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Abstract
Over the recent years, reinforcement learning (RL) starts to show promising results in tackling
combinatorial optimization (CO) problems, in particular when coupled with curriculum learning
to facilitate training. Despite emerging empirical evidence, theoretical study on why RL helps is
still at its early stage. This paper presents the first systematic study on policy optimization methods
for online CO problems. We show that online CO problems can be naturally formulated as latent
Markov Decision Processes (LMDPs), and prove convergence bounds on natural policy gradient
(NPG) for solving LMDPs. Furthermore, our theory explains the benefit of curriculum learning: it
can find a strong sampling policy and reduce the distribution shift, a critical quantity that governs
the convergence rate in our theorem. For a canonical online CO problem, Secretary Problem, we
formally prove that distribution shift is reduced exponentially with curriculum learning even if the
curriculum is randomly generated. Our theory also shows we can simplify the curriculum learning
scheme used in prior work from multi-step to single-step. Lastly, we provide extensive experiments
on Secretary Problem and Online Knapsack to verify our findings.

1. Introduction

In recent years, machine learning has shown promising results in solving combinatorial optimization
(CO) problems, including traveling salesman problem (TSP, Kool et al. [13]), maximum cut [11]
and satisfiability problem [17]. While in the worst case some CO problems are NP-hard, in practice,
the probability that we need to solve the worst-case problem instance is low [6].

A significant subclass of CO problems is called online CO problems, which has gained much
attention [8–10]. Online CO problems entail a sequential decision-making process, which perfectly
matches the nature of reinforcement learning (RL).

This paper concerns using RL to tackle online CO problems. RL is often coupled with spe-
cialized techniques including (a particular type of) Curriculum Learning [12], human feedback and
correction (Pérez-Dattari et al. [15], Scholten et al. [16]), and policy aggregation (boosting, Brukhim
et al. [5]) to accelerate the training speed.
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However, it is unclear when and why they improve the performance. We particularly focus on
RL with Curriculum Learning (Bengio et al. [4], also named “bootstrapping” in Kong et al. [12]):
train the agent from an easy task and gradually increase the difficulty until the target task.

Main contributions. In this paper, we initiate the formal study on using RL to tackle online
CO problems, with a particular emphasis on understanding the specialized techniques developed in
this emerging subarea. Our contributions are summarized below.
• Formalization. For online CO problems, we want to learn a single policy that enjoys good

performance over a distribution of problem instances. This motivates us to use Latent Markov
Decision Process (LMDP) [14] instead of standard MDP formulation. We give concrete examples,
Secretary Problem (SP) and Online Knapsack, to show how LMDP models online CO problems.
• Provable efficiency of policy optimization. We analyze the performance of NPG for LMDP.

The performance bound is characterized by the number of iterations, the excess risk of policy evalu-
ation, the transfer error, and the relative condition number κ that characterizes the distribution shift
between the sampling policy and the optimal policy.
• Understanding and simplifying Curriculum Learning. Using our performance guarantee

on NPG for LMDP, we study when and why Curriculum Learning is beneficial to RL for online
CO problems. Our main finding is that the main effect of Curriculum Learning is to give a stronger
sampling policy. Under certain circumstances, Curriculum Learning reduces the relative condition
number κ, improving the convergence rate. For the Secretary Problem, we provably show that
Curriculum Learning can exponentially reduce κ compared with using the naı̈ve sampling policy.
Surprisingly, this means even a random curriculum of SP accelerates the training exponentially.
As a direct implication, we show that the multi-step Curriculum Learning proposed in [12] can
be significantly simplified into a single-step scheme. Lastly, to obtain a complete understanding,
we study the failure mode of Curriculum Learning. To verify our theories, we conduct extensive
experiments on two classical online CO problems (Secretary Problem and Online Knapsack).

2. Problem setup

In this section, we first introduce LMDP and why it naturally formulates online CO problems. The
next are necessary components required by the algorithm, Natural Policy Gradient.

2.1. Latent Markov Decision Process

Latent MDP [14] is a collection of MDPsM = {M1,M2, . . . ,MM}. All the MDPs share state
set S, action set A and horizon H . Each MDPMm = (S,A, H, νm, Pm, rm) has its own initial
state distribution νm ∈ ∆(S), transition Pm : S × A → ∆(S) and reward rm : S × A → [0, 1],
where ∆(S) is the probability simplex over S. Let w1, w2, . . . , wM be the mixing weights of MDPs
such that wm > 0 for any m and

∑M
m=1wm = 1. At the start of every episode, one MDPMm ∈M

is randomly chosen with probability wm.
Due to the time and space complexities of finding the optimal history-dependent policies, we

stay in line with Kong et al. [12] and care only about finding the optimal history-independent policy.
Let Π = {π : S → ∆(A)} denote the class of all the history-independent policies.

Log-linear policy. Let ϕ : S × A → Rd be a feature mapping function where d denotes the
dimension of feature space. Assume that ∥ϕ(s, a)∥2 ≤ B. A log-linear policy is of the form:

πθ(a|s) =
exp(θ⊤ϕ(s, a))∑

a′∈A exp(θ⊤ϕ(s, a′))
, where θ ∈ Rd.
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Entropy regularized value function, Q-function and advantage function. We incorporate en-
tropy regularization for completeness because prior works used it to facilitate training. The value
function V π,λ

m,h(s) is defined as the sum of future λ-regularized rewards starting from s and executing

π for h steps in Mm. The λ-regularized reward is defined as rπ,λm (s, a) := rm(s, a) + λ ln 1
π(a|s) ,

which depends on the current policy π. Denote V π,λ :=
∑M

m=1wm
∑

s0∈S νm(s0)V
π,λ
m,H(s0). Un-

der regularization, we seek for π⋆
λ = argmaxπ∈Π V π,λ. Denote V ⋆,λ = V π⋆

λ,λ. For notational
ease, we abuse π⋆ with π⋆

λ. The Q-function Qπ,λ
m,h(s, a) and advantage function Aπ,λ

m,h(s, a) :=

Qπ,λ
m,h(s, a)− V π,λ

m,h(s) are defined in a similar manner.
Modelling of online CO problems. Refer to Sec. A for the formulation of two online CO problems,
Secretary Problem and Online Knapsack (decision version), using LMDPs.

2.2. Algorithm components

In this subsection we will introduce some necessary notions used by our main algorithm.

Definition 1 (State(-action) Visitation Distribution) The state visitation distribution and state-
action visitation distribution at step h ≥ 0 with respect to π inMm are defined as

dπm,h(s) := P(sh = s | Mm, π),

dπm,h(s, a) := P(sh = s, ah = a | Mm, π).

We define a grafted distribution d̃πm,h(s, a) := dπm,h(s) ◦ UnifA(a) which can be attained by first
acting under π for h steps to get states then sample actions from the uniform distribution UnifA.

Denote d♣m,h := d
π♣
m,h and d♣ as short for {d♣m,h}1≤m≤M,0≤h≤H−1, here ♣ can be any symbol.

In the following definitions, let v be the collection of any distribution, which will be instantiated
by d⋆, dt, etc. in the remaining sections.

Definition 2 (Compatible Function Approximation Loss) Let g be the parameter update weight,
then NPG is related to finding the minimizer for the following function:

L(g; θ, v) :=

M∑
m=1

wm

H∑
h=1

E
s,a∼vm,H−h

[(
Aπθ,λ

m,h (s, a)− g⊤∇θ lnπθ(a|s)
)2]

.

Definition 3 (Generic Fisher Information Matrix)

Σθ
v :=

M∑
m=1

wm

H∑
h=1

E
s,a∼vm,H−h

[
∇θ lnπθ(a|s) (∇θ lnπθ(a|s))⊤

]
.

Particularly, denote F (θ) = Σθ
dθ

as the Fisher information matrix induced by πθ.

3. Learning procedure

Natural Policy Gradient. Starting from θ0, the algorithm updates the parameter by setting θt+1 =
θt + ηgt, where η is a predefined constant learning rate, and gt is the update weight. Denote πt :=
πθt , V

t,λ := V πt,λ and At,λ
m,h := Aπt,λ

m,h for convenience. NPG satisfies gt ∈ argming L(g; θt, d
θt).

When we only have samples, we use the approximate version of NPG: gt ≈ argming∈G L(g; θt, d
θt),

where G = {x : ∥x∥2 ≤ G} for some hyper-parameter G.
We also introduce a variant of NPG: instead of sampling from dθt using the current policy πt, we

sample from d̃πs using a fixed sampling policy πs. The update rule is gt ≈ argming∈G L(g; θt, d̃
πs).

This version makes a closed-form analysis for SP possible.
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The main algorithm is shown in Alg. 1 (deferred to App. B). It admits two types of training: ①

If πs = None, it samples s, a ∼ dθt ; ② If πs ̸= None, it samples s, a ∼ d̃πs .
In both cases, we denote dt as the sampling distribution and Σt as the induced Fisher Information

Matrix used in step t, i.e. dt := dθt ,Σt := F (θt) if πs = None; dt := d̃πs ,Σt := Σθt
d̃πs

otherwise.
The update rule can be written in a unified way as gt ≈ argming∈G L(g; θt, d

t). This is equivalent
to solving a constrained quadratic optimization and we can use existing solvers.

Curriculum Learning. We use Curriculum Learning to facilitate training. Alg. 3 (deferred
to App. B) is our proposed training framework, which first constructs an easy environment E′ and
trains a (near-)optimal policy πs of it. In the target environment E, we either use πs to sample data
while training a new policy from scratch, or simply continue training πs. To be specific and provide
clarity for the results in Sec. 5, we name a few training modes (without regularization) here, and the
rest are in Tab. 1.

curl, the standard Curriculum Learning, runs Alg. 3 with sampler always to be the current
policy; fix samp curl stands for the fixed sampler Curriculum Learning, running Alg. 3 with
πs as the sampler. direct means directly learning in E without curriculum, i.e., running Alg. 1;
naive samp also directly learns in E, while using the naı̈ve random policy to sample data.

4. Performance analysis

4.1. Natural Policy Gradient for Latent MDP

Let g⋆t ∈ argming∈G L(g; θt, d
t) denote the true minimizer. We have the following definitions:

Definition 4 Define for 0 ≤ t ≤ T :
• (Excess risk) ϵstat := maxt E[L(gt; θt, dt)− L(g⋆t ; θt, d

t)];
• (Transfer error) ϵbias := maxt E[L(g⋆t ; θt, d⋆)];

• (Relative condition number) κ := maxt E
[
supx∈Rd

x⊤Σ
θt
d⋆

x

x⊤Σtx

]
. Note that term inside the ex-

pectation is a random quantity as θt is random.
The expectation is with respect to the randomness in the sequence of weights g0, g1, . . . , gT .

ϵstat is due to that the minimizer gt from samples may not minimize the population loss L. ϵbias
quantifies the approximation error due to feature maps. κ characterizes the distribution mismatch
between dt and d⋆.

Here we introduce a fitting error which depicts the closeness between π⋆ and any policy π.

Definition 5 (Fitting Error) Suppose the update rule is θt+1 = θt + ηgt, define

errt :=
M∑

m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
At,λ

m,h(s, a)− g⊤t ∇θ lnπt(a|s)
]
.

Thm. 6 shows the convergence rate of Alg. 1, and its proof is deferred to Sec. C.1.

Theorem 6 With Def. 4, 5 and 8, our algorithm enjoys the following performance bound:

E
[
min

0≤t≤T
V ⋆,λ − V t,λ

]
≤ λ(1− ηλ)T+1Φ(π0)

1− (1− ηλ)T+1
+ η

B2G2

2
+
√

Hϵbias +
√

Hκϵstat,

where Φ(π0) is the Lyapunov potential function which is only relevant to the initialization.

As a remark: If we can find a policy whose κ is small with a single curriculum, we do not need
the multi-step curriculum learning procedure used in Kong et al. [12].
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4.2. Curriculum learning for Secretary Problem

For SP, there exists a threshold policy that is optimal [3]. Suppose the threshold is p ∈ (0, 1), then
the policy is: accept candidate i if and only if i

n > p and Xi = 1. For the classical SP where all the
n! instances have equal probability to be sampled, the optimal threshold is 1/e.

To show that curriculum learning makes the training converge faster, Thm. 6 gives a direct hint:
curriculum learning produces a good sampler leading to much smaller κ than that of a naı̈ve random
sampler. Here we focus on the cases where samp = pi s because the sampler is fixed, while when
samp = pi t it is impossible to analyze a dynamic procedure. We show Thm. 7 to characterize κ
in SP. Its full statement and proof is deferred to Sec. C.2.

Theorem 7 Assume that each candidate is independent of others and the i-th candidate has a
probability Pi of being the best so far (Sec. 2.1). Assume the optimal policy is a p-threshold policy
and the sampling policy is a q-threshold policy. There exists a policy parameterization such that:

κcurl = Θ

({ ∏⌊np⌋
j=⌊nq⌋+1

1
1−Pj

, q ≤ p,

1, q > p,

)
, κnaı̈ve = Θ

2⌊np⌋ max

1, max
i≥⌊np⌋+2

i−1∏
j=⌊np⌋+1

2(1− Pj)


 , (1)

where κcurl and κnaı̈ve are κ of the sampling policy and the naı̈ve random policy, respectively.
To understand how curriculum learning influences κ, we apply Thm. 7 to three concrete cases. They
show that, when the state distribution induced by the optimal policy in the small problem is similar
to that in the original large problem, then a single-step curriculum suffices.

The classical case: an exponential improvement. The probability series for the classical SP
is Pi =

1
i . Substituting them into Eq. 1 directly gives:

κcurl =

{
⌊n/e⌋
⌊nq⌋ , q ≤ 1

e ,

1, q > 1
e ,

κnaı̈ve = 2n−1 ⌊n/e⌋
n− 1

.

Except for the corner case where q < 1
n , we have that κcurl = O(n) while κnaı̈ve = Ω(2n).

Notice that any distribution with Pi ≤ 1
i leads to an exponential improvement.

A more general case. Consider the case where Pi ≤ 1
2 for i ≥ 2. Eq. 1 now becomes:

κcurl ≤
{

2⌊np⌋−⌊nq⌋, q ≤ p,
1, q > p,

κnaı̈ve ≥ 2⌊np⌋.

Clearly, κcurl ≤ κnaı̈ve always holds. When q is close to p, the difference is exponential in ⌊nq⌋.
Failure mode of Curriculum Learning. From Eq. 1, κnaı̈ve ≤ 2n−1. Similar as Sec. 3 of

Beckmann [3], the optimal threshold p satisfies:
n∑

i=⌊np⌋+2

Pi

1− Pi
≤ 1 <

n∑
i=⌊np⌋+1

Pi

1− Pi
.

So letting Pn > 1
2 results in p ∈ [n−1

n , 1). Further, if q < n−1
n and Pj > 1− 2

− n
n−⌊nq⌋−1 for any

⌊nq⌋+ 1 ≤ j ≤ n− 1, then from Eq. 1, κcurl > 2n > κnaı̈ve. This means that Curriculum Learning
can always be manipulated adversarially. Sometimes there is hardly any reasonable curriculum.

5. Experiments

More formulation details and results are presented in Sec. D. In Curriculum Learning the entire
training process splits into two phases. We call the training on curriculum (small scale instances)
“warm-up phase” and the training on large scale instances “final phase”. We ran more than one
experiments for each problem. In one experiment there are more than one training processes to show
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Figure 1: One experiment of SP. The x-axis is the number of trajectories, i.e., number of epsidoes
× horizon × batch size. Dashed lines represent only final phase training and solid
lines represent Curriculum Learning. The shadowed area shows the 95% confidence
interval for the expectation. The explanation for different modes can be found in Sec. 3.
The reference policy is the optimal threshold policy.

Figure 2: One experiment of OKD. Legend description is the same as that of Fig. 1. The reference
policy is the bang-per-buck algorithm for Online Knapsack (Sec. 3.1 of Kong et al. [12].

the effect of different samplers and regularization coefficients. To highlight the effect of Curriculum
Learning, we omit the results regarding regularization, and they can be found in supplementary files.
All the trainings in the same experiment have the same distributions over LMDPs for final phase
and warm-up phase (if any), respectively.

Secretary Problem. We show one of the four experiments in Fig. 1. Aside from reward
and lnκ, we plot the weighted average of errt according to the proof of Thm. 6: avg( errt) =∑t

i=0(1−ηλ)t−i erri∑t
i′=0(1−ηλ)t−i′ . All the instance distributions are generated from parameterized series {Pn} with

fixed random seeds, which guarantees reproducibility and comparability. There is no explicit rela-
tion between the curriculum and the target environment, so the curriculum can be viewed as ran-
dom and independent. The experiments clearly demonstrate that curriculum learning can boost the
performance by a large margin and curriculum learning indeed dramatically reduces κ, even the
curriculum is randomly generated.

Online Knapsack (decision version). We show one of the three experiments in Fig. 2. lnκ
and avg( errt) are with respect to the reference policy, a bang-per-buck algorithm, which is not the
optimal policy. Thus, they are only for reference. The curriculum generation is also parameter-
ized, random and independent of the target environment. The experiments again demonstrate the
effectiveness of curriculum learning and curriculum learning indeed dramatically reduces κ.
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Appendix A. Motivating Online Combinatorial Optimization problems

Online CO problems are a natural class of problems that admit constructions of small-scale in-
stances, because the hardness of online CO problems can be characterized by the input length, and
instances of different scales are similar. This property simplifies the construction of curricula and
underscores curriculum learning.

In this section we introduce two motivating online CO problems. We are interested in these
problems because they have all been extensively studied and have closed-form, easy-to-implement
policies as references. Furthermore, they were studied in Kong et al. [12], the paper that motivates
our work. They also have real-world applications, e.g., auction design [2].

A.1. Secretary Problem

In SP, the goal is to maximize the probability of choosing the best among n candidates, where n
is known. All candidates have different scores to quantify their abilities. They arrive sequentially
and when the i-th candidate shows up, the decision-maker observes the relative ranking Xi among
the first i candidates, which means being the Xith-best so far. A decision that whether to accept or
reject the i-th candidate must be made immediately when the candidate comes, and such decisions
cannot be revoked. Once one candidate is accepted, the game ends immediately.

The ordering of the candidates is unknown. There are in total n! permutations, and an instance
of SP is drawn from an unknown distribution over these permutations. In the classical SP, each
permutation is sampled with equal probability. The optimal solution for the classical SP is the well-
known 1/e-threshold strategy: reject all the first ⌊n/e⌋ candidates, then accept the first one who is
the best so-far. In this paper, we also study some different distributions.
Modeling SP. For SP, each instance is a permutation of length n, and in each round an instance is
drawn from an unknown distribution over all permutations. In the i-th step for i ∈ [n], the state
encodes the i-th candidate and relative ranking so far. The transition is deterministic according to
the problem definition. A reward of 1 is given if and only if the best candidate is accepted. We
model the distribution as follows: suppose for candidate i, he/she is the best so far with probability
Pi and is independent of other i′. The classical SP satisfies Pi =

1
i .

A.2. Online Knapsack (decision version)

In Online Knapsack problems the decision-maker observes n (which is known) items arriving se-
quentially, each with value vi and size si revealed upon arrival. A decision to either accept or reject
the i-th item must be made immediately when it arrives, and such decisions cannot be revoked. At
any time the accepted items should have their total size no larger than a known budget B.

The goal of standard Online Knapsack is to maximize the total value of accepted items. In this
paper, we study the decision version, denoted as OKD, whose goal is to maximize the probability
of total value reaching a known target V .

We assume that all values and sizes are sampled independently from two fixed distributions,
namely v1, v2, . . . , vn

i.i.d.∼ Fv and s1, s2, . . . , sn
i.i.d.∼ Fs. In Kong et al. [12] the experiments were

carried out with Fv = Fs = Unif[0,1], and we also study other distributions.
Modeling OKD. For OKD, each instance is a sequence of items with values and sizes drawn from
unknown distributions Fv and Fs. In the i-th step for i ∈ [n], the state encodes the information
of i-th item’s value and size, the remaining budget, and the remaining target value to fulfill. The
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transition is also deterministic according to the problem definition, and a reward of 1 is given if and
only if the agent obtains the target value for the first time. Fv = Fs = Unif[0,1] in Kong et al. [12].

Appendix B. Skipped algorithms

In this section, we present the algorithms skipped in the main text. Alg. 1 is the NPG for LMDP.
Alg. 2 is the sampling function. Alg. 3 is the Curriculum Learning framework.

Algorithm 1: NPG: Sample-based NPG.
1: Input: Environment E; learning rate η; episode number T ; batch size N ; initialization θ0;

sampler πs; regularization coefficient λ; entropy clip bound U ; optimization domain G.
2: for t← 0, 1, . . . , T − 1 do
3: Initialize F̂t ← 0d×d, ∇̂t ← 0d.
4: for n← 0, 1, . . . , N − 1 do
5: for h← 0, 1, . . . ,H − 1 do
6: if πs is not None then
7: sh, ah, ÂH−h(sh, ah)← Sample (E, πs,True, πt, h, λ, U) (see Alg. 2).

// s, a ∼ d̃πs
m,h, estimate At,λ

m,H−h(s, a).
8: else
9: sh, ah, ÂH−h(sh, ah)← Sample (E, πt,False, πt, h, λ, U).

// s, a ∼ dθtm,h, estimate At,λ
m,H−h(s, a).

10: end if
11: end for
12: Update:

F̂t ← F̂t +

H−1∑
h=0

∇θ lnπθt(ah|sh) (∇θ lnπθt(ah|sh))
⊤ ,

∇̂t ← ∇̂t +
H−1∑
h=0

ÂH−h(sh, ah)∇θ lnπθt(ah|sh).

13: end for
14: Call any solver to get ĝt ← argming∈G g

⊤F̂tg − 2g⊤∇̂t.
15: Update θt+1 ← θt + ηĝt.
16: end for
17: Return: θT .

Appendix C. Proof of the main results

C.1. Performance of Natural Policy Gradient for LMDP

First we give the skipped definition of the Lyapunov potential function Φ, then prove Thm. 6.

10
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Algorithm 2: Sample: Sampler for s ∼ d
πsamp
m,h where m ∼ Multinomial (w1, . . . , wM ),

a ∼ UnifA if unif = True and a ∼ πsamp(·|s) otherwise, and estimate of At,λ
m,H−h(s, a).

1: Input: Environment E; sampler policy πsamp; whether to sample uniform actions after state
unif ; current policy πt; time step h; regularization coefficient λ; entropy clip bound U .

2: E.reset().
3: for i← 0, 1, . . . , h− 1 do
4: si ← E.get state().
5: Sample action ai ∼ πsamp(·|si) and E.execute(ai).
6: end for
7: sh ← E.get state().
8: if unif = True then
9: ah ∼ UnifA.

10: else
11: ah ∼ πsamp(·|sh).
12: end if
13: (s, a)← (sh, ah).
14: Get a random number p ∼ Unif[0, 1].
15: if p < 1

2 then
16: Override ah ∼ πt(·|sh).
17: Set importance weight C ← −2.
18: rh ← E.execute(ah).
19: Initialize cumulative reward R← rh + λH(πt(·|sh)).
20: else
21: C ← 2.
22: rh ← E.execute(ah).
23: R← rh + λmin{ln 1

πt(ah|sh) , U}.
24: end if
25: for i← h+ 1, h+ 2, . . . ,H − 1 do
26: si ← E.get state().
27: ai ∼ πt(·|si) and rh ← E.execute(ai).
28: R← R+ ri + λH(πt(·|si)).
29: end for
30: Return: s, a, Ât,λ

H−h(s, a) = CR.

Definition 8 (Lyapunov Potential Function [7]) We define the potential function Φ : Π → R as
follows: for any π ∈ Π,

Φ(π) =
M∑

m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[
ln

π⋆(a|s)
π(a|s)

]
.

11
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Algorithm 3: Curriculum learning framework.
1: Input: Environment E; learning rate η; episode number T ; batch size N ; sampler type

samp ∈ { pi s, pi t }; regularization coefficient λ; entropy clip bound U ; optimization
domain G.

2: Construct an environment E′ with a task easier than E. This environment should have optimal
policy similar to that of E.

3: θs ← NPG (E′, η, T,N, 0d,None, λ, U,G) (see Alg. 1).
4: if samp =pi s then
5: θT ← NPG (E, η, T,N, 0d, πs, λ, U,G).
6: else
7: θT ← NPG (E, η, T,N, θs,None, λ, U,G).
8: end if
9: Return: θT .

Theorem 6 (Restatement of Thm. 6) With Def. 4, 5 and 8, our algorithm enjoys the following per-
formance bound:

E
[
min

0≤t≤T
V ⋆,λ − V t,λ

]
≤ λ(1− ηλ)T+1Φ(π0)

1− (1− ηλ)T+1
+ η

B2G2

2
+

∑T
t=0(1− ηλ)T−t E[ errt]∑T

t′=0(1− ηλ)T−t′

≤ λ(1− ηλ)T+1Φ(π0)

1− (1− ηλ)T+1
+ η

B2G2

2
+
√

Hϵbias +
√

Hκϵstat.

Proof Here we make shorthands for the sub-optimality gap and potential function: ∆t := V ⋆,λ −
V t,λ and Φt := Φ(πt). From Lem. 15 we have

η∆t ≤ (1− ηλ)Φt − Φt+1 + η errt + η2
B2G2

2
.

Taking expectation over the update weights, we have

E[η∆t] ≤ (1− ηλ)E[Φt]− E[Φt+1] + η E[ errt] + η2
B2G2

2
.

Thus,

E

[
η

T∑
t=0

(1− ηλ)T−t∆t

]

≤
T∑
t=0

(1− ηλ)T−t+1 E[Φt]−
T∑
t=0

(1− ηλ)T−t E[Φt+1]

+ η

T∑
t=0

(1− ηλ)T−t E[ errt] + η2
B2G2

2

T∑
t=0

(1− ηλ)T−t

= (1− ηλ)T+1Φ0 − E[ΦT+1] + η

T∑
t=0

(1− ηλ)T−t E[ errt] + η2
B2G2

2

T∑
t=0

(1− ηλ)T−t

12



RL FOR COMBINATORIAL OPTIMIZATION

≤ (1− ηλ)T+1Φ0 + η
T∑
t=0

(1− ηλ)T−t E[ errt] + η2
B2G2

2

T∑
t=0

(1− ηλ)T−t,

where the last step uses the fact that Φ(π) ≥ 0. This is a weighted average, so by normalizing the
coefficients,

E
[
min

0≤t≤T
∆t

]
≤ λ(1− ηλ)T+1Φ0

1− (1− ηλ)T+1
+ η

B2G2

2
+

∑T
t=0(1− ηλ)T−t E[ errt]∑T

t′=0(1− ηλ)T−t′

≤ λ(1− ηλ)T+1Φ0

1− (1− ηλ)T+1
+ η

B2G2

2
+
√

Hϵbias +
√
Hκϵstat,

where the last step comes from Lem. 16 and Jensen’s inequality. This completes the proof.

C.2. Curriculum learning and the constant gap for Secretary Problem

Theorem 7 (Formal statement of Thm. 7) For SP, set samp = pi s in Alg. 3. Assume that each
candidate is independent from others and the i-th candidate has probability Pi of being the best so
far (see formulation in Sec. 2.1 and D.1). Assume the optimal policy is a p-threshold policy and the
sampling policy is a q-threshold policy. There exists a policy parameterization and quantities

kcurl =

{ ∏⌊np⌋
j=⌊nq⌋+1

1
1−Pj

, q ≤ p,

1, q > p,
knaı̈ve = 2⌊np⌋max

1, max
i≥⌊np⌋+2

i−1∏
j=⌊np⌋+1

2(1− Pj)

 ,

such that kcurl ≤ κcurl ≤ 2kcurl and knaı̈ve ≤ κnaı̈ve ≤ 2knaı̈ve. Here κcurl and κnaı̈ve correspond to κ
induced by the q-threshold policy and the naı̈ve random policy respectively.

Proof We need to calculate three state-action visitation distributions: that induced by the optimal
policy, d⋆; that induced by the sampler which is the optimal for the curriculum, d̃curl; and that
induced by the naı̈ve random sampler, d̃naı̈ve. This then boils down to calculating the state(-action)
visitation distribution under two types of policies: any threshold policy and the naı̈ve random policy.

For any policy π, denote dπ
(
i
n

)
as the probability for the agent acting under π to see states i

n
with arbitrary xi. We do not need to take the terminal state g into consideration, since it stays in a
zero-reward loop and contributes 0 to L(g; θ, d). We use the LMDP distribution described in Sec. 5.

Denote πp as the p-threshold policy, i.e. accept if and only if i
n > p and xi = 1. Then

dπp

(
i

n

)
= P(reject all previous i− 1 states|πp)

=
i−1∏
j=1

(
P
(
j

n
, 1

)
1

[
j

n
≤ p

]
+ 1− P

(
j

n
, 1

))

=

i−1∏
j=⌊np⌋+1

(
1− P

(
j

n
, 1

))

=
i−1∏

j=⌊np⌋+1

(1− Pj).

13
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Denote πnaı̈ve as the naı̈ve random policy, i.e., accept with probability 1
2 regardless of the state. Then

dπnaı̈ve

(
i

n

)
= P(reject all previous i− 1 states|πnaı̈ve) =

1

2i−1
.

For any π, we can see that the state visitation distribution satisfies dπ
(
i
n , 1
)

= Pid
π
(
i
n

)
and

dπ
(
i
n , 0
)
= (1− Pi)d

π
(
i
n

)
.

To show the possible largest difference, we use a parameterization that for each state s, ϕ(s) =
One-hot(s). The policy is then

πθ(accept|s) = exp(θ⊤ϕ(s))

exp(θ⊤ϕ(s)) + 1
, πθ(reject|s) = 1

exp(θ⊤ϕ(s)) + 1
.

Denote πθ(s) = πθ(accept|s), we have

∇θ lnπθ(accept|s) = (1− πθ(s))ϕ(s), ∇θ lnπθ(reject|s) = −πθ(s)ϕ(s).
Now suppose the optimal threshold and the threshold learned through curriculum are p and q,

then

Σθ
d⋆ =

∑
s∈S

dπp(s)
(
πp(s)(1− πθ(s))

2 + (1− πp(s))πθ(s)
2
)
ϕ(s)ϕ(s)⊤,

Σθ
d̃curl =

∑
s∈S

dπq(s)

(
1

2
(1− πθ(s))

2 +
1

2
πθ(s)

2

)
ϕ(s)ϕ(s)⊤,

Σθ
d̃naı̈ve =

∑
s∈S

dnaı̈ve(s)

(
1

2
(1− πθ(s))

2 +
1

2
πθ(s)

2

)
ϕ(s)ϕ(s)⊤.

Denote κ♣(θ) = supx∈Rd
x⊤Σθ

d⋆
x

x⊤Σθ
d̃♣

x
. From parameterization we know all ϕ(s) are orthogonal. Abus-

ing πq with πcurl, we have

κ♣(θ) = max
s∈S

dπp(s)
(
π⋆(s)(1− πθ(s))

2 + (1− π⋆(s))πθ(s)
2
)

d♣(s)
(
1
2(1− πθ(s))2 +

1
2πθ(s)

2
) .

We can separately consider each s ∈ S because of the orthogonal features. Observe that πp(s) ∈
{0, 1}, so for s ∈ S , its corresponding term in κ♣(θ) is maximized when πθ(s) = 1− πp(s) and is
equal to 2dπp (s)

d♣(s)
. By definition, κ♣ = max0≤t≤T E[κ♣(θt)]. Since θ0 = 0d, we have κ♣ ≥ κ♣(0

d)

where πθ(s) =
1
2 and the corresponding term is dπp (s)

d♣(s)
. So

max
s∈S

dπp(s)

d♣(s)
≤ κ♣ ≤ 2max

s∈S

dπp(s)

d♣(s)
.

We now have an order-accurate result k♣ = maxs∈S
dπp (s)
d♣(s)

for κ♣. Direct computation gives

kcurl =

{ ∏⌊np⌋
j=⌊nq⌋+1

1
1−Pj

, q ≤ p,

1, q > p,

knaı̈ve = 2⌊np⌋max

1, max
i≥⌊np⌋+2

i−1∏
j=⌊np⌋+1

2(1− Pj)

 .

This completes the proof.
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Appendix D. Full experiments

Here are all the experiments not shown in Sec. 5. All the experiments were run on a server with
CPU AMD Ryzen 9 3950X, GPU NVIDIA GeForce 2080 Super and 128G memory. For legend
description please refer to the caption of Fig. 1. For experiment data (code, checkpoints, logging
data and policy visualization) please refer to the supplementary files.
Policy parameterization. Since in all the experiments there are exactly two actions, we can use
ϕ(s) = ϕ(s, accept) − ϕ(s, reject) instead of ϕ(s, accept) and ϕ(s, reject). Now the policy is
πθ(accept|s) = exp(θ⊤ϕ(s))

exp(θ⊤ϕ(s))+1
and πθ(reject|s) = 1

exp(θ⊤ϕ(s))+1
.

Training schemes. We ran seven experiments in total, three for Secretary Problem and four for
Online Knapsack (decision version). The difference between the experiments of the same problem
lies in the distribution over instances (i.e., {wm}). In the following subsections, we will introduce
how we parameterized the distribution in detail. In a single experiment, we ran eight setups, each
representing a combination of sampler policies, initialization policies of the final phase, and whether
we used regularization. For visual clarity, we did not plot setups with entropy regularization, but the
readers can plot it using plot.py (comment L55-58 and uncomment L59-62) in the supplementary
files. We make a detailed list of the training schemes in Tab. 1.

D.1. Secretary Problem

State and action spaces. States with Xi > 1 are the same. To make the problem “scale-invariant”,
we use i

n to represent i. So the states are ( i
n , xi = 1[Xi = 1]). There is an additional terminal state

g = (0, 0). For each state, the agent can either accept or reject.
Transition and reward. Any action in g leads back to g. Once the agent accepts the i-th candidate,
the state transits into g, and reward is 1 if i is the best in the instance. If the agent rejects, then the
state goes to ( i+1

n , xi+1) if i < n and g if i = n. For all other cases, rewards are 0.
Feature mapping. Recall that all states are of the form (f, x) where f ∈ [0, 1], x ∈ {0, 1}. We
set a degree d0 and the feature mapping is constructed as the collection of polynomial bases with
degree less than d0 (d = 2d0):

ϕ(f, x) = (1, f, . . . , fd0−1, x, fx, . . . , fd0−1x).

LMDP distribution. We model the distribution as follows: for each i, we can have xi = 1 with
probability Pi and is independent from other i′. By definition, P1 = 1 while other Pi can be
arbitrary. The classical SP satisfies Pi =

1
i . We also experimented on three other distributions (so

in total there are four experiments), each with a series of numbers p2, p3, . . . , pn
i.i.d.∼ Unif[0,1] and

set Pi =
1

i2pi+0.25 .
For each experiment, we run eight setups, each with different combinations of sampler policies,

initialization policies of the final phase, and the value of regularization coefficient λ. For the warm-
up phases we set n = 10 and for final phases n = 100.
Results. Fig. 3 (with its full view Fig. 4), Fig. 5, Fig. 6, along with Fig. 1 (with seed 2018011309)
show four experiments of SP. They shared a learning rate of 0.2, batch size of 100 per step in
horizon, final n = 100 and warm-up n = 10 (if applied curriculum learning). 1

1. All the four trainings shown in the figures have their counterparts with regularization (λ = 0.01). Check the supple-
mentary files and use TensorBoard for visualization.
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The experiment in Fig. 3 was done in the classical SP environment, i.e., all permutations have
probability 1

n! to be sampled. Experiments Fig. 1, Fig. 5 and Fig. 6 were done with other distributions
(see LMDP distribution of Sec. 5): the only differences are the random seeds, which we fixed and
used to generate Pis for reproducibility.

The experiment of classical SP was run until the direct training of n = 100 converges, while
all other experiments were run to a maximum episode of 30000 (hence sample number of THb =
30000× 100× 100 = 3× 108).

The optimal policy was derived from dynamic programming.

Figure 3: Classical SP, truncated to 3× 108 samples.

Figure 4: Classical SP, full view.

Figure 5: SP, with seed 20000308.
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Figure 6: SP, with seed 19283746.

D.2. Online Knapsack (decision version)

State and action spaces. The states are represented as(
i

n
, si, vi,

∑i−1
j=1 xjsj

B
,

∑i−1
j=1 xjvj

V

)
,

where xj = 1[item j was successfully chosen] for 1 ≤ j ≤ i − 1 (in the instance). There is an
additional terminal state g = (0, 0, 0, 0, 0). For each state (including g for simplicity), the agent can
either accept or reject.
Transition and reward. The transition is implied by the definition of the problem. Any action in
terminal state g leads back to g. The item is successfully chosen if and only if the agent accepts and
the budget is sufficient. A reward of 1 is given only the first time

∑i
j=1 xivi ≥ V , and then the state

goes to g. For all other cases, reward is 0.
Feature mapping. Suppose the state is (f, s, v, r, q). We set a degree d0 and the feature map-
ping is constructed as the collection of polynomial bases with degree less than d0 (d = d50):
ϕ(f, s, v, r, q) = (f if sisvivrirqiq)if ,is,iv ,ir,iq where i♣ ∈ {0, 1, . . . , d0 − 1}.
LMDP distribution. In Sec. A.2 the values and sizes are sampled from Fv ans Fs. If Fv or Fs

is not Unif[0,1], we model the distribution as: first set a granularity gran and take gran numbers

p1, p2, . . . , pgran
i.i.d.∼ Unif[0,1]. pi represents the (unnormalized) probability that x ∈ ( i−1

gran ,
i

gran).

To sample, we take i ∼Multinomial(p1, p2, . . . , pgran) and return x ∼ i−1+Unif[0,1]
gran .

For each experiment, we ran four setups, each with different combinations of sampler policies
and initialization policies of the final phase. For the warm-up phases n = 10 and for final phases
we set n = 100 in all experiments, while B and V vary. In one experiment it satisfies that B

n are
close for warm-up and final, and V

B increases from warm-up to final.
Results. Fig. 7, Fig. 8, along with Fig. 2 (with Fv = Fs = Unif[0,1]) show three experiments of
OKD. They shared a learning rate of 0.1, batch size of 100 per step in horizon, final n = 100 and
warm-up n = 10 (if applied curriculum learning).

Experiments Fig. 7 and Fig. 8 were done with other value and size distributions (see LMDP
distribution of Sec. 5): the only differences are the random seeds, which we fixed and used to
generate Fv and Fs for reproducibility.

All experiments were run to a maximum episode of 50000 (hence sample number of THb =
50000× 100× 100 = 5× 108).
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The reference policy is a bang-per-buck algorithm (Sec. 3.1 of Kong et al. [12]): given a thresh-
old r, accept i-th item if vi

si
≥ r. We searched for the optimal r with respect to Online Knapsack

because we found that in general the reward is unimodal to r and contains no “plain area”, so we
can easily apply ternary search (the reward of OKD contains “plain area”).

Figure 7: OKD, with seed 2018011309.

Figure 8: OKD, with seed 20000308.

Appendix E. Technical details and lemmas

E.1. Natural Policy Gradient for LMDP

This section is a complement to Sec. 3. We give details about the correctness of Natural Policy
Gradient for LMDP.

Thm. 11 is the finite-horizon Policy Gradient Theorem for LMDP, which takes the mixing
weight {wm} into consideration.

According to Agarwal et al. [1], the unconstrained, full-information NPG update weight satisfies
F (θt)gt = ∇θV

t,λ. Lem. 12 and Lem. 13 together show that: it is equivalent to finding a minimizer
of the fitting compatible function approximation loss (Def. 2).

Theorem 11 (Policy Gradient Theorem for LMDP) For any policy πθ parameterized by θ, and
any 1 ≤ m ≤M ,

∇θ

(
E

s0∼νm

[
V πθ,λ
m,H (s0)

])
=

H∑
h=1

E
s,a∼dθm,H−h

[
Qπθ,λ

m,h (s, a)∇θ lnπθ(a|s)
]
.
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As a result,

∇θV
πθ,λ =

M∑
m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[
Qπθ,λ

m,h (s, a)∇θ lnπθ(a|s)
]
.

Proof For any 1 ≤ h ≤ H and s ∈ S, since V πθ,λ
m,h (s) =

∑
a∈A πθ(a|s)Qπθ,λ

m,h (s, a), we have

∇θV
πθ,λ
m,h (s) =

∑
a∈A

(
Qπθ,λ

m,h (s, a)∇θπθ(a|s) + πθ(a|s)∇θQ
πθ,λ
m,h (s, a)

)
.

Hence

H∑
h=1

∑
s∈S

dθm,H−h(s)∇θV
πθ,λ
m,h (s) =

H∑
h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

(
Qπθ,λ

m,h (s, a)∇θπθ(a|s) + πθ(a|s)∇θQ
πθ,λ
m,h (s, a)

)

=
H∑

h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)Qπθ,λ
m,h (s, a)∇θ lnπθ(a|s)

+

H∑
h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)∇θQ
πθ,λ
m,h (s, a)

=

H∑
h=1

E
s,a∼dθm,H−h

[
Qπθ,λ

m,h (s, a)∇θ lnπθ(a|s)
]

+
H∑

h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)∇θQ
πθ,λ
m,h (s, a).

Next we focus on the second term. From the Bellman equation,

∇θQ
πθ,λ
m,h (s, a) = ∇θ

(
rθ(s, a)− λ lnπθ(a|s) +

∑
s′∈S

P (s′|s, a)V πθ,λ
m,h−1(s

′)

)
= −λ∇θ lnπθ(a|s) +

∑
s′∈S

P (s′|s, a)∇θV
πθ,λ
m,h−1(s

′).

Particularly,∇θQ
π,λ
i,1 (s, a) = −λ∇θ lnπθ(a|s). So

H∑
h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)∇θQ
πθ,λ
m,h (s, a)

=
H∑

h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)

(
−λ∇θ lnπθ(a|s) +

∑
s′∈S

P (s′|s, a)∇θV
πθ,λ
m,h−1(s

′)

)

= −λ
H∑

h=1

∑
s∈S

dθm,H−h(s)
∑
a∈A
∇θπθ(a|s)︸ ︷︷ ︸

=0

+

H∑
h=2

∑
s′∈S
∇θV

πθ,λ
m,h−1(s

′)
∑
s∈S

dθm,H−h(s)
∑
a∈A

πθ(a|s)P (s′|s, a)︸ ︷︷ ︸
=dθm,H−h+1(s

′)
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=
H∑

h=2

∑
s′∈S

dθm,H−h+1(s
′)∇θV

πθ,λ
m,h−1(s

′)

=
H∑

h=1

∑
s∈S

dθm,H−h(s)∇θV
πθ,λ
m,h (s)−

∑
s0∈S

νm(s0)∇θV
πθ,λ
m,H (s0),

where we used the definition of d and νm. So by rearranging the terms, we complete the proof.

Lemma 12 Suppose Γ ∈ Rn×m, D = diag(d1, d2, . . . , dm) ∈ Rm×m where di ≥ 0 and q ∈ Rm,
then x = (ΓDΓ⊤)†ΓDq is a solution to the equation ΓDΓ⊤x = ΓDq.

Proof Denote D1/2 = diag(
√
d1,
√
d2, . . . ,

√
dm), P = ΓD1/2, p = D1/2q, then the equation is

reduced to PP⊤x = Pp. Suppose the singular value decomposition of P is UΣV ⊤ where U ∈
Rn×n,Σ ∈ Rn×m, V ∈ Rm×m where U and V are unitary, and singular values are σ1, σ2, . . . , σk.
So PP⊤ = U(ΣΣ⊤)U⊤ and (PP⊤)† = U(ΣΣ⊤)†U⊤. Notice that

ΣΣ⊤ = diag(σ2
1, σ

2
2, . . . , σ

2
k, 0, . . . , 0) ∈ Rn×n,

we can then derive the pseudo-inverse of this particular diagonal matrix as

(ΣΣ⊤)† = diag(σ−2
1 , σ−2

2 , . . . , σ−2
k , 0, . . . , 0).

It is then easy to verify that (ΣΣ⊤)(ΣΣ⊤)†Σ = Σ. Finally,

PP⊤x = (PP⊤)[(PP⊤)†Pp]

= U(ΣΣ⊤)U⊤U(ΣΣ⊤)†U⊤UΣV ⊤p

= U(ΣΣ⊤)(ΣΣ⊤)†ΣV ⊤p

= UΣV ⊤p

= Pp.

This completes the proof.

Lemma 13 (NPG Update Rule) The update rule θ ← θ + ηF (θ)†∇θV
πθ,λ where

F (θ) =

M∑
m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[
∇θ lnπθ(a|s) (∇θ lnπθ(a|s))⊤

]
is equivalent to θ ← θ + ηg⋆, where g⋆ is a minimizer of the function

L(g) =
M∑

m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[(
Aπθ,λ

m,h (s, a)− g⊤∇θ lnπθ(a|s)
)2]

.
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Proof

∇gL(g) = −2
M∑

m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[(
Aπθ,λ

m,h (s, a)− g⊤∇θ lnπθ(a|s)
)
∇θ lnπθ(a|s)

]
.

Suppose g⋆ is any minimizer of L(g), we have∇gL(g
⋆) = 0, hence

M∑
m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[(
g⋆⊤∇θ lnπθ(a|s)

)
∇θ lnπθ(a|s)

]

=
M∑

m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[
Aπθ,λ

m,h (s, a)∇θ lnπθ(a|s)
]

=
M∑

m=1

wm

H∑
h=1

E
s,a∼dθm,H−h

[
Qπθ,λ

m,h (s, a)∇θ lnπθ(a|s)
]
.

Since (u⊤v)v = (vv⊤)u, then

F (θ)g⋆ = ∇θV
πθ,λ.

Now we assign 1, 2, . . . ,MHSA as indices to all (m,h, s, a) ∈ {1, . . . ,M}×{1, . . . ,H}×S×A,
and set

γj = ∇θ lnπθ(a|s),
dj = wmdθm,H−h(s, a),

qj = Qπθ,λ
m,h (s, a),

where j is the index assigned to (m,h, s, a). Then F (θ) = ΦDΦ⊤ and ∇θV
θ = ΦDq where

Γ = [γ1, γ2, . . . , γMHSA] ∈ Rd×MHSA,

D = diag(d1, d2, . . . , dMHSA) ∈ RMHSA×MHSA,

q = [q1, q2, . . . , qMHSA]
⊤ ∈ RMHSA.

We now conclude the proof by utilizing Lem. 12.

E.2. Auxiliary lemmas used in the main results

Lemma 14 (Performance Difference Lemma) For any two policies π1 and π2, and any 1 ≤ m ≤
M ,

E
s0∼νm

[
V π1,λ
m,H (s0)− V π2,λ

m,H (s0)
]
=

H∑
h=1

E
s,a∼d

π1
m,H−h

[
Aπ2,λ

m,h (s, a) + λ ln
π2(a|s)
π1(a|s)

]
.

As a result,

V π1,λ − V π2,λ =

M∑
m=1

wm

H∑
h=1

E
s,a∼d

π1
m,H−h

[
Aπ2,λ

m,h (s, a) + λ ln
π2(a|s)
π1(a|s)

]
.
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Proof First we fix s0. By definition of the value function, we have

V π1,λ
m,H (s0)− V π2,λ

m,H (s0)

= E

[
H−1∑
h=0

rm(sh, ah)− λ lnπ1(ah|sh)

∣∣∣∣∣ Mm, π1, s0

]
− V π2,λ

m,H (s0)

= E

[
H−1∑
h=0

rm(sh, ah)− λ lnπ1(ah|sh) + V π2,λ
m,H+1−h(sh+1)− V π2,λ

m,H−h(sh)

∣∣∣∣∣ Mm, π1, s0

]

= E

[
H−1∑
h=0

E
[
rm(sh, ah)− λ lnπ2(ah|sh) + V π2,λ

m,H+1−h(sh+1)
∣∣∣ Mm, π2, sh, ah

] ∣∣∣∣∣ Mm, π1, s0

]

+ E

[
H−1∑
h=0

−V π2,λ
m,H−h(sh) + λ ln

π2(ah|sh)
π1(ah|sh)

∣∣∣∣∣ Mm, π1, s0

]
,

where the last step uses law of iterated expectations. Since

E
[
rm(sh, ah)− λ lnπ2(ah|sh) + V π2,λ

m,H+1−h(sh+1)
∣∣∣ Mm, π2, sh, ah

]
= Qπ2,λ

m,H−h(sh, ah),

we have

V π1,λ
m,H (s0)− V π2,λ

m,H (s0) = E

[
H−1∑
h=0

Qπ2,λ
m,H−h(sh, ah)− V π2,λ

m,H−h(sh) + λ ln
π2(ah|sh)
π1(ah|sh)

∣∣∣∣∣ Mm, π1, s0

]

= E

[
H−1∑
h=0

Aπ2,λ
m,H−h(sh, ah) + λ ln

π2(ah|sh)
π1(ah|sh)

∣∣∣∣∣ Mm, π1, s0

]
.

By taking expectation over s0, we have

E
s0∼νm

[
V π1,λ
m,H (s0)− V π2,λ

m,H (s0)
]
= E

[
H−1∑
h=0

Aπ2,λ
m,H−h(sh, ah) + λ ln

π2(ah|sh)
π1(ah|sh)

∣∣∣∣∣ Mm, π1

]

=
H−1∑
h=0

∑
(s,a)∈S×A

dπ1
m,h(s, a)

(
Aπ2,λ

m,H−h(s, a) + λ ln
π2(a|s)
π1(a|s)

)
.

The proof is completed by reversing the order of h.

Lemma 15 (Lyapunov Drift) Recall definitions in Def. 8 and 5. We have that:

Φ(πt+1)− Φ(πt) ≤ −ηλΦ(πt) + η errt − η
(
V ⋆,λ − V t,λ

)
+

η2B2∥gt∥22
2

.

Proof Denote Φt := Φ(πt). This proof follows a similar manner as in that of Lem. 6 in Cayci et al.
[7]. By smoothness (see Rem. 6.7 in Agarwal et al. [1]),

ln
πt(a|s)
πt+1(a|s)

≤ (θt − θt+1)
⊤∇θ lnπt(a|s) +

B2

2
∥θt+1 − θt∥22
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= −ηg⊤t ∇θ lnπt(a|s) +
η2B2∥gt∥22

2
.

By the definition of Φ,

Φt+1 − Φt =
M∑

m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
ln

πt(a|s)
πt+1(a|s)

]

≤ −η
M∑

m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
g⊤t ∇θ lnπt(a|s)

]
+

η2B2∥gt∥22
2

.

By the definition of errt, Lem. 14 and again the definition of Φ, we finally have

Φt+1 − Φt ≤ η

M∑
m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
At,λ

m,h(s, a)− g⊤t ∇θ lnπt(a|s)
]

− η
M∑

m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
At,λ

m,h(s, a) + λ ln
πt(a|s)
π⋆(a|s)

]

− ηλ

M∑
m=1

wm

H∑
h=1

E
(s,a)∼d⋆m,H−h

[
ln

π⋆(a|s)
πt(a|s)

]
+

η2B2∥gt∥22
2

= η errt − η
(
V ⋆,λ − V t,λ

)
− ηλΦt +

η2B2∥gt∥22
2

,

which completes the proof.

Lemma 16 Recall that g⋆t is the true minimizer of L(g; θt, dt) in domain G. errt defined in Def. 5
satisfies

errt ≤
√

HL(g⋆t ; θt, d
⋆) +

√
Hκ(L(gt; θt, dt)− L(g⋆t ; θt, d

t)).

Proof The proof is similar to that of Thm. 6.1 in Agarwal et al. [1]. We make the following
decomposition of errt:

errt =
M∑

m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[
At,λ

m,h(s, a)− g⋆⊤t ∇θ lnπt(a|s)
]

︸ ︷︷ ︸
①

+

M∑
m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[
(g⋆t − gt)

⊤∇θ lnπt(a|s)
]

︸ ︷︷ ︸
②

.

Since
∑M

m=1wm
∑H−1

h=0

∑
(s,a)∈S×A d⋆m,h(s, a) = H , normalize the coefficients and apply Jensen’s

inequality, then

① ≤

√√√√ M∑
m=1

wm

H−1∑
h=0

∑
(s,a)∈S×A

d⋆m,h(s, a) ·

√√√√ M∑
m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[(
At,λ

m,h(s, a)− g⋆⊤t ∇θ lnπt(a|s)
)2]
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=
√
HL(g⋆t ; θt, d

⋆).

Similarly,

② ≤

√√√√H

M∑
m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[
((g⋆t − gt)⊤∇θ lnπt(a|s))2

]

=

√√√√H
M∑

m=1

wm

H−1∑
h=0

E
(s,a)∼d⋆m,h

[(g⋆t − gt)⊤∇θ lnπt(a|s)(∇θ lnπt(a|s))⊤(g⋆t − gt)]

(i)
=
√

H∥g⋆t − gt∥2Σt
d⋆

≤
√

Hκ∥g⋆t − gt∥2Σt
,

where in (i), for vector v, denote ∥v∥A =
√
v⊤Av for a symmetric positive semi-definite matrix A.

Due to that g⋆t minimizes L(g; θt, dt) over the set G, the first-order optimality condition implies that

(g − g⋆t )
⊤∇gL(g

⋆
t ; θt, d

t) ≥ 0

for any g. Therefore,

L(g; θt, d
t)− L(g⋆t ; θt, d

t)

=

M∑
m=1

wm

H∑
h=1

E
s,a∼dtm,H−h

[(
At,λ

m,h(s, a)− g⋆⊤t ∇ lnπt(a|s) + (g⋆t − g)⊤∇ lnπt(a|s)
)2]
− L(g⋆t ; θt, d

t)

=
M∑

m=1

wm

H∑
h=1

E
s,a∼dtm,H−h

[(
(g⋆t − g)⊤∇θ lnπt(a|s)

)2]

+ (g − g⋆t )
⊤

(
−2

M∑
m=1

wm

H∑
h=1

E
s,a∼dtm,H−h

[(
At,λ

m,h(s, a)− g⋆⊤t ∇θ lnπt(a|s)
)
∇θ lnπt(a|s)

])
= ∥g⋆t − g∥2Σt

+ (g − g⋆t )
⊤∇gL(g

⋆
t ; θt, d

t)

≥ ∥g⋆t − g∥2Σt
.

So finally we have

errt ≤
√
HL(g⋆t ; θt, d

⋆) +
√

Hκ(L(gt; θt, dt)− L(g⋆t ; θt, d
t)).

This completes the proof.

E.3. Bounding ϵstat

Lemma 17 (Hoeffding’s Inequality) Suppose X1, X2, . . . , Xn are i.i.d. random variables taking
values in [a, b], with expectation µ. Let X̄ denote their average, then for any ϵ ≥ 0,

P
(∣∣X̄ − µ

∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

(b− a)2

)
.
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Lemma 18 For any policy π, any state s ∈ S and any U ≥ ln |A| − 1,

0 ≤
∑
a∈A

π(a|s) ln 1

π(a|s)
−
∑
a∈A

π(a|s)min

{
ln

1

π(a|s)
, U

}
≤ |A|

eU+1
.

Proof The first inequality is straightforward, so we focus on the second part. Set A′ = {a ∈ A :
ln 1

π(a|s) > U} = {a ∈ A : π(a|s) < 1
eU } and p =

∑
a∈A′ π(a|s), then

∑
a∈A

π(a|s) ln 1

π(a|s)
−
∑
a∈A

π(a|s)min

{
ln

1

π(a|s)
, U

}
=
∑
a∈A′

π(a|s) ln 1

π(a|s)
−
∑
a∈A′

π(a|s)U

= p
∑
a∈A′

π(a|s)
p

ln
1

π(a|s)
− pU

≤ p ln

(∑
a∈A′

π(a|s)
p

1

π(a|s)

)
− pU

≤ p ln
|A|
p
− pU,

where the penultimate step comes from concavity of lnx and Jensen’s inequality. Let f(p) =

p ln |A|
p − pU , then f ′(p) = ln |A| − U − 1 − ln p. Recall that U ≥ ln |A| − 1, so f(p) increases

when p ∈ (0, |A|
eU+1 ) and decreases when p ∈ ( |A|

eU+1 , 1). Since f( |A|
eU+1 ) = |A|

eU+1 we complete the
proof.

Lemma 19 (Loss Function Concentration) If set πs = None and U ≥ ln |A| − 1, then with
probability 1 − 2(T + 1) exp

(
−2Nϵ2

C2

)
, the update weight sequence of Alg. 1 satisfies: for any

0 ≤ t ≤ T ,

L(ĝt; θt, d
θt)− L(g⋆t ; θt, d

θt) ≤ 2ϵ+
8λGB|A|

eU+1
,

where

C = 16HGB[1 + λU +H(1 + λ ln |A|)] + 4HG2B2.

If πs ̸= None and λ = 0, then with probability 1 − 2(T + 1) exp
(
−2Nϵ2

C2

)
, the update weight

sequence of Alg. 1 satisfies: for any 0 ≤ t ≤ T ,

L(ĝt; θt, d̃
πs)− L(g⋆t ; θt, d̃

πs) ≤ 2ϵ,

where

C = 16H2GB + 4HG2B2.
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Proof We first prove the πs = None case. For time step t, Alg. 1 samples HN trajectories. Abusing
the notation, denote

F̂t =
1

N

N∑
n=1

H−1∑
h=0

∇θ lnπθ(an,h|sn,h) (∇θ lnπθ(an,h|sn,h))⊤ ,

∇̂t =
1

N

N∑
n=1

H−1∑
h=0

Ân,H−h(sn,h, an,h)∇θ lnπθ(an,h|sn,h),

L̂(g) =
M∑

m=1

wm

H∑
h=1

E
s,a∼d

θt
m,H−h

[
At,λ

m,h(s, a)
2
]

︸ ︷︷ ︸
①

+ g⊤F̂tg − 2g⊤∇̂t︸ ︷︷ ︸
②

.

Notice that ① is a constant. From Alg. 1, ĝt is the minimizer of ② (hence L̂(g)) inside the ball G.
From ∇θ lnπθ(a|s) = ϕ(s, a) − Ea′∼πθ(·|s)[ϕ(s, a

′)], ∥ϕ(s, a)∥2 ≤ B, ∥g∥2 ≤ G, we know that∣∣g⊤∇θ lnπθ(a|s)
∣∣ ≤ 2GB. So 0 ≤ g⊤F̂tg ≤ 4HG2B2. From Alg. 2, we know that any sampled

Â satisfies |Â| ≤ 2[1 + λU +H(1 + λ ln |A|)]. So |g⊤∇̂t| ≤ 4HGB[1 + λU +H(1 + λ ln |A|)].
We first have that

−8HGB[1 + λU +H(1 + λ ln |A|)] ≤ ② ≤ 8HGB[1 + λU +H(1 + λ ln |A|)] + 4HG2B2.
(2)

To apply any standard concentration inequality, we next need to calculate the expectation of
②. According to Monte Carlo sampling and Lem. 18, for any 1 ≤ m ≤ M, 1 ≤ h ≤ H and
(s, a) ∈ S ×A, we have

At,λ
m,h(s, a)−

λ|A|
eU+1

≤ E
[
Ât,λ

m,h(s, a)
]
≤ At,λ

m,h(s, a).

Denote∇t as the exact policy gradient at time step t, then∣∣∣E [g⊤∇̂t

]
− g⊤∇t

∣∣∣ ≤ ∥g∥2 ∥∥∥E [∇̂t

]
−∇t

∥∥∥
2

≤ ∥g∥2 ·H∥∇θ lnπθ(a|s)∥2
∥∥∥E [Â(s, a)]−A(s, a)

∥∥∥
∞

≤ 2λGB|A|
eU+1

.

Since Monte Carlo sampling correctly estimates state-action visitation distribution, E
[
F̂t

]
= F (θt).

Notice that g⊤F̂tg is linear in entries of F̂t, we have E
[
g⊤F̂tg

]
= g⊤F (θt)g. Now we are in the

position to show that ∣∣∣E [L̂(g)]− L(g)
∣∣∣ ≤ 4λGB|A|

eU+1
.

Hoeffding’s inequality (Lem. 17) gives

P
(∣∣∣L̂(g)− E

[
L̂(g)

]∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2Nϵ2

C2

)
.
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where from Eq. 2,

C = 16HGB[1 + λU +H(1 + λ ln |A|)] + 4HG2B2.

After applying union bound for all t, with probability 1− 2(T +1) exp
(
−2Nϵ2

C2

)
the following

holds for any g ∈ G: ∣∣∣L̂(g; θt, dθt)− L(g; θt, d
θt)
∣∣∣ ≤ ϵ+

4λGB|A|
eU+1

.

Hence

L(ĝt; θt, d
θt) ≤ L̂(ĝt; θt, d

θt) + ϵ+
4λGB|A|

eU+1

≤ L̂(g⋆t ; θt, d
θt) + ϵ+

4λGB|A|
eU+1

≤ L(g⋆t ; θt, d
θt) + 2ϵ+

8λGB|A|
eU+1

.

For πs ̸= None and λ = 0, we notice that |Â| ≤ 2H and hence −8H2GB ≤ ② ≤ 8H2GB +

4HG2B2. Moreover, E
[
Ât,λ

m,h(s, a)
]
= At,λ

m,h(s, a). So by slightly modifying the proof we can get
the result.
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Abbreviation Detailed setup Script

fix samp curl Fixed sampler curriculum learning. In
the warm-up phase, train a policy πs from
scratch (with zero initialization in parame-
ters) using a small environment E′. In the
final phase, change to the true environment
E, use πs as the sampler policy to train a
policy from scratch.

Run Alg. 3 with
samp = pi s and
λ = 0.

fix samp curl regThe same as fix samp curl, but add
entropy regularization to both phases.

Run Alg. 3 with
samp = pi s and
λ ̸= 0.

direct Direct learning. Only the final phase.
Train a policy from scratch directly in E.

Run Alg. 1 with
θ0 = 0d, πs =
None and λ = 0.

direct reg The same as direct, but add entropy
regularization.

Run Alg. 1 with
θ0 = 0d, πs =
None and λ ̸= 0.

naive samp Learning with the naı̈ve sampler. Only
the final phase. Use the naı̈ve random pol-
icy as the sampler to train a policy from
scratch in E.

Run Alg. 1 with
θ0 = 0d, πs =
naı̈ve random pol-
icy and λ = 0.

naive samp reg The same as naive samp, but add en-
tropy regularization.

Run Alg. 1 with
θ0 = 0d, πs =
naive random pol-
icy and λ ̸= 0.

curl Curriculum learning. In the warm-up
phase, train a policy πs from scratch in E′.
In the final phase, change to E and con-
tinue on training πs.

Run Alg. 3 with
samp = pi t and
λ = 0.

curl reg The same as curl, but add entropy
regularization.

Run Alg. 3 with
samp = pi t and
λ ̸= 0.

reference This is the reference policy. For SP, it is
exactly the optimal policy since it can be
calculated. For OKD, it is a bang-per-buck
policy and is not the optimal policy (whose
exact form is not clear).

N/A

Table 1: Detailed setups for each training scheme.
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