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Abstract001

This paper empirically investigates the re-002
lationship between subword vocabulary size003
and the performance of large language mod-004
els (LLMs) to provide insights on how to de-005
fine the vocabulary size. Experimental results006
show that larger vocabulary sizes lead to bet-007
ter performance in LLMs. Moreover, we con-008
sider a continual training scenario where a pre-009
trained language model is trained on a differ-010
ent target language. We introduce a simple011
method to use a new vocabulary instead of the012
pre-defined one. We show that using the new013
vocabulary outperforms the model with the vo-014
cabulary used in pre-training.015

1 Introduction016

Since the GPT series demonstrated that Large017

Language Models (LLMs) excel in complex rea-018

soning tasks (Radford et al., 2018a,b; Brown019

et al., 2020), they have rapidly become indispens-020

able tools for various natural language processing021

tasks. To construct better LLMs, previous stud-022

ies have addressed theoretical analyses of internal023

layers (Xiong et al., 2020; Takase et al., 2024) and024

conducted extensive experiments to provide em-025

pirical findings (Kaplan et al., 2020; Hoffmann026

et al., 2022; Wortsman et al., 2024). For exam-027

ple, Hoffmann et al. (2022) reported the compute-028

optimal training configuration, which determines029

suitable parameter and training data sizes for a030

given computational resource.031

In contrast, although previous studies have ex-032

plored the properties of internal layers in LLMs,033

parameters related to the vocabulary, the em-034

bedding and output layers, are under-explored.035

Specifically, there are no well-established findings036

on how to determine the subword vocabulary size,037

which defines the parameter size of the embed-038

ding and output layers. As a standard strategy, a039

vocabulary size in the 30k-60k range is used for040

monolingual LLMs (Radford et al., 2018b; Brown041

et al., 2020; Black et al., 2022; Zhang et al., 2022; 042

Touvron et al., 2023), while around 250k is used 043

for multilingual LLMs (Chowdhery et al., 2022; 044

Le Scao et al., 2022). For monolingual LLMs, 045

a larger vocabulary size has been discussed in 046

terms of efficiency during the inference phase (Al- 047

mazrouei et al., 2023). However, the question re- 048

mains: does a larger vocabulary size offer any ad- 049

vantages for the quality of monolingual LLMs? To 050

address this question, we empirically investigate 051

the relationship between vocabulary size and per- 052

formance on downstream tasks. 053

We conduct experiments on two languages: En- 054

glish, which is widely used, and Japanese, which 055

is character-rich. We show that a larger vocabulary 056

size improves the performance of LLMs in both 057

languages. In addition to training from scratch, 058

we consider the continual training scenario. When 059

adapting a pre-trained LLM to another language, 060

it may be beneficial to reconstruct an appropriate 061

vocabulary instead of reusing the original vocabu- 062

lary. For this purpose, we propose a strategy to 063

swap parameters related to the vocabulary. We 064

demonstrate that using the reconstructed vocabu- 065

lary can improve performance. 066

2 Vocabulary Construction 067

To construct subword vocabularies, there are 068

two widely used algorithms: Byte-Pair Encoding 069

(BPE) (Sennrich et al., 2016) and unigram lan- 070

guage model (Kudo, 2018). In this study, we 071

use the unigram language model implemented in 072

SentencePiece (Kudo and Richardson, 2018). For 073

each language, we use the following vocabulary 074

sizes: 5k, 10k, 50k, 100k and 500k. 075

We conduct experiments on two languages: En- 076

glish and Japanese. For the English training 077

data, we extract English corpora from SlimPa- 078

jama (Soboleva et al., 2023), excluding the book 079

corpus, which was reported to have copyright in- 080
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fringement issues. For the Japanese training data,081

we extract the Japanese portion of CommonCrawl082

corpus with the language identification and doc-083

ument deduplication applied using CCNet (Wen-084

zek et al., 2020). For the vocabulary construction,085

we sample a small portion (50GB) from each lan-086

guage training data.087

3 Experiments on Vocabulary Size088

3.1 Settings089

To investigate the relationship between vocabulary090

size and performance, we train Transformer-based091

language models on the training data described in092

Section 2. Table 1 shows the number of tokens093

in the training data calculated from each vocabu-094

lary set. As shown in this table, the number of095

tokens varies drastically based on the vocabulary096

size. Therefore, we must take care not to give any097

unfair advantages to any setting.098

For example, with a fixed number of training to-099

kens, the 500k vocabulary model trains for around100

1.5 epochs in English and 2 epochs in Japanese,101

while the 5k vocabulary model trains for only 1102

epoch. The larger vocabulary size has an advan-103

tage of seeing more data in this configuration. In104

contrast, with a fixed number of training epochs,105

the 5k vocabulary model consumes much more106

computational resources than the larger vocabu-107

lary models. Especially in Japanese, where the 5k108

vocabulary model contains about twice as much109

tokens as the 500k vocabulary model in 1 epoch.110

Because the performance of LLMs is correlated111

with the computational costs during training (Ka-112

plan et al., 2020), this configuration might favor113

smaller vocabulary sizes. Thus, we prepare two114

training configurations: 1T tokens and 1 epoch1.115

For hyper-parameters of the language model,116

we use the GPT-3 Large setting described in117

Brown et al. (2020). We set the number of lay-118

ers 24 and the hidden dimension size 1536. In119

this setting, the number of parameters for internal120

layers is 680M. We use Megatron-LM (Shoeybi121

et al., 2020)2 as our codebase to train large lan-122

1In addition to the training data size, we have to discuss
the number of parameters for a fair comparison because the
model with the small vocabulary size contains less parame-
ters for the embedding and output layers. However, as de-
scribed in Appendix D, the model with the small vocabulary
size does not improve the performance when we increase the
number of parameters related to the vocabulary. Thus, we
focus only on varying the training data size in our main ex-
periments.

2https://github.com/NVIDIA/Megatron-LM

#Vocab English Japanese
5k 830B 950B
10k 750B 750B
50k 670B 590B
100k 650B 550B
500k 640B 490B

Table 1: The number of tokens in training data tok-
enized by each vocabulary.

guage models. To stabilize the training, we use 123

the scaled embed technique (Takase et al., 2024). 124

We evaluate each model on the commonsense 125

reasoning tasks. For English, we use PIQA (Bisk 126

et al., 2020), OpenBookQA (OBQA) (Mi- 127

haylov et al., 2018), HellaSwag (Zellers et al., 128

2019), WinoGrande (Sakaguchi et al., 2021) 129

and ARC easy and challenge (Clark et al., 130

2018). For Japanese, we use JSQuAD and 131

JCommonsenseQA (JCQA) from JGLUE (Kuri- 132

hara et al., 2022), the Japanese portion of 133

XWinograd (Tikhonov and Ryabinin, 2021), and 134

JAQKET3. Following the previous study (Touvron 135

et al., 2023), we use the normalized likelihood in 136

evaluation (Brown et al., 2020; Gao et al., 2023). 137

3.2 Results 138

Tables 2 and 3 present the performance of the 139

models trained with 1T tokens and 1 epoch. For 140

each configuration, we show the average score of 141

each task, and the improvement of the average 142

score from the 5k vocabulary model. 143

As shown by the average scores, for both En- 144

glish and Japanese, larger vocabulary sizes lead 145

to better performance. The improvement is par- 146

ticularly notable in Japanese, largely due to the 147

gains in JAQKET. Unlike the other tasks where the 148

model selects answers from provided candidates, 149

JAQKET is a factoid QA task where the model 150

generates answers without any candidates. This 151

suggests that a larger vocabulary size particularly 152

benefits generation tasks. 153

In addition, the larger vocabulary size achieves 154

better performance in either situation where we fix 155

the number of training tokens or training epochs. 156

With a fixed number of epochs, the larger vocab- 157

ulary size settings, e.g., 100k and 500k, use a 158

much smaller number of training tokens (Table 1). 159

This means that the larger vocabulary size also im- 160

proves the training efficiency because we can ob- 161

tain a better model with a smaller computational 162

3https://sites.google.com/view/project-aio/competition1

2



#Vocab PIQA OBQA HellaSwag WinoGrande ARC-e ARC-c Avg.
1T tokens

5k 69.9 33.2 51.0 55.2 49.6 27.7 47.8 (±0.0)
10k 71.2 33.4 51.5 55.2 50.6 27.1 48.2 (+0.4)
50k 71.7 32.8 53.9 54.5 50.8 27.7 48.6 (+0.8)
100k 70.9 33.4 53.9 54.8 54.3 27.7 49.2 (+1.4)
500k 71.4 34.0 55.3 57.5 55.1 28.3 50.3 (+2.5)

1 Epoch
5k 70.1 32.4 50.9 55.2 50.2 28.5 47.9 (±0.0)
10k 71.1 33.6 50.6 55.7 49.0 27.1 47.9 (±0.0)
50k 70.6 33.6 52.1 53.8 52.3 27.3 48.3 (+0.4)
100k 71.7 33.8 53.4 54.7 52.7 27.6 49.0 (+1.1)
500k 70.4 34.2 54.3 55.1 54.0 28.2 49.4 (+1.5)

Table 2: The performance on English commonsense reasoning tasks in training 1T tokens and 1 epoch.

#Vocab JSQuAD JCQA XWinograd JAQKET Avg.
1T tokens

5k 58.1 68.1 58.9 12.5 49.4 (±0.0)
10k 61.2 67.2 59.0 23.3 52.7 (+3.3)
50k 61.8 71.6 59.0 29.2 55.4 (+6.0)
100k 62.1 71.9 59.6 34.9 57.1 (+7.7)
500k 64.5 71.6 59.3 38.9 58.6 (+9.2)

1 Epoch
5k 57.7 68.1 58.8 14.4 49.8 (±0.0)
10k 57.7 63.4 60.0 22.0 50.8 (+1.0)
50k 60.9 69.1 58.5 28.7 54.3 (+4.5)
100k 61.3 70.1 58.7 31.0 55.3 (+5.5)
500k 63.2 69.8 57.7 34.1 56.2 (+6.4)

Table 3: The performance on Japanese commonsense reasoning tasks in training 1T tokens and 1 epoch.

cost. In fact, the GPU hours4 in the 100k setting163

are 0.7 times shorter than in the 5k when we fix164

the number of training epochs in Japanese5.165

4 Experiments on Continual Training166

4.1 Increasing Vocabulary Size167

Section 3 shows that the larger vocabulary size168

is useful in constructing LLMs from scratch. In169

contrast, nowadays, we often start from a high-170

quality pre-trained model such as the Llama se-171

ries (Touvron et al., 2023) and continue training172

on the target language data (Müller and Laurent,173

2022; Yong et al., 2023; Yamada and Ri, 2024).174

Here, we check if we can readily increase the175

vocabulary size from the pre-trained model. Simi-176

lar techniques have been explored as vocabulary177

expansion (Fujii et al., 2024; Kim et al., 2024)178

or sophisticated embedding initialization using179

cross-lingual word embeddings (Minixhofer et al.,180

2022), but our focus here is to check if we could181

increase the vocabulary size in a rather simplistic182

4We used A100 80GB for all experiments.
5Since the larger vocabulary size slows the computation

of the output distribution, we should use an efficient way such
as the adaptive softmax (Grave et al., 2017) in practice.

way. We consider a situation where we construct 183

an entirely new vocabulary independently of the 184

original vocabulary. 185

Let Vorig and Vnew be the vocabulary set of the 186

pre-trained model and a newly constructed vocab- 187

ulary set respectively, and let d be the dimension 188

size of each layer. To exploit knowledge learned 189

in the pre-trained embedding matrix, we construct 190

a new embedding matrix Enew ∈ R|Vnew|×d from 191

the original embedding matrix Eorig ∈ R|Vorig |×d 192

with the way inspired by the randomized algo- 193

rithm (Halko et al., 2011): 194

Enew =
WEorig√
|Vorig|

, (1) 195

where W ∈ R|Vnew|×|Vorig | is the random ma- 196

trix whose elements are sampled from the stan- 197

dard normal distribution independently. To main- 198

tain the standard deviation of Eorig in Enew, we 199

scale the matrix multiplication by 1√
|Vorig |

6. 200

6We assume that Eorig contains independent random
variables with mean 0 and variance var(Eorig). Then, the
variance of the matrix multiplication WEorig has mean 0 and
variance var(Eorig)× |Vorig|.
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Setting #Vocab JSQuAD JCQA XWinograd JAQKET Avg.
From scratch 100k 71.8 76.0 63.6 54.2 66.4
Llama2 (w/o train) 32k 71.2 60.8 62.4 15.3 52.4 (±0.0)
Llama2 vocab 32k 80.7 79.4 72.6 47.7 70.1 (+17.7)
Swap 100k 79.2 80.2 67.5 56.3 70.8 (+18.4)
Swap&Insert 100k 81.9 80.2 69.2 61.2 73.1 (+20.7)
Fujii et al. (2024) 100k 81.6 77.6 69.1 61.1 72.4 (+20.0)

Table 4: The performance on Japanese commonsense reasoning tasks in the continual training from Llama2.

In the naive way, we swap Enew with Eorig.201

However, Equation 1 randomizes embeddings202

even if Vnew contains the corresponding subwords203

which may possess useful knowledge transferable204

to the new model. Therefore, we insert the pre-205

trained embedding in Eorig into Enew if the cor-206

responding subword is included in both Vorig and207

Vnew
7. For the output layer, we construct a new208

weight matrix with the same manner.209

4.2 Results210

We train the Llama2 7B parameter model (Tou-211

vron et al., 2023) with 100B tokens on our212

Japanese training data. We use the Japanese vo-213

cabulary whose size is 100k. Table 4 shows results214

on Japanese commonsense reasoning tasks. In215

this table, ‘Swap’ uses new parameters related to216

the vocabulary without inserting the correspond-217

ing pre-trained parameters. We train a language218

model from scratch to compare the effectiveness219

of the continual training. Moreover, we compare220

the embedding initialization method by Fujii et al.221

(2024) because their study is the same situation:222

continual training of Llama2 on Japanese data.223

Table 4 shows that ‘Swap’ and ‘Swap&Insert’224

outperform the model using the original Llama2225

vocabulary even though these settings randomize226

parameters related to the vocabulary. This result227

indicates that it is better to prepare an appropri-228

ate vocabulary even in the continual training sit-229

uation. Moreover, the insertion strategy achieves230

further improvement. The ‘Swap&Insert’ outper-231

forms the method of Fujii et al. (2024), which ini-232

tializes an embedding of the new subword with the233

average of the pre-trained embeddings8, and thus,234

the ‘Swap&Insert’ is simple but effective.235

5 Related Work236

Before the paradigm of subword units and LLMs,237

researchers sometimes needed to handle the large238

7See Appendix B for more details.
8For the existing subwords, their method uses the pre-

trained embeddings. Thus, their method is regarded as using
the ‘Insert’ strategy.

vocabulary size such as more than 100k to de- 239

crease the number of unknown words. For ex- 240

ample, the vocabulary sizes of One Billion Word 241

Benchmark and WikiText-103 are about 800k and 242

300k respectively (Chelba et al., 2013; Merity 243

et al., 2017). Some previous studies reported that 244

character-level information was useful for neu- 245

ral language models with the large vocabulary 246

size (Jozefowicz et al., 2016; Takase et al., 2019). 247

In this paradigm, Chen et al. (2019) explored the 248

impact of the vocabulary size. 249

Since the use of subword units is proposed (Sen- 250

nrich et al., 2016; Kudo, 2018), the vocabulary 251

sizes 30k-60k are widely used as the magic num- 252

bers (Libovický et al., 2022). As examples, the 253

BERT and GPT papers use 30k and 40k for their 254

vocabulary sizes respectively without any justifi- 255

cation (Vaswani et al., 2017; Devlin et al., 2019; 256

Radford et al., 2018a). Kiyono et al. (2020) inves- 257

tigated the relation between the performance and 258

the vocabulary size but the maximum vocabulary 259

size of their investigation is too small, i.e., 32k. 260

For large language models, the vocabulary sizes 261

30k-60k are also frequently used (Radford et al., 262

2018b; Touvron et al., 2023). In using the large 263

vocabulary size, the authors claim to support mul- 264

tilinguality (Le Scao et al., 2022; Xue et al., 2021) 265

or improve the efficiency (Lieber et al., 2021; 266

AI@Meta, 2024). In contrast, we investigate the 267

relation between the vocabulary size and the per- 268

formance of monolingual LLMs on each task. 269

6 Conclusion 270

In this paper, we empirically investigate the per- 271

formance of monolingual LLMs when we vary the 272

vocabulary size. We conduct experiments on two 273

languages: English and Japanese. Experimental 274

results show that the larger vocabulary size is, the 275

better performance the language model achieves in 276

both languages. Moreover, we introduce a method 277

to use the entirely new vocabulary in the continual 278

training situation. We show that using the appro- 279

priate vocabulary also improves the performance 280

in the continual training. 281
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Limitations282

In this study, we conducted experiments on two283

languages: English and Japanese. We believe that284

our findings can be applied to other languages be-285

cause we do not depend on linguistic features in286

the subword vocabulary construction. However,287

we also agree that it is better to conduct exhaus-288

tive experiments on various languages to confirm289

the generality of our findings.290

In this study, we used 500k as the maximum291

vocabulary size. Because it is impractical to292

construct a much larger vocabulary than 500k,293

we could not investigate the improvement by the294

tremendously large vocabulary size such as one295

million and the upper bound of the performance.296

The computational time of the vocabulary con-297

struction depends on the corpus size and the de-298

sired vocabulary size. We roughly estimate that299

the vocabulary whose size is larger than one mil-300

lion requires at least over a month in its construc-301

tion in our environment.302

Furthermore, the parameter sizes of internal lay-303

ers are 680M in training from scratch, and 7B in304

the continual training. We consider that the dis-305

cussions on subword vocabulary size are orthogo-306

nal to the parameter size of internal layers, but we307

would conduct additional experiments with more308

than 10B parameters if we had a large amount of309

computational resources.310
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Hyper-parameter Value
Number of layers 24
Hidden dimension size 1536
Number of attention heads 16
Sequence length 2048
Batch size 2048
Learning rate 3e-4
Learning rate scheduler Cosine
Warmup ratio 0.01
Adam β1 0.9
Adam β2 0.95
Weight decay 0.01
Gradient clipping 1.0

Table 5: Hyper-parameters used in experiments described in Section 3.

Initialization Vocab type JSQuAD JCQA XWinograd JAQKET Avg.
Fujii et al. (2024) Expansion 78.8 63.5 63.6 50.1 64.0
Swap&Insert Expansion 80.7 60.6 67.4 55.9 66.2
Fujii et al. (2024) Appropriate 81.6 77.6 69.1 61.1 72.4
Swap&Insert Appropriate 81.9 80.2 69.2 61.2 73.1

Table 6: The performance on Japanese commonsense reasoning tasks in the continual training from Llama2 when
we construct the 100k vocabulary with the vocabulary expansion approach and construct the appropriate 100k
vocabulary to the Japanese training data.

Type Number
UTF-8 byte pieces 256
Alphabet & number (e.g., a, the, 1) 5349
Symbol (e.g., +, =, ##) 209
Others such as Japanese characters 1083
Total 6897

Table 7: The type and number of shared subword units between the original Llama2 vocabulary and appropriate
vocabulary, whose size is 100k, to the Japanese data in the continual training.

A Hyper-parameters 642

Table 5 shows hyper-parameters used in our main experiments described in Section 3. 643

B Formula of ‘Insert’ in Section 4.1 644

We formulate the procedure of ‘Insert’ in Section 4.1. Let eorigi and enewi be the i-th row vectors of 645

Eorig and Enew, and let worig
i and wnew

i be the corresponding subwords to eorigi and enewi . The ‘Insert’ 646

function, Insert(·), replaces enewi with eorigi when the corresponding subword is included in the original 647

vocabulary Vorig as follows: 648

Insert(enewi ) =

{
eorigj if wnew

i ∈ Vorig ∧ worig
j = wnew

i

enewi otherwise
(2) 649

Therefore, the matrix contains both the randomized embeddings and the original pre-trained embeddings 650

after the ‘Insert’ procedure. As shown in Section 4.2, this procedure leads to further improvement. 651

C Comparison on Vocabulary Expansion in Continual Training 652

In Section 4, we conduct the continual training experiment on the scenario where we construct an appro- 653

priate vocabulary to the target language. In this scenario, most subword units in the original vocabulary 654

might be removed. In contrast, the vocabulary expansion approach maintains the whole original vocabu- 655

lary because it only adds new subword units to the original vocabulary (Fujii et al., 2024). We investigate 656

which approach is empirically better in this section. 657
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#Vocab Vocab #Params. Total #Params. JSQuAD JCQA XWinograd JAQKET Avg.
5k 8M 690M 58.1 68.1 58.9 12.5 49.4 (±0.0)
5k w/ Expansion 200M 880M 61.0 60.3 59.5 15.8 49.2 (−0.2)
100k 150M 840M 62.1 71.9 59.6 34.9 57.1 (+7.7)

Table 8: The performance on Japanese commonsense reasoning tasks when we use 1T tokens for training. For a
fair comparison between 5k and 100k, we increase the parameter sizes of the embedding and output layers (Vocab
#Params. in this Table) for 5k with the matrix factorization technique (Lan et al., 2020).

We construct 100k vocabulary with the vocabulary expansion approach, and compare it with the ap-658

propriate vocabulary used in Section 4. We apply two strategies to initialize the embedding matrix:659

Fujii et al. (2024) and our ‘Swap&Insert’. Table 6 shows results of the continual training from Llama2.660

This table indicates that using appropriate vocabulary outperforms the vocabulary expansion approach.661

The appropriate vocabulary contains more subword units of the target language. We consider that this662

property improves the performance.663

Table 7 shows the shared subword units between the original Llama2 vocabulary and the appropriate664

vocabulary. This table indicates that the number of shared subword units is only about 7000, which665

is about one-fifth of the original vocabulary. Moreover, this table suggests that the original vocabulary666

contains few Japanese subword units because the number of the shared Japanese characters is about 1000.667

Therefore, it is better to construct an entirely new vocabulary that is appropriate to the target language.668

For the embedding initialization methods, Table 6 shows that our ‘Swap&Insert’ achieves better av-669

eraged score than the method of Fujii et al. (2024) in the same as the results in Section 4. Thus, our670

approach is also more suitable in the vocabulary expansion situation.671

D Comparison on Parameter Size672

The smaller vocabulary size lessens the parameter sizes related to the vocabulary in comparison with the673

larger vocabulary size. Thus, the smaller vocabulary size might have the disadvantage in the number674

of parameters. To confirm this point, we increase the parameters related to the vocabulary for the 5k675

setting. Concretely, we expand the dimension of the embedding and output layers, and then modify the676

dimension size by the linear transformation such as the matrix factorization technique (Lan et al., 2020)9.677

Let |V | be the vocabulary size, de be the dimension size of the embedding and output layers, and d be678

the hidden dimension size. We prepare the expanded embedding layer E ∈ R|V |×de and the trainable679

weight matrix W ∈ Rde×d. We convert the dimension size of E with the matrix multiplication EW .680

For the output layer, we convert the dimension with the same manner. We adjust de = 30720 for a fair681

comparison with the 100k setting in terms of the number of parameters. For other hyper-parameters, we682

use the values shown in Table 5.683

Table 8 shows the performance on Japanese commonsense reasoning tasks. This table indicates that the684

5k with the expansion does not improve the average score although it increases the number of parameters.685

This result suggests that the increase of the parameter size related to the vocabulary has no positive686

influence on the performance. In contrast, the 100k achieves much better average score in the similar687

parameter size. Therefore, the improvement by the increase of the vocabulary size is orthogonal to the688

increase of the parameter size.689

E Experiments on Each Training Data Size690

In addition to the 1T tokens in Section 3, we investigate the performance in other training data sizes:691

10B, 50B, 100B, 200B, and 500B tokens. Tables 9 and 10 show the results of English and Japanese692

models when we use each training data size. These tables show that larger vocabulary sizes lead to better693

performance for both English and Japanese in all training data sizes in the same as the results in Section694

3. These tables indicate that our findings are independent from the amount of training data.695

9In contrast, we can reduce the number of parameters for the larger vocabulary size with the matrix factorization technique
or more sophisticated way (Takase and Kobayashi, 2020), but we regard the 5k as the baseline in this experiment.
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#Vocab PIQA OBQA HellaSwag WinoGrande ARC-e ARC-c Avg.
10B tokens

5k 58.4 25.4 29.3 51.9 34.3 22.3 36.9 (±0.0)
10k 59.1 27.8 29.6 53.2 35.0 21.6 37.7 (+0.8)
50k 62.1 26.2 29.5 49.9 38.7 21.9 38.0 (+1.1)
100k 62.2 27.8 29.7 49.6 39.0 22.7 38.5 (+1.6)
500k 62.1 27.6 30.1 51.3 38.7 22.9 38.8 (+1.9)

50B tokens
5k 66.7 28.0 39.0 52.3 41.9 23.8 41.9 (±0.0)
10k 66.3 30.4 39.5 51.0 42.6 25.3 42.5 (+0.6)
50k 68.1 29.4 40.9 50.9 46.9 25.5 43.6 (+1.7)
100k 68.1 31.6 42.0 51.3 46.9 25.5 44.2 (+2.3)
500k 68.8 32.2 43.1 52.0 47.9 25.7 44.9 (+3.0)

100B tokens
5k 67.2 30.8 42.7 52.2 44.1 26.7 44.0 (±0.0)
10k 68.9 31.6 42.7 51.6 45.1 25.7 44.3 (+0.3)
50k 68.9 30.8 45.1 52.6 49.1 26.2 45.5 (+1.5)
100k 70.2 31.6 46.1 52.9 49.1 25.8 45.9 (+1.9)
500k 70.4 31.6 47.0 53.0 50.0 28.2 46.7 (+2.7)

200B tokens
5k 68.8 32.8 45.3 53.4 46.0 25.3 45.2 (±0.0)
10k 69.0 31.6 46.2 53.3 45.7 26.5 45.4 (+0.2)
50k 70.5 31.0 47.9 53.8 50.0 26.1 46.6 (+1.4)
100k 70.5 33.6 49.2 54.6 50.6 26.2 47.4 (+2.2)
500k 70.7 33.4 50.2 54.3 51.8 29.6 48.3 (+3.1)

500B tokens
5k 69.7 32.6 49.6 52.9 47.7 26.4 46.5 (±0.0)
10k 70.8 34.2 49.7 54.5 49.0 26.2 47.4 (+0.9)
50k 70.2 32.2 52.0 54.4 51.6 27.2 47.9 (+1.4)
100k 70.1 33.4 52.7 55.3 52.8 27.8 48.7 (+2.2)
500k 71.1 31.8 53.6 56.5 53.9 28.8 49.3 (+2.8)

Table 9: The performance on English commonsense reasoning tasks when we use 100B, 200B, and 500B tokens
for training.

The difference of the performance among vocabulary sizes is smaller in the 10B tokens than ones 696

in other training data sizes. Thus, the small training data size decreases the advantage of the large 697

vocabulary sizes. These results explain the relation between our findings and the previous study (Ali 698

et al., 2024). Ali et al. (2024) concluded that the small vocabulary size such as 30k is sufficient for 699

English monolingual LLMs. We consider that they led the contrary conclusion to our findings because 700

their training data, which is about 50B tokens, is much smaller than ours. 701
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#Vocab JSQuAD JCQA XWinograd JAQKET Avg.
10B tokens

5k 1.6 37.1 51.0 0.9 22.7 (±0.0)
10k 1.4 44.2 53.6 0.5 24.9 (+2.2)
50k 2.7 47.9 51.0 1.6 25.8 (+3.1)
100k 5.3 48.9 51.7 3.3 27.3 (+4.6)
500k 10.1 50.8 52.5 4.1 29.4 (+6.7)

50B tokens
5k 36.3 49.4 53.7 3.3 35.7 (±0.0)
10k 42.6 59.1 56.0 7.7 41.4 (+5.7)
50k 42.8 56.8 55.7 12.2 41.9 (+6.2)
100k 40.9 56.8 56.9 17.5 43.0 (+7.3)
500k 48.9 57.2 54.8 17.9 44.7 (+9.0)

100B tokens
5k 45.0 55.0 56.9 5.2 40.5 (±0.0)
10k 49.8 60.9 56.7 12.3 44.9 (+4.4)
50k 51.4 56.0 56.8 18.4 45.7 (+5.2)
100k 49.1 58.7 58.9 20.7 46.9 (+6.4)
500k 56.3 60.1 55.7 26.3 49.6 (+9.1)

200B tokens
5k 50.5 58.5 56.7 7.5 43.3 (±0.0)
10k 53.8 61.1 57.7 16.9 47.4 (+4.1)
50k 55.8 54.0 58.7 21.4 47.5 (+4.2)
100k 54.7 64.2 58.0 27.2 51.0 (+7.7)
500k 60.6 61.4 56.4 32.1 52.6 (+9.3)

500B tokens
5k 56.4 62.2 58.4 10.4 46.9 (±0.0)
10k 59.6 62.8 58.8 20.2 50.4 (+3.5)
50k 59.3 64.7 59.0 26.5 52.4 (+5.5)
100k 60.1 64.7 59.3 31.8 54.0 (+7.1)
500k 62.6 62.9 58.8 36.4 55.2 (+8.3)

Table 10: The performance on Japanese commonsense reasoning tasks when we use 100B, 200B, and 500B tokens
for training.
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