− 1]⟨v(j),u⟩2 ≤ τi]

≤ C−q
0 +

√
C−q

0 E
u

E
Zi∼Q

[(
dPu[Zi]
dQ[Zi]

)2
1[Ai−1

u ]

]
So, next we bound this expectation. First, we take a moment to examine this ratio of probabilities. We would like to apply
Lemma 33 to bound the inner-most expectation. However, the indicator variable inside the expectation prevents us from
doing so. Instead, we apply Lemma 49 to this situation (taking Pa = Pb = Pu). This lemma tells us that

E
Zi∼Q

[(
dPu[Zi]
dQ[Zi]

)2
1[Ai−1

u ]

]
≤ sup

Zi : (v(1),··· ,v(i))∈Ai−1

i∏
j=1

E

(dPh(Zj | Zj−1)

dQ(Zj | Zj−1)

)2 ∣∣Zj−1

 .
Now, we analyze this conditional expectation on the right. First, recall that we assumed without loss of generality that A is a
determinstic algorithm. Therefore, the jth query vector v(j) is deterministic in Zj−1. So, the random variable Zj | Zj−1 is
equivalent to just looking at wj = ⟨v(j),a⟩. Formally using the Data Processing Inequality (Lemma E.1 from (Simchowitz
et al., 2017)), this means that it suffices to bound

E

(dPh(wj | Zj−1)

dQ(wj | Zj−1)

)2 ∣∣Zj−1

 .
Next, we take a moment to analyze the impact of conditioning here. Unfortunately, it is annoying to analyze the expression
above due to the way that wj = ⟨v(j),a⟩ may depend on the previous observations in Zj−1. Instead, we appeal to the
Data Processing Inequality again to orthonormalize. In particular, for the set of queries Vj := [v(1) · · · v(j)] in Zj , we let
Xj := [x(1) · · · x(j)] be the result of running Gram-Schmidt on Vj . That is, Xj is an orthogonal matrix that spans Vj . We
can write our new adjusted transcript as

Z̃j = (x(1), ⟨x(1),a⟩, · · · ,x(j), ⟨x(j),a⟩)

Since this process is invertible, it does not change the statistical distance, and therefore it suffices to bound

E

(dPh(⟨x(j),a⟩ | Z̃j−1)

dQ(⟨x(j),a⟩ | Z̃j−1)

)2 ∣∣Z̃j−1

 .
Next, we observe that the set of all observations under the adjusted transcript w̃ = [⟨x(1),a⟩ · · · ⟨x(j),a⟩] = X⊺

j a is
distributed as a multivariate Gaussian. Under Q, w̃ ∼ N (0,X⊺

jXj) = N (0, I). Similarly, under Pu, w̃ ∼ N (λX⊺
ju, I).

Notice that under both distributions, we have that all entries of w̃ are independent. Therefore, we know that ⟨x(j),a⟩ is
independent of all other ⟨x(m),a⟩ given Xj . So, we can use Lemma 33 to say that

E

(dPh(⟨x(j),a⟩ | Z̃j−1)

dQ(⟨x(j),a⟩ | Z̃j−1)

)2 ∣∣Z̃j−1

 = eλ
2⟨x(j),u⟩2

We want to upper bound this expectation in terms of our original transcript Zt though. Here, we use our conditioning
assumption. By Lemma 26, we know that ⟨x(j),u⟩2 ≤ κ2 ∥V⊺

ju∥
2

2
. This means we bound

E

(dPh(⟨x(j),a⟩ | Z̃j−1)

dQ(⟨x(j),a⟩ | Z̃j−1)

)2 ∣∣Z̃j−1

 ≤ eλ
2κ2∥V⊺

j u∥
2

2 .
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Further, using our conditioning assumption, we know that Backing up, we then need to bound

E
Zi∼Q

[(
dPu[Zi]
dQ[Zi]

)2
1[Ai−1

u ]

]
≤ sup

Zi : (v(1),··· ,v(i))∈Ai−1

i∏
j=1

E

(dPh(Zj | Zj−1)

dQ(Zj | Zj−1)

)2 ∣∣Zj−1


= sup

Zi : (v(1),··· ,v(i))∈Ai−1

eλ
2κ2 ∑i

j=1∥V
⊺
j u∥

2

2

≤ sup
Zi : (v(1),··· ,v(i))∈Ai−1

eλ
2κ2i∥V⊺

i u∥
2
2

≤ eλ
2κ2i

∑i
j=1 τj

≤ eλ
2κ2i2C−q

τ

Then, we can complete our overall lemma by taking

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 ≥ τi] ≤
t∑
i=1

Pr[⟨v(i),u⟩2 ≥ τi : ∀j ∈ [i− 1] ⟨v(j),u⟩2 ≤ τj ]

≤
t∑
i=1

C−q
0 +

√
C−q

0 E
u

E
Zi∼Q

[(
dPu[Zi]
dQ[Zi]

)2
1[Ai−1

u ]

]
≤

t∑
i=1

(
C−q

0 + C
−q/2
0 eλ

2κ2i2C−q
τ /2

)
≤

t∑
i=1

2C
−q/2
0 eλ

2κ2i2C−q
τ /2

≤ 2tC
−q/2
0 eλ

2κ2t2C−q
τ /2

≤ 1

27

where we take t = O(min{Cq/20 ,
Cq/2

τ

κ2λ }) = O(min{Cq/20 ,
Cq/2

τ

κ2
√
ε
}) on the last line.

Lemma 36. Consider Setting 31, where τ1 = · · · = τt = C−q
τ . Then, we have that

E
Zt∼Q

(Eu[dPu(Zt ∩Atu)]
dQ(Zt)

)2
 ≤ 1 + z

so long as t = O(min{Cq/20 ,
Cq/2

τ

κ2
√
ε
}).

Proof. Equation (6.31) of (Simchowitz et al., 2017) shows that we can rewrite

E
Zt∼Q

(Eu[dPu(Zt ∩Atu)]
dQ(Zt)

)2
 = E

u,u′

 E
Zt∼Q

[
dPu(Zt ∩Atu)dPu′(Zt ∩Atu′)

(dQ(Zt))2

]
where u′ is an iid copy of u. Then, by Lemma 49 we know that

E
Zt∼Q

[
dPu(Zt ∩Atu)dPu′(Zt ∩Atu′)

(dQ(Zt))2

]
≤ sup

Zt∈At
u∩At

u′

t∏
i=1

E
[
dPu(Zi | Zi−1)dPu′(Zi | Zi−1)

(dQ(Zi | Zi−1))2
∣∣Zi−1

]
.
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As in Lemma 35, we change our basis from Vj to Xj . Under Q, we have w̃ ∼ N (0, I). Under Pvu, we have w̃ ∼
N (λX⊺

ju, I). So, by Lemma 33, we know that

E
[
dPu(Zi | Zi−1)dPu′(Zi | Zi−1)

(dQ(Zi | Zi−1))2
∣∣Zi−1

]
= eλ

2⟨x(j),u⟩⟨x(j),u′⟩

And, again following Lemma 26, we bound |⟨x(j),u⟩| ≤ κ ∥V⊺
ju∥2, so the above exponential is at most eλ

2κ2∥V⊺
j u∥

2

2 .
Therefore,

E
Zt∼Q

[
dPu(Zt ∩Atu)dPu′(Zt ∩Atu′)

(dQ(Zt))2

]
≤ sup

Zt∈At
u∩At

u′

t∏
i=1

E
[
dPu(Zi | Zi−1)dPu′(Zi | Zi−1)

(dQ(Zi | Zi−1))2
∣∣Zi−1

]
≤ sup

Zt∈At
u∩At

u′

eλ
2κ2 ∑t

i=1∥V
⊺
j u∥

2

2

≤ sup
Zt∈At

u∩At
u′

eλ
2κ2t∥V⊺

t u∥
2
2

≤ eλ
2κ2t

∑t
i=1 τi

≤ eλ
2κ2t2C−q

τ

≤ 1 +
1

27

where we take t = O(min{Cq/20 ,
Cq/2

τ

κ2λ }) = O(min{Cq/20 ,
Cq/2

τ

κ2
√
ε
}) on the last line, completing the proof.

C. Formal Adaptive Matrix-Vector Lower Bound
Written in the notation and form of Appendix D, we can write Theorem 15 equivalently as the following:

Theorem 15 Restated. Consider Setting 39 where Vt is the set of κ−conditioned Kronecker-structured query vectors:

Vt := {(v(1), . . . ,v(t)) : v(i) = ⊗qj=1v
(i)
j , v

(i)
j ∈ Sn, cond([v(1) · · · v(t)]) ≤ κ}

Then, t = Ω(min{Cq/20 ,
Cq

τ

λ2κ2 }) matrix-vector products are needed to correctly guess if A = A0 or A1 in Setting 39 with
probability at least 2

3 , where C0 and Cτ are the constants in Lemma 8.

Proof. We proceed by using Theorem 40 in conjunction with Lemma 8 and Lemma 25. In particular, we Lemma 8 tells us
that f(τ) ≤ C−q

0 for any τ ≤ C−q
τ . Therefore, we can take τ1 = . . . = τt = C−q

τ so that
∑i
j=1 τj = iCqτ . By assuming

that t ≤ 3Cq
τ

λ2κ2 , we know that e
λ2κ2

2

∑i=1
j=1 τj ≤ e

λ2κ2i

2C
q
τ ≤ 4. Then,

f(τ1) + 2

t∑
i=1

e
λ2κ2

2

∑i=1
j=1 τj

√
f(τj) ≤ C−q

0 + 8

t∑
i=1

C
−q/2
0

≤ (1 + 8t)C
−q/2
0

≤ 1

27

where the last line holds so long as t ≤ O(C
−q/2
0 ). Similarly, we can use Lemma 25 to bound Eu,u′ [eη|⟨u,u

′⟩|] ≤ e
2η
nq for
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any η ∈ (0, 1). Therefore,

E
u,u′∼P

[eλ
2κ2|⟨u,u′⟩|(

∑t
i=1 τi)+

λ2κ4

nq (
∑t

i=1 τi)
2

] = E
u,u′∼P

[
e

λ2κ2t

C
q
τ

|⟨u,u′⟩|
]
e

λ2κ4t2

nqC
2q
τ

≤ e
2λ2κ2t

nqC
q
τ
+λ2κ4t2

nqC
2q
τ

= e
2λ2κ2t

nqC
q
τ
(1+ κ2t

4C
q
τ
)

≤ e
4λ2κ2t

nqC
q
τ

≤ 1 + 8
λ2κ2t

nqCqτ

≤ 1 +
1

27

where we use that η = λ2κ2t
Cq

τ
≤ 1 in the first inequality, that t ≤ 4Cq

τ

κ2 in the second inequality, that ex ≤ 1 + 2x for

x ≤ 1 in the third inequality, and we take t ≤ nqCq
τ

27·8λ2κ2 in the last inequality. By Theorem 40, we find that having
t ≤ O(min{Cq/20 ,

Cq
τ

λ2κ2 }) does not suffice to correctly guess if A = A0 or A = A1 in Setting 39 with probability at least
2
3 .

D. Connecting to the Simchowitz et. al Lower Bounds
In (Simchowitz et al., 2017), the authors prove a lower bound against the number of matrix-vector products needed to detect
if there is a rank-one matrix planted on a random Wigner matrix. Their techniques and proofs are all written to consider the
generic matrix-vector model, where we can compute Av for any vector v ∈ RD. However, with minor alteration, their
proof techniques can be significantly generalized to allow matrix-vector products with a limited matrix-vector model. To
start, we define a generic notion of a limited matrix-vector model.

Definition 37. Fix a set Vt ∈ (SD)t. A matrix-vector algorithm A is Vt limited if it always computed exactly t matrix
vector products and if, for all input matrices A ∈ RD×D the algorithm only computes (possibly adaptive) query vectors
v(1), . . . ,v(t) such that the sequence (v(1), . . . ,v(t)) ∈ Vt.

The proof methods of (Simchowitz et al., 2017) rely on assuming that the matrix-vector queries computed are orthonormal.
We do not want to assume that the queries admissible in Vt are orthonormal, so we instead will make an assumption on Vt
that measure how far Vt is from having orthonormal queries:

Definition 38. For each (v(1), . . . ,v(t)) ∈ Vt, let V = [ v(1) ··· v(t) ] ∈ RD×t. If, for all (v(1), . . . ,v(t)) ∈ Vt we know
that the condition number of V is at most κ, then we say that Vt is κ−conditioned.

We can now setup the instance of the lower bound problem considered in (Simchowitz et al., 2017).

Setting 39. Fix D ∈ N and λ > 1. Fix a Vt limited matrix-vector algorithm A. Let P be a isotropic prior distribution over
planted vectors u ∈ SD−1, so that E[u] = 0 and E[uu⊺] = I. Let W = 1

2 (G+G⊺) where G ∈ RD×D is a matrix with
iid N (0, 1) entries. Let A0 := 1√

D
W and A1 = 1√

D
W + λuu⊺. Nature picks i ∈ {0, 1} uniformly at random. A then

computes t matrix vector products with A := Ai and returns a guess of the value of i.

In this setting, we will show that (Simchowitz et al., 2017) proves the following lower bounding mechanism:

Theorem 40. Consider Setting 39. Fix any 0 ≤ τ1 ≤ . . . ≤ τt and κ > 1. Let f(τ) be the probability that the best possible
blind guess for u in Vt has squared inner product at least τ

D :

f(τ) := sup
(v(1),...,v(t))∈Vt

sup
i∈[t]

Pr[⟨v(i),u⟩2 > τ
D ].

Suppose that for some z ∈ (0, 1)

f(τ1) + 2

t∑
i=1

e
λ2κ
2

∑i−1
j=1 τj

√
f(τj) ≤ z
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and that
E

u,u′∼P
[eλ

2κ2|⟨u,u′⟩|
∑t

i=1 τi+
λ2κ4

D (
∑t

i=1 τi)
2

] ≤ 1 + z.

Then, A can distinguish A0 from A1 with probability at most 1
2 + 1

2

√
3z. In particular, if z ≤ 1

27 , then any such algorithm
A cannot correctly guess if i = 0 or i = 1 with probability at least 2

3 .

In Appendix C, we show how to use Theorem 40 to lower bound Kronecker matrix-vector complexity. In this section, we
instead will show how Theorem 40 follow from (Simchowitz et al., 2017). To start, we will use the notion of Truncated
Probability Distributions from (Simchowitz et al., 2017).

Definition 41. Let P be a probability measure. Let A be an event. Then, the truncated probability measure of P with respect
to A is defined by saying for all events B,

P [B;A] := P [B ∩A]

This is not a probability distribution as its integral is less than 1 for any nontrivial event A. For discussion as to why the
truncated probability distribution is helpful in proving information-theoretic lower bounds, see (Simchowitz et al., 2017;
2018). We will also need the idea of the marginal of truncated distributions.

Definition 42. Let P be a distribution over a space Θ. Let {Pθ}θ∈Θ be a family of probability measures on space (X ,F).
For each θ, let Aθ be an event on F . For any event B on F we can then define the marginal truncated distribution P̄[·; Ā] as

P̄[B; Ā] := E
θ∼P

Pθ[B;Aθ].

Notice that the total measure of P̄[·, Ā] is P̄[X ; Ā] = Eθ∼P Pθ[X ;Aθ] = Prθ∼P [Aθ]. Without truncation, we write
P̄ := P̄[·;X ].

We will concretely take Q and P̄ to be distributions over transcripts of matrix-vector products between A and A. That is, we
let Zt := (v(1),Av(1), . . . ,v(t),Av(t)) be the transcript of t matrix-vector products. Then, we take Q to be the distribution
of Zt given i = 0, so that A = 1√

D
W. We then will take u ∼ P as our prior distribution, so that θ = u. Then, we let Pu

be the distribution of Zt given both i = 1 and a fixed value of u, so that A = 1√
D
W+ λuu⊺ for a fixed u. For any fixed u,

we will take our truncation event to be Aθ = Vtu := {(v(1), . . . ,v(t)) ∈ Vt : ⟨v(i),u⟩2 ≤ τi
D ∀i ∈ [t]}, using the constants

0 ≤ τ1 ≤ . . . ≤ τt as given in Theorem 40. In words, this truncation set Vtu is the set of all queries that fail to find nontrivial
information about the vector u. Lastly, this means that P̄ is the marginal distribution of all the truncated distributions. That
is, P̄ is the distribution of Zt given i = 1 but not given any particular value of u, and P̄[·, Ā] is P̄ truncated to the cases
where our algorithm has not computed any matrix-vector products that achieve nontrivial inner product with u.

Our main goal is to bound the total variation distance between Q and P̄. (Simchowitz et al., 2017) bound this distance by
truncating P̄ and bounding both the probability of the truncated event not happening and the distance between Q and the
truncated P̄[·; Ā]. This is formalized by Proposition 6.1 from (Simchowitz et al., 2017), whose proof has a fixable error. We
provide and prove the fixed version below:

Imported Lemma 43 (Proposition 6.1 of (Simchowitz et al., 2017)). Let P, {Pθ}θ∈Θ, and Aθ define a marginal truncated
distribution P̄[·, Ā] on (X ,F). Let Q be a probability distribution on (X ,F). Then, letting p := P̄[X ; Ā] = Prθ∼P [Aθ], we
have

DTV (P̄,Q) ≤ 1

2

√√√√√ E
x∼Q

(dP̄[x; Ā]
dQ(x)

)2
+ 1− 2p+

1− p

2
.

In particular, if we have Ex∼Q

[(
dP̄[x;Ā]
dQ(x)

)2]
≤ 1+ z and 1− p < z for some z ∈ (0, 1), then we can bound DTV (Q, P̄ ) ≤

√
3z.

Proof. This proof is a close copy of the result in (Simchowitz et al., 2017), but avoids errors in algebra. For ease of notation,
let P̄A := P̄[·, Ā]. Note that P̄− P̄A ≥ 0, which implies that∫

|dP̄− dP̄A| =
∫
dP̄− dP̄A = 1− p
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so by the triangle inequality,

DTV (Q, P̄) =
1

2

∫
|dQ(x)− dP̄(x)|

≤1

2

∫
|dQ(x)− dP̄A(x)|+

1

2

∫
|dP̄(x)− dP̄A(x)|

=
1

2

∫
|dQ(x)− dP̄A(x)|+

1− p

2
.

Next, since Q is a probability measure,∫
|dQ(x)− dP̄A(x)| = E

Q
|dP̄A(x)
dQ(x) − 1| ≤

√
E
Q
|dP̄A(x)
dQ(x) − 1|2

=

√
E
Q
|dP̄A(x)
dQ(x) |2 + 1− 2P̄A(X ) =

√
E
Q
|dP̄A(x)
dQ(x) |2 + 1− 2p.

Combining what we’ve shown, we conclude the first result, that

DTV (Q, P̄) ≤
1

2

√√√√E
Q

∣∣∣∣∣dP̄A(x)dQ(x)

∣∣∣∣∣
2

+ 1− 2p+
1− p

2
.

Now, we move onto the second result. Directly substituting our values for z and 1 + z, we get

DTV (Q, P̄) ≤
1

2

√
1 + z + 1− 2p+

1− p

2

=
1

2

√
z + 2(1− p) +

1− p

2

≤ 1

2

√
z + 2z +

z

2

≤ 1

2

√
3z +

1

2

√
z

≤
√
3z

We next import the results that (Simchowitz et al., 2017) used to bound EZt∼Q

[(
dP̄[Zt;Vt

u]
dQ(Zt)

)2]
and 1− p = 1− Pr[Vtu] =

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 > τi
D ]. Starting with 1− p, we import Theorem 5.3:

Imported Theorem 44 (Theorem 5.3 from (Simchowitz et al., 2017)). Consider Setting 39. Fix 0 ≤ τ1 ≤ . . . ≤ τt. Let
f(τ) be the probability that the best possible blind guess for u using a vector in Vt achieves squared inner product at least
τ
D :

f(τ) := sup
(v(1),...,v(t))∈Vt

sup
i∈[t]

Pr[⟨v(i),u⟩2 > τ
D ].

Then, Pr[∃i ∈ [t] : ⟨v(i),u⟩2 > τi
D ] is at most

f(τ1) + 2

t∑
i=1

E
u∼P


√√√√√f(τi) sup

(ṽ(1),...,ṽ(t))∈Vt
u

i∏
j=1

E

(dPu(Aṽ(j)|ṽ(1), . . . , ṽ(t))

dQ(Aṽ(j)|ṽ(1), . . . , ṽ(t))

)2

| ṽ(1), . . . , ṽ(t)




This theorem exactly matches Theorem 5.3 from (Simchowitz et al., 2017) if we make two changes. First, we do not yet
apply the inequality (5.25) for reasons we will discuss momentarily. Second, we change their set Vkθ into our set Vtu in
Lemma 5.2 so that we only consider queries that belong to Vt as opposed to arbitrary query vectors in SD. The proof of
Lemma 5.2 does not change from this redefinition of Vtu. Next, we must bound this big expectation that appears on the
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right hand side above. In inequality (5.25), (Simchowitz et al., 2017) bounds this expectation under the assumption that
v(1), . . . ,v(t) are orthonormal. We cannot make this assumption, as an orthonormal basis for vectors in Vt might not belong
to Vt. So, we rephrase Lemma C.3 from (Simchowitz et al., 2017), making this orthonormality reduction explicit:

Imported Lemma 45 (Lemma C.3 from (Simchowitz et al., 2017)). Consider Imported Theorem 44. Let x̃(1), . . . , x̃(t) be
orthonormal vectors such that span{x̃(1), . . . , x̃(i)} = span{ṽ(1), . . . , ṽ(i)} for all i ∈ [t]. Then,

E

(dPu(Aṽ(j)|ṽ(1), . . . , ṽ(t))

dQ(Aṽ(j)|ṽ(1), . . . , ṽ(t))

)2

| ṽ(1), . . . , ṽ(t)

 ≤ eλ
2D⟨u,x̃(i)⟩2

Applying this result to Imported Theorem 44, we see that we need to upper bound the expression

sup
(ṽ(1),...,ṽ(t))∈Vt

u

eλ
2D⟨u,x̃(i)⟩2

Unfortunately, it is not immediately obvious how to relate ⟨u, x̃(i)⟩ to ṽ(1), . . . ṽ(i) or τ1, . . . , τi. In the non-Kronecker case,
when Vt covers all vectors in SD, we can take x̃(i) = ṽ(i) without loss of generality. However, if Vt covers Kronecker-
structured query vectors, then we do not know what the worst-case relationship between these terms is. So, we make an
assumption on Vt to proceed. In particular, we assume that Vt is well conditioned.

Lemma 46. Consider Imported Theorem 44. Under the assumption that Vt is κ-conditioned, we know that

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 > τi
D ] ≤ f(τ1) + 2

t∑
i=1

e
λ2κ2

2 κ
∑i−1

j=1 τj
√
f(τi)

Proof. From the definition of the conditioning of Vt, we know that for all (ṽ(1), . . . , ṽ(t)) ∈ Vtu that
Ṽ :=

[
ṽ(1) · · · ṽ(t)

]
has condition number at most κ. Therefore, by Lemma 26, we know that ⟨u, x̃(i)⟩2 ≤

κ2
∑i
j=1⟨u, ṽ

(j)⟩2. By our definition of Vtu, we further know that ⟨u, ṽ(j)⟩2 ≤ τj
D . So, we get that

sup
(ṽ(1),...,ṽ(t))∈Vt

u

e
λ2

2 D⟨u,x̃(i)⟩2
√
f(τi) ≤ e

λ2

2 κ
2 ∑i

j=1 τj
√
f(τi)

Overall, going back to Imported Theorem 44, we find that

Pr[∃i ∈ [t] : ⟨v(i),u⟩2 > τi
D ] ≤ f(τ1) + 2

t∑
i=1

e
λ2κ2

2

∑i
j=1 τj

√
f(τi),

completing the proof.

This suffices to bound the term 1 − p in Imported Lemma 43. However, we still have do bound the expected squared
likelihood ratio term. Lemma C.3 from (Simchowitz et al., 2017) is analogous to Imported Lemma 45 but instead applies to
this context:

Imported Lemma 47 (Lemma C.3 from (Simchowitz et al., 2017)). Consider Imported Theorem 44. Let P̄ be the
distribution of Zt conditioned on i = 1 but not conditioned on a specific value of u ∼ P . Let x̃(1), . . . , x̃(t) be orthonormal
vectors such that span{x̃(1), . . . , x̃(i)} = span{ṽ(1), . . . , ṽ(i)} for all i ∈ [t]. Then,

E
Zt∼Q

(dP̄[Zt;Vtu]
dQ(Zt)

)2


≤ E
u,u′∼P

 sup
(ṽ(1),...,ṽ(t))∈Vt

u∩Vt
u′

e
Dλ2 ∑t

i=1⟨x̃
(i),u⟩⟨x̃(i),u′⟩

(
⟨u,u′⟩− 1

2 ⟨x̃
(i),u⟩⟨x̃(i),u′⟩−

∑i−1
j=1⟨x̃

(j),u⟩⟨x̃(j),u′⟩
)
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Again, Lemma C.4 is not phrased exactly this way in (Simchowitz et al., 2017). This result follows from the proof of Lemma
C.4 without substituting the final inequality on page 30. In order to resolve the impact of orthonormality on this proof, we
again appeal to conditioning:

Lemma 48. Consider Imported Lemma 47. Under the assumption that Vt is κ−conditioned, we know that

E
Zt∼Q

(dP̄[Zt;Vtu]
dQ(Zt)

)2
 ≤ E

u,u′∼P

[
eλ

2κ2⟨ũ,u′⟩
∑t

i=1 τi+
λ2κ4

D (
∑t

i=1 τi)
2

]

Proof. As in the proof of Lemma 46, we know that |⟨x̃(i),u⟩| ≤ κ
√
τi√
D

and |⟨x̃(i),u′⟩| ≤ κ
√
τi√
D

. So, directly bounding the
terms in Imported Lemma 47,

D

t∑
i=1

⟨x̃(i),u⟩⟨x̃(i),u′⟩

⟨u,u′⟩ − 1

2
⟨x̃(i),u⟩⟨x̃(i),u′⟩ −

i−1∑
j=1

⟨x̃(j),u⟩⟨x̃(j),u′⟩


≤ D

t∑
i=1

κ2τi
D

|⟨u,u′⟩|+ κ2τi
2D

+

i−1∑
j=1

κ2τj
D


≤ D

t∑
i=1

κ2τi
D

|⟨u,u′⟩|+
i∑

j=1

κ2τj
D


= κ2|⟨u,u′⟩|

t∑
i=1

τi +
κ4

D

 t∑
i=1

τi

2

Which completes the proof by substituting this back into Imported Lemma 47:

E
Zt∼Q

(dP̄[Zt;Vtu]
dQ(Zt)

)2
 ≤ E

u,u′∼P

[
eλ

2κ2|⟨u,u′⟩|
∑t

i=1 τi+
λ2κ4

D (
∑t

i=1 τi)
2
]

We can now prove the overall lower bound Theorem 40.

Proof of Theorem 40. We apply Imported Lemma 43 to the distribution P̄ truncated to Vtu. We get that

p = P̄[Vtu] = Pr
Zt∼P̄

[∀i ∈ [t] : ⟨v(i),u⟩2 ≤ τi
D ]

so that
1− p = Pr

Zt∼P̄
[∃i ∈ [t] : ⟨v(i),u⟩2 > τi

D ].

By Lemma 46, we therefore know that

1− p ≤ f(τ1) + 2

t∑
i=1

e
λ2κ2

2 κ
∑i−1

j=1 τj
√
f(τi)

which we are told is at most z. We similarly know by Lemma 48 that

E
Zt∼Q

(dP̄[Zt;Vtu]
dQ(Zt)

)2
 ≤ E

u,u′∼P

[
eλ

2κ⟨ũ,u′⟩
∑t

i=1 τi+
λ2κ2

D (
∑t

i=1 τi)
2

]

we are told is at most 1 + z. So, by Imported Lemma 43, we complete the proof.
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D.1. Unrolling Lemma

Partially unrelated to the above, we will also need to mildly generalize a technical result from (Simchowitz et al., 2017) that
helps handle adaptivity when resolving the adaptive lower bound against L2 estimation. The following is very similar to
Lemma C.2 from (Simchowitz et al., 2017):
Lemma 49 (Unrolling Lemma). Let Pa, Pb, and C be distributions over a random variable Zt = (z1, · · · , zt) for some
arbitrary sample space zi ∈ Ω. Let Zi = (z1, · · · , zi) for all i ∈ [t]. Let {Ai}i∈[t] be a sequence of events such that Ai is
deterministic in Zi and such that Ai ⊆ Ai−1. Let gi(Zi−1) be the expected likelihood ratio between our three distributions
at timestep i given Zi−1:

gi(Zi−1) = E
[
dPa(zi | Zi−1)dPb(zi | Zi−1)

(dQ(zi | Zi−1))2
∣∣Zi−1

]
.

Then,

E
[
dPa(Zt)dPb(Zt)

(dQ(Zt))2
1[At−1]

]
≤ sup

Zt∈At−1

t∏
i=1

gi(Zi−1).

Proof. We start by defining the tail set Bi(Zi) as the set of all z̃i+1, · · · , z̃t such that (z1, · · · , zi, z̃i+1, · · · , z̃t) ∈ At. We
will also define

Gi(Zi) := sup
Z̃t∈Bi(Zi)

t∏
j=i+2

gj(Z̃j−1).

Notice that G0(Z0) = supZt∈At

∏t
i=2 gi(Zi−1), and take Gt−1(Zt−1) := 1. Further, notice that for any Zi−1 where the

event Ai−1 holds,

Gi−1(Zi−1)gi(Zi−1) ≤ sup
Z̃t∈Bi−2(Zi−2)

Gi−1(Z̃i−1)gi(Z̃i−1) = Gi−2(Zi−2).

Then, for any i ∈ [t], we use tower rule to expand

E
[
dPa(Zi)dPb(Zi)

(dQ(Zi))2
1[Ai−1]Gi−1(Zi−1)

]
= E

[
E
[
dPa(Zi)dPb(Zi)

(dQ(Zi))2
1[Ai−1]Gi−1(Zi−1) | Zi−1

]]

= E

[
E
[
dPa(Zi | Zi−1)dPb(Zi | Zi−1)

(dQ(Zi | Zi−1))2
dPa(Zi−1)dPb(Zi−1)

(dQ(Zi−1))2
1[Ai−1]Gi−1(Zi−1) | Zi−1

]]

= E

[
dPa(Zi−1)dPb(Zi−1)

(dQ(Zi−1))2
1[Ai−1]Gi−1(Zi−1)E

[
dPa(Zi | Zi−1)dPb(Zi | Zi−1)

(dQ(Zi | Zi−1))2
| Zi−1

]]

= E
[
dPa(Zi−1)dPb(Zi−1)

(dQ(Zi−1))2
1[Ai−1]Gi−1(Zi−1)gi(Zi−1)

]
≤ E

[
dPa(Zi−1)dPb(Zi−1)

(dQ(Zi−1))2
1[Ai−1]Gi−2(Zi−2)

]
≤ E

[
dPa(Zi−1)dPb(Zi−1)

(dQ(Zi−1))2
1[Ai−2]Gi−2(Zi−2)

]
So, by induction, we find that

E
[
dPa(Zt)dPb(Zt)

(dQ(Zt))2
1[At−1]

]
= E

[
dPa(Zt)dPb(Zt)

(dQ(Zt))2
1[At−1]Gt−1(Zt−1)

]
≤ E

[
dPa(Z1)dPb(Z1)

(dQ(Z1))2
1[A0]G0(Z0)

]
.

We take A0 to be the whole space, so 1[A0] = 1. Also, G0(Z0) = supZt∈At

∏t
i=2 gi(Zi−1). So, we find

E
[
dPa(Zt)dPb(Zt)

(dQ(Zt))2
1[At−1]

]
≤

 sup
Zt∈At

t∏
i=2

gi(Zi−1)

E
[
dPa(Z1)dPb(Z1)

(dQ(Z1))2

]
=

 sup
Zt∈At

t∏
i=1

gi(Zi−1)

 ,
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completing the proof.
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