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Abstract

In modern optimization methods used in deep learning, each update depends on
the history of previous iterations, often referred to as memory, and this dependence
decays fast as the iterates go further into the past. For example, gradient descent
with momentum has exponentially decaying memory through exponentially aver-
aged past gradients. We introduce a general technique for identifying a memoryless
algorithm that approximates an optimization algorithm with memory. It is obtained
by replacing all past iterates in the update by the current one, and then adding a
correction term arising from memory (also a function of the current iterate). This
correction term can be interpreted as a perturbation of the loss, and the nature of this
perturbation can inform how memory implicitly (anti-)regularizes the optimization
dynamics. As an application of our theory, we find that Lion does not have the kind
of implicit anti-regularization induced by memory that AdamW does, providing
a theory-based explanation for Lion’s better generalization performance recently
documented [13]. Empirical evaluations confirm our theoretical findings.

1 Introduction

Many optimization methods used in deep learning are first-order methods with exponentially decaying
memory. For example, adding “momentum” to gradient descent (GD) is a well-established practice to
make training smoother and convergence faster (e. g. Krizhevsky et al. [38]). Adaptive methods such
as Adam [35], RMSProp [60], AdamW [45], and AdaFactor [56], which are commonly used to train
large language models [27, 21, 15], all have exponentially decaying memory. Despite the popularity
of such optimization methods, there is little theoretical knowledge about the implicit regularization
memory introduces to them (potentially informing what regions of the loss space the method takes
the iterates to, what minima they converge to, how such minima influence the generalization of the
trained model, and so on). In this article, we introduce a general framework for identifying such
regularization.

We study a general class of optimization algorithms described by the following iteration
ot =) _pFp™m (e . 90 (1

where 8 € R? are the (evolving) parameters of the machine learning model, 0% is some initial
condition, h is the step size or learning rate, and the functions F™ map from (some subset of)
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(R4)"*1 to R and are allowed to be different at each iteration. The right-hand side in Equation (1)
depends on the whole history of previous iterates, which means the algorithm has memory.

For many algorithms used in practice, dependence on the history comes in one specific form: by using
what we call “momentum variables”, that is, exponential averages of some functions of the iterate
o™ (usually, more specifically, functions of the loss gradient). We present five leading examples to
illustrate this point.

Example 1.1 (Heavy-ball momentum gradient descent; Polyak [53]). This optimizer can be written
in the form (1) with

F™ (™ ... 6©)=m{"h,
where mgnﬂ) = ZB""“VE(B(’“)L )
k=0

for some initial condition 0(0), and where 8 € [0,1) is the momentum parameter, £ is the loss
function to be optimized, and V L is its gradient. |

This optimizer in Theorem 1.1 is often just referred to as GD with momentum, where the exponential

sum mgnH) in Equation (2) is the momentum variable: it exponentially averages past gradients.

The aforementioned optimizer is well-known and often used for training recurrent neural networks
and convolutional neural networks, but it underperforms adaptive optimizers when training other
architectures such as transformers [65, 44, 2, 39]. The following modification is also commonly used
(this formulation is taken from Choi et al. [14] and matches the standard PyTorch implementation).

Example 1.2 (Nesterov’s accelerated gradient descent; Nesterov [52]). This optimizer can be written
in the form (1) with

FOO™ . 00) = m{"™) 4 m{FY),

where m{"*V = 33" gruc(e®),
k=0

my"t = vee™),

for some initial condition 0(0), and where 8 € [0, 1) is the momentum parameter, £ is the loss
function to be optimized, and VL is its gradient. ]

The next example presents the most prominent adaptive optimizer, nowadays commonly used for
training large language models [27, 21].

Example 1.3 (AdamW; Loshchilov and Hutter [45]). The optimizer can be written in the form (1)
with
(n+1)
F(n) (0(71)7 o 9(0)) _ my + m§n+1),

/mén-i-l) +e

n+1 1- 51 = n—
where mg = ﬁ prhvee®),
k=0

n 1- S n— 2
mt ) = S (0,
2 k=0

m{"t =A™,

for some initial condition 0(0), and where 0 < (4, 82 < 1 are momentum parameters, € > 0 is a
numerical stability parameter, 0 < A < 1 is a weight decay parameter, and the squares and square
roots are taken component-wise. |

(n+1) (n+1)
1 2

In Theorem 1.3, m and m are also momentum variables: exponentially averaged gradients
and exponentially averaged squared gradient components respectively, with coefficients in front of



the sum, such as (1 — 3;)(1 — B7")~1, providing “bias correction” [35]. The variable ménﬂ) here

is a degenerate momentum variable, with memory decaying infinitely fast.

The following modification incorporates Nesterov’s momentum into AdamW. This formulation is
taken from Choi et al. [14] (except here € is inside the square root in the denominator).

Example 1.4 (NAdam with decoupled weight decay; Dozat [22]). The optimizer can be written in
the form (1) with

F@™, . 00) = +m{,
n+1 1- ﬁl - n—
where m!"™) = ﬁ 251 kL),
mén-‘rl) — n+1 Zﬁ Vﬁ e(k)))

mgﬂ_l) = )\0(”)a
m{ = vLe™),

for some initial condition 9(0), and where 0 < 31, B2 < 1 are momentum parameters, ¢ > 0 is a
numerical stability parameter, 0 < A < 1 is a weight decay parameter, and the squares and square
roots are taken component-wise. |

As a final example, consider a new optimizer called Lion (EvoLved Sign Momentum), which was
recently discovered by an evolutionary search, and then verified to generalize better than AdamW on
a variety of tasks [13]. We consider a generalized version of the Lion algorithm.

Example 1.5 (Lion-/C; Chen et al. [12]). The optimizer can be written in the form of (1) with

F(”)(e("), o 3(0)) = -VK(m ("+1) + (n+1)) m:(sn-%l)’

n+1 P1 n—
where mg T = —(1— pg)g Zp2 FvLe®),

m{ = (1 - pl)vcw(”)),
P2
(n+1) )\0(”) 3)

for some initial condition 8, and where 0 < p1, p2 < 1are Lion’s momentum parameters, A > 0
is a weight decay parameter, IC. R? — R is some convex function, and VK is its subgradient. M

We choose the letter p rather than S for Lion’s momentum parameters because they are not precisely
parameters controlling the speed of exponential decay in momentum variables, as explained in
Section D. Ordinary Lion corresponds to K(x) = |||/ and VK (x) = sign(z) in Theorem 1.5,
where the sign function is understood component-wise. We consider the generalized Lion-/C algorithm
because it covers a few known algorithms as special cases: see Table 1 and Section 3.1 in Chen et al.
[12]. In fact, it also includes Theorem 1.1 as a special case by taking K(x) = ||z||*/2, p1 = p2, and
A = 0, but we will deal with that important specific example separately for clarity.

It is reasonable to expect that adding exponentially decaying memory to an algorithm in such a way
as described above (for example, replacing the gradient with exponentially averaged past gradients)
changes the optimization dynamics, thereby affecting the performance of the trained model. The
technique we introduce identifies sow the iteration evolution changes when memory is added. This
technique starts with an iteration having memory, and replaces it by a memoryless iteration that
approximates the original one, provided a correction term is added. Specifically, we start with



algorithm (1), and then construct a corresponding new memoryless iteration:

gint — () _ hF(”)(OW. .. .,9(0))

]
depends on the whole history (™) ..., §(®) \/\
correction
1

(n) h[F(n)(é(")

gy )+ M@, @

=0

only depends on o™ (no memory)

where we slightly abuse notation and put

- ()

F™ (8 5"

y=F™@"™, ... 8
—_————

n + 1 times

),

and where the function M ™) (0) captures a correction due to the presence of memory. We then

prove an explicit bound on the approximation error HH(") -0 ) ||, as a function of the learning rate
h. Interpreting the correction term can sometimes generate predictions on whether memory helps or
hurts generalization of first-order methods with momentum.

Our theory only relies on memory decaying sufficiently fast, not necessarily in the form of momentum
variables, and thus covers all the examples listed above and many others, while also allowing for both
full-batch and mini-batch training. Section 2 first presents a heuristic discussion of our proposed
technique focusing on the simplest possible case for clarity: GD with momentum (Theorem 1.1).
Then, Section 3 presents our main theoretical contribution, which we specialize and apply to all the
listed examples in Sections D and E.

Depending on specific optimization algorithm considered, our general result can lead to different
practical conclusions. As a substantive application, Section 4 studies AdamW (Theorem 1.3) and
Lion-KC (Theorem 1.5), and demonstrates that Lion does not suffer from the anti-regularization effect
that AdamW’s memory has, which may be a partial explanation for Lion’s better generalization on
many tasks. Section 5 contains an empirical verification of the theoretical claims we make in previous
sections. Section 6 (with details in Sections F and G) discusses further implications of our main
theoretical result: constructing modified equations, and identifying implicit regularization by noise in
mini-batch training.

In the interest of space, we discuss limitations and future directions in Section A and related literature
(not mentioned in the introduction) in Section B. Additional details about the empirical evaluations
are provided in Sections L and M.

1.1 Notation

We use standard notations for the £, norm of a vector |[v||, = (3, vi[P) Y7 the infinity-norm is
defined as ||v||oc = max;|v;]; finally, the norm without indices is by default Euclidean: ||v]| = ||v||2.
When we write u,, , = O(g(h)), where g(h) is some fixed function of h and w,, 5, is some sequence
of vectors possibly depending on h, we mean that there is a constant C' not depending on h or n
such that ||u,, 5| < Cg(h). We will contract repeating arguments when convenient, e. g. instead of
F™(0,...,0) we will write just ") (). We will use notation £(-) for the loss and V£(-) for its
gradient, h for the learning rate.

2 Building Intuition: Memory Regularizes GD with Momentum

We provide a heuristic explanation of our technique, considering the simplest algorithm with expo-
nentially decaying memory: heavy-ball momentum GD (Theorem 1.1). As explained above, we
would like to remove the dependence of the right-hand side in

0(n+1) _ 0(71) _ hZﬁn_kVC(a(k)) (5)
k=0



on the “past” iterates 0("71), cee 0, leaving only the dependence on the “current” iterate 6™, Let
us represent “past” iterates through the “current” one. First, write

n—1
0(71,—1) _ 0 + hngVE e(n 1— b)) _ e(n) + hngVE e(n)) +O(h2)
b=0 b=0

where the second equality relies on exponential averaging to replace historical iterates with 0™,
influencing only higher-order terms. Similarly,

n—2
0(1172) _ 0(7171) + h26bv£(0(n727b))
b=0
n—2
=0V 4 n Y BVLe™)+ o),
b=0

=™ +h{26b+26b} L™+ 0,

where the last equality follows by inserting the expression for 0™~V Continue like this up to
k n—l
0 =0 +hY "N " BVLEO™) + O(kh?),
=1 b=0
where the k2 provides an estimate on the accumulation of error terms of order h?.

We have now represented all the historical iterates through the current one. Combining it with Taylor
expansion around 0™ in Equation (5), we obtain

k n—l
ot =g —p Z 5k{w(e<" )+ hV2LO™) > > vee™) + O(k2h2)}
k=0 =1 b=0

1-83 (1-p)3

where 0, (1) terms go to zero exponentially fast as n — oo. Now using V2L(0)VL() =
(1/2)V||VL(8)]|?, we obtain that heavy-ball momentum GD is close to ordinary GD (no momentum)
with a different step size and different loss, given by

(n41) _ gm) _ _M_gp 7o) — h 2
0 =0 . BVﬁ(O), where L(0) = L(0) + 21— B)° IVL(O)|-. (6)

The term 5 (1 5)2 |[VL(6)]? that is added implicitly to the loss by the momentum can be interpreted

as implicit regularization. Since J is usually taken to be close to one, the term strongly penalizes
the squared norm of the gradient. There is empirical evidence that such penalization improves
generalization [7, 58, 26]. In fact, this term (up to coefficients) can be interpreted as a first-order
approximation of /5 sharpness [26], which suggests that it moves the trajectory towards “flatter”
minima; this is often thought to improve generalization [25].

3 General Theory: The Effect of Memory

The general form of an optimization algorithm with memory is given by Equation (1). The only
property of memory we use is that it (uniformly in n) decays exponentially fast, as made precise
by Theorem 3.1 below. Openness and convexity of the domain of optimization D, that is, where all
{0(”)} will be assumed to lie, are innocuous assumptions (e.g., R? is open and convex); we impose
them to avoid technicalities with differentiation and Taylor expansion.

Assumptlon 3.1 (Memory Decay). Let D be an open convex domain in R Let
{FM O™ . 00} be a family of functions D" — R two times contmuously dif-
ferentiable on the1r respectlve domains, such that for any n € Zsg, ki,k2 € {0,...,n},



ri,jef{l,....d},

() aF(”) 82F(n)
n T r
2™ < v, ’69(”]“) < ks ’89(”’61)89("162) S Vo kas
% ? J
where F(™ = (Fl("), L F Lgn))T, and y_1, Yk, and g, , are families of positive reals (not depend-
ing on n) satisfying
Sk + Y Yhikekike < 00, (M
kl:1 k17k2=1

3.1 Deriving the Memoryless Approximation
By Taylor expansion with the Lagrange remainder,

F™@™ .. 90y - pm@m . M)

n (n)
=3 (00— gyT OFr LR )
k=1 06" ~"
1 & _ T 2F™ _
- (n—k1) _ g(n) r (n—k2) _ g(n)
+ 2 Z (0 ' 0 ) ae(nfkl)ae(nfk‘g) (C) (0 : 0 )
kl,kgzl
=> (0" — 9<”>)T7”"k(a<”>, .0 L O(R?), (8)
Pt 90(n—F)
where ¢ is some point on the segment between (0("), e 0(0)) and (0("), el 0(")); in the last step

we used Theorem 3.1, 8" %) — 9(") — O(k;h), and 0" ~*2) — ™) = O(k,h).
Next, write

n—1
o=k _ g(n) _ Z (9(8) _ 9(S+1))

s=n—k

n—1 n—1
=h Y FO0O9,. .09 =n > FO™, . 0")+0kH),

s=n—k s=n—k

where in the last step we used F* (), ... ) — F& (9™ 9™ = O((n — s)h), which
follows from Taylor expansion and Theorem 3.1. Insert this into Equation (8) and use Theorem 3.1
again to continue:
FEM™ @™, ,9<0>) —E™@eM™ . M)
n n—1
— o (n)\T (s) (g™ (n) 2
hz 0(" LCARMPRRUARY > FOM, ..., 0M) +0(h).

s=n—~k

We conclude that the original numerical iteration can be rewritten in the form (4), where the linear in
h correction function is defined as M = (M(™, .., Ma(l"))T with

. n aan) n—1 .
MM(0) :=h> Y=y 0" > F“). )

k=1 s=n—k

The derivation of the memoryless iteration is now complete. Although not a proof yet, it is the first
step towards the approximation bound constituting our main theoretical result.



3.2 Approximation Bound

An argument similar to the derivation in Section 3.1 can be made to obtain the following result.
Theorem 3.2 (Memoryless approximation: 1-step error bound). Under Theorem 3.1, there exists a

- ~(0
discrete memoryless iteration {9(n) }:o:O satisfying (4) with initial condition 0( - 0, correction
Sfunction defined in Equation (9), and a constant Cy not depending on h, such that

(n) 7(0)

~(n+1) )

sup HB

nEZ;O

— 0" 4+ hF™ (0 ) < CiRd,

The proof is available in Section H.

The importance of this one-step approximation result is that it allows to bound the global error
between the memoryfull iteration 6™ and memoryless iteration é(n) on a finite time horizon.

Corollary 3.3 (Global error bound on a finite “time” horizon). In the setting of Theorem 3.2, let
{G(n)}n6220 be the sequence of vectors generated by the iteration in Equation (1) with initial

condition 09, Let T > 0 be a fixed “time” horizon. (The number of iterations considered is not
T but |T/h].) Then there exists a constant Cs, depending on T but independent of h, such that

max, cio: /1)) 0 — 8" L < Cob?

The proof is in Section I.

4 Application: the Effect of Memory on AdamW, Lion and Signum

We first study AdamW with memory by an application of Theorems 3.2 and 3.3. Neglecting
coefficients decaying to zero exponentially fast, we have

vLO™)
VLO™M)) + e

0"t = (1 - Ah)o™ — h( +M<”>(9<">)) :

~ sign(VL(0(™))
where M (™ (8) is given by

h(ﬁl(l—ﬁl)_l—ﬁz(l—ﬁz)_l+€ Ba(1—B2)7t
(IvL®)|* +¢)"* (VL@ +¢)**

) (VIVLO)[1,c + AVZL(6)6).

Here ||-||1,c is the perturbed one-norm defined as ||v||1 . := Z?:l \/v? + e. Taking ¢ to zero, we
can write this in the form of preconditioned gradient descent (with decoupled weight decay):

[(VL(e™))]
where rescaled loss (%)
L(0) = [1+ A2 — £25)h] £0) —h (72 — 125) (IVLO) 1 + AVL(6)'6)

is the modified loss. Assuming 83 > (31, we see that (x) is implicitly anti-penalized. By The-
orem 1.1 in [63], full-batch AdamW converges to a KKT point of the constrained optimization
minjg_<1/x £(0). If [|8]|oc < 1/A, then the norm ||[VL(8)]; dominates the term AVL(6)78 in
absolute value, so the main effect of memory is anti-penalizing the one-norm of the gradient. Thus, if
weight decay is sufficiently small, memory anti-regularizes (large-batch) AdamW. Incidentally, by
Lemma 3.8 in that work, 8 is a KKT point of this optimization problem if and only if the constraint
is satisfied and (*) = 0. This is a generalization of the observation that the correction term is zero
if and only if the point is stationary, true of simpler full-batch algorithms (for Adam with A = 0 it
follows from the above; for full-batch GD with momentum it is clear from (6)).



Consider now Lion-KC (Theorem 1.5). Neglecting terms going to zero exponentially fast as n — oo,
the memoryless iteration is

60t = (1 - rN)O™ — h[-VE(-VLEO™)) + M™(6™)]

with M™(g) = —hl’.%VQIC(—VE(O))VQE(O) [VK(=VL(6)) — \6].
— P2

As mentioned above, ordinary Lion is recovered by setting K(x) = ||«||;. This function is not
differentiable, so let us replace it with the smooth convex approximation |||, where ¢ is a small
positive constant. The results of Section 3 can be applied, and the memoryless iteration is

vLO™)
(VL™ +¢)'/*
Vo [IVL®) 1. + A(VLO)TO — L(8))].

with MM (@) = h—L2 c

L=p2 (1v,£(0)]2 +¢)

3/2

This term is small as long as ¢ is small. Therefore, better generalization of Lion on a number of tasks
[13] may be partially attributed to the fact that memory does not anti-regularize Lion. In addition,
notice that the correction terms are exactly the same for Adam with 5; = S =: 8 and Lion with
p1 = p2 = B. Since Lion with p; = po is Signum [9], we provide a novel perspective on the
similarity between Adam with ;1 ~ (35 and Signum, a point discussed and verified empirically in
[66].

S Empirical Evaluations

As a sanity check, we verify that the memoryless iteration (4) that we find is closer than the first-order
approximation (the one with no correction from memory: for example, the first-order approximation
of Adam is sign gradient descent [46]). We see in Figure | that the ¢, (maximal) norm of the weight
difference is smaller with the correction term. Note that the learning rates are realistic and weight
decay is present.

(a) Adam (b) Lion
0.00175 9 --- 1-order memoryless, h=0.0001 --- 1-order memoryless, h=0.0001
0001504 2-order memoryless, h=0.0001 000204 — 2-order memoryless, h=0.0001
' 1-order memoryless, h=0.0003 : 1-order memoryless, h=0.0003
0.00125 - 2-order memoryless, h=0.0003 2-order memoryless, h=0.0003
E £ 0.0015
2 0.00100 - 8
< <
=y =)
‘@ 0.00075 A ‘o 0.0010
= 2
0.000504 .o - | T
,,,,, 0.0005 - e
0000254 7/  _eeemT” — | | L _LeemT
0.00000 - 0.0000 ===
0 2 4 6 8 10 0 2 4 6 8 10
Epoch Epoch

Figure 1: Comparison of the trajectories: ¢..-norm of weight difference between the second-order
memoryless method from Theorem 3.2 and the first-order approximation (signGD): (a) Adam, (b)
Lion (perturbed by € and with bias correction). MLP with GELU activation on MNIST-10K, learning
rates h € {104, }, weight decay 1072 /h, e = 1076,

Further, we train ResNet-50 [31] on CIFAR-10 [37] using Adam (with decoupled weight decay)
and Lion. We keep the 8, parameter of Adam at 0.99 (for stable training on CIFAR-10 [46, 11])
and sweep the 32 parameter. We plot in Figure 2(a) the test accuracy at a fixed small training loss
threshold (controlling for training speed). As predicted in Section 4 and confirming the observation
from [11] for pure Adam without weight decay, the test accuracy drops as 32 approaches one. We see
that Adam with lower values of 35 can sometimes outperform Lion with default hyperparameters and
thus close the generalization gap between these two algorithms, consistent with the theory.



We also verify this phenomenon on a language task by training Transformer-XL [18] on WikiText-2
[48]. We fix the default 81 = 0.9 for Adam and sweep (32, plotting the minimal validation perplexity
achieved before overfitting; as in the vision task, we compare with Lion whose hyperparameters are
set at default values. We observe in Figure 2(b) the same trends as above (in large-batch training,
higher (5 increases the best validation perplexity, that is, hurts generalization; sometimes, taking
lower 35 can close the gap between Adam and Lion).

We provide additional experiment details and evidence in Section M. The code is available at
https://github.com/borshigida/how-memory-modifies-loss.

(a) ResNet-50 on CIFAR-10 (b) Transformer-XL on WikiText-2
0.85] —> 155 -
L 0.84 4 150
[} o
© o
80837 S 145 -
0.82 -
140
0.81 -
0.90 092 0.94 096 0.98 1.00 0.75 0.80 0.85 0.90 0.95 1.00
B2 B2

Figure 2: (a) ResNet-50 on CIFAR-10: test accuracy at training loss threshold 0.05. Full-batch
Adam, learning rate h = 10735, 8; = 0.99, ¢ = 1075, weight decay 0.005. For comparison, we
also show with the same learning rate and weight decay (with default p; = 0.9, ps = 0.99). (b)
Minimal validation perplexity (before overfitting) of Transformer-XL trained with full-batch Adam
on WikiText-2 with learning rate 10=%, 8; = 0.9, ¢ = 1075, For comparison, we also show
(with default p; = 0.9, pg = 0.99). All results are averaged over three iterations.

6 Further Implications

6.1 Modified Equations

We have taken a very general algorithm (1) and converted it (under Theorem 3.1) to a memoryless
iteration (4) with O(h?) uniform error bound on a finite time horizon (Theorem 3.3). Since this
iteration has no memory, standard methods can be used to derive an ordinary differential equation
(ODE) in the form @ = G1(0) + hG2(h) whose continuous solution approximates this iteration and
hence the initial algorithm (with the same approximation guarantee). We implement this in Section F.

6.2 Mini-Batch Training

In specific cases, it is possible to identify the additional implicit regularization that is introduced to
the algorithm by noise, if mini-batch training is used as opposed to full-batch. Assume that the form
of F™ (0™ ... 0©) s given by
FM @™ . 00) = Zﬁkg(w(nfk))(e(n—k'))’
k=0

where the {g*)(-)}7_, functions are uniformly bounded along with two derivatives, and 7 is a
random permutation of (0, ..., n) (chosen among all such permutations with equal probability). The
interpretation is that n is a large number of mini-batches in one epoch, and mini-batches are sampled
randomly without replacement.

The correction term introduced by memory (9) is

n—1 k+1n—1
MM(0) =hB > VTR (9T "N " ghg(tni=i ().
k=0 =1 b=0


https://github.com/borshigida/how-memory-modifies-loss

We can take the average E over all permutations 7 (re-orderings of mini-batches). Deferring some
details to Section G, the result is that for large n

EM @))/h ~ L Vg,(6)Tg(6)

1-5)
B
A= B+ p)

The second term can be interpreted as implicit regularization by noise. For clarity, 7r(1) is a uniformly
distributed random variable over {0, . .., n}, so this expectation is an average over mini-batch indices.

E[(Vgm)(8) — Vg, (8)) (9" (6) — g())].

For example, take g(*)(9) = V.£(¥)(8) the kth minibatch loss. Then we obtained that “on average”
mini-batch GD with momentum is given by the iteration like (6), except the modified loss has an
additional regularization term:

hp
2(1-p)?

__ M
21— 5)(1+ )

regularization by mini-batch noise

E|[vLTW)(9) — vL(6)].

L£(6) = L(6) + IVL(O)I* +
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A Limitations and Future Directions

The approximation bounds in Section 3.2 are in terms of the learning rate h, which means that h
has to be sufficiently small for (our approximations and hence) the optimization trajectories to be
close. This is a standard limitation in the literature. Fortunately, practically relevant learning rates are
often small (especially if a learning rate decay schedule is used), and indeed our experiments confirm
that this technical requirement is not too restrictive in empirically relevant settings. Additionally,
there is a non-negligible effect of mini-batch noise on the picture we are describing in Section 5;
in particular, Lion does not necessarily outperform Adam if batches are small [13]. We are able to
precisely characterize this effect using similar techniques, but this is out of scope of this article and is
a work in progress.

Taking a broader view, one may question the effect of (explicit or implicit) regularization on training
progress and outcomes in deep learning, which is an intricate question not easily amenable to
theoretical analysis [64, 1, 34]. The main purpose of this work is to introduce a general framework
for identifying correction terms, which we validate empirically. In future work, it is likely possible
to build on our proposed theoretical framework to study its implications for the training dynamics,
including characterizing the properties of the loss landscape around the optimizer’s trajectory.

Finally, we discuss some of the most popular optimizers in recent years, but other important algorithms
like Shampoo [30, 57] or its versions are also amenable to this analysis, and the approximation results
in Section 3.2 hold for them (assuming a typical choice of momentum schemes). However, interpreting
the higher-order corrections is not trivial, and we leave that as additional future work.

B Related Literature

Approximating a memoryful iteration with a memoryless one is closely connected with the method of
modified equations (sometimes called backward error analysis), where a discrete algorithm like (1) is
approximated by a continuous solution of an ordinary differential equation or stochastic differential
equation. Typically, this method can only be applied to an algorithm with no memory, in a possibly
enlarged phase space as opposed to R?; for example, heavy-ball momentum GD has no memory

when viewed as a discrete iteration (8, m/(™) in R24, where m(™ is the momentum variable.
The general technique introduced in this paper can be used to derive a memoryless discrete iteration
which can then be approximated by a continuous trajectory. Background on the method of modified
equations can be found in Ernst Hairer and Wanner [23], Li et al. [41].

Works deriving modified equations for (S)GD with or without momentum include Barrett and
Dherin [7], Smith et al. [58], Ghosh et al. [26], Farazmand [24], Kovachki and Stuart [36], Miyagawa
[49], Rosca et al. [55], Li et al. [41]. In particular, Ghosh et al. [26] identified that momentum strongly
regularizes the loss function in the case of GD, though their error bounds both have a different focus
(continuous approximation rather than discrete one), and follow a different approach which appears
hard to generalize to other algorithms. Our approach works for a wide class of algorithms, and we
recover their main results in Section 6. Works approximating adaptive methods with continuous
trajectories include Ma et al. [46], Malladi et al. [47], Barakat and Bianchi [6], Compagnoni et al.
[17]. More recently, Cattaneo et al. [11] studied the special case of Adam / RMSProp. We built
on this work to conduct empirical evaluations. Their focus is not on memory but on continuous
approximations; in particular, they do not have approximation bounds between two discrete iterations
like we do. In addition, their arguments are highly specialized to Adam, and they do not incorporate
weight decay. Although we also discuss Adam (with weight decay) extensively, it is only because of
its importance in practice, and our results cover a much broader class of optimizers.

This paper is also connected to the strand of the literature studying the implicit bias of optimization
algorithms. For example, Xie and Li [63] and Chen et al. [12] prove that weight decay causes AdamW
and Lion to solve an ¢,-norm constrained optimization problem. In that, they behave asymptotically
like (normalized) steepest descent with respect to /,-norm. Bernstein and Newhouse [8] also view
Adam and Lion as smoothed-out versions of steepest descent. This perspective is connected to the
Moreau-Yosida approximation of the loss function [10]; the latter work provides a concrete way to
write down popular optimizers (including SGD with momentum, RMSProp and Adam) as a sequence
of optimization problems. In addition, a large body of work is devoted to the bias of optimization
algorithms towards the direction of the max-margin vector [59, 50, 51, 54, 61, 29, 32, 33]. Similarly,
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Damian et al. [19], Li et al. [43], Arora et al. [5], Wen et al. [62], Damian et al. [20] explore
the sharpness of regions SGD converges to. Gunasekar et al. [28], Arora et al. [4] study implicit
regularization in matrix factorization. Li et al. [42] prove in a certain setting that a larger learning
rate leads to better generalization.

C Broader Impacts

This paper presents a general framework for contrasting certain properties of optimization algorithms
commonly used for training neural networks, and thus this work can lead to societal consequences as
common of deep learning.

D Special Case: F™ as a Function of Momentum Variables

In the examples listed in the introduction, F") satisfies a more specific form that can be used to
give more primitive conditions for Theorem 3.1. The following assumption, which is a special case
of Theorem 3.1 by Theorem J.1, may look a bit technical but allows for a simpler calculation of
correction terms.

Assumption D.1 (Special case of Theorem 3.1: F™ is a function of momentum variables). Let
{ gén) }£_ | be L two times continuously differentiable functions D — R<, uniformly bounded along
with two derivatives. Let {3, }£_, be fixed reals in [0, 1), and {bé"H)}ZL:1 be L bounded nonnegative
sequences of reals (for n € Z3(). Assume the function F™ has the form

FM@O™ . 90):=&m!"™ . ml)
with m{" " = 5"V " gEgi M (9 M) e M, (10)
k=0
where M is a bounded open region in R? and ®(m,...,mr): MEF — R?is a fixed two times

continuously differentiable function, uniformly bounded along with two derivatives. In the full-batch

case, gé") = g, are not allowed to depend on 7.

For instance, in the case of AdamW (Theorem 1.3), Theorem D.1 applies with L = 3,
2
9:1(0) =VL(O), g,(0)= (VE(O)) , g3(0) =0,
n 1- 5
bg o A =1-pi,

b =by= A, By =0.
In the case of Lion-K (Theorem 1.5), the assumption applies with L = 3,
91(0) = —VL(0), g,(0)=-VL(O), g3(0)=0,
i =p2, P2=0, B3=0,
b =0y = (1 )2,
P2
Bt =y =1 L1,
P2
B = by = A

We used the letter p when defining the Lion iteration to avoid confusion with the [3 in the definition of
momentum variables.

Specializing to the setup of Theorem D.l, and for any s,n € Zx, F® ) =
&gt (0),...,g" (), where gt (0) == " S0 BEg! "M (), and

8Fr(n) (0) B EL: Z b(n+1)ﬁk 8(1)7" (7(n+1)(0) ,(n+1)(0))Tv (n—k) (0)
i =1 ‘ COmy. 91 9L Gesi :

i
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Therefore, in this special case, the correction term in the memoryless iteration (4) is given by, for
r=1,...,d,

aml

n 6(1) n —(n
hZZb( +) (@t @),....g"""" () x

n—1

STHTIOT Y w(al 00 0)
k=1

S=n—

b(n+1)

In the full-batch case g(7 )(0) = g,(0), this can be simplified further. Let us assume b, — by,

where by is constant m n. Then g(nH) (0) also become constant in n: specifically, they settle to
Go(0) :=be(1 — B¢)"1g,(0). Theorem J.2 then implies that the iteration becomes close to

0t = 0™ _ n[®(g,(0™),...,5,(0™)) + M™ ()]
with

- b o,
M) =13 T g @073, (0) »

These formulae admittedly look complicated, but we can easily plug in the definitions and calculate
correction terms for all examples with little additional algebra. We list these terms in Section E.

E Details for Examples: Correction Terms

For GD with momentum (Theorem 1.1):

hp
M®@g) = 2 2
0)= 57~ 5V IVE@)
For Nesterov’s accelerated GD (Theorem 1.2):
h3?
(n) — 2
M (0) 20— 6)3VHV£(9)H .

For AdamW (Theorem 1.3, also discussed in Section 4):

M (g Br(1—p1) " = Ba(l = Ba)~ ! Ba(l = B2)~"
O T L ey

) (VIIVL(O)[l1+AV>L(0)6).

For Nadam (Theorem 1.4):

M (6 B =) — Bl = Bo)” B0=5)"" N (G Ivr(o)),. s AV2L(0)6).
o) =n( e i )3/2)( VL) ATE(0)0)

For Lion-/C (Theorem 1.5, also discussed in Section 4):

M™(9) = —h%VQIC(—VL‘(O))VQE(B) [VK(=VL(8)) — A6].

F Deriving the Modified Equation

In this section we find an ODE in the form 6 = G'1,(0) whose continuous solution, with initial
condition 8, will approximate the memoryless iteration established in Section 3. Let us derive
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G'1,(0) in the form of a power series G'1(8) + hGo(h) + O(h?), where O(h?) means “terms of order
at least two in h”. Relating the iteration number n of a discrete iteration and the time point ¢ = nh on
a continuous trajectory, we would like the continuous trajectory to satisfy the same one-step relation

as the discrete iteration, up to O(h*):
0((n + 1)h) = O(nh) — h[F ™ (8(nh),...,0(nh)) + M™ (8(nh))] + O(h®).
In fact, we will ensure it is true for nh replaced by any ¢:
O(t +h) = 0(t) — h[F™(0(t),...,0(t)) + M™(0(t))] + O(h®). (11)

But, using a Taylor expansion, and recalling that we are finding the trajectory satistying O(t) =
G1,(0(1)), hence 8(t) = VG, (0(t))0(t), we have

. h? ..
O(t+h) = e(t) +hO(t) + Z-0(t) + O(h*)

+hﬂh (1)) + hG2(8(t)) + O(h*)}
+ 3{val<e<t>>cl<e<t>> (M)} +0()
YG(80)G6 <>>}+O(h3),

=0(t) + hGl(G(t))hQ{Gz("(t)) +

In order to match (11), we need to have
Gl(e) = _F(n)(07 R 0)7
VG1(0)G41(0
G»(0) = _<M<">(9)/h+ YG.{0)G.(6) 2) 1 )>.
So, apart from the correction term coming from memory, the ODE 8 = G (6) + hG5(8) derived

has another term

12 VG1(6)G1(6)

2

arising from the fact that the algorithm is discrete.
For the example of full-batch heavy-ball momentum GD as in Section 2, where G1(0) = —(1 —
B)~1VL(0) (ignoring coefficients going to zero exponentially fast in n), this additional term is equal
to h?(1 — B)~2V||VL(0)]||?/4, providing additional implicit regularization. We recover the ODE
derived by Kovachki and Stuart [36], Ghosh et al. [26]:
VL(6) b 1+ 8 V|VLO)|?

O="1-5 "a-pr 1

G Mini-Batch Training: Details

Let us take the expectation of the correction term with respect to the random permutation of mini-
batches, that is, take the average over all re-orderings 7 of (g, ..., g(™):
k+1n—I

n—1
E Z ﬂkvgr‘n’(nflfk))(o)T Z Zﬂbg(fr(nflfb))(e)
k=0 =1 b=0
k+1n—1

— n+1 'ZZﬁkvgrﬂ(n 1— k)) ZZﬁbg(Trn - b))(e)

1=1 =0
Note that IEngai)(O) g'%)(8) depends only on whether i = j or i # j. Therefore,
E[M"(8)]/h = C5(B)E[Vg) (8) gV ()] + CL(B)E[VaM (0) g™ (0)],
where C3(3) and Cy() are given by
n—1 b+1 ﬁ

b b+1-1
Kl LD LA & e R E)
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pe— 2ﬁ2
Ci(B):=BY B> > 8" = Cu(B) — (T—BP(1+B)

We can simplify

E[VM (6) g (6) Zwﬁ 6)'g")(6) = Vg,(6)g(6) + 0, (1),

- (n+ 1
where g(0) = Eg™M) () = (n + 1)1 ZZié g¥)(0) is the average of {g(®) ()}, 0,(1) tends to
7ero as n — 0o.

So, for large n we can write

E[M™(0)]/h ~ Cs(B)E[Vg{"(0) g (6)] + Ci(8)Vg.(0) g(8)
= (C5(8) + C1(B)) Vg, (8) g (8) + C5(B)E[(Vg') (8) — Vg,(6)) (g (8) — g(8))]
3

~ (1 ﬂ) Vgr(e) (9> +Cs (B)E[(Vgﬁl)(e) - Vgr(e))—r(g(l)(a) _ g(e))]

H Proof of Theorem 3.2

Since, by the assumptions of the theorem,

Hint1) _ gim — _hF(n)(é("), . .,é(n))

n n—1
2 ~(77 ~(n)\T () 5™ ~(n)
Z 0(”’“ ,....0") ZkF @",....0™), (12)
we need to show that
Fm@",...,8") -~ Fme™,....6™)
n (n) n—1
*(n) ~(n)\T ) 5™ ~(n) 2
kzam" 507,07 ,_ZkF @™,....8"y yom?). (13)

By Taylor expansion with the Lagrange remainder,
Fm@™, ... 8" F )

S F(") @™ Ty _ g™
:Za 0T (0 -0)

1 o~ L a(n—k1)  =(n\T 92F™ “(n—ks)  =(n)
— E 0 -0 0 -0
" 2 k1,ka= 1( ) ao(n—lﬁ)ae(n—kQ) (C) )

(é é(n)

n

(n ~(n ~(n ~(n— ~\n
;Z F ”...70( >)T(0( B _ g ))+O(h2), (14)

where ¢ is some point on the segment between (é(n), e é(o)) and (é(n)

Theorem 3.1 and 8" " — "™ — O(k1h), o) _ g™ — = O(kz2h).

Since the underlined term in Equation (12) is O(1), we have

. é(n)); in (a) we used

-1
é(n*k) B é(") _ (é(s) B é(SJrl))

s=n—k

n—1

—n Y {F9©67,...,0") + 0(h)}

s=n—k
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n—1
—n Y FO@O™,..8") +onPn?),

s=n—k

(S) (s) (n)

é(n)

' é (n)

follows from Taylor expansion, Theorem 3.1 and 0
Equation (14) to get

(N)

) - F(6
(n1)

.,0""") = O((n — s)h), which
= O(h). Combine this with

where in the last step we used F*) (6"

@™ 80— rm@™, .. 8"y
1

n (n) n-
F ~(n ~(n A\ o\" +0
aae("b k) ( a79( ))T{h’ E F(S)(O( )a79( )) O(k2h2)} (h2)
1

n (n) -
OF; @ 2 (n) 5) ™ 2 (n)
Ej (@ 0T FOO",...,0")+0(h?),
1 s=n—k

which is (13), and the proof is complete.

I Proof of Theorem 3.3

We follow a standard argument, e. g. Ghosh et al. [26], Cattaneo et al. [11]. We prove the following
claim by induction over n € Zy:

100 0™l < diets 2, (0D — 8"V g 4 8" < deh?,
where

d=C, dy=1+dY v, ds=Cidy.
k=0

Because nh < T, Theorem 3.3 will follow.

Base: n = 0. It is indeed true that |0 — 6" oo < d1h? because the left-hand side is zero. It is
indeed true that |0V — 8" g + 8"

Assume n € Z>1 and it is true that

o < dsh?® for the same reason.

100 =870 < dyeterin2, 9D — 5" _ gt g < gyeten s,
forall 0 <n' <n —1. Then

by the triangle inequality,

< d1€d2(n_1)hh2 —|—d36d2(n_1)hh3

by the induction hypothesis,

d
=dy <1+d3h) 0= L dy (1 + dah)e® D2
1

by d3 < dido,

< dl 6d2nh h2
by the inequality 1 + x < e* forall x > 0.
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Next, write

g+ _gtm _ "t 4 g™

— —hF™ O™ . 9 (g "1

) 0 n)(g(n -
. )—F™ @™ . 6] - {6

—h[F™@™ . 8 (a+l) _

8" +nrm@™ .. 8

Then
|9£n+1) o oq(qn) - §£n+1) + éﬁn)|

é(o)) _ Fr(n)<0(n), B .70(0))} + ‘é£n+1) _ éﬁn) + hF}")(é(”),._,,é(O))]
0

0"y — F (™, 00| + i1

N RICAN.
<h|Fm@©™, ..
by Theorem 3.2,

"R Ta3(=k) o (n_k) 3
h;W(C) (6 -0 )|+ CiR?,

where ¢ is a point on the segment between (é(n), ceey 9(0))

and (0(”), .. ,0(0)),
<hd > 38" — 0 W
k=0
by (3.1) (recall that d is the dimension of ),

o0
< dih’dy e 4 Con?
k=0

by the induction hypothesis and the bound on ||é(n) — 0™)||, already proven

< <d1d27k+cl>€d2nhh3

k=0

<ds
< dgedznhhd.

J Auxiliary Results

Lemma J.1 (Memory decays exponentially fast). If F™ jsq Sfunction of momentum variables as
described in Theorem D. 1, then for any n and k <n

oF™
max| ——-| < i, 15)
(X 891("_16)
and similarly for any n and k1,ko <n
8 F"
T | 9pl ) gl < Ve ks (16)

where {7y} and {~yk, i, } are sequences decaying exponentially fast: specifically,
Tk = O’y{mlflx 5€}ka Vh1,ko 2= Cq,{m?x /Bé}kIHQ

for some constant C, > 0.

23



Proof. 1t is easy to see (15) by taking the derivative:
0

89(n —k) (”)(0(”) ., 9(0))

3m%+1)

(n+1) (n+1) ;i
_Zzi:am“ yoe,my ) PO

@ n
_Zzb(n+l)5ka ~(m (41) D)

ng(n k)<0(n k))

and using the uniform boundedness of derivatives of g(" ") and ®,.. Equation (16) is proven
similarly. O

Lemma J.2. Let {ay}7°, and {by};° | be sequences of reals such that Y po_, (|ax| + |bg|) < oc.

Then
Zak Z b n:))oo

s=n—k

Proof. Fix e > 0. Take such positive integer ng that for any ng < n1 < ng we have 3372 (lax| +
|bx|) < €. Then for any n > 2ng — 1 the following holds:
n—no n
Z|ak| Z |b\fz\ak\ Z bl >l Z |b|<ez|ak\+|bk
s=n—=k s=n—k k=n—no+1 s=n—k
—_—— — ———
<e <e
Since ¢ is arbitrary and Y - , (Jak| + |bx|) is a finite constant, the statement follows. O

K Corollaries for Special Cases

Lemma K.1 (Application of Theorem 3.3 to Theorem 1.1). Let {9(")}%220 be the sequence of

vectors generated by the iteration in Equation (1) with initial condition 0 where F™) (+) is as
defined in Theorem 1.1, and the loss function L(-) defined in an open convex bounded domain
D C R? is three times continuously differentiable with bounded derivatives; also, let T > 0 be
a fixed “time” horizon. Then Theorem 3.1 holds; in particular, by Theorem 3.3 the inequality
() HOO < C’zh2 holds, where

_ /BTL-H

maefo: /) [0 — 0
- - 1 ~(n) n) 15
(n+1) _ j(n) _ (n)
oLt = ¢ h( =3 VL6 )+ M™M (6 )),

ﬁ[l _ (2’[1 + 1)6”(1 _ ﬁ) _ 62n+1]
2(1-p)°

Proof. The fact that Theorem 3.1 holds is already verified in Section D.

VAIVL(O)?, re[l:d.

M™(0) =h

Next, in this case

1— /Bn-{-l
(n) S
M (0) = 25 VL(0),
oF™ .
Therefore,
n d BF (n) n—1

6) > F®)

s=n—~k

RO NI

n—k
klzlao( )
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n—1

—hZﬁk Z T—5 va,c )ViL(6)

s=n—=k

BIL— (2n+1)8"(1— ) = B <
(- 5P 2

=h

Lemma K.2 (Application of Theorem 3.3 to Theorem 1.3). Let {0(") Ynezs, be the sequence of

vectors generated by the iteration in Equation (1) with initial condition 0%, where F™ (+) is as
defined in Theorem 1.3, and the loss function L(-) defined in an open convex bounded domain
D C R is three times continuously differentiable with bounded derivatives; also, let T > 0 be
a fixed “time” horizon. Then Theorem 3.1 holds; in particular, by Theorem 3.3 the inequality

maxne[o:LT/hJ]HG( R ( )HOO < C5h? holds, where

0,0
(n) 2 1/2
@) +¢)

O+ = (1 — Ah)O™ — h( i M (é(n)))
oL

» —

-6 1- ;L+1 15 1- g+1 TR L 1 <
(D, 1VL(O)|1.c + AIV2L(0)8],)
(0, LB)2 + )72 ’

B2 (n+1)p3t!
ntl n+l - n
M(n) (0) _ h( 51 (n+ ].) 52 I (n—l— ].) 1-32 1—ﬁ2+1 )

€ [1:d).

Proof. The fact that Theorem 3.1 holds is already verified in Section D.

Next, in this case

Py - — Oy
0.L(0)2 +¢
o™ A0 L(0) 5 BE10,£(0)70ir £(6)

agl(n—m( T (0.LO)P+e) 2 (|0,L£(0)]2 +¢)3/2
Therefore,

n d (n) n—1
MM@O)=hn>"" 8Fr 50 > F(8)

k=11i=1 69 s=n—k

DirL(0) 9iL(0)

I
>

d
1-—
z:: (10,L(0)|2 + )1/2 [(|8 L(O)2 +¢)1/2 +/\01} 1_ n+1 Zkﬁl

- i L(6) iL(6)
WO oy g2 e 1 0 ”“Z%
_ Bl ( ) ntl d alTE
_h<1,31 1_ n+1 )Z(|8£ |2+€ {|3£ 1/2+>\9i]
) iL(6)

B (1B K 19,L(0)[20: L
_h<162_ e )l_zlaaw( >|2+e>3/2[<|azc< o) + o)/

_ h( (1) I‘“) (0 IV L)l + AVZL(6)8],)

=B 1-ppHt (10-L(B)]* + &)/

B h( P (n+1)B; "“) 10, L(0)* (9:[IVL(O) |11, + A[VZL(0)8];)

1—-8  1-pBptt (10,L(0)]2 + £)3/2

+ AHZ»]




Bo _ (n+1)B3*!
h( N O A SR U o V) ﬂ>

A L g i-m T 1 a T pLeric
(0, IVL(O)]1,c + A[VZL(6)6],)
(10,L£(0)] +¢)1/2
as desired. O]

Lemma K.3 (Application of Theorem 3.3 to Theorem 1.5). Let {9(")}%220 be the sequence of

vectors generated by the iteration in Equation (1) with initial condition 09, where F™) (1) is as
defined in Theorem 1.5, the function K(-) : M — R defined in a open bounded region M C R% is
three times continuously differentiable with bounded derivatives, and the loss function L(-) defined
in an open convex bounded domain D C R? is three times continuously differentiable with bounded
derivatives; also, let T' > 0 be a fixed “time” horizon. Then Theorem 3.1 holds, in particular, by

Theorem 3.3 the inequality max,,c(o.|T/n)] ||0(") — é(n) ||Oo < C,h? holds, where

G D = (1 MBI — h(—anc(—u — ) vL@™)) + m (6™)),

d
MM (8) = hpi(1— p2 Z Zajr’c(—(l — PPE)VL0))0;L(6)

n n—1
x> T DT (~OK(=(1 = prp3) VL)) + N0:)
k=1 s=n—k
d d
= hot P Z Z —VL(8))0i;L(0)(— 0K (~VL(O)) + A0;) + on(1),

where 0, (1) is a function ()f 0 converging to zero uniformly in @ € D.

Proof. The fact that Theorem 3.1 holds is already verified in Section D.
Next, in this case
F™(0) = —0,K(—(1 — p1p3)VL(6)) + Ny,

or™ d
(0) =D 05 K(=(1 = p1p5) VL)) (1 = p2)p1p5 ™" 015 £(8).

80(n—k)
Therefore,
n d (n) n—1
n 6F7 s
MMO) =hY > —s(0) > FO)
k=11i=1 891 s=n—k
d d
=hpr(1—p2) Y > 0eK(—(1 = p1p5)VL(0))D;;L(0)
i=1 j=1
n n—1
<) ph! (0K (—(1 = p1p3) VL(9)) + A0;)
k=1 s=n—k
Note that

0K(~VL(0)) — K (—(1 — p1p3)VL(O)) = —[VK(C)VL(O)] 105,

where ¢ is on the segment between —(1 — p1p5)VL(6) and —VL(0). Applying Theorem J.2 with
ar = pg_l and by = p1p5 we see that

> b Z — (1= p1p3)VL(6)) + \6;)
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f: (“VLO)) + A8)) + on(1) = —

> T (FOK(-VE©) +20,) +on(1),

where 0,,(1) — 0 as n — oo uniformly in @ € D. Using the boundedness of derivatives again, we
also have

d d
hp1(1 = p2 Z Z 95 KC(—(1 = p1p5)VL()) i £(6)

i=1 j=1

d
= hp1(1 - p2) Z

—VL(6))0i;L£(0) + 0n(1)

HM&

and

n P1
M (8) = hL - ;;aﬂ/c —VL(0))0;;L£(0)(—0;K(—VL(O)) + A0;) + 0,(1)

as desired. O

L. Experiment Details and Licenses

Our implementation of ResNet-50 follows the one from [11] (small modification of the standard
torchvision implementation to allow for training on CIFAR-10 rather than ImageNet). The
torchvision repository has the BSD 3-Clause license. CIFAR-10 is released without an explicit
license. MNIST has the CC BY-SA 3.0 license.

Our implementation of training Transformer-XL on WikiText-2 follows the one from [40] which is a
small modification of the codebase” for [18], licensed under the Apache-2.0 License. The WikiText-2
dataset is released under the CC BY-SA 3.0 license.

Parts of the code are shared with related concurrent work [3]. Their focus is on the effect of
mini-batch noise in Adam, whereas we concentrate on comparing full-batch Adam with different
hyperparameters and Lion (with weight decay), as an empirical application of our general framework
covering a very large family of optimizers.

For Adam (with decoupled weight decay), we use the standard implementation from pytorch.optim;
Lion is taken from the google/automl repository”. This repository is licensed under the Apache
License 2.0. The implementations of the optimizers used for comparing the trajectories in Figure 1 of
the paper are custom and match exactly our analytical formulas (in particular, Lion has bias correction

and the soft-sign function « — x/v/x2 + ¢ instead of the sign function), given below.

AdamW: memoryless update The (full-batch) memoryless AdamW approximation is

(n+1) _ p(n) (n) g(n) (n) ; p(n)
;" =6;" — hE;7(67) — hMT(6),

where
(n) _ V7£(0) )
O e
gy B (DT [VLO)R(VIVEO) .+ NTLO)0])
o) = a2 - ) (V;LO)F +07

N h( B (n+ 1) ”“) (VillVLO) e +AV2L(0)6];)

1-pf 1-pptt NMECOREE

*https://github.com/kimiyoung/transformer-x1
*https://github.com/google/automl/tree/master/lion
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Lion-/C with bias correction The Lion-/C algorithm with bias correction is defined as in Example
1.5 of the paper except bias correction is added:

1;1(n)(0(n)7 o 0(0)) _ —VIC(mgnJrl) + ménJrl)) + Tnz())n+1)7

n 1 - = —
where mg T = —7531& Zpg kVﬁ(e(k))a
1- p2y 2 k=0
m{ = (1 - ’”)vcw(”)),
P2

m:())nJrl) _ )\a(n) )

Lion (perturbed by <): memoryless update The memoryless iteration is given by
(n+1) _ p(n) (n) g(n) () g(n)
0; =0, — hF} (6 )—hMj (60Y)),
where
V;£(8)
VIVLO) +¢
gy _ | P (n+1)pEp
M) = | T H - S
2
€

(VL)% + ¢

r™g) = + 265,

Kok [IVLO)[11.c + A(VLO)TO ~ £(8))].

L.1 Compute Resources

One sweep of hyperparameter 3, contained about 12 runs, with each run repeated for 3 iterations.
Each run took about 10 hours on average on one machine with a devoted 40 GB NVIDIA A100 GPU
(though the training horizon was longer than necessary). This puts compute resources at around
12 x 10 x 3 = 360 A100-GPU-hours per sweep. In Figure 2, two sweeps were conducted. The
experiments on truncated MNIST conducted to produce Figure | used negligible resources compared
to the sweeps described (less than 1 GPU-hour). Additional compute was used for preliminary
experimentation.

M Additional Experiments

We provide some additional results on the language and vision tasks with different learning rates in
Figures 3 and 4.

M.1 A Note on the Edge of Stability and Comparisons with Lion on Vision Tasks

Cohen et al. [16] notice that in a sense Adam trains at the edge of stability. They view Adam as
momentum gradient descent with evolving preconditioner

. v
Pii=(1- ?Ll) {dlag( 1_t+t1+1> + EI].
2

They define “preconditioned sharpness” to be the top eigenvalue of the preconditioned Hessian
A (P 'H,), where H; is the Hessian of the loss, and observe that this quantity often oscillates
around the stability threshold (ffff)ln, where 7 is the learning rate. (This fraction comes from
the fact that if the preconditioner were constant, Adam would become a form of preconditioned
gradient descent with EMA-style momentum, and this is the ordinary stability threshold of EMA-style
heavy-ball momentum on the quadratic Taylor approximation of the loss; we refer to Cohen et al.
[16] for details.) They use large-batch training on CIFAR-10/100. We train a CNN on CIFAR-10
as well, and reproduce this result in Figure 5. We also plot ordinary sharpness A\ (H;) (top hessian
eigenvalue), which first increases and then decreases. Recall that this is an extremely unstable regime
of training [46, 3].
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Figure 3: Minimal validation perplexity (before overfitting) of Transformer-XL trained with full-batch
Adam on WikiText-2 with learning rates (a) h = 5 x 107°; (b) h = 2.5 x 107°, weight decay
10~8 /h, 1 =09, = 10~6. For comparison, we also show with the same learning rates and
weight decay (with default p; = 0.9, p2 = 0.99). All results are averaged over three iterations.
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Figure 4: ResNet-50 on CIFAR-10: test accuracy at training loss threshold 0.05. Full-batch Adam,
learning rates (a) h = 10=4; (b) h = 5 x 107°, 81 = 0.99, ¢ = 1075, weight decay 5 x 10765 /h.
For comparison, we also show with the same learning rates and weight decay (with default
p1 = 0.9, po = 0.99). All results are averaged over three iterations.

Note that the parameter controlling the exponential forgetting of gradients 31 corresponds to the ps
parameter of Lion, so the default po = 0.99 in Lion would match 8; = 0.99 rather than 5; = 0.9 in
Adam. If we take 31 = 0.99 which is the “smooth” regime of training, preconditioned sharpness does
not reach the stability threshold (Figure 6). Note also that ordinary sharpness A1 (H;) (top hessian
eigenvalue) is much lower for small 35 (especially noticeable for 8; < 0.9). This suggests that in
large-batch training on vision tasks, taking S < 1 = 0.99 strongly regularizes training, moving the
model parameters to flatter regions of the loss space. It is a promising direction to investigate the
limits of such regularization: for example, taking 32 near the threshold of divergence may regularize
training so much that the default Lion will not be able to match in terms of generalization error.
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Figure 5: CNN trained on CIFAR-10 with full-batch Adam, 5; = 0.9, € = 1076, learning rate 0.001.
Left: preconditioned sharpness A\, (P, 'H,) oscillates around the stability threshold. Right: the plots
of ordinary sharpness A\ (Hy).
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Figure 6: CNN trained on CIFAR-10 with full-batch Adam, 8; = 0.99, ¢ = 106, learning rate
0.001. Left: preconditioned sharpness \; (P; *H;) does not reach the stability threshold. Right: the
plots of ordinary sharpness A\ (H;).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We substantiate all claims made in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We include the proofs of our theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The experiment details are discussed in figure captions and relevant appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code, along with instructions to reproduce the results, is released publicly
and referenced in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We discuss experimental details in figure captions and the appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We include the error bars in our figures.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide compute resources in the appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have checked that we conform to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include a short note on broader impacts in Section C.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose any non-trivial risks of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide the license information in Section L.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not conduct crowdsourcing or experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not conduct crowdsourcing or experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only used LLMs for code completion, reformatting assistance and brain-
storming.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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