
Learning Agile Paths from Optimal Control

Anonymous Author(s)
Affiliation
Address
email

Abstract: Efficient motion planning algorithms are of central importance for de-1

ploying robots in the real world. Unfortunately, these algorithms often drastically2

reduce the dimensionality of the problem for the sake of feasibility, thereby fore-3

going optimal solutions. This limitation is most readily observed in agile robots,4

where the solution space can have multiple additional dimensions. Optimal con-5

trol approaches partially solve this problem by finding optimal solutions without6

sacrificing the complexity of the environment, but do not meet the efficiency de-7

mands of real-world applications. This work proposes an approach to resolve8

these issues simultaneously by training a machine learning model on the outputs9

of an optimal control approach.10

Keywords: Legged Robots, Imitation Learning, Optimal Control11

1 Introduction12

Autonomous robotic systems are of particular interest for many fields, especially those that can be13

dangerous for human intervention like search and rescue, and maintenance on rigs. However, motion14

planning in unstructured environment is still a hard problem for legged robots and their success de-15

pends largely on their ability to plan their paths robustly. Moreover, the method in which a controller16

deals with obstacles has great consequences on the planned trajectory, and these optimizations are17

quintessential in generating agile motions for real-world robots.18

Trajectory optimization is a common practice for generating motion for legged systems [1, 2, 3],19

since it can produce optimal trajectories which satisfy the physical and environmental constraints of20

the robot. However, the solution from trajectory optimization is only valid for a particular pair of21

initial and target positions, and one needs to re-plan if the pair changes. Due to high-dimensionality22

and complexity, solving such an optimization problem for legged robots is infeasible in real-time.23

Previous work simplified the problem by using a reduced-order model [4] and refining the trajectory24

using model predictive control [5]. However, the issue is exacerbated in the presence of obstacles,25

since collision avoidance constraints are non-linear algebraic constraints and so harder to solve.26

In recent years, imitation learning [6, 7] and reinforcement learning [8, 9] have become the dominant27

focus in the research community. The data-driven approach offers a global solution and removes the28

hurdle of re-planning. On the other hand, collecting data for imitation learning is labour intensive29

work, which can be done by using motion capture [10] or using animal data [11], which is extremely30

difficult on legged robots. Reinforcement learning does not require any data, but it is extremely time-31

consuming to learn a policy.32

For planning with obstacles, most work focuses on modelling the environment as a 2-dimensional33

grid that represents the height of the obstacles [12]. The collision avoidance method finds the34

traversable paths in the plane [13]. However, the paths may be sub-optimal, since completely cir-35

cumventing an obstacle is time consuming at best, and completely impossible at worst.36

To mitigate the limitations of optimal control and imitation learning, we propose a self-supervised37

learning approach for efficient 3D collision avoidance in real-time. Specifically, we generate a set38

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

of motion data from optimal control with a reduced model to create a rough plan and learn a policy39

that reproduces the motion data. The learned policy is refined through whole-body model predictive40

control which satisfies the physical constraints of the robot.41

2 Background42

Let xk,uk represent the states and actions of the robot at time-step k, the goal of optimal control is43

to find a trajectory, a set of x,u, such that a given cost function is minimized. Assuming that xi, xt44

are the initial and target state of the robot specified by the user, a typical problem can be formulated45

as the following46

min
x0,...xN ,u0,uN

∑L(xk,uk) cost function

subject to x0 = xi initial condition
xN = xt terminal condition
xk+1 = F(xk,uk) forward dynamics
... other constraints

(1)

For legged robots, motion planning is normally done through optimization. It is well-known that47

the states of legged robots drift, and predicting a long trajectory is not ideal. In addition, trajectory48

optimization, especially for long horizon, is not feasible in real-time. This is particularly an issue in49

the presence of obstacles, since collision constraints are generally non-linear and thus require non-50

linear solvers. Most people combine trajectory optimization for long horizon planning with model51

predictive control for short horizon planning real time planning and control.52

In the proposed work, we will use trajectory optimization to plan a rough path for the robot torso53

while avoiding collisions with the environment. The outcome of trajectory optimization is generated54

using an approximated model, which may not be realistic for the robot. Therefore, we use model-55

predictive control to refine the path from the reduced model.56

3 Methods57

Let q, q̇, q̈ ∈ R12 denote the joint positions, velocities, and accelerations of a 12 degree-of-freedom58

quadruped robot. We assume that the target position of the robot torso is given, and the environment59

constraints are fully provided. Our goal is find the control torques τττ ∈ R12 that can reach the given60

target while avoiding the obstacles. The objective of the proposed framework is to enable robots to61

learn a novel skill from self-labelled data.62

3.1 Autonomous Data Generation63

Our approach is to formulate the problem as an optimal control problem. We simplify the problem64

by focusing on the trajectory of the robot torso.65

s = [x,y,z,θz]
T ∈ R4 (2)

where x,y,z denote the translation of the torso, θ denotes the rotation about its local z-axis, and roll66

and pitch are fixed during the optimization. Given the initial position of the robot state si, the task is67

to find the a sequence of states {sk}N
k=1 that guides the robot from its initial pose si ∈R4 to its target68

pose st ∈ R4 while minimizing the time T and avoiding the obstacles at position so.69

We formulate this as a trajectory optimization problem, where the state is the positions and velocities70

x = [s, ṡ]T ∈ R8, and the command is the acceleration u = s̈ ∈ R4. The decision variables are the71

sequences of N states and commands, as described in Equation 3.72

2

min
x0,··· ,xN ,u0,··· ,uN ,

T minimum time

subject to xk+1 = F(xk,uk), ∀k = 0, . . . ,N −1 forward dynamics

x0 = [si,0]T ,x1 = 0 initial condition

xN = [st ,0]T ,uN = 0 terminal condition
xmin ≤ xk ≤ xmax, ∀k = 0, . . . ,N state boundary conditions
umin ≤ uk ≤ umax, ∀k = 0, . . . ,N action boundary conditions
D(pk,po)≥ ε, ∀k = 0, . . . ,N collision constraints

(3)

where F defines the dynamic equation of the system, xmin, xmax, umin,umax are the lower and upper73

bounds of states and actions, and D(pk,po) denotes the distance between the robot and the obstacles.74

This problem is transcribed into a direct collocation problem [14] and solved using CasADi [15].75

3.2 Learning a Predictive Model76

Assume that data are generated using the formal section as a set of positions p and velocities ṗ, our77

goal is to learn a mapping πππ(.) ∈ R4 → R4 that predicts the most suitable velocity given the current78

state ˜̇pk = πππ(pk)).79

We use a neural network to encode this relationship. The architecture consists of six fully connected80

layers, each separated by a tanh activation function. The network is trained using stochastic gradient81

descent to optimize the mean squared error between the generated ṗk and the predicted velocity ˜̇pk.82

3.3 Whole-Body Model Predictive Control83

Assuming that xre f
k is the reference state produced by the learnt model in Sec. 3.2, the whole-body84

model predictive control [16] computes the torques τττ ∈ R12 that track the desired inputs xre f
k . This85

component minimizes the ground reaction force F = [f1, . . . , fK]
T for K stance legs while satisfying86

the physical constraints of the robot and the friction cone constraints, which prevent slippage.87

min
F1,F2,...,FM

∑ ||xk −xre f
k ||+ ||Fk|| loss function

subject to xk+1 = F(xk,uk) forward dynamics

µλz ≥
√

λ 2
x +λ 2

y friction cone constraints

τττ
min ≤ τττk ≤ τττ

max torque limit constraints

qmin ≤ qk ≤ qmax joint limit constraints

(4)

Here, the horizon M is a relatively small number. Once the F is found, the first solution F0 is taken88

and the rest are discarded. The ground reaction forces are converted into the equivalent torques.89

The swing leg motion is independent from the model predictive control. Given the desired base90

velocity, we use a simple footstep planner which reads the desired base velocity and generate the91

next footstep position [17]. A simple interpolation is applied between the current footstep position92

and the next footstep position. Then, this is tracked by standard PD control.93

Finally, a flowchart of the proposed framework is summarized in Fig. 1.94

4 Experiments95

The experiments were carried out on a quadruped robot in PyBullet [18]. We created a simulated96

world where the robot needs to move from its initial position to its target position with an obstacle97

between them. The nominal height of the robot torso is 28 cm, and the height of the table is 25 cm.98

The robot can crawl under the obstacle only if it lowers its torso height.99

3

Figure 1: The pipeline of self-supervised collision avoidance planning

Fig. 2 illustrates the simulated setup. The robot starts at the origin and must move to the black arrow100

at (3,0). The red curve shows the path generated by planning the 2D motion, and the green curve101

shows the path generated by the 3D optimal control approach.102

Figure 2: The experimental setup from the front and the side view. The robot starts at the origin and
must move to the target (black arrow). The red curve shows the path generated by planning motion
in 2D, and the green curve shows the path generated via 3D optimal control.

The target position is (3,0), the table is placed at (1.5,0), and the initial positions of the robot are103

randomly drawn from pi ∼ N([0.5,0.066,0.026], [0.5,0.66,0.02]). We use the trajectory optimiza-104

tion method discussed in Sec. 3.1 to generate a path for each initial position, which yields 10000105

trajectories, each with ≈ 100 data points.106

We use the methods from Sec. 3.2 for learning a predictive model. The network architecture is107

[256,1024,1024,1024,1024,256] in the hidden layers, and it took 80 seconds to train a model. This108

was done with batch sizes of 1024 data points for 20 epochs with the stochastic gradient descent109

optimizer and an initial learning rate of 0.5. The train-validate-test size proportions were 80%−110

10%−10%. The results of the model can achieve average mean squared error of 10−5.111

Fig. 3 shows the snapshot of an example trajectory generated using the proposed method. We can112

see that the robot lower is body in order to crawl under the table.

Figure 3: A snapshot of motion generated from learned model
113

5 Conclusion114

This work proposes a self-supervised learning approach to learn a rough plan for a quadruped robot115

maneuver around obstacles. We use optimal control to generate a rough plan and then use supervised116

learning to learn a predictive model. The learned model provides the desired base motion and then117

it is refined using model predictive control for whole-body control. Further improvements include118

relaxing more control variables to include the pitch and roll of the base and incorporating cameras119

and LiDARs for perceiving the environment.120

4

References121

[1] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic tra-122

jectory optimization for motion planning. In IEEE international conference on robotics and123

automation, pages 4569–4574, 2011.124

[2] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories for con-125

strained dynamical systems. In IEEE International Conference on Robotics and Automation126

(ICRA), pages 1366–1373, 2016.127

[3] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter. Rolling in the deep–128

hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE129

Robotics and Automation Letters, 5(2):3626–3633, 2020.130

[4] T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst. Fast online trajectory optimization for131

the bipedal robot cassie. In Robotics: Science and Systems, volume 101, page 14, 2018.132

[5] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit133

cheetah 3 through convex model-predictive control. In IEEE/RSJ international conference on134

intelligent robots and systems (IROS), pages 1–9, 2018.135

[6] S. Schaal. Learning from demonstration. Advances in neural information processing systems,136

9, 1996.137

[7] Y. Duan, M. Andrychowicz, B. Stadie, O. Jonathan Ho, J. Schneider, I. Sutskever, P. Abbeel,138

and W. Zaremba. One-shot imitation learning. Advances in neural information processing139

systems, 30.140

[8] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots. Fast and efficient locomotion via learned141

gait transitions. In Conference on Robot Learning, pages 773–783, 2022.142

[9] T. Li, H. Geyer, C. G. Atkeson, and A. Rai. Using deep reinforcement learning to learn high-143

level policies on the atrias biped. In 2019 International Conference on Robotics and Automa-144

tion (ICRA), pages 263–269, 2019. doi:10.1109/ICRA.2019.8793864.145

[10] H.-C. Lin, M. Howard, and S. Vijayakumar. A novel approach for representing and generalis-146

ing periodic gaits. Robotica, 32(8):1225–1244, 2014.147

[11] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine. Learning agile robotic148

locomotion skills by imitating animals. In Robotics: Science and Systems, 2020.149

[12] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-150

tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.151

[13] M. V. Gasparino, A. N. Sivakumar, Y. Liu, A. E. Velasquez, V. A. Higuti, J. Rogers, H. Tran,152

and G. Chowdhary. Wayfast: Navigation with predictive traversability in the field. IEEE153

Robotics and Automation Letters, 7(4):10651–10658, 2022.154

[14] O. Von Stryk. Numerical solution of optimal control problems by direct collocation. Springer,155

1993.156

[15] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. Casadi: a software frame-157

work for nonlinear optimization and optimal control. Mathematical Programming Computa-158

tion, 11(1):1–36, 2019.159

[16] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit160

cheetah 3 through convex model-predictive control. In IEEE/RSJ international conference on161

intelligent robots and systems (IROS), pages 1–9, 2018.162

[17] M. H. Raibert. Legged robots that balance. MIT press, 1986.163

[18] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics164

and machine learning, 2016.165

5

http://dx.doi.org/10.1109/ICRA.2019.8793864

	Introduction
	Background
	Methods
	Autonomous Data Generation
	Learning a Predictive Model
	Whole-Body Model Predictive Control

	Experiments
	Conclusion

