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ABSTRACT

Quantifying uncertainty in time series forecasting is particularly demanding be-
cause sequential data exhibit temporal dependence and are prone to distributional
changes. Conformal inference has emerged as a powerful uncertainty quantifi-
cation approach for evaluating the reliability of predictive models through the
construction of prediction sets. Recent advances have introduced online confor-
mal methods that adaptively adjust prediction thresholds through feedback mech-
anisms. However, the existing feedback mechanism typically relies solely on mis-
coverage indicators (actual feedback)—whether the true label falls within the in-
terval at each time step—while overlooking the empirical prediction threshold (es-
timated feedback) that is derived from the oracle conformal method. In this paper,
we propose Dynamic Dual-feedback Conformal Inference (DDCI), which incor-
porates a dual-feedback mechanism consisting of actual feedback and estimated
feedback. The former drives the primary adjustment of the intervals based on
true observations, while the latter dampens excessive expansions or contractions
by leveraging empirical thresholds from conformal inference during updates. By
balancing these two signals, DDCI achieves more stable and narrower prediction
intervals in sequential settings while preserving the coverage validity.

1 INTRODUCTION

Machine learning models are increasingly being applied in many real-world domains such as health
care, energy and transportation, where uncertainty quantification is essential for decision-making
(Diaz-Gonzalez et al} 2012} [Badue et al.| 2021). Generally speaking, prediction sets/intervals are a
common approach to reflect models’ uncertainty. However, traditional machine learning or statistical
models themselves are difficult to quantify uncertainty, or require strong assumptions on the data
distributions (Durbin & Koopman, 2012} |Gasthaus et al., 2019} [Salinas et al.| 2020).

Conformal inference, firstly introduced by [Vovk et al.| (1999), is a non-parametric framework to
construct prediction sets, which enjoys statistically marginal coverage guarantee under a lenient as-
sumption called exchangeability. This framework offers a general methodology for converting the
outputs of black-box models into prediction sets and can be applied on top of any underlying predic-
tive model (Angelopoulos et al., [2023b)). The simplicity and generality of conformal methods have
led to their wide adoption in real-world applications (Eklund et al., 2015} [Luo et al 2024). Fun-
damentally, the prediction sets generated by conformal methods are guaranteed to contain the true
response with a user-defined probability. However, exchangeability often fails to hold in sequential
data (e.g., time series) and the validity of conformal inference may be compromised because of dis-
tributional changes arising from external factors such as seasonality or external events. Motivated
by this challenge, this work studies the problem of conformal inference for time series data.

In recent years, substantial effort has been devoted to developing conformal methods tailored for
non-exchangeable time series data to achieve the target coverage guarantee. A prominent line of
research is to update the prediction interval via feedback mechanisms. The very first method, Adap-
tive Conformal Inference (ACI), attains the desired coverage rate by dynamically adjusting target
quantiles, treating distributional shifts as a single-parameter learning problem (Gibbs & Candes)
2021). Following that, multiple methods have been designed to improve the predictive efficiency
(Zaffran et al.,2022; Bhatnagar et al.| 2023} |Angelopoulos et al.,[2023a). These methods update the
length of the interval by determining whether the true label falls within the interval (binary feedback
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from current thresholds). Recently, Wu et al.|(2025) proposed Error-quantified Conformal Inference
(ECI), which incorporates the degree of under- or over-coverage to refine interval lengths. However,
their approach does not fully exploit the magnitude of the error, thereby weakening the corrective
effect of the feedback. More critically, a major limitation of existing methods is that all of them rely
exclusively on the signal from the current thresholds, which makes the update process unstable and
prone to fluctuations. In other words, the interval will gradually shrink until it can no longer cover
the true value at a certain point in time, after which it will expand.

Due to the limitations mentioned above, we first propose a dynamic feedback function that more
precisely quantifies the actual feedback. Secondly, to mitigate potential overreaction to this signal,
we introduce an additional component, termed estimated feedback, which is from empirical thresh-
olds derived from split conformal methods. This second feedback introduces a counter-signal with
opposite sign to the actual feedback through the empirical thresholds, serving as a control mecha-
nism that suppresses excessive adjustments and ensures smoother, more stable updates. Our main
contributions are summarised as follows:

* We propose a novel online conformal methods Dynamic Dual-feedback Conformal Infer-
ence (DDCI) for time series forecasting, which is able to quantify the actual feedback pre-
cisely and is the first work to explore how empirical thresholds from conformal methods
(estimated feedback) influence the updating process. Theoretically, our feedback mecha-
nism does not require extra assumptions except an for the learning rate.

* Furthermore, we investigate the impact of different degrees of estimated feedback on the
smoothness and efficiency of interval outputs. We also compare different kinds of estimated
feedback from the original conformal method and the nonexchangeable conformal method
and analyse the differences among them.

* We conduct considerable experiments on 5 datasets to demonstrate that, in the vast majority
of cases, our proposed methods can substantially shorten the prediction intervals (improv-
ing efficiency) without affecting the target coverage rate, compared to all existing methods.

2 RELATED WORK

2.1 CONFORMAL PREDICTION

The task of uncertainty quantification for unobserved data has been widely studied (Abdar et al.,
2021} [Smith| [2024). Conformal inference, pioneered by Vovk et al.|(2003), is a significant branch of
uncertainty quantification methods. The power of conformal methods stems largely from its flexibil-
ity, simplicity and theoretical guarantee. Conformal methods are able to quantify distribution-free
uncertainty under a lenient assumption of data distribution called exchangeability. At a high level,
users define a nonconformity score function and compute scores on a calibration set. Prediction sets
are then formed by including all observations whose true labels fall within the empirical quantiles of
the calibration distribution (Papadopoulos et al.,|2002). Multiple variants of conformal methods and
score functions have been developed to improve the adaptivity and efficiency (Vovk, 2015} |Lei et al.|
2018;|[Romano et al., 2019;|Angelopoulos et al., 2020; [Barber et al., 2021)) and have been applied to
many areas (Stanton et al., 2023} |Cresswell et al.| [2024} [Lekeufack et al., [2024; |[Zhang et al., [2024)).
A detailed introduction of conformal inference is provided by |Angelopoulos et al.|(2023b) and the
theory behind it is given in/Angelopoulos et al.|(2024b).

2.2 CONFORMAL INFERENCE UNDER NONEXCHANGEABILITY

Conformal methods highly rely on the exchangeability, but it is often violated when they are ap-
plied to practical problems (e.g., sequential data). Recent works of developing conformal methods
beyond exchangeability can be summarised into two categories. The first is to treat the past con-
formal scores non-equally by assigning weights, giving greater emphasis to those more similar to
the present (Tibshirani et al., 2019} Xu & Xie, |2021; [Barber et al.,2023)). Recent approaches model
temporal dependence and rely on asymptotic guarantees that require assumptions on the underlying
data-generating process Xu & Xie| (2023)); |Auer et al.| (2023). The second is to adaptively update
the significance level « or the interval directly based on the miscoverage feedback (Gibbs & Can-
des, 2021} |Zaffran et al. [2022; (Gibbs & Candes, 2024; Bhatnagar et al., 2023). The following
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work (Angelopoulos et al., |2023a) advanced this line of research by framing PID control theory
to prospectively model conformal scores in a predictive and adaptive manner for online scenarios.
(Angelopoulos et al.| 2024a)) decays the learning rate based on time steps. Following that, the lat-
est work (Wu et al.| [2025) introduced an error-quantified term to update the interval by using a
smoothed quantile loss. Although our work is highly inspired by the error-quantified term of |Wu
et al.[(2025), it differs from two aspects: (i) our feedback mechanism is residual-aware which makes
it more general to different datasets and underlying algorithms; (ii) ours also considers an estimated
feedback that is from conformal inference itself, where all existing methods did not take this em-
pirical threshold into account. Overall, our method is therefore able to produce substantially tighter
prediction sets while maintaining its validity.

3 PROBLEM SETUP

Conformal Inference for Time Series. Under the background of time series forecasting, we ob-
serve a sequence of covariates x; € X and responses y; € ) fort € N = {1,2,3,...}. Then,
we train an underlying model f;(-) on the data before time ¢. As in oracle conformal methods, the
conformal score function s;(, -) can be designed in a flexible manner, which is able to measure the
accuracy of model’s prediction at time ¢. A typical choice of score function for regression problems
is using the absolute error s;(x,y) = |y: — f+(«)|. The main goal is to construct a prediction interval:

Ci(xy) ={yr € YV i se(e,ye) < g1}, (D

where ¢;, the empirical threshold, is the (1 — «)-th quantile from the distribution of scores
St—w<i<t € {si(zi,y;)}. In principle, if the data is exchangeable, the interval output is expected to
be marginally valid:

P(yt S Ct(If)) 2 1-—a. (2)

Nevertheless, the challenge for time series forecasting is that the sequence data can be nonexchange-
able due to external factors (e.g., distribution shifts). Therefore, a general goal is to achieve a long-
run coverage guarantee that,

T
. 1
Tlgréo T ;erm =aq, 3)

where erry = 1{y; ¢ Ci(x¢)}.

Online Conformal Inference. The online update of prediction interval started from ACI (Gibbs
& Candes| 2021) and evolved into the quantile tracking component inside of the conformal PID
control method (Angelopoulos et al. 2023a)), called online gradient descent (OGD). It considers an
optimisation problem to minimise the quantile loss ¢,

Q1= qe — eV (q:) = g + e (errt - Oé), “4)

where 7, is a learning rate and (;(q;) = (st — q¢) (1{s: > @:} — &) means the (1 — )-th quantile
loss. Simply put, if the interval C;(x;) fails to cover the true label at time ¢, the interval is expanded
to make it conservative in the next step; otherwise, it is shortened.

4 PROPOSED METHOD

4.1 DYNAMIC DUAL-FEEDBACK CONFORMAL INFERENCE

In standard OGD update rule |4] the threshold adjustment relies solely on the binary coverage feed-
back (err; — o). While effective, this signal is too coarse as it only indicates whether the prediction
interval covers the true label, without reflecting the magnitude or reliability of the error. Addition-
ally, relying on a single feedback can make the update process unstable and inclined to volatility.
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To address this limitation, we augment the update rule with two complementary forms of feedback.
To clarify, g: and ¢; denote the current threshold and the estimated threshold from conformal infer-
ence respectively. The first is actual feedback, expressed as

et
max; —w<ij<t i = 85l
which incorporates the observed error e; = s; — ¢; and uses a squashing function h(-) to weight the
update by the severity of miscoverage. This squashing function is capable of mapping the error to
[—1,1] and is origin-symmetric, e.g., tanh(z). This ensures that large deviations from the threshold

lead to stronger corrective actions. In the function tanh(cx), the parameter ¢ governs the steepness
of the curve and the rate at which it saturates.

h(cx*ey), 5)

Furthermore, we employ a second feedback, termed estimated feedback, given by

(1 - i ) h(cxey), (6)

max;—w<ij<t |$i — 8]

which provides a stabilising signal based on the estimated error ef = s; — ¢; and ¢; is the empirical
(1—c)-th quantile of scores S;_<i<: € {8:(;,,y;)} from split conformal method. For simplicity,
we set MaxXy— < j<t |Si — sj\ = 2B based on the Assumption (given below). This term acts as
a safeguard to smooth the update since it is designed to always act in the opposite direction of
the actual feedback: when the actual feedback pushes the interval to shrink, the estimated feedback
counterbalances it by expanding the interval. A visualization of these two feedback is given in Fig.[I]
with tanh(zx) as an illustrative example.
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Figure 1: Plots of actual feedback function % tanh(cx) (blue) and estimated feedback function

(1 — |z|/2B) tanh(cx) (orange) for different values of B when ¢ = 0.2.

Therefore, we propose Dynamic Dual-feedback Conformal Inference (DDCI), based on the OGD
method 4] and the novel dual-feedback mechanism, the update rule is given as follows:

let] e
= err; — —h(c* +ell-— h(cxe;r
Qr+1 2= q¢ + ne(erry 04)+77t(23 (cxe)Ee 9B (c*e)), 7
| —
Actual feedback Estimated feedback

where € > 0 is a parameter to regulate the influence of the estimated feedback term and the symbol
'+’ indicates that the estimated feedback always carries the opposite sign to the actual feedback.
As shown in Fig. |1} the actual feedback term e, is highly sensitive to sudden shifts or anomalous
values of s;, which can exert a strong influence on the update. However, in such case, since ¢
corresponds to the (1 — a)-th quantile of the score distribution, the estimated feedback e} remains
relatively small, thereby mitigating excessive interval expansion and stabilising the update process.
By balancing these signals, the update adapts flexibly to distributional changes while maintaining
robustness, thereby constructing prediction intervals that are both responsive and stable.

4.2 LONG-RUN COVERAGE GUARANTEES

In this section, the theoretical analysis of the proposed method is presented. More details and proofs
are given in Appendix [A] At first, we start from Assumption[T} which sets a boundary for scores and
is a general assumption for conformal methods (Angelopoulos et al., [2023a)).
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Assumption 1 For any t € N, there exists 0 < B < oo such that s, € [—B, B].

Based on this assumption, there are boundaries for two types of feedback: |s; — ¢;| and |s; — ¢}
which are given in the following propositions.

Proposition 1 Fix an initial threshold ¢; € [0, B]. Assume that 1, < 2_25_6. The update rule
with arbitrary nonnegative learning rate 1, satisfies that,

[l

—(1+O[—6)Mt71 Sqt §B+(2—Q—E)Mt,1 th 17 (8)

where My =0, My = maxi<,<;n, fort>1.

Proposition 2 Under Assumption and Proposition and N < %ﬁ_e, , we have bounds for two
feedback:

st —q| < B+ (2—a—e€)M;_q, foranyt > 1,

|s¢ —q;| < 2B, foranyt > 1.

Given what listed above, the following theorem shows the upper bound of long-run average miscov-
erage rate with proportional learning rates.

Theorem 1 Let {1, },>1 be an arbitrary positive sequence. Under Assumption|l|and n, < 272576,
the prediction interval generated by Equation[I0\with proportional learning rate 1, satisfies:
T
1 (B + MT—l) ||A1:TH1 (1 - 2€)B + (2 - — G)MT—I
— — < 9
72 (erm—a) < - * — SO

where | Avrlly = [0+ S0y Ing t — 0yl My = maxi <,<7 1.

Remarkably, our proposed method has an upper limit for the proportional learning rate 1, = 7 *
max; _.<qj<t¢|S; — 5j|. Therefore, the upper boundary for 7 should be 5——. Since « and ¢
are typically small, the learning rate 7 should not exceed 0.5, which is also consistent with our
experimental results. In general, such learning rate is enough for all datasets without influencing the
validity of prediction intervals.

5 EXPERIMENTS

In this section, we first describe the datasets employed to evaluate our proposed method, the under-
lying algorithms, and the online conformal baselines. We then present the corresponding experi-
mental results. For fairness of comparison, since certain baselines rely on pre-specified parameters,
our methods are evaluated under the same parameter settings.

5.1 SETTINGS

Datasets. Five public datasets are used to evaluate methods: stock daily opening price (Google,
Amazon, Microsoft), temperature (Delhi) and electricity demand (New South Wales). A detailed
description of these datasets is provided in the Appendix Due to the limit of pages, the re-
sults for electricity dataset and additional experimental results about learning rate are given in the

Appendix

Underlying Algorithms. Four well-known algorithms are used: Prophet, AutoRegressive (AR),
Theta and Transformer. The chosen models span different paradigms of time series forecasting,
making them suitable for comparative evaluation. AR and Theta are rooted in classical statistical
approaches, offering transparent and well-understood baselines (Box et al.| [2015; |Assimakopoulos
& Nikolopoulos, [2000). Prophet extends statistical decomposition with Bayesian techniques, pro-
viding flexibility to handle seasonality and structural breaks (Taylor & Letham| 2018). Finally, the
Transformer exemplifies state-of-the-art deep learning, capturing long-range and nonlinear depen-
dencies through attention mechanisms (Vaswani et al., 2017).

Online Conformal Baselines. (1) ACI (Gibbs & Candes| [2021): updates the intervals via adjusting
the quantile threshold to select from calibration set; (2) OGD family (Bhatnagar et al.| 2023)): uses
an iterative optimization algorithm that updates model parameters incrementally; (3) Conformal PID
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Control (Angelopoulos et al., [2023a): uses control theory and is capable to model scores to adjust
intervals; (4) ECI family (Wu et al.}|2025): uses a smoothed quantile loss to update intervals.

Common Setup. We set the target miscoverage rate (o) to 10% and construct asymmetric prediction
intervals (Romano et al., 2019). For all baselines, the parameter settings are consistent with those
described in the original literature and corresponding open-source implementations (Angelopoulos
et al.| 20234 [Wu et al,[2025)). [B.2.7]

DDCI Setup. The squashing function employed here is tanh(%x) and the hyper-paramter ¢ is set to
0.2, providing a balance between smoothness and efficiency. For DDCI, the estimated threshold g;
is from the original split conformal method which is under the risk of under-coverage and the size of
the calibration set is equal to T_burnin which is used as a warm-up data in baselines. For DDCI-Nex,
the ¢; follows the design of NexC'P (Barber et al.,[2023)), where the weights for conformal scores

0.99¢¢ .
are w; = =7 1<qi<t.
g L 10.99t=3) =" =

5.2 EXPERIMENTAL RESULTS

5.2.1

To verify the performance of our method with other baselines, we constructed three synthetic
datasets exhibiting different forms of non-stationarity: (1) Random Walk Trend: a smoothed
stochastic trend with time-varying volatility, generated as X; = X;_1 + oynt, e ~ N(0, 1), where
the volatility evolves according to o; = 00(1 + k| sin(27t/ P)D The time-varying term o intro-
duces slow periodic volatility modulation, capturing smoother drift and cyclical heteroskedasticity;
(2) Exponential Trend: a multiplicative-growth process X; = X;_1 exp(p + oet), e ~ N(0,1);
(3) Changepoint: a piecewise log-linear process with two regime shifts. For changepoints ¢; = 600
and c; = 1200, log X; = log Xy_1 + py) + owyer, e ~ N(0,1), where (g, o)) vary across
segments, producing moderate structural breaks.

The results are averaged over 5 runs under Prophet model and given in the Table[I] Across all three
synthetic settings, DDCI consistently delivers the most efficient and stable prediction intervals while
maintaining the target coverage. In Setting 1 and Setting 2 scenarios, DDCI achieves the narrowest
intervals and lowest Winkler scores, with DDCI-Nex providing the second-best performance. Under
the more challenging changepoint setting (Setting 3), where all methods experience increased uncer-
tainty, DDCI still produces the most informative intervals, substantially outperforming the baselines.
Overall, the results show that DDCI is robust across different forms of non-stationarity and yields
clear efficiency gains over existing online conformal methods.

Table 1: Results on the three synthetic datasets generated under the Prophet model. All experiments
are repeated five times, and the table reports the mean and standard deviation across runs.

Method Setting 1 Setting 2 Setting 3
Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler
(%) width Score (%) width Score (%) width Score

OGD 90.04+0.12 11.014+0.50 12.82+0.54 89.9+£0.17 17.28+7.59 21.01£898 85.0+4.78 371.434350.57 506.07 £ 541.8
SF-OGD 90.74+0.16 75.754+0.11 84.93+0.14 90.3+£0.23 76.83+1.50 86.57+2.44 89.4+0.98 183.134+138.25 213.06 £ 162.6
decay-OGD  89.7+£0.82 21.34+2.10 23324244 84.3+4.90 44.05+34.24 56.04+47.25 59.6+22.53 419.60£307.13 2202.6 & 2148.2
PID 89.9+0.11 13.254+1.18 15.194+1.33 89.8+£0.08 18.04+£6.53 21.724£7.95 89.840.13 124.17+£100.70 144.224115.73
ECI 90.04+0.10 13.07+1.39 15.07+1.53 90.0£0.12 19.95+7.15 30.58+11.92 81.9+£17.84  88.85454.96 119.52 £ 61.22
ECI-cutoff  89.940.07 10.644+1.06 12.50+1.21 90.0+£0.09 17.57+7.23 27.63+11.52 89.8+0.11 123.544100.01 146.74 +116.99
ECl-integral  90.0£0.06 10.90+1.06 12.82+1.27 90.0+0.16 18.00+£7.80 27.87+11.89 89.84+0.07 125.46+101.28 148.14 £117.75

DDCI 89.94+0.02 8.08+0.82 9.82+1.04 90.0£0.19 13.15+535 2293+9.78 89.8+0.10 91.36 + 72.59 111.90 + 84.47
DDCI-Nex 89.9+£0.03 835+0.84 10.074+1.00 89.9+0.14 15.364+6.75 2520+11.18 89.840.10 109.52+89.26 131.36 & 104.59

5.2.2 PUBLIC DATASETS

Overall, all methods achieve coverage rates close to the target level of 90%, indicating that validity
is generally well maintained across different forecasting models. However, substantial differences
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are observed in terms of the average and median prediction interval widths. The results of baselines
can also be found within this paper (Wu et al., 2025).

Stock Data. Table[2]reports the performance of all methods on the Google stock dataset at the target
miscoverage rate & = 10%. The baseline ACI method consistently delivers coverage close to the
target level but at the cost of infinite interval widths, rendering it impractical. OGD family and PID
also produce relatively wide intervals, particularly under the Prophet (around 57) and Transformer
models (higher than 78). Among the baselines, the ECI family performs best, producing narrower
intervals, but still deteriorating significantly under the Transformer model (higher than 65).

By contrast, the proposed DDCI variants achieve the most competitive results across all settings.
Under the Prophet model, DDCI and DDCI-Nex reduce the average width to around 40 without
influencing the coverage rate, substantially improving upon all baselines (the lowest one is 52). For
the Theta model, DDCI achieves the narrowest intervals, again surpassing the best baseline. Most
notably, for the Transformer model, DDCI and its variant drastically outperform all other methods,
with interval widths (around 51) almost 22% shorter than those of the best ECI variant (66).

Table 2: The experimental results on the Google stock dataset. The best result (shortest width) is
marked in bold, and the second-best result is marked with an underline.

Method Prophet Model AR Model Theta Model Transformer
Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler Coverage  Avg.  Winkler
(%) width Score (%) width Score (%) width Score (%) width Score

ACI 90.0 00 00 89.8 00 00 90.5 0 00 90.2 0 0
OGD 89.7 57.60 7474 90.7 3376 70.96 89.9 3149  47.87 90.1 109.27  148.76
SF-OGD 89.6 5892 7752 89.9 28.31 41.93 90.0 3404 5101 90.1 88.30 113.34
decay-OGD 89.9 7723 9236 90.2 46.53  58.27 90.2 5532  67.89 89.9 120.25 133.38
PID 90.1 57.47  71.18 89.9 64.19  83.58 89.9 75.71 97.37 90.1 77.36 106.78
ECI 89.9 56.06  75.46 89.7 1996  69.11 89.6 3092 47.64 89.9 70.93 110.29

ECI-cutoff 89.8 5312 67.78 89.7 19.84  68.98 89.6 30.71  47.79 89.9 66.67  103.35
ECl-integral 89.8 5236 67.19 89.7 19.93  69.17 89.6 3042 47.34 90.0 68.64  104.52

DDCI 89.8 39.20 52.76 89.6 19.92  68.98 89.4 29.24  46.38 90.0 51.05 85.75
DDCI-Nex 89.7 39.98  53.72 89.6 20.07  68.92 89.6 2971  46.71 89.8 51.58 86.56

Fig. P] presents a visualisation of comparison result between ECI (the state-of-the-art) and DDCI
(the proposed) on the Google stock dataset using the Prophet model. Generally speaking, ECI tends
to produce wider ranges, which often appears overly conservative, with noticeable fluctuations in
the interval boundaries. By contrast, DDCI yields narrower and more stable intervals, reducing
redundancy while maintaining strong alignment with the true series.

Prediction Intervals

1400 ECl interval = ECl miss
DDCl interval - DDCI miss
—— True values
1200
1000
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Figure 2: Visualisation of comparison results between ECI (the SOTA) and DDCI (proposed, € =
0.2) on Google stock dataset under Prophet model. The blue crosses and red points represent the
miscovered points of each method.
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In terms of Amazon data, as the table E] presented, DDCI and its variant consistently achieve the
narrowest prediction intervals while maintaining nominal coverage across all forecasting models.
Improvements are particularly striking for the Prophet and Transformer models, 26% and 24% re-
spectively. These results further confirm the superior efficiency and robustness of DDCI in generat-
ing shorter but reliable prediction intervals.

Table 3: The experimental results on the Amazon stock dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler
(%) width Score (%) width Score (%) width Score (%) width Score
ACI 90.2 00 00 89.8 00 00 89.7 00 00 90.1 00 o0
OGD 89.6 5515 6757 89.9 19.10  30.08 89.8 18.07 2823 89.4 52.68  69.27
SF-OGD 89.5 61.47 7394 89.9 24.44 3431 90.0 23.88 3446 89.3 56.56 7248
decay-OGD 89.9 97.22  107.79 89.7 2023 30.74 89.2 1749 2856 89.8 93.16  109.19
PID 89.8 4589  56.02 89.6 59.22  76.78 89.5 71.11  87.88 89.8 56.06  71.10
ECI 90.1 47.00 59.74 89.5 17.12 34.23 89.7 1746 27.86 89.9 49.07  68.77
ECI-cutoff 89.7 4346 5321 89.3 1691  34.20 89.6 17.19  27.80 89.7 4501 6255
ECl-integral 89.8 42.01 51.85 89.5 1699  34.25 89.6 1720  27.82 89.7 45.02  61.35
DDCI 89.7 30.87 41.05 89.3 17.10  34.29 89.5 17.04 2792 89.7 3444  51.53
DDCI-Nex 89.7 3128  40.96 89.4 16.99 3433 89.6 17.06  27.80 89.7 3410 51.25

For the Microsoft dataset (Table[)), the superiority of the proposed DDCI method over the baselines
is again evident. While the ECI methods produce narrower intervals compared to earlier approaches,
their widths remain consistently larger than those obtained by DDCI and DDCI-Nex across most
forecasting models. In particular, DDCI variants achieve the smallest average and median widths in
nearly every case, without sacrificing coverage. For example, under the Prophet and Transformer
models, the intervals generated by DDCI are markedly tighter than the best baseline. These re-
sults reaffirm the consistent advantage of the DDCI method in delivering more efficient prediction
intervals, further consolidating its robustness and generalisability across diverse datasets.

Table 4: The experimental results on the Microsoft stock dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler
(%) width Score (%) width Score (%) width Score (%) width Score
ACI 90.0 00 00 90.7 0 00 89.9 o) 00 89.9 00 0
OGD 90.0 3.78 4.80 90.7 4.37 4.49 89.9 2.49 3.31 89.9 3.80 5.00
SF-OGD 90.2 6.91 7.14 90.0 6.82 7.17 90.2 6.98 7.31 89.9 7.08 7.08
decay-OGD 90.0 6.02 5.34 90.1 4.34 3.64 90.1 491 4.92 89.7 5.41 5.41
PID 90.0 6.30 5.90 89.6 5.60 5.43 89.8 4.89 4.87 89.9 6.16 6.48
ECI 90.4 4.85 5.24 90.2 3.76 4.20 90.2 2.48 3.43 89.9 435 5.02
ECI-cutoff 89.8 4.05 4.59 89.8 3.04 3.58 89.8 2.44 3.39 89.9 4.08 4.87
ECl-integral 89.9 422 4.71 90.2 3.67 4.15 90.2 2.46 3.42 89.9 4.13 4.98
DDCI 89.8 3.26 3.71 89.8 293 3.58 89.8 2.39 3.31 89.9 3.34 4.10
DDCI-Nex 89.8 3.40 3.89 89.8 2.92 3.50 89.9 241 3.33 89.9 3.44 4.23

Delhi Temperature. On the Delhi temperature dataset (Table[3)), DDCI variants consistently achieve
the narrowest prediction intervals across all forecasting models while preserving nominal cover-
age. The improvements over the strongest baselines are smaller in magnitude compared with stock
datasets but remain consistent, demonstrating the robustness and adaptability of DDCI in settings
with relatively stable time series such as temperature.
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Table 5: The experimental results in the Delhi temperature dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler Coverage Avg. Winkler

(%) width Score (%) width Score (%) width Score (%) width Score

ACI 91.0 00 00 90.0 o0 00 90.2 00 00 90.3 00 o0
OGD 90.4 7.54 9.78 90.1 6.82 9.11 90.0 6.36 8.68 89.9 9.72 13.15
SF-OGD 90.0 10.63 13.24 90.1 10.92 13.72 90.1 11.33 13.99 90.0 10.93 13.64
decay-OGD 90.1 11.24 13.03 90.0 10.52 12.25 89.9 10.95 12.85 89.7 14.43 16.18
PID 90.1 10.87 13.36 89.7 12.28 15.11 89.7 12.49 15.13 89.9 11.57 14.15
ECI 90.0 7.20 9.34 90.1 6.39 9.99 90.0 6.41 8.76 89.9 9.15 12.33
ECI-cutoff 90.1 7.01 9.24 90.1 6.29 9.94 90.0 6.27 8.72 89.9 8.77 12.13
ECl-integral 90.0 721 9.33 90.2 6.39 9.97 90.0 6.38 8.76 89.9 8.87 12.19
DDCI 90.0 6.95 9.10 89.9 6.45 10.04 90.0 6.36 8.69 89.9 8.57 11.80
DDCI-Nex 90.0 6.96 9.07 90.0 6.37 10.02 90.0 6.26 8.66 89.9 8.47 11.76

5.2.3 SENSITIVITY ANALYSIS

We examine the role of the smoothing parameter e in the update rule[I0] taking Google stock data as
an illustrative case. Fig.[3|shows that increasing the smoothing parameter e consistently enlarges the
average interval size across all four models, confirming its role in controlling the balance between
efficiency and smoothness. Smaller € values produce tighter intervals, while larger values lead to
markedly wider intervals, with the effect most pronounced in Prophet and Transformer. Noticeably,
the influence of € becomes remarkable when it is greater than 0.5. However, when € is small (0.2 or
0.3), although the prediction intervals become moderately wider when decreasing, this adjustment
helps to reduce unnecessary misses by ensuring that more true values fall within the intervals.
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Figure 3: The influence of different smoothing parameter € on the size of prediction interval.

Comparing DDCI and DDCI-Nex, DDCI is more sensitive to changes in €, leading to sharper interval
expansion especially at higher values, whereas DDCI-Nex yields smoother and more stable interval
growth. This difference arises because the estimated threshold of DDCI relies on original split
conformal inference, where it is more sensitive to external factors (e.g. distribution shifts), while
DDCI-Nex uses NexCP to generate the estimated threshold which provides more effective and stable
adaptation. This distinction suggests that while DDCI provides stronger responsiveness to parameter
tuning, DDCI-Nex offers greater robustness and stability, avoiding excessive conservativeness at
large e. Fig. []illustrates the effect of different values of € on the proposed DDCI method through
AR model. When e is small, the update process becomes more volatile, leading to fluctuations in the
prediction intervals. In contrast, larger € values produce smoother and more stable updates, though
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at the cost of more conservative (wider) intervals. Thus, the choice of the smoothing parameter e
entails a trade-off between efficiency and stability.

Prediction Intervals

1400 DDCI (€=0.0) interval = DDCI (£=0.0) miss
DDCI (¢=0.8) interval - DDCI (¢=0.8) miss
1200 —— True values
1000
g 800
2
600 |
400
200
2008 2010 2012 2014 2016 2018
Time

Figure 4: Visualisation of the proposed DDCI method with different € (0.0 and 0.8 respectively)
under AR model.

Fig.[5]displays that the effect of the smoothing parameter e is relatively minor compared to its influ-
ence on interval size. Across all four models, coverage rates remain close to the target level, with
only small fluctuations as e increases. This indicates that varying € mainly adjusts efficiency (inter-
val width) without substantially undermining validity (coverage). Comparing the two approaches,
DDCI and DDCI-Nex perform similarly in terms of maintaining coverage.

ar prophet theta transformer
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Figure 5: The influence of different smoothing parameter ¢ on the coverage rate.

6 CONCLUSION

Although multiple online conformal inference frameworks were proposed recently for time series
forecasting, all of them are based on the actual feedback directly, which makes the updates fluctu-
ated. This work introduces a novel framework that incorporates a dual-feedback mechanism. The
mechanism combines actual feedback and estimated feedback, whose signs are intentionally set in
opposition to counterbalance increases and decreases when updating the intervals. While the use of
estimated feedback may slightly widen the intervals when the true label lies inside them, it effec-
tively prevents large, unnecessary expansions, leading to more stable interval adjustments.

10
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A THEORETICAL ANALYSIS

Update rule:
aiis =+ mem — )+ (e e e (1= L4 nes o)),
2B 2B (10)
%/_/
Actual feedback Estimated feedback

where € > 0 is a parameter to regulate the influence of the estimated feedback term and the symbol
'+’ indicates that the estimated feedback always carries the opposite sign to the actual feedback.

Assumption 1 For any t € Ny, there exists 0 < B < oo such that s; € [—B, B].

Based on assumption |1} there are boundaries for two types of feedback: e; = |s; — ¢;| and ef =
|st — g;|, which are given in the following propositions.

Proposition 1 Fix an initial threshold ¢; € [0, B]. Assume that 1, < %. The update rule
with arbitrary nonnegative learning rate 1, satisfies that,

-l4+a—eM 1 <q<B+2—-a—e)M_; Vt>1, (11)
where My =0, My = maxi<,<¢n, fort>1.

Proof. We prove this by induction. First, ¢g; € [0, B] by assumption. Assume that < 2_5 —

€ > 0. Next fix any ¢ > 1 and assume ¢; lies in the range specified in[I} and consider g;1.

and

(1): st > q4,

g > 5> gy

2B 2B
<qt+n(l—a)+n(l—e
<B4+ (2—-a—eM,

g = g+ (1 — ) (B e (s, — g £ ((1 s il s, q:»))

* 5 2>q > q;:

v =t (1= ) (e s - a0 e (0= P e s - ) )

<@ +n(l—a)+n(l—e
<B+(2-a-eaM,

(2): st < g1,
* qf < st < g
Sy — St — q; N
desr =) (e oo - a0 2 (0= BB e - i) )

qt +ne(—a) —n(1—e€)

>
Z —(1+O[—€)Mt
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e 5 < g < g

S¢ — S — g* .
a1 = g+ m(=0) + (e (s 2 e (1= PG nen (s, - 7))
2B 2B
> g+ m(—a) —m(l —¢)
> —(1+a—e)M,;
Proposition 2 Under Assumptionand Propositionand e < ﬁ, , we have bounds for two
feedback:
st —qi)| < B+ (2—a—¢e)M;_q, foranyt > 1,
|s: —q;| < 2B, foranyt > 1.

B
s—o—ande >0,

Proof. Based on s; € [0, B] and Proposition under the assumption that n <
st — qi| = max{q; — s¢, 50 — @} < max{q, st — @i}
<max{B+(2-a—€e)M;_1, B+ (1+a—e)M;_1}
<B+(2—-a—¢M_;.

Hence, |s: — ¢:| < c[B+ (2 — a —€)M;_4].

Theorem 1 Let {n; };>1 be an arbitrary positive sequence. Under Assumptionand < g
the prediction interval generated by Equation[I0|with proportional learning rate 1, satisfies:

s

T

1
T Z(errt - )

where |Avrlly = [nr Y+ Sy [0y

(B —+ MT—l) HAlzT”l i (1 — €)B + (2 - — E)MT_l

<
- T 2B ’

12)

= Max1<p<T M-

Proof of Theorem 1.

gerrtfa = TZ(ZA) e (erry — )
= %ZAT (ZM@Hwa))’

t=r

1 T T
S T;AT(QT+1_QT) Tg
<| LY A — )|+ LY
= TT:1 r(qT+1 — qr thl

=7 ZA (Z [’It+1 —q— nt(%h(st —qt) —

St —q St — qf
Z | - t t_Qt)_e%h(St_

( |St2;3qd h(se — qi) —

|St _qz‘ *
€Th(3t —q ))]) ‘
qf))‘

|5t

e il s, q:»‘

T
1 (1—-2¢)B+(2—a—¢€)Mr_
< T E: Ar(gre1 —qr)| + 5B
< (B+ )”Al T”l n (1 —26)B+(2—O[—E)MT71

T
B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DESCRIPTION OF DATASETS

2B

* Amazon and Google: contain thirty blue-chip stock prices, with daily opening prices fore-
casted on a log scale, spanning the period from January 1, 2006 to December 31, 2014.

15
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* Microsoft: includes daily stock opening prices from April 1, 2015 to May 31, 2021.

* Delhi temperature: provides daily measurements of temperature (averaged over eight
readings taken at three-hour intervals), humidity, wind speed, and atmospheric pressure
in Delhi, from January 1, 2003 to April 24, 2017, collected via the Weather Underground
APL

* Electricity demand: records electricity demand in New South Wales at half-hour intervals
from May 7, 1996 to December 5, 1998.

B.2 EXPERIMENTAL RESULTS
B.2.1 ELECTRICITY DEMAND

For the electricity demand dataset (Table[6), the performance of the DDCI variants is broadly com-
parable to that of the ECI baselines rather than superior. Across all forecasting models, DDCI and
DDCI-Nex achieve interval widths that are similar to the best ECI methods while maintaining the
target coverage level. Although the improvements observed in the stock datasets are not replicated
here, the results indicate that DDCI remains competitive without loss of validity. This suggests that
the performance of DDCI in the electricity demand setting remains stable and consistent with strong
baseline approaches.

Table 6: The experimental results in the electricity demand dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage Avg. Median Coverage Avg. Median Coverage Avg. Median Coverage Avg. Median

(%) width  width (%) width  width (%) width  width (%) width  width
ACI 90.1 00 0.443 90.1 00 0.105 90.2 00 0.055 90.2 00 0.109
OGD 89.8 0.433 0435 90.0 0.133  0.115 90.1 0.081  0.075 90.1 0.139  0.120
SF-OGD 89.9 0419  0.426 90.0 0.129  0.116 90.3 0.106  0.095 90.3 0.141  0.114
decay-OGD 90.1 0.531 0521 90.1 0.122  0.099 90.0 0.100  0.059 90.3 0.147  0.111
PID 90.1 0207  0.177 90.0 0434 0432 89.9 0.413 0411 89.9 0.428  0.435
ECI 90.0 0395  0.382 90.0 0.118  0.098 89.9 0.071  0.055 90.2 0.135  0.111
ECI-cutoff 90.0 0.405  0.396 90.0 0.117  0.096 90.1 0.072  0.055 90.2 0.133  0.108
EClI-integral 90.1 0.420  0.398 90.0 0.118  0.098 89.9 0.072  0.055 90.2 0.135  0.111
DDCI 90.1 0.392  0.390 90.0 0.118  0.099 89.9 0.072  0.054 90.2 0.135  0.111

DDCI-Nex 90.2 0.402  0.398 90.0 0.118  0.099 89.9 0.072  0.054 90.2 0.135  0.111

B.2.2 VARYING SIGNIFICANCE LEVELS

We conducted experiments on AMZN stock dataset under Prophet model with different significance
level (0.2, 0.1 and 0.05) to show the performance of our proposed method. Our proposed method
keeps the best performance compared to all baselines. Details are given in the Table

Table 7: Results under different significance levels o

Method a=0.20 a=0.10 a = 0.05
Coverage Avg. Winkler Coverage Avg. Winkler Coverage  Avg.  Winkler
(%) width Score (%) width Score (%) width Score
OGD 79.7 33.70 4427 89.6 55.15 6757 943 77.24 92.63
SF-OGD 79.7 4451  58.31 89.5 61.47  73.94 94.5 79.11 92.74
decay-OGD 80.1 46.92 5798 89.9 97.22  107.79 90.9 107.32  159.64
PID 80.3 3645 4797 89.8 52.56  56.02 94.8 54.65 66.58
ECI 80.8 3539  45.85 90.1 47.00 59.74 94.8 60.10 73.81
ECI-cutoff 80.0 31.81 4093 89.7 4346 5321 94.8 55.97 66.65
EClI-integral 80.0 3221  41.26 89.8 42.01  51.85 94.8 56.00 67.19
DDCI 79.9 2491  33.76 89.7 30.87 41.05 94.8 41.17  51.56
DDCI-Nex 79.8 2525 3427 89.7 31.28  40.96 94.7 41.09 51.32
DDCI-Softsign 80.1 2456  33.34 89.7 31.11  40.90 94.8 41.23 51.77
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Figure 6: Comparison of empirical coverage rate, mean interval width, and Winkler Score across
a wide range of significance levels (o = 0.05-0.9) for four online conformal inference methods:
DDCI, ECI, PID, and OGD.

To comprehensively evaluate the calibration behaviour of the online conformal methods, we con-
ducted a multi-level significance experiment by sweeping o from 0.05 to 0.9. For each level, we
measured the empirical coverage, the mean interval width, and the Winkler score across four meth-
ods (DDCI, ECI, PID and OGD).

Across the full range of significance levels from 0.05 to 0.9, DDCI consistently demonstrates supe-
rior calibration stability and interval efficiency compared with existing online conformal methods.
In terms of efficiency, DDCI achieves the narrowest mean interval widths across almost all «v, reflect-
ing its ability to maintain reliable calibration without resorting to excessively conservative intervals.
This advantage is further reinforced by the Winkler Score results: DDCI attains the lowest Win-
kler Score throughout the entire spectrum, indicating the most favourable balance between coverage
accuracy and interval compactness. Overall, the empirical curves of coverage, width, and Winkler
Score collectively show that DDCI offers a more robust and efficient update rule, yielding both
tighter and better-calibrated prediction intervals under varying levels of uncertainty.

B.2.3 LEARNING RATE ANALYSIS

In this section, we analyse the impact of different learning rates on the performance of the proposed
method, using the Google stock dataset as an example. The learning rate range follows [Wu et al.
(2025). For PID, ECI, and DDCI, the learning rates considered are [1, 0.5, 0.1, 0.05]. The results
for coverage and prediction set of four underlying algorithms are given from Fig.[7]to Fig.[T4} It is
obvious that our proposed method loses validity and generates extremely wide prediction intervals
when the learning rate is set to 1, which is consistent with our theoretical analysis. However, such
large learning rate always yields conservative prediction intervals for all online conformal methods.

nnnnnnn
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Figure 7: Coverage result for AR model.
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Figure 12: Prediction sets result for Theta model.
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Figure 13: Coverage result for Transformer model.

Figure 14: Prediction sets result for Transformer model.

C CODE LINK

Here is the anonymous link of the code to reproduce the experimental results and figures:
https://anonymous.4open.science/r/DDCI-47A7

D USAGE OF LANGUAGE MODELS

Large Language Models were used to polish and improve the grammar, spelling, and readability of
this manuscript, but all research design, analysis, and interpretation were conducted by the authors.
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