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ABSTRACT

Quantifying uncertainty in time series forecasting is particularly demanding be-
cause sequential data exhibit temporal dependence and are prone to distributional
changes. Conformal inference has emerged as a powerful uncertainty quantifi-
cation approach for evaluating the reliability of predictive models through the
construction of prediction sets. Recent advances have introduced online confor-
mal methods that adaptively adjust prediction thresholds through feedback mech-
anisms. However, the existing feedback mechanism typically relies solely on mis-
coverage indicators (actual feedback)—whether the true label falls within the in-
terval at each time step—while overlooking the empirical prediction threshold (es-
timated feedback) that is derived from the oracle conformal method. In this paper,
we propose Dynamic Dual-feedback Conformal Inference (DDCI), which incor-
porates a dual-feedback mechanism consisting of actual feedback and estimated
feedback. The former drives the primary adjustment of the intervals based on
true observations, while the latter dampens excessive expansions or contractions
by leveraging empirical thresholds from conformal inference during updates. By
balancing these two signals, DDCI achieves more stable and narrower prediction
intervals in sequential settings while preserving the coverage validity.

1 INTRODUCTION

Machine learning models are increasingly being applied in many real-world domains such as health
care, energy and transportation, where uncertainty quantification is essential for decision-making
(Dı́az-González et al., 2012; Badue et al., 2021). Generally speaking, prediction sets/intervals are a
common approach to reflect models’ uncertainty. However, traditional machine learning or statistical
models themselves are difficult to quantify uncertainty, or require strong assumptions on the data
distributions (Durbin & Koopman, 2012; Gasthaus et al., 2019; Salinas et al., 2020).

Conformal inference, firstly introduced by Vovk et al. (1999), is a non-parametric framework to
construct prediction sets, which enjoys statistically marginal coverage guarantee under a lenient as-
sumption called exchangeability. This framework offers a general methodology for converting the
outputs of black-box models into prediction sets and can be applied on top of any underlying predic-
tive model (Angelopoulos et al., 2023b). The simplicity and generality of conformal methods have
led to their wide adoption in real-world applications (Eklund et al., 2015; Luo et al., 2024). Fun-
damentally, the prediction sets generated by conformal methods are guaranteed to contain the true
response with a user-defined probability. However, exchangeability often fails to hold in sequential
data (e.g., time series) and the validity of conformal inference may be compromised because of dis-
tributional changes arising from external factors such as seasonality or external events. Motivated
by this challenge, this work studies the problem of conformal inference for time series data.

In recent years, substantial effort has been devoted to developing conformal methods tailored for
non-exchangeable time series data to achieve the target coverage guarantee. A prominent line of
research is to update the prediction interval via feedback mechanisms. The very first method, Adap-
tive Conformal Inference (ACI), attains the desired coverage rate by dynamically adjusting target
quantiles, treating distributional shifts as a single-parameter learning problem (Gibbs & Candes,
2021). Following that, multiple methods have been designed to improve the predictive efficiency
(Zaffran et al., 2022; Bhatnagar et al., 2023; Angelopoulos et al., 2023a). These methods update the
length of the interval by determining whether the true label falls within the interval (binary feedback

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from current thresholds). Recently, Wu et al. (2025) proposed Error-quantified Conformal Inference
(ECI), which incorporates the degree of under- or over-coverage to refine interval lengths. However,
their approach does not fully exploit the magnitude of the error, thereby weakening the corrective
effect of the feedback. More critically, a major limitation of existing methods is that all of them rely
exclusively on the signal from the current thresholds, which makes the update process unstable and
prone to fluctuations. In other words, the interval will gradually shrink until it can no longer cover
the true value at a certain point in time, after which it will expand.

Due to the limitations mentioned above, we first propose a dynamic feedback function that more
precisely quantifies the actual feedback. Secondly, to mitigate potential overreaction to this signal,
we introduce an additional component, termed estimated feedback, which is from empirical thresh-
olds derived from split conformal methods. This second feedback introduces a counter-signal with
opposite sign to the actual feedback through the empirical thresholds, serving as a control mecha-
nism that suppresses excessive adjustments and ensures smoother, more stable updates. Our main
contributions are summarised as follows:

• We propose a novel online conformal methods Dynamic Dual-feedback Conformal Infer-
ence (DDCI) for time series forecasting, which is able to quantify the actual feedback pre-
cisely and is the first work to explore how empirical thresholds from conformal methods
(estimated feedback) influence the updating process. Theoretically, our feedback mecha-
nism does not require extra assumptions except an upper bound for the learning rate.

• Furthermore, we investigate the impact of different degrees of estimated feedback on the
smoothness and efficiency of interval outputs. We also compare different kinds of estimated
feedback from the original conformal method and the nonexchangeable conformal method
and analyse the differences among them.

• We conduct considerable experiments on 5 datasets to demonstrate that, in the vast majority
of cases, our proposed methods can substantially shorten the prediction intervals (improv-
ing efficiency) without affecting the target coverage rate, compared to all existing methods.

2 RELATED WORK

2.1 CONFORMAL PREDICTION

The task of uncertainty quantification for unobserved data has been widely studied (Abdar et al.,
2021; Smith, 2024). Conformal inference, pioneered by Vovk et al. (2005), is a significant branch of
uncertainty quantification methods. The power of conformal methods stems largely from its flexibil-
ity, simplicity and theoretical guarantee. Conformal methods are able to quantify distribution-free
uncertainty under a lenient assumption of data distribution called exchangeability. At a high level,
users define a nonconformity score function and compute scores on a calibration set. Prediction sets
are then formed by including all observations whose true labels fall within the empirical quantiles of
the calibration distribution (Papadopoulos et al., 2002). Multiple variants of conformal methods and
score functions have been developed to improve the adaptivity and efficiency (Vovk, 2015; Lei et al.,
2018; Romano et al., 2019; Angelopoulos et al., 2020; Barber et al., 2021) and have been applied to
many areas (Stanton et al., 2023; Cresswell et al., 2024; Lekeufack et al., 2024; Zhang et al., 2024).
A detailed introduction of conformal inference is provided by Angelopoulos et al. (2023b) and the
theory behind it is given in Angelopoulos et al. (2024b).

2.2 CONFORMAL INFERENCE UNDER NONEXCHANGEABILITY

Conformal methods highly rely on the exchangeability, but it is often violated when they are ap-
plied to practical problems (e.g., sequential data). Recent works of developing conformal methods
beyond exchangeability can be summarised into two categories. The first is to treat the past con-
formal scores non-equally by assigning weights, giving greater emphasis to those more similar to
the present (Tibshirani et al., 2019; Xu & Xie, 2021; Barber et al., 2023). Recent approaches model
temporal dependence and rely on asymptotic guarantees that require assumptions on the underlying
data-generating process Xu & Xie (2023); Auer et al. (2023). The second is to adaptively update
the significance level α or the interval directly based on the miscoverage feedback (Gibbs & Can-
des, 2021; Zaffran et al., 2022; Gibbs & Candès, 2024; Bhatnagar et al., 2023). The following
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work (Angelopoulos et al., 2023a) advanced this line of research by framing PID control theory
to prospectively model conformal scores in a predictive and adaptive manner for online scenarios.
(Angelopoulos et al., 2024a) decays the learning rate based on time steps. Following that, the lat-
est work (Wu et al., 2025) introduced an error-quantified term to update the interval by using a
smoothed quantile loss. Although our work is highly inspired by the error-quantified term of Wu
et al. (2025), it differs from two aspects: (i) our feedback mechanism is residual-aware which makes
it more general to different datasets and underlying algorithms; (ii) ours also considers an estimated
feedback that is from conformal inference itself, where all existing methods did not take this em-
pirical threshold into account. Overall, our method is therefore able to produce substantially tighter
prediction sets while maintaining its validity.

3 PROBLEM SETUP

Conformal Inference for Time Series. Under the background of time series forecasting, we ob-
serve a sequence of covariates xt ∈ X and responses yt ∈ Y for t ∈ N = {1, 2, 3, ...}. Then,
we train an underlying model ft(·) on the data before time t. As in oracle conformal methods, the
conformal score function st(·, ·) can be designed in a flexible manner, which is able to measure the
accuracy of model’s prediction at time t. A typical choice of score function for regression problems
is using the absolute error st(x, y) = |yt−ft(x)|. The main goal is to construct a prediction interval:

Ct(xt) = {yt ∈ Y : st(xt, yt) ≤ q∗t }, (1)

where q∗t , the empirical threshold, is the (1 − α)-th quantile from the distribution of scores
St−w≤i<t ∈ {si(xi, yi)}. In principle, if the data is exchangeable, the interval output is expected to
be marginally valid:

P (yt ∈ Ct(xt)) ≥ 1− α. (2)

Nevertheless, the challenge for time series forecasting is that the sequence data can be nonexchange-
able due to external factors (e.g., distribution shifts). Therefore, a general goal is to achieve a long-
run coverage guarantee that,

lim
T→∞

1

T

T∑
t=1

errt = α, (3)

where errt = 1{yt /∈ Ct(xt)}.

Online Conformal Inference. The online update of prediction interval started from ACI (Gibbs
& Candes, 2021) and evolved into the quantile tracking component inside of the conformal PID
control method (Angelopoulos et al., 2023a), called online gradient descent (OGD). It considers an
optimisation problem to minimise the quantile loss qt,

qt+1 := qt − ηt∇ℓt(qt) = qt + ηt
(
errt − α

)
, (4)

where ηt is a learning rate and ℓt(qt) = (st − qt)
(
1{st > qt} − α

)
means the (1 − α)-th quantile

loss. Simply put, if the interval Ct(xt) fails to cover the true label at time t, the interval is expanded
to make it conservative in the next step; otherwise, it is shortened.

4 PROPOSED METHOD

4.1 DYNAMIC DUAL-FEEDBACK CONFORMAL INFERENCE

In standard OGD update rule 4, the threshold adjustment relies solely on the binary coverage feed-
back (errt − α). While effective, this signal is too coarse as it only indicates whether the prediction
interval covers the true label, without reflecting the magnitude or reliability of the error. Addition-
ally, relying on a single feedback can make the update process unstable and inclined to volatility.
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To address this limitation, we augment the update rule with two complementary forms of feedback.
To clarify, qt and q∗t denote the current threshold and the estimated threshold from conformal infer-
ence respectively. The first is actual feedback, expressed as

|et|
maxt−w≤i,j≤t |si − sj |

h(c ∗ et), (5)

which incorporates the observed error et = st − qt and uses a squashing function h(·) to weight the
update by the severity of miscoverage. This squashing function is capable of mapping the error to
[−1, 1] and is origin-symmetric, e.g., tanh(x). This ensures that large deviations from the threshold
lead to stronger corrective actions. In the function tanh(cx), the parameter c governs the steepness
of the curve and the rate at which it saturates.

Furthermore, we employ a second feedback, termed estimated feedback, given by(
1− |e∗t |

maxt−w≤i,j≤t |si − sj |

)
h(c ∗ e∗t ), (6)

which provides a stabilising signal based on the estimated error e∗t = st− q∗t and q∗t is the empirical
(1−α)-th quantile of scores St−w≤i<t ∈ {si(xi, , yi)} from split conformal method. For simplicity,
we set maxt−w≤i,j≤t |si − sj | = 2B based on the Assumption 1 (given below). This term acts as
a safeguard to smooth the update since it is designed to always act in the opposite direction of
the actual feedback: when the actual feedback pushes the interval to shrink, the estimated feedback
counterbalances it by expanding the interval. A visualization of these two feedback is given in Fig. 1
with tanh(x) as an illustrative example.

(a) B = 5 (b) B = 30

Figure 1: Plots of actual feedback function |x|
2B tanh(cx) (blue) and estimated feedback function

(1− |x|/2B) tanh(cx) (orange) for different values of B when c = 0.2.

Therefore, we propose Dynamic Dual-feedback Conformal Inference (DDCI), based on the OGD
method 4 and the novel dual-feedback mechanism, the update rule is given as follows:

qt+1 := qt + ηt(errt − α) + ηt(
|et|
2B

h(c ∗ et)︸ ︷︷ ︸
Actual feedback

± ϵ

(
1− |e∗t |

2B

)
h(c ∗ e∗t )︸ ︷︷ ︸

Estimated feedback

),
(7)

where ϵ > 0 is a parameter to regulate the influence of the estimated feedback term and the symbol
′±′ indicates that the estimated feedback always carries the opposite sign to the actual feedback.
As shown in Fig. 1, the actual feedback term et is highly sensitive to sudden shifts or anomalous
values of st, which can exert a strong influence on the update. However, in such case, since q∗t
corresponds to the (1 − α)-th quantile of the score distribution, the estimated feedback e∗t remains
relatively small, thereby mitigating excessive interval expansion and stabilising the update process.
By balancing these signals, the update adapts flexibly to distributional changes while maintaining
robustness, thereby constructing prediction intervals that are both responsive and stable.

4.2 LONG-RUN COVERAGE GUARANTEES

In this section, the theoretical analysis of the proposed method is presented. More details and proofs
are given in Appendix A. At first, we start from Assumption 1, which sets a boundary for scores and
is a general assumption for conformal methods (Angelopoulos et al., 2023a).
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Assumption 1 For any t ∈ N+, there exists 0 < B < ∞ such that st ∈ [−B,B].

Based on this assumption, there are boundaries for two types of feedback: |st − qt| and |st − q∗t |,
which are given in the following propositions.
Proposition 1 Fix an initial threshold q1 ∈ [0, B]. Assume that ηt ≤ 2B

2−α−ϵ . The update rule 10
with arbitrary nonnegative learning rate ηt satisfies that,

−(1 + α− ϵ)Mt−1 ≤ qt ≤ B + (2− α− ϵ)Mt−1 ∀t ≥ 1, (8)

where M0 = 0, Mt = max1≤r≤t ηr for t ≥ 1.

Proposition 2 Under Assumption 1 and Proposition 1 and ηt ≤ B
2−α−ϵ , , we have bounds for two

feedback:

|st − qt| ≤ B + (2− α− ϵ)Mt−1, for any t ≥ 1,

|st − q∗t | ≤ 2B, for any t ≥ 1.

Given what listed above, the following theorem shows the upper bound of long-run average miscov-
erage rate with proportional learning rates.
Theorem 1 Let {ηt}t≥1 be an arbitrary positive sequence. Under Assumption 1 and ηt ≤ 2B

2−α−ϵ ,
the prediction interval generated by Equation 10 with proportional learning rate ηt satisfies:

∣∣∣∣∣ 1T
T∑

t=1

(errt − α)

∣∣∣∣∣ ≤ (B +MT−1) ∥∆1:T ∥1
T

+
(1− 2ϵ)B + (2− α− ϵ)MT−1

2B
, (9)

where ∥∆1:T ∥1 = |η−1
1 |+

∑T
t=2 |η

−1
t − η−1

t−1|, MT = max1≤r≤T ηr.

Remarkably, our proposed method has an upper limit for the proportional learning rate ηt = η ∗
maxt−w≤i,j≤t |si − sj |. Therefore, the upper boundary for η should be 1

2−α−ϵ . Since α and ϵ
are typically small, the learning rate η should not exceed 0.5, which is also consistent with our
experimental results. In general, such learning rate is enough for all datasets without influencing the
validity of prediction intervals.

5 EXPERIMENTS

In this section, we first describe the datasets employed to evaluate our proposed method, the under-
lying algorithms, and the online conformal baselines. We then present the corresponding experi-
mental results. For fairness of comparison, since certain baselines rely on pre-specified parameters,
our methods are evaluated under the same parameter settings.

5.1 SETTINGS

Datasets. Five public datasets are used to evaluate methods: stock daily opening price (Google,
Amazon, Microsoft), temperature (Delhi) and electricity demand (New South Wales). A detailed
description of these datasets is provided in the Appendix B.1. Due to the limit of pages, the re-
sults for electricity dataset and additional experimental results about learning rate are given in the
Appendix B.2.

Underlying Algorithms. Four well-known algorithms are used: Prophet, AutoRegressive (AR),
Theta and Transformer. The chosen models span different paradigms of time series forecasting,
making them suitable for comparative evaluation. AR and Theta are rooted in classical statistical
approaches, offering transparent and well-understood baselines (Box et al., 2015; Assimakopoulos
& Nikolopoulos, 2000). Prophet extends statistical decomposition with Bayesian techniques, pro-
viding flexibility to handle seasonality and structural breaks (Taylor & Letham, 2018). Finally, the
Transformer exemplifies state-of-the-art deep learning, capturing long-range and nonlinear depen-
dencies through attention mechanisms (Vaswani et al., 2017).

Online Conformal Baselines. (1) ACI (Gibbs & Candes, 2021): updates the intervals via adjusting
the quantile threshold to select from calibration set; (2) OGD family (Bhatnagar et al., 2023): uses
an iterative optimization algorithm that updates model parameters incrementally; (3) Conformal PID
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Control (Angelopoulos et al., 2023a): uses control theory and is capable to model scores to adjust
intervals; (4) ECI family (Wu et al., 2025): uses a smoothed quantile loss to update intervals.

Common Setup. We set the target miscoverage rate (α) to 10% and construct asymmetric prediction
intervals (Romano et al., 2019). For all baselines, the parameter settings are consistent with those
described in the original literature and corresponding open-source implementations (Angelopoulos
et al., 2023a; Wu et al., 2025). The analysis of varying significance levels is given in B.2.2.

DDCI Setup. The squashing function employed here is tanh( 12x) and the hyper-paramter ϵ is set to
0.2, providing a balance between smoothness and efficiency. For DDCI, the estimated threshold q∗t
is from the original split conformal method which is under the risk of under-coverage and the size of
the calibration set is equal to T burnin which is used as a warm-up data in baselines. For DDCI-Nex,
the q∗t follows the design of NexCP (Barber et al., 2023), where the weights for conformal scores
are wi =

0.99 t−i∑t
j=1 0.99 t−j , 1 ≤ i ≤ t.

Evaluation Matrics. (1) Average coverage rate on the test set; (2) Average width of prediction
intervals on the test set; (3) The Winkler score (Winkler, 1972): it is defined as the width of the
prediction interval plus an additional penalty for any observation that falls outside the interval, where
the penalty grows proportionally with the magnitude of the forecast error.

5.2 EXPERIMENTAL RESULTS

5.2.1 SYNTHETIC DATASETS

To verify the performance of our method with other baselines, we constructed three synthetic
datasets exhibiting different forms of non-stationarity: (1) Random Walk Trend: a smoothed
stochastic trend with time-varying volatility, generated as Xt = Xt−1 + σtηt, ηt ∼ N (0, 1), where
the volatility evolves according to σt = σ0

(
1 + κ | sin(2πt/P )|

)
. The time-varying term σt intro-

duces slow periodic volatility modulation, capturing smoother drift and cyclical heteroskedasticity;
(2) Exponential Trend: a multiplicative-growth process Xt = Xt−1 exp(µ+ σεt), εt ∼ N (0, 1);
(3) Changepoint: a piecewise log-linear process with two regime shifts. For changepoints c1 = 600
and c2 = 1200, logXt = logXt−1 + µ(t) + σ(t)εt, εt ∼ N (0, 1), where (µ(t), σ(t)) vary across
segments, producing moderate structural breaks.

The results are averaged over 5 runs under Prophet model and given in the Table 1. Across all three
synthetic settings, DDCI consistently delivers the most efficient and stable prediction intervals while
maintaining the target coverage. In Setting 1 and Setting 2 scenarios, DDCI achieves the narrowest
intervals and lowest Winkler scores, with DDCI-Nex providing the second-best performance. Under
the more challenging changepoint setting (Setting 3), where all methods experience increased uncer-
tainty, DDCI still produces the most informative intervals, substantially outperforming the baselines.
Overall, the results show that DDCI is robust across different forms of non-stationarity and yields
clear efficiency gains over existing online conformal methods.

Table 1: Results on the three synthetic datasets generated under the Prophet model. All experiments
are repeated five times, and the table reports the mean and standard deviation across runs.

Method Setting 1 Setting 2 Setting 3

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

OGD 90.0± 0.12 11.01± 0.50 12.82± 0.54 89.9± 0.17 17.28± 7.59 21.01± 8.98 85.0± 4.78 371.43± 350.57 506.07± 541.8

SF-OGD 90.7± 0.16 75.75± 0.11 84.93± 0.14 90.3± 0.23 76.83± 1.50 86.57± 2.44 89.4± 0.98 183.13± 138.25 213.06± 162.6

decay-OGD 89.7± 0.82 21.34± 2.10 23.32± 2.44 84.3± 4.90 44.05± 34.24 56.04± 47.25 59.6± 22.53 419.60± 307.13 2202.6± 2148.2

PID 89.9± 0.11 13.25± 1.18 15.19± 1.33 89.8± 0.08 18.04± 6.53 21.72± 7.95 89.8± 0.13 124.17± 100.70 144.22± 115.73

ECI 90.0± 0.10 13.07± 1.39 15.07± 1.53 90.0± 0.12 19.95± 7.15 30.58± 11.92 81.9± 17.84 88.85± 54.96 119.52± 61.22

ECI-cutoff 89.9± 0.07 10.64± 1.06 12.50± 1.21 90.0± 0.09 17.57± 7.23 27.63± 11.52 89.8± 0.11 123.54± 100.01 146.74± 116.99

ECI-integral 90.0± 0.06 10.90± 1.06 12.82± 1.27 90.0± 0.16 18.00± 7.80 27.87± 11.89 89.8± 0.07 125.46± 101.28 148.14± 117.75

DDCI 89.9± 0.02 8.08 ± 0.82 9.82 ± 1.04 90.0± 0.19 13.15 ± 5.35 22.93 ± 9.78 89.8± 0.10 91.36 ± 72.59 111.90 ± 84.47
DDCI-Nex 89.9± 0.03 8.35± 0.84 10.07± 1.00 89.9± 0.14 15.36± 6.75 25.20± 11.18 89.8± 0.10 109.52± 89.26 131.36± 104.59

5.2.2 PUBLIC DATASETS

Overall, all methods achieve coverage rates close to the target level of 90%, indicating that validity
is generally well maintained across different forecasting models. However, substantial differences
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are observed in terms of the average and median prediction interval widths. The results of baselines
can also be found within this paper (Wu et al., 2025).

Stock Data. Table 2 reports the performance of all methods on the Google stock dataset at the target
miscoverage rate α = 10%. The baseline ACI method consistently delivers coverage close to the
target level but at the cost of infinite interval widths, rendering it impractical. OGD family and PID
also produce relatively wide intervals, particularly under the Prophet (around 57) and Transformer
models (higher than 78). Among the baselines, the ECI family performs best, producing narrower
intervals, but still deteriorating significantly under the Transformer model (higher than 65).

By contrast, the proposed DDCI variants achieve the most competitive results across all settings.
Under the Prophet model, DDCI and DDCI-Nex reduce the average width to around 40 without
influencing the coverage rate, substantially improving upon all baselines (the lowest one is 52). For
the Theta model, DDCI achieves the narrowest intervals, again surpassing the best baseline. Most
notably, for the Transformer model, DDCI and its variant drastically outperform all other methods,
with interval widths (around 51) almost 22% shorter than those of the best ECI variant (66).

Table 2: The experimental results on the Google stock dataset. The best result (shortest width) is
marked in bold, and the second-best result is marked with an underline.

Method Prophet Model AR Model Theta Model Transformer
Coverage

(%)
Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

ACI 90.0 ∞ ∞ 89.8 ∞ ∞ 90.5 ∞ ∞ 90.2 ∞ ∞
OGD 89.7 57.60 74.74 90.7 33.76 70.96 89.9 31.49 47.87 90.1 109.27 148.76

SF-OGD 89.6 58.92 77.52 89.9 28.31 41.93 90.0 34.04 51.01 90.1 88.30 113.34
decay-OGD 89.9 77.23 92.36 90.2 46.53 58.27 90.2 55.32 67.89 89.9 120.25 133.38

PID 90.1 57.47 71.18 89.9 64.19 83.58 89.9 75.71 97.37 90.1 77.36 106.78
ECI 89.9 56.06 75.46 89.7 19.96 69.11 89.6 30.92 47.64 89.9 70.93 110.29

ECI-cutoff 89.8 53.12 67.78 89.7 19.84 68.98 89.6 30.71 47.79 89.9 66.67 103.35
ECI-integral 89.8 52.36 67.19 89.7 19.93 69.17 89.6 30.42 47.34 90.0 68.64 104.52

DDCI 89.8 39.20 52.76 89.6 19.92 68.98 89.4 29.24 46.38 90.0 51.05 85.75
DDCI-Nex 89.7 39.98 53.72 89.6 20.07 68.92 89.6 29.71 46.71 89.8 51.58 86.56

Fig. 2 presents a visualisation of comparison result between ECI (the state-of-the-art) and DDCI
(the proposed) on the Google stock dataset using the Prophet model. Generally speaking, ECI tends
to produce wider ranges, which often appears overly conservative, with noticeable fluctuations in
the interval boundaries. By contrast, DDCI yields narrower and more stable intervals, reducing
redundancy while maintaining strong alignment with the true series.
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Figure 2: Visualisation of comparison results between ECI (the SOTA) and DDCI (proposed, ϵ =
0.2) on Google stock dataset under Prophet model. The blue crosses and red points represent the
miscovered points of each method.
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In terms of Amazon data, as the table 3 presented, DDCI and its variant consistently achieve the
narrowest prediction intervals while maintaining nominal coverage across all forecasting models.
Improvements are particularly striking for the Prophet and Transformer models, 26% and 24% re-
spectively. These results further confirm the superior efficiency and robustness of DDCI in generat-
ing shorter but reliable prediction intervals.

Table 3: The experimental results on the Amazon stock dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage

(%)
Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

ACI 90.2 ∞ ∞ 89.8 ∞ ∞ 89.7 ∞ ∞ 90.1 ∞ ∞
OGD 89.6 55.15 67.57 89.9 19.10 30.08 89.8 18.07 28.23 89.4 52.68 69.27

SF-OGD 89.5 61.47 73.94 89.9 24.44 34.31 90.0 23.88 34.46 89.3 56.56 72.48
decay-OGD 89.9 97.22 107.79 89.7 20.23 30.74 89.2 17.49 28.56 89.8 93.16 109.19

PID 89.8 45.89 56.02 89.6 59.22 76.78 89.5 71.11 87.88 89.8 56.06 71.10
ECI 90.1 47.00 59.74 89.5 17.12 34.23 89.7 17.46 27.86 89.9 49.07 68.77

ECI-cutoff 89.7 43.46 53.21 89.3 16.91 34.20 89.6 17.19 27.80 89.7 45.01 62.55
ECI-integral 89.8 42.01 51.85 89.5 16.99 34.25 89.6 17.20 27.82 89.7 45.02 61.35

DDCI 89.7 30.87 41.05 89.3 17.10 34.29 89.5 17.04 27.92 89.7 34.44 51.53
DDCI-Nex 89.7 31.28 40.96 89.4 16.99 34.33 89.6 17.06 27.80 89.7 34.10 51.25

For the Microsoft dataset (Table 4), the superiority of the proposed DDCI method over the baselines
is again evident. While the ECI methods produce narrower intervals compared to earlier approaches,
their widths remain consistently larger than those obtained by DDCI and DDCI-Nex across most
forecasting models. In particular, DDCI variants achieve the smallest average and median widths in
nearly every case, without sacrificing coverage. For example, under the Prophet and Transformer
models, the intervals generated by DDCI are markedly tighter than the best baseline. These re-
sults reaffirm the consistent advantage of the DDCI method in delivering more efficient prediction
intervals, further consolidating its robustness and generalisability across diverse datasets.

Table 4: The experimental results on the Microsoft stock dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage

(%)
Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

ACI 90.0 ∞ ∞ 90.7 ∞ ∞ 89.9 ∞ ∞ 89.9 ∞ ∞
OGD 90.0 3.78 4.80 90.7 4.37 4.49 89.9 2.49 3.31 89.9 3.80 5.00

SF-OGD 90.2 6.91 7.14 90.0 6.82 7.17 90.2 6.98 7.31 89.9 7.08 7.08
decay-OGD 90.0 6.02 5.34 90.1 4.34 3.64 90.1 4.91 4.92 89.7 5.41 5.41

PID 90.0 6.30 5.90 89.6 5.60 5.43 89.8 4.89 4.87 89.9 6.16 6.48
ECI 90.4 4.85 5.24 90.2 3.76 4.20 90.2 2.48 3.43 89.9 4.35 5.02

ECI-cutoff 89.8 4.05 4.59 89.8 3.04 3.58 89.8 2.44 3.39 89.9 4.08 4.87
ECI-integral 89.9 4.22 4.71 90.2 3.67 4.15 90.2 2.46 3.42 89.9 4.13 4.98

DDCI 89.8 3.26 3.71 89.8 2.93 3.58 89.8 2.39 3.31 89.9 3.34 4.10
DDCI-Nex 89.8 3.40 3.89 89.8 2.92 3.50 89.9 2.41 3.33 89.9 3.44 4.23

Delhi Temperature. On the Delhi temperature dataset (Table 5), DDCI variants consistently achieve
the narrowest prediction intervals across all forecasting models while preserving nominal cover-
age. The improvements over the strongest baselines are smaller in magnitude compared with stock
datasets but remain consistent, demonstrating the robustness and adaptability of DDCI in settings
with relatively stable time series such as temperature.

In conclusion, the proposed methods generally achieve tighter prediction intervals while maintaining
valid coverage. However, their improvements are less pronounced in several cases, particularly
under the AR model on stock datasets and on the Climate dataset across different underlying models.
These observations can be attributed to the behaviour of the conformal estimated threshold q∗t . When
the underlying conformal prediction already yields relatively conservative intervals, characterised by
achieving the target coverage with a relatively large average width, the estimated threshold tends to
overestimate local uncertainty. As a result, the deviation term e∗t = st−q∗t becomes large, prompting
the estimated feedback component to expand the interval more than is necessary. Such patterns are
evident, for instance, in the Climate dataset, where both Prophet (coverage 90%, width 9.25) and
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Table 5: The experimental results in the Delhi temperature dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage

(%)
Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

ACI 91.0 ∞ ∞ 90.0 ∞ ∞ 90.2 ∞ ∞ 90.3 ∞ ∞
OGD 90.4 7.54 9.78 90.1 6.82 9.11 90.0 6.36 8.68 89.9 9.72 13.15

SF-OGD 90.0 10.63 13.24 90.1 10.92 13.72 90.1 11.33 13.99 90.0 10.93 13.64
decay-OGD 90.1 11.24 13.03 90.0 10.52 12.25 89.9 10.95 12.85 89.7 14.43 16.18

PID 90.1 10.87 13.36 89.7 12.28 15.11 89.7 12.49 15.13 89.9 11.57 14.15
ECI 90.0 7.20 9.34 90.1 6.39 9.99 90.0 6.41 8.76 89.9 9.15 12.33

ECI-cutoff 90.1 7.01 9.24 90.1 6.29 9.94 90.0 6.27 8.72 89.9 8.77 12.13
ECI-integral 90.0 7.21 9.33 90.2 6.39 9.97 90.0 6.38 8.76 89.9 8.87 12.19

DDCI 90.0 6.95 9.10 89.9 6.45 10.04 90.0 6.36 8.69 89.9 8.57 11.80
DDCI-Nex 90.0 6.96 9.07 90.0 6.37 10.02 90.0 6.26 8.66 89.9 8.47 11.76

AR (coverage 89.66%, width 8.32) models produce wide yet well–calibrated intervals, and in the
stock datasets under the AR model, where conservative conformal thresholds similarly restrict the
gains achievable by DDCI.

5.2.3 SENSITIVITY ANALYSIS

We examine the role of the smoothing parameter ϵ in the update rule 10, taking Google stock data as
an illustrative case. Fig. 3 shows that increasing the smoothing parameter ϵ consistently enlarges the
average interval size across all four models, confirming its role in controlling the balance between
efficiency and smoothness. Smaller ϵ values produce tighter intervals, while larger values lead to
markedly wider intervals, with the effect most pronounced in Prophet and Transformer. Noticeably,
the influence of ϵ becomes remarkable when it is greater than 0.5. However, when ϵ is small (0.2 or
0.3), although the prediction intervals become moderately wider when decreasing, this adjustment
helps to reduce unnecessary misses by ensuring that more true values fall within the intervals. The
apparent sensitivity shown in Figure 3 is not primarily driven by ϵ itself. The different trends across
panels arise because each base model (AR, Prophet, Theta, Transformer) employs a distinct learning
rate (0.05, 0.5, 0.1, 0.5, respectively), following the experimental setup of ECI. This causes the scale
of the score sequence st, and consequently the update magnitude, to differ substantially across
models.

0.0 0.5 1.0
Epsilon

19.8

20.0

20.2

20.4

20.6

Av
er

ag
e 

S
iz

e

ar

0.0 0.5 1.0
Epsilon

40

45

50

55

Av
er

ag
e 

S
iz

e

prophet

0.0 0.5 1.0
Epsilon

29.5

30.0

30.5

31.0

31.5

32.0

Av
er

ag
e 

S
iz

e

theta

0.0 0.5 1.0
Epsilon

50

55

60

65

70

Av
er

ag
e 

S
iz

e

transformer

DDCI DDCI-Nex

Figure 3: The influence of different smoothing parameter ϵ on the size of prediction interval.

Comparing DDCI and DDCI-Nex, DDCI is more sensitive to changes in ϵ, leading to sharper interval
expansion especially at higher values, whereas DDCI-Nex yields smoother and more stable interval
growth. This difference arises because the estimated threshold of DDCI relies on original split
conformal inference, where it is more sensitive to external factors (e.g. distribution shifts), while
DDCI-Nex uses NexCP to generate the estimated threshold which provides more effective and stable
adaptation. This distinction suggests that while DDCI provides stronger responsiveness to parameter
tuning, DDCI-Nex offers greater robustness and stability, avoiding excessive conservativeness at
large ϵ. Fig. 4 illustrates the effect of different values of ϵ on the proposed DDCI method through
AR model. When ϵ is small, the update process becomes more volatile, leading to fluctuations in the
prediction intervals. In contrast, larger ϵ values produce smoother and more stable updates, though
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at the cost of more conservative (wider) intervals. Thus, the choice of the smoothing parameter ϵ
entails a trade-off between efficiency and stability.
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Figure 4: Visualisation of the proposed DDCI method with different ϵ (0.0 and 0.8 respectively)
under AR model.

Fig. 5 displays that the effect of the smoothing parameter ϵ is relatively minor compared to its influ-
ence on interval size. Across all four models, coverage rates remain close to the target level, with
only small fluctuations as ϵ increases. This indicates that varying ϵ mainly adjusts efficiency (inter-
val width) without substantially undermining validity (coverage). Comparing the two approaches,
DDCI and DDCI-Nex perform similarly in terms of maintaining coverage.
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Figure 5: The influence of different smoothing parameter ϵ on the coverage rate.

6 CONCLUSION

Although multiple online conformal inference frameworks were proposed recently for time series
forecasting, all of them are based on the actual feedback directly, which makes the updates fluctu-
ated. This work introduces a novel framework that incorporates a dual-feedback mechanism. The
mechanism combines actual feedback and estimated feedback, whose signs are intentionally set in
opposition to counterbalance increases and decreases when updating the intervals. While the use of
estimated feedback may slightly widen the intervals when the true label lies inside them, it effec-
tively prevents large, unnecessary expansions, leading to more stable interval adjustments.

We test our method on three synthetic datasets and considerable public datasets under many un-
derlying algorithms, where proves that our method can achieve tighter prediction intervals while
maintaining the target coverage rate. Further work could improve the DDCI method by adaptively
selecting the smoothing parameter ϵ in response to distributional changes, thereby enhancing both
stability and efficiency.
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A review of energy storage technologies for wind power applications. Renewable and sustainable
energy reviews, 16(4):2154–2171, 2012.

James Durbin and Siem Jan Koopman. Time series analysis by state space methods. Oxford univer-
sity press, 2012.

Martin Eklund, Ulf Norinder, Scott Boyer, and Lars Carlsson. The application of conformal pre-
diction to the drug discovery process. Annals of Mathematics and Artificial Intelligence, 74(1):
117–132, 2015.

Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas,
Valentin Flunkert, and Tim Januschowski. Probabilistic forecasting with spline quantile function
rnns. In The 22nd international conference on artificial intelligence and statistics, pp. 1901–1910.
PMLR, 2019.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Ad-
vances in Neural Information Processing Systems, 34:1660–1672, 2021.

Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
distribution shifts. Journal of Machine Learning Research, 25(162):1–36, 2024.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018.

Jordan Lekeufack, Anastasios N Angelopoulos, Andrea Bajcsy, Michael I Jordan, and Jitendra Ma-
lik. Conformal decision theory: Safe autonomous decisions from imperfect predictions. In 2024
IEEE International Conference on Robotics and Automation (ICRA), pp. 11668–11675. IEEE,
2024.

Rachel Luo, Shengjia Zhao, Jonathan Kuck, Boris Ivanovic, Silvio Savarese, Edward Schmerling,
and Marco Pavone. Sample-efficient safety assurances using conformal prediction. The Interna-
tional Journal of Robotics Research, 43(9):1409–1424, 2024.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In European conference on machine learning, pp. 345–356. Springer,
2002.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Ad-
vances in neural information processing systems, 32, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications. SIAM, 2024.

Samuel Stanton, Wesley Maddox, and Andrew Gordon Wilson. Bayesian optimization with con-
formal prediction sets. In International Conference on Artificial Intelligence and Statistics, pp.
959–986. PMLR, 2023.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45,
2018.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
diction under covariate shift. Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74
(1):9–28, 2015.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer, 2005.

Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-
gorithmic randomness. 1999.

Robert L Winkler. A decision-theoretic approach to interval estimation. Journal of the American
Statistical Association, 67(337):187–191, 1972.

Junxi Wu, Dongjian Hu, Yajie Bao, Shu-Tao Xia, and Changliang Zou. Error-quantified conformal
inference for time series. arXiv preprint arXiv:2502.00818, 2025.

Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In International
Conference on Machine Learning, pp. 11559–11569. PMLR, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In International
Conference on Machine Learning, pp. 38707–38727. PMLR, 2023.
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A THEORETICAL ANALYSIS

Update rule:

qt+1 := qt + ηt(errt − α) + ηt(
|et|
2B

h(c ∗ et)︸ ︷︷ ︸
Actual feedback

± ϵ

(
1− |e∗t |

2B

)
h(c ∗ e∗t )︸ ︷︷ ︸

Estimated feedback

),
(10)

where ϵ > 0 is a parameter to regulate the influence of the estimated feedback term and the symbol
′±′ indicates that the estimated feedback always carries the opposite sign to the actual feedback.

Assumption 1 For any t ∈ N+, there exists 0 < B < ∞ such that st ∈ [−B,B].

Based on assumption 1, there are boundaries for two types of feedback: et = |st − qt| and e∗t =
|st − q∗t |, which are given in the following propositions.

Proposition 1 Fix an initial threshold q1 ∈ [0, B]. Assume that ηt ≤ 2B
2−α−ϵ . The update rule 10

with arbitrary nonnegative learning rate ηt satisfies that,

−(1 + α− ϵ)Mt−1 ≤ qt ≤ B + (2− α− ϵ)Mt−1 ∀t ≥ 1, (11)

where M0 = 0, Mt = max1≤r≤t ηr for t ≥ 1.

Proof. We prove this by induction. First, q1 ∈ [0, B] by assumption. Assume that η ≤ B
2−α−ϵ and

ϵ ≥ 0. Next fix any t ≥ 1 and assume qt lies in the range specified in 1, and consider qt+1.

(1): st ≥ qt,

• q∗t ≥ st ≥ qt:

qt+1 = qt + ηt(1− α) + ηt(
|st − qt|

2B
h(c ∗ (st − qt))± ϵ

(
(1− |st − q∗t |

2B
)h(c ∗ (st − q∗t ))

)
)

≤ qt + ηt(1− α) + ηt(1− ϵ)

≤ B + (2− α− ϵ)Mt

• st ≥ qt ≥ q∗t :

qt+1 = qt + ηt(1− α) + ηt(
|st − qt|

2B
h(c ∗ (st − qt))± ϵ

(
(1− |st − q∗t |

2B
)h(c ∗ (st − q∗t ))

)
)

≤ qt + ηt(1− α) + ηt(1− ϵ)

≤ B + (2− α− ϵ)Mt

(2): st ≤ qt,

• q∗t ≤ st ≤ qt:

qt+1 = qt + ηt(α) + ηt(
|st − qt|

2B
h(c ∗ (st − qt))± ϵ

(
(1− |st − q∗t |

2B
)h(c ∗ (st − q∗t ))

)
)

≥ qt + ηt(−α)− ηt(1− ϵ)

≥ −(1 + α− ϵ)Mt

14
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• st ≤ qt ≤ q∗t :

qt+1 = qt + ηt(−α) + ηt(
|st − qt|

2B
h(c ∗ (st − qt))± ϵ

(
(1− |st − q∗t |

2B
)h(c ∗ (st − q∗t ))

)
)

≥ qt + ηt(−α)− ηt(1− ϵ)

≥ −(1 + α− ϵ)Mt

Proposition 2 Under Assumption 1 and Proposition 1 and ηt ≤ B
2−α−ϵ , , we have bounds for two

feedback:

|st − qt| ≤ B + (2− α− ϵ)Mt−1, for any t ≥ 1,

|st − q∗t | ≤ 2B, for any t ≥ 1.

Proof. Based on st ∈ [0, B] and Proposition 1, under the assumption that η ≤ B
2−α−ϵ and ϵ ≥ 0,

|st − qt| = max{qt − st, st − qt} ≤ max{qt, st − qt}
≤ max {B + (2− α− ϵ)Mt−1, B + (1 + α− ϵ)Mt−1}
≤ B + (2− α− ϵ)Mt−1.

Hence, |st − qt| ≤ c [B + (2− α− ϵ)Mt−1].

Theorem 1 Let {ηt}t≥1 be an arbitrary positive sequence. Under Assumption 1 and ηt ≤ 2B
2−α−ϵ ,

the prediction interval generated by Equation 10 with proportional learning rate ηt satisfies:

∣∣∣∣∣ 1T
T∑

t=1

(errt − α)

∣∣∣∣∣ ≤ (B +MT−1) ∥∆1:T ∥1
T

+
(1− ϵ)B + (2− α− ϵ)MT−1

2B
, (12)

where ∥∆1:T ∥1 = |η−1
1 |+

∑T
t=2 |η

−1
t − η−1

t−1|, MT = max1≤r≤T ηr.

Proof of Theorem 1.∣∣∣∣∣ 1T
T∑

t=1

(errt − α)

∣∣∣∣∣ =
∣∣∣∣∣ 1T

T∑
t=1

(
t∑

r=1

∆r

)
· ηt(errt − α)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑

r=1

∆r

(
T∑

t=r

ηt(errt − α)

)∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑

r=1

∆r

(
T∑

t=r

[
qt+1 − qt − ηt(

|st − qt|
2B

h(st − qt)− ϵ
|st − q∗t |

2B
h(st − q∗t ))

])∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

r=1

∆r(qT+1 − qr)

∣∣∣∣∣+
∣∣∣∣∣ 1T

T∑
r=1

∆r

T∑
t=r

ηt(
|st − qt|

2B
h(st − qt)− ϵ

|st − q∗t |
2B

h(st − q∗t ))

∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

r=1

∆r(qT+1 − qr)

∣∣∣∣∣+
∣∣∣∣∣ 1T

T∑
t=1

(
|st − qt|

2B
h(st − qt)− ϵ

|st − q∗t |
2B

h(st − q∗t ))

∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

r=1

∆r(qT+1 − qr)

∣∣∣∣∣+ (1− 2ϵ)B + (2− α− ϵ)MT−1

2B

≤ (B +MT−1) ∥∆1:T ∥1
T

+
(1− 2ϵ)B + (2− α− ϵ)MT−1

2B

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DESCRIPTION OF DATASETS

• Amazon and Google: contain thirty blue-chip stock prices, with daily opening prices fore-
casted on a log scale, spanning the period from January 1, 2006 to December 31, 2014.
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• Microsoft: includes daily stock opening prices from April 1, 2015 to May 31, 2021.

• Delhi temperature: provides daily measurements of temperature (averaged over eight
readings taken at three-hour intervals), humidity, wind speed, and atmospheric pressure
in Delhi, from January 1, 2003 to April 24, 2017, collected via the Weather Underground
API.

• Electricity demand: records electricity demand in New South Wales at half-hour intervals
from May 7, 1996 to December 5, 1998.

B.2 EXPERIMENTAL RESULTS

B.2.1 ELECTRICITY DEMAND

For the electricity demand dataset (Table 6), the performance of the DDCI variants is broadly com-
parable to that of the ECI baselines rather than superior. Across all forecasting models, DDCI and
DDCI-Nex achieve interval widths that are similar to the best ECI methods while maintaining the
target coverage level. Although the improvements observed in the stock datasets are not replicated
here, the results indicate that DDCI remains competitive without loss of validity. This suggests that
the performance of DDCI in the electricity demand setting remains stable and consistent with strong
baseline approaches.

Table 6: The experimental results in the electricity demand dataset.

Method Prophet Model AR Model Theta Model Transformer
Coverage

(%)
Avg.
width

Median
width

Coverage
(%)

Avg.
width

Median
width

Coverage
(%)

Avg.
width

Median
width

Coverage
(%)

Avg.
width

Median
width

ACI 90.1 ∞ 0.443 90.1 ∞ 0.105 90.2 ∞ 0.055 90.2 ∞ 0.109
OGD 89.8 0.433 0.435 90.0 0.133 0.115 90.1 0.081 0.075 90.1 0.139 0.120

SF-OGD 89.9 0.419 0.426 90.0 0.129 0.116 90.3 0.106 0.095 90.3 0.141 0.114
decay-OGD 90.1 0.531 0.521 90.1 0.122 0.099 90.0 0.100 0.059 90.3 0.147 0.111

PID 90.1 0.207 0.177 90.0 0.434 0.432 89.9 0.413 0.411 89.9 0.428 0.435
ECI 90.0 0.395 0.382 90.0 0.118 0.098 89.9 0.071 0.055 90.2 0.135 0.111

ECI-cutoff 90.0 0.405 0.396 90.0 0.117 0.096 90.1 0.072 0.055 90.2 0.133 0.108
ECI-integral 90.1 0.420 0.398 90.0 0.118 0.098 89.9 0.072 0.055 90.2 0.135 0.111

DDCI 90.1 0.392 0.390 90.0 0.118 0.099 89.9 0.072 0.054 90.2 0.135 0.111
DDCI-Nex 90.2 0.402 0.398 90.0 0.118 0.099 89.9 0.072 0.054 90.2 0.135 0.111

B.2.2 VARYING SIGNIFICANCE LEVELS

We conducted experiments on AMZN stock dataset under Prophet model with different significance
level (0.2, 0.1 and 0.05) to show the performance of our proposed method. Our proposed method
keeps the best performance compared to all baselines. Details are given in the Table 7:

Table 7: Results under different significance levels α

Method α = 0.20 α = 0.10 α = 0.05

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

Coverage
(%)

Avg.
width

Winkler
Score

OGD 79.7 33.70 44.27 89.6 55.15 67.57 94.3 77.24 92.63
SF-OGD 79.7 44.51 58.31 89.5 61.47 73.94 94.5 79.11 92.74

decay-OGD 80.1 46.92 57.98 89.9 97.22 107.79 90.9 107.32 159.64
PID 80.3 36.45 47.97 89.8 52.56 56.02 94.8 54.65 66.58
ECI 80.8 35.39 45.85 90.1 47.00 59.74 94.8 60.10 73.81

ECI-cutoff 80.0 31.81 40.93 89.7 43.46 53.21 94.8 55.97 66.65
ECI-integral 80.0 32.21 41.26 89.8 42.01 51.85 94.8 56.00 67.19

DDCI 79.9 24.91 33.76 89.7 30.87 41.05 94.8 41.17 51.56
DDCI-Nex 79.8 25.25 34.27 89.7 31.28 40.96 94.7 41.09 51.32

DDCI-Softsign 80.1 24.56 33.34 89.7 31.11 40.90 94.8 41.23 51.77
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Figure 6: Comparison of empirical coverage rate, mean interval width, and Winkler Score across
a wide range of significance levels (α = 0.05–0.9) for four online conformal inference methods:
DDCI, ECI, PID, and OGD.

To comprehensively evaluate the calibration behaviour of the online conformal methods, we con-
ducted a multi-level significance experiment by sweeping α from 0.05 to 0.9. For each level, we
measured the empirical coverage, the mean interval width, and the Winkler score across four meth-
ods (DDCI, ECI, PID and OGD).

Across the full range of significance levels from 0.05 to 0.9, DDCI consistently demonstrates supe-
rior calibration stability and interval efficiency compared with existing online conformal methods.
In terms of efficiency, DDCI achieves the narrowest mean interval widths across almost all α, reflect-
ing its ability to maintain reliable calibration without resorting to excessively conservative intervals.
This advantage is further reinforced by the Winkler Score results: DDCI attains the lowest Win-
kler Score throughout the entire spectrum, indicating the most favourable balance between coverage
accuracy and interval compactness. Overall, the empirical curves of coverage, width, and Winkler
Score collectively show that DDCI offers a more robust and efficient update rule, yielding both
tighter and better-calibrated prediction intervals under varying levels of uncertainty.

B.2.3 LEARNING RATE ANALYSIS

In this section, we analyse the impact of different learning rates on the performance of the proposed
method, using the Google stock dataset as an example. The learning rate range follows Wu et al.
(2025). For PID, ECI, and DDCI, the learning rates considered are [1, 0.5, 0.1, 0.05]. The results
for coverage and prediction set of four underlying algorithms are given from Fig. 7 to Fig. 14. It is
obvious that our proposed method loses validity and generates extremely wide prediction intervals
when the learning rate is set to 1, which is consistent with our theoretical analysis. However, such
large learning rate always yields conservative prediction intervals for all online conformal methods.
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Figure 7: Coverage result for AR model.
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Figure 8: Prediction sets result for AR model.
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Figure 9: Coverage result for Prophet model.
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Figure 10: Prediction sets result for Prophet model.
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Figure 11: Coverage result for Theta model.
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Figure 12: Prediction sets result for Theta model.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0
Trail

cvg=77.7%

ACI

lr=0.1, cvg=90.2%

OGD

lr=10, cvg=90.1%

SF-OGD

lr=1000, cvg=90.1%

decay-OGD

lr=2000, cvg=90.1%

Conformal PID

lr=1, cvg=90.2%

ECI

lr=1, cvg=90.3%

ECI-cutoff

lr=1, cvg=90.2%

ECI-integral

lr=1, cvg=90.1%

DDCI

lr=1, cvg=76.2%

DDCI-Nex

lr=1, cvg=74.0%

0.0

0.5

1.0

lr=0.05, cvg=90.2% lr=5, cvg=89.6% lr=500, cvg=90.1% lr=1000, cvg=89.9% lr=0.5, cvg=89.8% lr=0.5, cvg=89.9% lr=0.5, cvg=89.9% lr=0.5, cvg=90.0% lr=0.5, cvg=90.0% lr=0.5, cvg=89.9%

0.0

0.5

1.0

lr=0.01, cvg=90.3% lr=1, cvg=85.7% lr=100, cvg=89.7% lr=200, cvg=89.2% lr=0.1, cvg=89.0% lr=0.1, cvg=89.6% lr=0.1, cvg=89.7% lr=0.1, cvg=89.7% lr=0.1, cvg=89.7% lr=0.1, cvg=89.6%

1000 2000 3000
0.0

0.5

1.0

1000 2000 3000

lr=0.005, cvg=90.3%

1000 2000 3000

lr=0.5, cvg=81.0%

1000 2000 3000

lr=50, cvg=89.6%

1000 2000 3000

lr=100, cvg=89.0%

1000 2000 3000

lr=0.05, cvg=89.0%

1000 2000 3000

lr=0.05, cvg=90.0%

1000 2000 3000

lr=0.05, cvg=89.9%

1000 2000 3000

lr=0.05, cvg=89.9%

1000 2000 3000

lr=0.05, cvg=90.0%

1000 2000 3000

lr=0.05, cvg=89.9%

Time

C
ov

er
ag

e

Figure 13: Coverage result for Transformer model.
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Figure 14: Prediction sets result for Transformer model.

C CODE LINK

Here is the anonymous link of the code to reproduce the experimental results and figures:
https://anonymous.4open.science/r/DDCI-47A7

D USAGE OF LANGUAGE MODELS

Large Language Models were used to polish and improve the grammar, spelling, and readability of
this manuscript, but all research design, analysis, and interpretation were conducted by the authors.
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