DISC: Plug-and-Play Decoding Intervention with Similarity of Characters
for Chinese Spelling Check

Anonymous EMNLP submission

Abstract

One of the key challenges in Chinese spelling
check (CSC) is ensuring that modifications re-
main faithful to the original intent of the sen-
tence. Confusion sets are commonly used to
mitigate this issue; however, it is challenging
to construct high-quality confusion sets and in-
tegrate them into the model. In this paper, we
propose a plug-and-play DISC (Decoding Inter-
vention with Similarity of Characters) module
for CSC models to address these challenges.
DISC measures phonetic and glyph similari-
ties between characters and incorporates this
similarity information in the decoding stage.
This method can be easily integrated into var-
ious existing CSC models, such as ReaLiSe,
SCOPE, and RelLM, without additional train-
ing costs. Experiments on three CSC bench-
marks demonstrate that our proposed method
significantly improves model performance, ap-
proaching and even surpassing the current state-
of-the-art models.

1 Introduction

Spelling errors can lead to ambiguity and degrade
the performance of many natural language process-
ing (NLP) tasks, such as named entity recognition
(Yang et al., 2024) and search engine (Martins and
Silva, 2004; Gao et al., 2010). Given a sentence,
the goal of Chinese spelling check (CSC) is to cor-
rect all spelling errors, as shown in Table 1 (Bao
et al., 2020; Xu et al., 2021; Liu et al., 2021; Wu
et al., 2023; Dong et al., 2024).

One of the key challenges in CSC is ensuring
that the modifications remain faithful to the original
intent of the sentence. The most straightforward
way to address this challenge is by leveraging a con-
fusion set to identify characters that are easily con-
fused with the original ones, and then selecting the
most appropriate correction from these candidates
(Yeh et al., 2013; Yu and Li, 2014; Huang et al.,

'Our anonymized code is available at https://anon
ymous.4open.science/r/simple-DISC.
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Remember to wear glasses.
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Input .
,,,,,,,, Enter through the mall’s population.
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Enter through the mall’s entrance.

Table 1: Corrections marked in “Blue” are correct or
suggested by the reference, while those in “Red” are
incorrect. “Br”(jing, eyes) and “4%”(jing, glasses) are
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i
a pair of characters that are similar in phonetics, and
“A”(human) and “\”(enter) are similar in glyph.

2014; Xie et al., 2015). Formally, a confusion set
can be defined as f : (C'x C) — {true, false}.
If f(c1,c2) = true, then ¢; and co are consid-
ered easily confused. As pointed out by Liu et al.
(2010), a faithful correction generally has phonetic
and glyphic connections with the original charac-
ters. A typical confusion set might include char-
acters with the same or similar pronunciation and
similar shapes.

However, building an effective confusion set
is challenging. If the threshold for determining
whether two characters are confused is too strict,
some similar characters may be missed. Con-
versely, if the threshold is too loose, the confusion
set may contain too many characters, leading to
over-correction.

Researchers have proposed various methods to
address this issue. Some methods expand or im-
prove confusion sets. For example, Huang et al.
(2023) develop a module that distinguishes a char-
acter’s errors as either phonological or visual, and
then selects the correction from the correspond-
ing confusion set. Other approaches leverage deep
learning to internalize the confusion set rather than
using it directly. Liu et al. (2021) employ a data
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Figure 1: Overview of DISC. It intervenes the CSC decoder with the similarity between the potential error character
and its candidate words. The DISC module intervenes in the probability distribution results of the CSC model with
specific similarity, favoring the selection of more similar confusing characters.

augmentation method that replaces [MASK] with
characters from a confusion set during model pre-
training. Cheng et al. (2020) uses confusion sets
to construct a graph convolutional network, mod-
eling the connections between characters. Though
these methods have achieved good results, they of-
ten lack intuitiveness and portability, and remain
limited by the quality of the confusion set.

To overcome the binary classification limita-
tions of confusion sets, we propose a plug-and-
play and efficient DISC (Decoding Intervention
with Similarity of Characters) module. This mod-
ule introduces the similarity of characters into the
decoding process, rather than relying on binary
classification. As shown in Figure 1, DISC first
calculates the similarities between the potentially
erroneous characters and all possible characters in
the vocabulary, and then intervenes in the proba-
bility distribution calculation process of the model
decoding. Our module is compatible with almost
all the current mainstream CSC models, such as
SoftMasked-BERT (Zhang et al., 2020), ReaLiSe
(Xu et al., 2021), SCOPE (Li et al., 2022), and
ReLM (Liu et al., 2024), among others.

Experiments and analyses on multiple public
benchmarks prove that our DISC module can sig-
nificantly enhance the error correction performance
of CSC models. This improvement does not require
additional training costs and only slightly affects
the decoding efficiency of the model.

The main contributions of this paper are summa-

rized as follows:

e We design a plug-and-play DISC module that
introduces external linguistic knowledge at the de-
coding end, compatible with almost all currently
mainstream CSC models.

e We design simple and efficient strategies for
calculating phonetic and glyph similarities, which
are training-free and do not affect decoding effi-
ciency.

o Extensive experiments on public benchmarks
have shown that our DISC module can significantly
enhance the performance of CSC models, achiev-
ing results that are close to or even exceed the
state-of-the-art (SOTA) levels.

2 The Basic CSC Model

Given an input sentence consisting of n characters,
denoted as * = x1x2 - - - x,, the goal of a CSC
model is to output a corresponding correct sentence,
denoted as y = y1¥y2 - - - Yn, in wWhich all erroneous
characters in « are replaced with the correct ones.

Presently, mainstream approaches treat CSC as a
character-wise classification problem (Zhang et al.,
2020; Liu et al., 2021; Xu et al., 2021), i.e., deter-
mining whether a current character should be kept
the same or be replaced with a new character.

Encoding. Given «, the encoder of the CSC
model generates representations for each character:
hy--

-h,, = Encoder(x). (1)



To leverage the power of pre-trained language mod-
els, a BERT-like encoder is usually employed.

Classification. For each character position, for
instance h;, the CSC model employs MLP and
softmax layers to obtain a probability distribution
over the whole character vocabulary V:

p(y | @,i) = softmax(MLP(hi) )[y]. (@

During the evaluation phase, the model selects the
character with the highest probability, i.e., y* =

arg max,cy p(y | @, 7).

Training. The typical training procedure consists
of 2-3 steps for the CSC task. First, automatically
synthesize large-scale CSC training data by replac-
ing some characters with others randomly, some-
times constrained by a given confusion set. Second,
train the CSC model on the synthesized training
data. Third, fine-tune the model on a small-scale
in-domain training data, if the data is available.

3 Our Approach

In this paper, we propose a simple plug-and-play
module to intervene in the classification (or predic-
tion) process of any off-the-shelf CSC model. The
basic idea is to adjust the probability distribution
according to the similarity between a candidate
character y and the original character x;:

Score(x,i,y) = p(y | =,i) + a x Sim(x;,y),

3)
where Sim(-) gives the similarity between two
characters, and « is a hyperparameter and we set
a = 1.1 for all datasets and basic models accord-
ing to a few preliminary experiments. We use
Score(-) to denote the replacement likelihood
since the value is no longer a probability.

Our experiments show that by encouraging the
model to prefer similar characters, our approach
achieves a consistent and substantial performance
boost on all CSC benchmark datasets.

We measure character similarity from two per-
spectives, i.e., phonetic and glyph:

sim(c1, o) = B x Sim°(c1, ca)

—|—(1 - 5) X SimG(Cl,Cg), @

where [ is an interpolation hyperparameter, our ex-
periments in Section 6 demonstrate that the model
achieves good and stable performance when it is
setto 0.7.

3.1 Phonetic Similarity

Given two characters, we employ the pypinyin li-
brary to obtain the Pinyin sequences,” e.g., “&”
(zhong) and “##” (zhong),? and then compute the
phonetic similarity based on the edit distance over
their Pinyin sequences:

LD(py(c1),py(c2))

len(py(c1) + py(c2))’
()

where LD(+) gives the Levenshtein distance,* and
len(-) gives the total length of the two sequences.

SimP(Cl,CQ) =1-

Handling polyphonic characters. Given two
characters, we enumerate all possible Pinyin se-
quences of each character, and adopt the combina-
tion that leads to the highest similarity.

We have also tried more sophisticated strategies.
For instance, we follow Yang et al. (2023) and give
higher weights to certain phoneme (consonant or
vowel) pairs, since they are more likely to cause
spelling errors. However, our preliminary experi-
ments show that our simple strategy in Eq. 5 works
quite robustly.

3.2 Glyph Similarity

According to Liu et al. (2010), 83% of Chinese
spelling errors are related to pronunciation, while
48% are with glyphs, indicating that a consider-
able proportion is related to both. Therefore, it is
necessary to consider the glyph information when
computing character similarity.

Pinyin sequences can largely encode the phonet-
ics of Chinese characters. In contrast, it is much
more complex to represent character glyphs. In this
work, we compute and fuse glyph similarity from
four aspects:

Yt Siz;;(cla 02)‘ (6)

Sim¢(e1, c) =

Four-corner code. The four-corner method is
widely used in Chinese lexicography for indexing
characters. Given a character, it gives four digits
ranging from O to 9, corresponding to the shapes

https://pypi.org/project/pypinyin

3We do not use the tone information, e.g., “ % (zhong)
and “4%” (zhong), which is not helpful for model performance
according to our preliminary experiments. We suspect the
reason is that Pinyin-based input methods do not require users
to input the tones. Therefore, tones are not directly related to
spelling errors.

*Levenshtein distance is a type of edit distance. We set the
weights of the three types of operations, i.e., deletion, insertion
and substitutions, as 1/1/2 respectively.
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at the four corners of the character’s glyph, respec-
tively. For instance, the four-corner code is 5033
for “&”, and 2520 for “f¥”.

Then, we use the digit-wise matching rate be-
tween two codes as the similarity:

Sy L(FC(e)[i] = FC(e)[i])

4 )
(7
where FC(-) gives the four-digit code, and 1 is the
indicator function.

sim§(e1, co) =

Structure-aware four-corner code. One impor-
tant feature of Chinese characters is that a complex
character can usually be decomposed into simpler
parts, and each part corresponds to a simpler char-
acter or a radical. Most radicals are semantically
equivalent to some character, e.g., “1 ” to “A”.
Such structural decomposition directly reveals
how characters are visually similar to each other.
This is an effective way for Chinese learners to
understand and memorize thousands of Chinese
characters. Motivated by this observation, we de-
sign a structure-aware four-corner code for each
character. For example,
“&7 C5000C3300 (“P: 5000; S 3300)
“f#: B8OOOB5000 (“A”: 8000;“F”: 5000)
where “C” leading a four-coner code means up-
down structure, and “B” means left-right structure.
Then we compute the similarity based on the
Levenshtein distance as follows:

LD(SFC(c1), SFC(c2))

len(SFC(c1) + SFC(c2))’
@®)
where SFC(-) gives the structure-aware code of a
character.

Simg(c1,e2) =1

Stroke sequences. Four-corner codes focus on
the shapes of the four corners. Some very similar
characters may obtain quite different codes, e.g.,
“R”(4090) vs. “AR” (5023). To address this is-
sue, we utilize stroke sequence information, which
encodes how a character is handwritten stroke by
stroke. For example,

“R” — 1 7 . (4 strokes)

“R7: — 1 2 . —(5 strokes)

Then we compute two similarity metrics from
two complementary viewpoints. The first metric is
based on Levenshtein distance:

LD(SS(c1), SS(c2))

~ len(ss(er) + 5S(cp))’
)

Simg(cl, Cg) =1

where SS(-) gives the stroke sequence of a charac-
ter.

The second metric considers the longest com-
mon subsequence, i.e., LCS(+):

LCS(SS(c1), SS(c2))

Simj(er, e2) = max(len(ss(c1)), len(ss(c2)))
10)

According to Eq. 4, and supposing 3 = 0.7, we
get the similarity between “%” and “/¥” being:

0+0.56+0.57+0.5

0.7x1+0.3
x 14 X 1

= 0.82.

4 Experimental Setup

4.1 Datasets

Following the conventions of previous work, we
employ the test sets of the SIGHAN 13/14/15
datasets (Wu et al., 2013; Yu et al., 2014; Tseng
et al., 2015) as our evaluation benchmarks.

However, many previous studies have pointed
out that the SIGHAN datasets may not represent
real-world CSC tasks, as they are derived from Chi-
nese learner texts and lack diversity in terms of
domains. To address this limitation, we also con-
duct experiments on the ECSpell (Lv et al., 2023)
and LEMON (Wu et al., 2023) datasets, which are
derived from Chinese native-speaker (CNS) texts
and encompass a wide range of domains. It is
worth noting that LEMON does not have a dedi-
cated training set, making it an excellent test set for
evaluating a model’s generalization ability.

The details of these datasets are in Appendix B.

4.2 Baseline Models

We select three representative models as our base-
lines: ReaLiSe, SCOPE, and ReLM.

The ReaLiSe model (Xu et al., 2021) employs
multi-modal technology to capture semantic, pho-
netic, and glyph information. The SCOPE model
(Lietal., 2022) is one of the SOTA models for CSC,
which enhances model correction performance by
introducing a character pronunciation prediction
task. The ReLLM model (Liu et al., 2024) breaks
away from the traditional CSC modeling approach
by treating CSC as a non-autoregressive paraphras-
ing task, standing out as a new SOTA model.

Additionally, we include some of the latest work
(Cheng et al., 2020; Liu et al., 2021; Huang et al.,
2023) for performance comparison.



Detection-level Correction-level

Dataset Model 8 R o P R . FPR
SpellGCN (Cheng et al., 2020) 80.1 744 772 783 727 754 —
DR-CSC (Huang et al., 2023)" 885 837 860 87.7 83.0 853 -
ReaLiSe (Xu et al., 2021)7 88.6 825 854 872 812 841 103
SIGHAN13 + DISC 889 822 854 876 81.1 842" 103
SCOPE (Li et al., 2022)" 87.2 827 849 863 81.8 840 103
+ DISC 88.0 832 855" 873 825 848" 103
ReLLM (Liu et al., 2024)" 86.4 837 850 850 823 837 108
+ DISC 89.7 845 870" 884 833 858" 7.6
SpellGCN (Cheng et al., 2020) 65.1 69.5 672 63.1 672 653 —
DR-CSC (Huang et al., 2023) 702 733 717 693 723 70.7 -
ReaLiSe (Xu et al., 2021) 678 715 696 663 700 68.1 149
SIGHAN 14 +DISC 69.2 712 70.1" 682 702 692" 13.7¢
SCOPE (Li et al., 2022) 676 719 697 667 709 688 149
+ DISC 69.1 715 703" 686 710 69.8" 13.5"
ReLLM (Liu et al., 2024) 66.1 729 693 643 709 674 155
+ DISC 704 733 718" 695 723 708" 12.7
SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 721 77 1759 —
PLOME (Liu et al., 2021) 774 815 794 753 793 77.2 -
DR-CSC (Huang et al., 2023) 829 848 83.8 803 823 81.3 -
ReaLiSe (Xu et al., 2021) 773 813 793 759 799 778 120
SIGHAN15 + DISC 783 812 797" 770 799 784" 11.3
SCOPE (Li et al., 2022) 81.0 848 829 787 84 805 11.1
+ DISC 81.8 847 832" 798 826 812" 10.0¢
ReLM (Liu et al., 2024) 78.3 856 818 768 839 802 127
+ DISC 80.8 843 825" 798 831 814" 9.5

Table 2: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHANI1S5 test sets. Precision (P), recall
(R) and F; for detection and correction are reported (%). ReLM and SCOPE’s results are obtained by reruning
the official code released by Liu et al. (2024) and Li et al. (2022). Other baseline results are directly taken from
their literature. Baselines marked with “{”” mean that they apply post-processing on SIGHAN13, which removes

all detected and corrected “#” and “4%” from the model output before evaluation. "+ DISC" means adding DISC
module in the decoder. « and (3 are assigned the values 1.1 and 0.7, respectively.

4.3 Evaluation Metrics

The CSC task comprises two subtasks: error detec-
tion and error correction. Following the previous
work (Zhang et al., 2020), we report the precision
(P), recall (R), and F scores at the sentence level
for both subtasks. Additionally, we also evalu-
ate the models with the False Positive Rate (FPR)
metric (Liu et al., 2024), which quantifies the CSC
model’s frequency of over-correction, i.e., incor-
rectly identifying correct sentences as erroneous.

4.4 Hyperparameters

Hyperparameters o and S denote the weights as-
signed to overall similarity and phonetic similarity,
respectively. As detailed in Section 6 on grid search
results, we set &« = 1.1 in Eq. 3 and [ is set to 0.7
in Eq. 4 for all experiments.

5 Main Results

Results on SIGHANs. Table 2 illustrates the
main results across SIGHAN benchmarks, demon-
strating that the addition of the DISC module in the
decoding processing leads to notable improvements
across all the compared models, and reaching state-
of-the-art performance. Specifically, Real.iSe +
DISC has increases of 0.1/1.1/0.6, SCOPE + DISC
achieves lifts of 0.8/1.0/0.7, ReLM + DISC sees
enhancements of 2.1/3.4/1.2 in correction-level F{
(C-Fy) score on the SIGHAN13/14/15 test sets,
respectively.

It is worth noting that Real.iSe and SCOPE have
incorporated phonetic or glyph information dur-
ing training. However, our DISC module can still
improve the performance of these models.

In addition to the consistent improvement in the



. Detection Correction
Domain Model P R F, P R I, FPR
ECSpell
LAW ReLM 93.7 98.8 96.2 93.7 98.8 96.2 6.5

+ DISC 96.5 98.0 97.3 96.5 98.0 97.3 2.9
MED RelLM 86.4 97.2 91.5 85.1 95.8 90.2 9.8
+ DISC 92.9 97.7 95.2 91.6 96.3 93.9 4.6
ODW RelLM 89.8 91.9 90.8 89.4 91.5 904 5.8
+ DISC 91.5 91.5 91.5 91.1 91.1 91.1 3.3
LEMON
GAM RelLM 45.3 42.5 43.8 35.8 33.6 34.6 20.6
+ DISC 62.2 34.9 44.7 56.1 31.5 40.4 8.5
CAR ReLM 67.3 55.7 60.9 59.2 48.9 53.6 12.0
+ DISC 76.0 48.2 59.0 72.3 45.9 56.2 4.6
NOV RelLM 54.6 38.0 44.8 46.3 32.2 38.0 17.6
+ DISC 70.2 31.9 43.9 65.2 29.6 40.8 7.1
ENC RelLM 64.8 48.3 55.4 55.8 41.6 47.7 12.7
+ DISC 76.3 41.5 53.8 72.2 39.3 50.9 5.1
NEW RelLM 77.3 58.1 66.3 68.5 51.5 58.8 8.4
+ DISC 85.6 51.2 64.1 80.4 48.1 60.2 3.2
COT RelLM 82.8 70.7 76.3 73.5 62.8 67.7 4.9
+ DISC 92.2 61.5 73.7 87.4 58.3 69.9 1.1
MEC ReLM 74.3 49.6 59.4 67.3 44.9 539 5.8
+ DISC 84.8 45.9 59.6 82.2 44.5 57.7 2.2
SIG ReLM 65.3 63.5 64.4 59.4 57.8 58.6 16.3

+ DISC 72.9 58.7 65.0 69.9 56.3 62.4 8.9

Table 3: Sentence-level performance of ReLM and
ReLM + DISC on the test sets of ECSpell and LEMON.

F1 metric, results demonstrate that the integration
of the DISC module into CSC models leads to
a significant reduction in FPR across almost all
datasets. This implies that DISC can avoid some
unnecessary corrections.

Results on Native Datasets. As ReLM has
shown outstanding performance on the SIGHAN
benchmarks, we continue to utilize it for exper-
iments on the multi-domain datasets of ECSpell
and LEMON to demonstrate the DISC module’s
domain adaptability.

Table 3 depicts that the incorporation of the
DISC module on ReLLM leads to substantial im-
provements of 1.1/3.7/0.7 C-F; score compared to
unenhanced RelLM in the LAW, MED and ODW
domain, respectively. It is worth noting that this
improvement is achieved on the premise of surpass-
ing a score of 90, which sufficiently illustrates the
advancement of our DISC module. Table 3 also
presents the performance of DISC on LEMON.
After integrating the DISC module, the results of
ReLM + DISC across all domains have achieved
notable improvements, and the average C-F'; have
an increase of 3.2. This demonstrates that our DISC
module yields stable and significant improvements

WU BR i A 18 ) 33 05 (dd) § B89 -

Muscle soreness is caused by read and exercise.

Input:

Reference: 3% D> E{ (dii = du, excessive)
RelM: %D (dii = shdo, insufficient)
ReLM+DISC: 7% = & (dii => dui, excessive)

(a) Retrieve more similar candidate words

Input: MATARREL, (sh) AE
Wishing you good health and safety, I will
solemnly comp[i with the command.
Reference:NONE
RelM: i S (st => sha, forgive)

ReLM+DISC:NONE

(b) Mitigate over-correction

Figure 2: Cases from the SIGHANs and ECSpell.

in cross-domain CSC testing.

5.1 Case Study

We present two illustrative examples of DISC-
augmented error correction in Figure 2. These
examples explain why our DISC module can sig-
nificantly improve model precision.

Figure 2(a) exemplifies how the DISC module
retrieves a more plausible alteration resembling
the original character. In this example, the ReLM
model corrects the erroneous word “#7(dd) to
“‘>(shdo). This correction is grammatically cor-
rect, but deviates from the original meaning of the
sentence. From the perspective of phonetics, a
more suitable correction should be “/%”(di1), which
shares the same pronunciation as the erroneous
word. The DISC model can make this correction
by considering the semantic and phonetic informa-
tion of the sentence.

In Figure 2(b), the DISC alleviates over-
correction. The CSC model mistakenly alters
“3h”(sh) to “#3”(shu), yet the similarity interven-
tion rectifies this error. Specifically, since the most
similar to a character is the character itself, when
a CSC model incorrectly tends to correct over pre-
serve on a correct sentence, the DISC module can
increase the score of the character itself compared
to other correction options based on similarity,
which sometimes avoids unnecessary corrections.

6 Discussion

We select the SIGHAN1S5 along with two domains
from the LEMON database, ENC and MEC, to
conduct further analysis.

Robustness of similarity hyperparameters. As
illustrated in Figure 3, the incorporation of our



Figure 3: The average scores in ENC, MEC and
SIGHANI15 with different values of o and 3. The solid
lines represent the results of ReLM + DISC, and the
dashed lines represent the results of the original ReLM.

Model ENC MEC SIGI5 Avg
ReLM 477 539 802 60.6
+ DISC 509 57.7 814 63.3
+ Confusion set 47.1 56.0 78.0 604
+ Confusion set! 415 487 80.7 57.0
+DISC (phonetic) ~ 49.1 56.1 80.1 61.8
+ DISC (glyph) 494 533 803 61.0
+ DISC (phonetic &)
Fsim$ 50.5 56.8 814 629
Fsim§ 50.5 574 814 63.1
Fsim§ 51.3 575 812 633
Lsim§ 51.6 56.9 80.8 63.1

Table 4: Ablation results in two kinds of confusion sets

and different components of DISC. “I” represents the

confusion set from Wang et al. (2019). “Sim$” means

using similarities of phonetic and the ith part of glyph.

DISC module into the ReLM model consistently
improves its performance across a wide range of
« and 8 values. The flat curve of « indicates that
the performance of our DISC model is robust to
the selection of «. In contrast, the value curve of
5 is relatively steep, showing a clear trend of ris-
ing first and then decreasing, reaching the highest
value in the interval of [0.6, 0.8]. This phenomenon
indicates that phonetic and glyph similarities are
complementary, with phonetic similarity being rel-
atively more important than glyph similarity.

Effectiveness of DISC module. We degrade the
DISC module to a simple confusion set constraint
decoding strategy. We investigate two confusion
sets: one derived from our similarity computation
strategy” and another pre-existing one provided
by Wang et al. (2018). The results are shown in
the second part of Table 4. From the results, we
can see that both confusion sets fail to consistently
improve the model’s performance, indicating that

SWe treat a character pair as confused if their similarity
score was greater than 0.5.

Model Speed (ms/sent) Slowdown
ReaLiSe 24.5 -

+ DISC 27.5 1.143 x
"SCOPE 1386 -
+ DISC 143.4 1.035x%
"ReLM 127 -
+ DISC 12.8 1.010x

Table 5: The decoding time per sentence with a batch
size of 1 on SIGHAN1S5. The results are the average
time of three runs.

the confusion set constraint decoding strategy is
sensitive to the quality of the confusion set. The
confusion set from Wang et al. (2018) yields im-
provements on SIGHANT1S, yet we observe that
it encompasses greater than 97% of the erroneous
character pairs present in SIGHAN15. Conversely,
it results in performance degradation on other test
sets, highlighting the domain-specific limitations
of such confusion sets.

Effectiveness of components of the DISC mod-
ule. We conduct an ablation study on the compo-
nents of the DISC module. The results are shown
in the third part of Table 4. The removal of ei-
ther phonetic or glyph knowledge from the DISC
module results in performance deterioration across
various benchmarks. Notably, the absence of pho-
netic similarity has a lesser effect on SIGHAN15
but a stronger impact on LEMON. The results also
show that the four components involved in calcu-
lating glyph similarity are independently effective.
However, the exclusion of any three typically leads
to a marginal decline in error correction perfor-
mance, though exceptions do exist, such as ENC.
This phenomenon verifies the necessity of multi-
dimensional similarity measurement for compre-
hensive modeling of glyph similarity. Combin-
ing these often results in consistent improvements.
Moreover, the fusion of phonetic and glyph simi-
larities achieves the optimal error correction perfor-
mance, affirming the necessity of integrating these
two similarities.

Impact on decoding efficiency. We examine the
influence of the DISC module on decoding speed,
with the results shown in Table 5. Phonetic and
glyph similarities can be pre-calculated and DISC
only need to index them during decoding. Thus,
the time taken to decode each sentence increased
merely by 14.3%, 3.5%, and 1.0% for ReaL.iSe,
SCOPE, and ReLM, respectively. The minor slow-



down in decoding speed incurred by the DISC
module is deemed acceptable considering the sub-
stantial enhancement it brings to the model’s per-
formance. Notably, SCOPE exhibits significantly
slower decoding speeds compared to the other two
models, which we speculate may be attributed to
its iterative decoding approach.

7 Related Work

7.1 Model Architecture Shift

Most early works on CSC employed a three-step
pipeline, i.e., 1) detecting potential erroneous char-
acters, 2) constructing new sentences by replacing
erroneous characters with new ones based on a
confusion set; and 3) evaluating the probability
of the constructed sentences based on an n-gram
language model and choose the one with the high-
est probability (Yeh et al., 2013; Yu and Li, 2014;
Huang et al., 2014; Xie et al., 2015).

In the current deep-learning era, especially with
the prevalence of PLMs, recent models directly per-
form character-level replacement via classification,
as introduced in Section 2. There also exist some
works that employ a two-step pipeline architecture,
which first detects potentially erroneous characters
and then replaces them at the detected positions
(Zhang et al., 2020; Huang et al., 2023).

7.2 Utilizing Confusion Sets

At both training and inferencing phases.
Cheng et al. (2020) construct two character graphs,
one based on phonetic relatedness, and the other
based on glyph relatedness, and employ GCN to ob-
tain new character representations as extra inputs.
Huang et al. (2023) use two confusion sets, one
encoding phonetic relatedness, and the other encod-
ing glyph relatedness. Given a potential spelling er-
ror, they use a classification module to judge which
confusion set the error belongs to, with an extra
training loss. During the test phase, the model can
only consider characters from the corresponding
confusion set according to the classification result.

At only the inferencing phase. Wang et al.
(2019); Bao et al. (2020) use the confusion set as
constraints upon the search space, i.e., allowing the
model to only consider characters in the confusion
set. Please note that this is a decoding interven-
tion technique as well, and is closely related to our
work.

7.3 Utilizing Phonetic and Glyph Information

Besides the use of confusion sets, there exist some
works that directly utilize phonetic and glyph infor-
mation to enhance CSC models. Liu et al. (2021);
Li et al. (2022) add an extra task of predicting the
phonetic of each input character. Xu et al. (2021)
use GRU to encode Pinyin, and use CNN to encode
glyphs (font pictures) for each input character, as
extra character representations.

7.4 Decoding Intervention

A typical decoding intervention approach is to use
a language model to intervene in the decoding pro-
cess of a sequence-to-sequence model. This idea
has already been studied in many NLP tasks, in-
cluding machine translation (Gtilgehre et al., 2015),
automatic speech recognition (Kannan et al., 2018;
Zhao et al., 2019), and grammatical error correc-
tion (Zhou et al., 2023).

Besides using confusion sets for reducing search
space, as discussed above, there exists an interest-
ing work on the cross-domain CSC scenario. Lv
et al. (2023) employ a word dictionary in the target
domain to assist the decoding process.

8 Conclusions

We propose a streamlined, plug-and-play decoding
intervention strategy that enhances CSC models by
leveraging calculated phonetic and glyph similari-
ties through a tailored algorithm. Unlike methods
that alter model training, our training-free strat-
egy only modifies the decoding process, making
it adaptable to almost all mainstream CSC mod-
els. Experiments on multiple CSC benchmarks
demonstrate that our method significantly enhances
the performance of baseline models, and even sur-
passes the current SOTA CSC models. Further-
more, experimental analyses demonstrate that our
DISC module aids the model in accurately identi-
fying candidate characters which are more similar,
effectively mitigating the issue of over-correction.
Our research has transcended the limitations of tra-
ditional confusion set decoding intervention, prov-
ing that specific measures and combinations of pho-
netic and glyph similarities are necessary.

Limitations

We believe that our work can be further improved
from two aspects. First, our experiments focus on
the CSC datasets, while our approach can apply
to other languages such as Japanese and Korean.



Second, as a general-use technique, our proposed
approach for determining character similarity may
not be optimal for CSC in specific domains or sce-
narios. In that case, we may need to consider more
factors besides phonetic and glyph information to
compute character similarity.
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A Implementation Details

We use the official implementation of ReaLiSe
and directly utilize the checkpoint provided by
its GitHub repository,® which initializes the se-
mantic encoder with the weights of chinese-
roberta-wwm-ext.” ReLM uses the offi-
cial BERT weights bert-base-chinese,’ and
only offered the checkpoint after pre-training in 34
million monolingual sentences that are synthesized
by confusion set. We fine-tune it on SIGHANs and
ECSpell with a batch size of 128 and a learning
rate of 3e-5, and the MFT strategy (Wu et al., 2023)

®https://github.com/DaDaMrX/RealiSe

7https://huggingface.co/hfl/chinese—r
oberta-wwm-ext

8https://huggingface.co/bert-base-chi
nese
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Training Set #Sent Avg. Length  #Errors
SIGHAN15 2,339 31.3 2,549
SIGHAN14 3,437 49.6 3,799
SIGHAN13 700 41.8 343
Wang271K 271,329 42.6 381,962
ECSpell_LAW 1,960 30.7 1,681
ECSpell_MED 3,000 50.2 2,260
ECSpell_ODW 1,720 41.2 1,578
Test Set #Sent Avg. Length  #Errors
SIGHAN15 1,100 30.6 703
SIGHAN14 1,062 50.0 771
SIGHAN13 1,000 74.3 1,224
ECSpell_LAW 500 29.7 390
ECSpell_MED 500 49.6 356
ECSpell_ODW 500 40.5 404
LEMON 22,252 354 12,055

Table 6: Statistics of the datasets, including the number
of sentences, the average length of sentences, and the
number of errors.

is used during training. SCOPE utilizes the pre-
trained weights from the ChineseBERT-base,’
and we leverage their official implementation for
fine-tuning.'® Due to our decoding intervention
strategy being deterministic, without any random
factors, the experiments are conducted only once.
All experiments are conducted on one Tesla V100S-
PCIE-32GB GPU.

B Details of datasets

SIGHANSs. Following the setup of previous work,
we employ SIGHAN 13/14/15 datasets (Wu et al.,
2013; Yu et al., 2014; Tseng et al., 2015) as
our training sets, in conjunction with Wang271K
(Wang et al., 2018), which consists of 271K syn-
thetically generated instances. We employ the test
sets of SIGHAN13/14/15 for evaluation.

ECSpell. ECSpell (Lv et al., 2023) encompasses
data from three domains: law, medical treatment,
and official document writing. Unlike SIGHANSs
from Chinese learner texts, the sentences in EC-
Spell are derived from CNS texts.

LEMON. LEMON (Wu et al., 2023) also orig-
inates from CNS texts, containing over 22K in-
stances spanning 7 domains. Given its lack of a
dedicated training set, LEMON serves as a bench-

https://huggingface.co/ShannonAI/Chi
neseBERT-base

Yhttps://github.com/jiahaozhenbang/SC
OPE
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mark for evaluating the domain adaptation capabil-
ity of CSC models.

We conduct detailed statistics on the above
datasets, and the results are presented in Table 6.
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