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Abstract

One of the key challenges in Chinese spelling001
check (CSC) is ensuring that modifications re-002
main faithful to the original intent of the sen-003
tence. Confusion sets are commonly used to004
mitigate this issue; however, it is challenging005
to construct high-quality confusion sets and in-006
tegrate them into the model. In this paper, we007
propose a plug-and-play DISC (Decoding Inter-008
vention with Similarity of Characters) module009
for CSC models to address these challenges.010
DISC measures phonetic and glyph similari-011
ties between characters and incorporates this012
similarity information in the decoding stage.013
This method can be easily integrated into var-014
ious existing CSC models, such as ReaLiSe,015
SCOPE, and ReLM, without additional train-016
ing costs. Experiments on three CSC bench-017
marks demonstrate that our proposed method018
significantly improves model performance, ap-019
proaching and even surpassing the current state-020
of-the-art models.1021

1 Introduction022

Spelling errors can lead to ambiguity and degrade023

the performance of many natural language process-024

ing (NLP) tasks, such as named entity recognition025

(Yang et al., 2024) and search engine (Martins and026

Silva, 2004; Gao et al., 2010). Given a sentence,027

the goal of Chinese spelling check (CSC) is to cor-028

rect all spelling errors, as shown in Table 1 (Bao029

et al., 2020; Xu et al., 2021; Liu et al., 2021; Wu030

et al., 2023; Dong et al., 2024).031

One of the key challenges in CSC is ensuring032

that the modifications remain faithful to the original033

intent of the sentence. The most straightforward034

way to address this challenge is by leveraging a con-035

fusion set to identify characters that are easily con-036

fused with the original ones, and then selecting the037

most appropriate correction from these candidates038

(Yeh et al., 2013; Yu and Li, 2014; Huang et al.,039

1Our anonymized code is available at https://anon
ymous.4open.science/r/simple-DISC.

Input
记得戴眼睛(jı̄ng)。
Remember to wear eyes.

Reference
记得戴眼镜(jìng)。
Remember to wear glasses.

Input
从商场的人(rén)口进去。
Enter through the mall’s population.

Reference
从商场的入(rù)口进去。
Enter through the mall’s entrance.

Table 1: Corrections marked in “Blue” are correct or
suggested by the reference, while those in “Red” are
incorrect. “睛”(jı̄ng, eyes) and “镜”(jìng, glasses) are
a pair of characters that are similar in phonetics, and
“人”(human) and “入”(enter) are similar in glyph.

2014; Xie et al., 2015). Formally, a confusion set 040

can be defined as f : pCˆCq Ñ ttrue,falseu. 041

If fpc1, c2q “ true, then c1 and c2 are consid- 042

ered easily confused. As pointed out by Liu et al. 043

(2010), a faithful correction generally has phonetic 044

and glyphic connections with the original charac- 045

ters. A typical confusion set might include char- 046

acters with the same or similar pronunciation and 047

similar shapes. 048

However, building an effective confusion set 049

is challenging. If the threshold for determining 050

whether two characters are confused is too strict, 051

some similar characters may be missed. Con- 052

versely, if the threshold is too loose, the confusion 053

set may contain too many characters, leading to 054

over-correction. 055

Researchers have proposed various methods to 056

address this issue. Some methods expand or im- 057

prove confusion sets. For example, Huang et al. 058

(2023) develop a module that distinguishes a char- 059

acter’s errors as either phonological or visual, and 060

then selects the correction from the correspond- 061

ing confusion set. Other approaches leverage deep 062

learning to internalize the confusion set rather than 063

using it directly. Liu et al. (2021) employ a data 064
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Figure 1: Overview of DISC. It intervenes the CSC decoder with the similarity between the potential error character
and its candidate words. The DISC module intervenes in the probability distribution results of the CSC model with
specific similarity, favoring the selection of more similar confusing characters.

augmentation method that replaces [MASK] with065

characters from a confusion set during model pre-066

training. Cheng et al. (2020) uses confusion sets067

to construct a graph convolutional network, mod-068

eling the connections between characters. Though069

these methods have achieved good results, they of-070

ten lack intuitiveness and portability, and remain071

limited by the quality of the confusion set.072

To overcome the binary classification limita-073

tions of confusion sets, we propose a plug-and-074

play and efficient DISC (Decoding Intervention075

with Similarity of Characters) module. This mod-076

ule introduces the similarity of characters into the077

decoding process, rather than relying on binary078

classification. As shown in Figure 1, DISC first079

calculates the similarities between the potentially080

erroneous characters and all possible characters in081

the vocabulary, and then intervenes in the proba-082

bility distribution calculation process of the model083

decoding. Our module is compatible with almost084

all the current mainstream CSC models, such as085

SoftMasked-BERT (Zhang et al., 2020), ReaLiSe086

(Xu et al., 2021), SCOPE (Li et al., 2022), and087

ReLM (Liu et al., 2024), among others.088

Experiments and analyses on multiple public089

benchmarks prove that our DISC module can sig-090

nificantly enhance the error correction performance091

of CSC models. This improvement does not require092

additional training costs and only slightly affects093

the decoding efficiency of the model.094

The main contributions of this paper are summa-095

rized as follows: 096

‚ We design a plug-and-play DISC module that 097

introduces external linguistic knowledge at the de- 098

coding end, compatible with almost all currently 099

mainstream CSC models. 100

‚ We design simple and efficient strategies for 101

calculating phonetic and glyph similarities, which 102

are training-free and do not affect decoding effi- 103

ciency. 104

‚ Extensive experiments on public benchmarks 105

have shown that our DISC module can significantly 106

enhance the performance of CSC models, achiev- 107

ing results that are close to or even exceed the 108

state-of-the-art (SOTA) levels. 109

2 The Basic CSC Model 110

Given an input sentence consisting of n characters, 111

denoted as x “ x1x2 ¨ ¨ ¨xn, the goal of a CSC 112

model is to output a corresponding correct sentence, 113

denoted as y “ y1y2 ¨ ¨ ¨ yn, in which all erroneous 114

characters in x are replaced with the correct ones. 115

Presently, mainstream approaches treat CSC as a 116

character-wise classification problem (Zhang et al., 117

2020; Liu et al., 2021; Xu et al., 2021), i.e., deter- 118

mining whether a current character should be kept 119

the same or be replaced with a new character. 120

Encoding. Given x, the encoder of the CSC 121

model generates representations for each character: 122

h1 ¨ ¨ ¨hn “ Encoderpxq. (1) 123
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To leverage the power of pre-trained language mod-124

els, a BERT-like encoder is usually employed.125

Classification. For each character position, for126

instance hi, the CSC model employs MLP and127

softmax layers to obtain a probability distribution128

over the whole character vocabulary V:129

ppy | x, iq “ softmaxp MLPphiq qrys. (2)130

During the evaluation phase, the model selects the131

character with the highest probability, i.e., y˚ “132

argmaxyPV ppy | x, iq.133

Training. The typical training procedure consists134

of 2–3 steps for the CSC task. First, automatically135

synthesize large-scale CSC training data by replac-136

ing some characters with others randomly, some-137

times constrained by a given confusion set. Second,138

train the CSC model on the synthesized training139

data. Third, fine-tune the model on a small-scale140

in-domain training data, if the data is available.141

3 Our Approach142

In this paper, we propose a simple plug-and-play143

module to intervene in the classification (or predic-144

tion) process of any off-the-shelf CSC model. The145

basic idea is to adjust the probability distribution146

according to the similarity between a candidate147

character y and the original character xi:148

Scorepx, i, yq “ ppy | x, iq ` α ˆ Simpxi, yq,
(3)149

where Simp¨q gives the similarity between two150

characters, and α is a hyperparameter and we set151

α “ 1.1 for all datasets and basic models accord-152

ing to a few preliminary experiments. We use153

Scorep¨q to denote the replacement likelihood154

since the value is no longer a probability.155

Our experiments show that by encouraging the156

model to prefer similar characters, our approach157

achieves a consistent and substantial performance158

boost on all CSC benchmark datasets.159

We measure character similarity from two per-160

spectives, i.e., phonetic and glyph:161

Simpc1, c2q “ β ˆ SimPpc1, c2q

`p1 ´ βq ˆ SimGpc1, c2q,
(4)162

where β is an interpolation hyperparameter, our ex-163

periments in Section 6 demonstrate that the model164

achieves good and stable performance when it is165

set to 0.7.166

3.1 Phonetic Similarity 167

Given two characters, we employ the pypinyin li- 168

brary to obtain the Pinyin sequences,2 e.g., “忠” 169

(zhong) and “仲” (zhong),3 and then compute the 170

phonetic similarity based on the edit distance over 171

their Pinyin sequences: 172

SimPpc1, c2q “ 1 ´
LDppypc1q,pypc2qq

lenppypc1q ` pypc2qq
,

(5) 173

where LDp¨q gives the Levenshtein distance,4 and 174

lenp¨q gives the total length of the two sequences. 175

Handling polyphonic characters. Given two 176

characters, we enumerate all possible Pinyin se- 177

quences of each character, and adopt the combina- 178

tion that leads to the highest similarity. 179

We have also tried more sophisticated strategies. 180

For instance, we follow Yang et al. (2023) and give 181

higher weights to certain phoneme (consonant or 182

vowel) pairs, since they are more likely to cause 183

spelling errors. However, our preliminary experi- 184

ments show that our simple strategy in Eq. 5 works 185

quite robustly. 186

3.2 Glyph Similarity 187

According to Liu et al. (2010), 83% of Chinese 188

spelling errors are related to pronunciation, while 189

48% are with glyphs, indicating that a consider- 190

able proportion is related to both. Therefore, it is 191

necessary to consider the glyph information when 192

computing character similarity. 193

Pinyin sequences can largely encode the phonet- 194

ics of Chinese characters. In contrast, it is much 195

more complex to represent character glyphs. In this 196

work, we compute and fuse glyph similarity from 197

four aspects: 198

SimGpc1, c2q “

ř4
i“1 Sim

G
i pc1, c2q

4
. (6) 199

Four-corner code. The four-corner method is 200

widely used in Chinese lexicography for indexing 201

characters. Given a character, it gives four digits 202

ranging from 0 to 9, corresponding to the shapes 203

2https://pypi.org/project/pypinyin
3We do not use the tone information, e.g., “忠” (zhōng)

and “仲” (zhòng), which is not helpful for model performance
according to our preliminary experiments. We suspect the
reason is that Pinyin-based input methods do not require users
to input the tones. Therefore, tones are not directly related to
spelling errors.

4Levenshtein distance is a type of edit distance. We set the
weights of the three types of operations, i.e., deletion, insertion
and substitutions, as 1/1/2 respectively.
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at the four corners of the character’s glyph, respec-204

tively. For instance, the four-corner code is 5033205

for “忠”, and 2520 for “仲”.206

Then, we use the digit-wise matching rate be-207

tween two codes as the similarity:208

SimG1pc1, c2q “

ř4
i“1 1pFCpc1qris “ FCpc2qrisq

4
,

(7)209

where FCp¨q gives the four-digit code, and 1 is the210

indicator function.211

Structure-aware four-corner code. One impor-212

tant feature of Chinese characters is that a complex213

character can usually be decomposed into simpler214

parts, and each part corresponds to a simpler char-215

acter or a radical. Most radicals are semantically216

equivalent to some character, e.g., “亻” to “人”.217

Such structural decomposition directly reveals218

how characters are visually similar to each other.219

This is an effective way for Chinese learners to220

understand and memorize thousands of Chinese221

characters. Motivated by this observation, we de-222

sign a structure-aware four-corner code for each223

character. For example,224

“忠”: C5000C3300 (“中”: 5000; “心”: 3300)225

“仲”: B8000B5000 (“人”: 8000; “中”: 5000)226

where “C” leading a four-coner code means up-227

down structure, and “B” means left-right structure.228

Then we compute the similarity based on the229

Levenshtein distance as follows:230

SimG2pc1, c2q “ 1 ´
LDpSFCpc1q,SFCpc2qq

lenpSFCpc1q ` SFCpc2qq
,

(8)231

where SFCp¨q gives the structure-aware code of a232

character.233

Stroke sequences. Four-corner codes focus on234

the shapes of the four corners. Some very similar235

characters may obtain quite different codes, e.g.,236

“木” (4090) vs. “本” (5023). To address this is-237

sue, we utilize stroke sequence information, which238

encodes how a character is handwritten stroke by239

stroke. For example,240

“木”: 一丨ノ、(4 strokes)241

“本”: 一丨ノ、一(5 strokes)242

Then we compute two similarity metrics from243

two complementary viewpoints. The first metric is244

based on Levenshtein distance:245

SimG3pc1, c2q “ 1 ´
LDpSSpc1q,SSpc2qq

lenpSSpc1q ` SSpc2qq
,

(9)246

where SSp¨q gives the stroke sequence of a charac- 247

ter. 248

The second metric considers the longest com- 249

mon subsequence, i.e., LCSp¨q: 250

SimG4pc1, c2q “
LCSpSSpc1q,SSpc2qq

maxplenpSSpc1qq,lenpSSpc2qqq
.

(10) 251

According to Eq. 4, and supposing β “ 0.7, we 252

get the similarity between “忠” and “仲” being: 253

0.7 ˆ 1 ` 0.3 ˆ
0 ` 0.56 ` 0.57 ` 0.5

4
“ 0.82. 254

4 Experimental Setup 255

4.1 Datasets 256

Following the conventions of previous work, we 257

employ the test sets of the SIGHAN 13/14/15 258

datasets (Wu et al., 2013; Yu et al., 2014; Tseng 259

et al., 2015) as our evaluation benchmarks. 260

However, many previous studies have pointed 261

out that the SIGHAN datasets may not represent 262

real-world CSC tasks, as they are derived from Chi- 263

nese learner texts and lack diversity in terms of 264

domains. To address this limitation, we also con- 265

duct experiments on the ECSpell (Lv et al., 2023) 266

and LEMON (Wu et al., 2023) datasets, which are 267

derived from Chinese native-speaker (CNS) texts 268

and encompass a wide range of domains. It is 269

worth noting that LEMON does not have a dedi- 270

cated training set, making it an excellent test set for 271

evaluating a model’s generalization ability. 272

The details of these datasets are in Appendix B. 273

4.2 Baseline Models 274

We select three representative models as our base- 275

lines: ReaLiSe, SCOPE, and ReLM. 276

The ReaLiSe model (Xu et al., 2021) employs 277

multi-modal technology to capture semantic, pho- 278

netic, and glyph information. The SCOPE model 279

(Li et al., 2022) is one of the SOTA models for CSC, 280

which enhances model correction performance by 281

introducing a character pronunciation prediction 282

task. The ReLM model (Liu et al., 2024) breaks 283

away from the traditional CSC modeling approach 284

by treating CSC as a non-autoregressive paraphras- 285

ing task, standing out as a new SOTA model. 286

Additionally, we include some of the latest work 287

(Cheng et al., 2020; Liu et al., 2021; Huang et al., 288

2023) for performance comparison. 289

4



Dataset Model Detection-level Correction-level
FPR

P R F1 P R F1

SIGHAN13

SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4 –
DR-CSC (Huang et al., 2023): 88.5 83.7 86.0 87.7 83.0 85.3 –
ReaLiSe (Xu et al., 2021): 88.6 82.5 85.4 87.2 81.2 84.1 10.3

+ DISC 88.9 82.2 85.4 87.6 81.1 84.2Ò 10.3
SCOPE (Li et al., 2022): 87.2 82.7 84.9 86.3 81.8 84.0 10.3

+ DISC 88.0 83.2 85.5Ò 87.3 82.5 84.8Ò 10.3
ReLM (Liu et al., 2024): 86.4 83.7 85.0 85.0 82.3 83.7 10.8

+ DISC 89.7 84.5 87.0Ò 88.4 83.3 85.8Ò 7.6Ó

SIGHAN14

SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3 –
DR-CSC (Huang et al., 2023) 70.2 73.3 71.7 69.3 72.3 70.7 –
ReaLiSe (Xu et al., 2021) 67.8 71.5 69.6 66.3 70.0 68.1 14.9

+ DISC 69.2 71.2 70.1Ò 68.2 70.2 69.2Ò 13.7Ó

SCOPE (Li et al., 2022) 67.6 71.9 69.7 66.7 70.9 68.8 14.9
+ DISC 69.1 71.5 70.3Ò 68.6 71.0 69.8Ò 13.5Ó

ReLM (Liu et al., 2024) 66.1 72.9 69.3 64.3 70.9 67.4 15.5
+ DISC 70.4 73.3 71.8Ò 69.5 72.3 70.8Ò 12.7Ó

SIGHAN15

SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9 –
PLOME (Liu et al., 2021) 77.4 81.5 79.4 75.3 79.3 77.2 –
DR-CSC (Huang et al., 2023) 82.9 84.8 83.8 80.3 82.3 81.3 –
ReaLiSe (Xu et al., 2021) 77.3 81.3 79.3 75.9 79.9 77.8 12.0

+ DISC 78.3 81.2 79.7Ò 77.0 79.9 78.4Ò 11.3Ó

SCOPE (Li et al., 2022) 81.0 84.8 82.9 78.7 82.4 80.5 11.1
+ DISC 81.8 84.7 83.2Ò 79.8 82.6 81.2Ò 10.0Ó

ReLM (Liu et al., 2024) 78.3 85.6 81.8 76.8 83.9 80.2 12.7
+ DISC 80.8 84.3 82.5Ò 79.8 83.1 81.4Ò 9.5Ó

Table 2: Sentence-level performance on the SIGHAN13, SIGHAN14 and SIGHAN15 test sets. Precision (P), recall
(R) and F1 for detection and correction are reported (%). ReLM and SCOPE’s results are obtained by reruning
the official code released by Liu et al. (2024) and Li et al. (2022). Other baseline results are directly taken from
their literature. Baselines marked with “:” mean that they apply post-processing on SIGHAN13, which removes
all detected and corrected “地” and “得” from the model output before evaluation. "+ DISC" means adding DISC
module in the decoder. α and β are assigned the values 1.1 and 0.7, respectively.

4.3 Evaluation Metrics290

The CSC task comprises two subtasks: error detec-291

tion and error correction. Following the previous292

work (Zhang et al., 2020), we report the precision293

(P), recall (R), and F1 scores at the sentence level294

for both subtasks. Additionally, we also evalu-295

ate the models with the False Positive Rate (FPR)296

metric (Liu et al., 2024), which quantifies the CSC297

model’s frequency of over-correction, i.e., incor-298

rectly identifying correct sentences as erroneous.299

4.4 Hyperparameters300

Hyperparameters α and β denote the weights as-301

signed to overall similarity and phonetic similarity,302

respectively. As detailed in Section 6 on grid search303

results, we set α “ 1.1 in Eq. 3 and β is set to 0.7304

in Eq. 4 for all experiments.305

5 Main Results 306

Results on SIGHANs. Table 2 illustrates the 307

main results across SIGHAN benchmarks, demon- 308

strating that the addition of the DISC module in the 309

decoding processing leads to notable improvements 310

across all the compared models, and reaching state- 311

of-the-art performance. Specifically, ReaLiSe + 312

DISC has increases of 0.1/1.1/0.6, SCOPE + DISC 313

achieves lifts of 0.8/1.0/0.7, ReLM + DISC sees 314

enhancements of 2.1/3.4/1.2 in correction-level F1 315

(C-F1) score on the SIGHAN13/14/15 test sets, 316

respectively. 317

It is worth noting that ReaLiSe and SCOPE have 318

incorporated phonetic or glyph information dur- 319

ing training. However, our DISC module can still 320

improve the performance of these models. 321

In addition to the consistent improvement in the 322
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Domain Model Detection Correction
FPR

P R F1 P R F1

ECSpell

LAW
ReLM 93.7 98.8 96.2 93.7 98.8 96.2 6.5

+ DISC 96.5 98.0 97.3 96.5 98.0 97.3 2.9

MED
ReLM 86.4 97.2 91.5 85.1 95.8 90.2 9.8

+ DISC 92.9 97.7 95.2 91.6 96.3 93.9 4.6

ODW
ReLM 89.8 91.9 90.8 89.4 91.5 90.4 5.8

+ DISC 91.5 91.5 91.5 91.1 91.1 91.1 3.3
LEMON

GAM
ReLM 45.3 42.5 43.8 35.8 33.6 34.6 20.6

+ DISC 62.2 34.9 44.7 56.1 31.5 40.4 8.5

CAR
ReLM 67.3 55.7 60.9 59.2 48.9 53.6 12.0

+ DISC 76.0 48.2 59.0 72.3 45.9 56.2 4.6

NOV
ReLM 54.6 38.0 44.8 46.3 32.2 38.0 17.6

+ DISC 70.2 31.9 43.9 65.2 29.6 40.8 7.1

ENC
ReLM 64.8 48.3 55.4 55.8 41.6 47.7 12.7

+ DISC 76.3 41.5 53.8 72.2 39.3 50.9 5.1

NEW
ReLM 77.3 58.1 66.3 68.5 51.5 58.8 8.4

+ DISC 85.6 51.2 64.1 80.4 48.1 60.2 3.2

COT
ReLM 82.8 70.7 76.3 73.5 62.8 67.7 4.9

+ DISC 92.2 61.5 73.7 87.4 58.3 69.9 1.1

MEC
ReLM 74.3 49.6 59.4 67.3 44.9 53.9 5.8

+ DISC 84.8 45.9 59.6 82.2 44.5 57.7 2.2

SIG
ReLM 65.3 63.5 64.4 59.4 57.8 58.6 16.3

+ DISC 72.9 58.7 65.0 69.9 56.3 62.4 8.9

Table 3: Sentence-level performance of ReLM and
ReLM + DISC on the test sets of ECSpell and LEMON.

F1 metric, results demonstrate that the integration323

of the DISC module into CSC models leads to324

a significant reduction in FPR across almost all325

datasets. This implies that DISC can avoid some326

unnecessary corrections.327

Results on Native Datasets. As ReLM has328

shown outstanding performance on the SIGHAN329

benchmarks, we continue to utilize it for exper-330

iments on the multi-domain datasets of ECSpell331

and LEMON to demonstrate the DISC module’s332

domain adaptability.333

Table 3 depicts that the incorporation of the334

DISC module on ReLM leads to substantial im-335

provements of 1.1/3.7/0.7 C-F1 score compared to336

unenhanced ReLM in the LAW, MED and ODW337

domain, respectively. It is worth noting that this338

improvement is achieved on the premise of surpass-339

ing a score of 90, which sufficiently illustrates the340

advancement of our DISC module. Table 3 also341

presents the performance of DISC on LEMON.342

After integrating the DISC module, the results of343

ReLM + DISC across all domains have achieved344

notable improvements, and the average C-F1 have345

an increase of 3.2. This demonstrates that our DISC346

module yields stable and significant improvements347

Input: 肌肉酸痛是运动过读(dú)导致的。
Muscle soreness is caused by read and exercise.

Reference:读➔度 (dú ➔ dù, excessive)

ReLM: 读➔少 (dú ➔ shǎo, insufficient)

ReLM+DISC:读➔度 (dú ➔ dù, excessive)

(a) Retrieve more similar candidate words

Input: 敬祈福体康安，肃(sù)此奉禀
Wishing you good health and safety, I will

solemnly comply with the command.

Reference:NONE
ReLM: 肃➔恕(sù ➔ shù, forgive)
ReLM+DISC:NONE

(b) Mitigate over-correction

Figure 2: Cases from the SIGHANs and ECSpell.

in cross-domain CSC testing. 348

5.1 Case Study 349

We present two illustrative examples of DISC- 350

augmented error correction in Figure 2. These 351

examples explain why our DISC module can sig- 352

nificantly improve model precision. 353

Figure 2(a) exemplifies how the DISC module 354

retrieves a more plausible alteration resembling 355

the original character. In this example, the ReLM 356

model corrects the erroneous word “读”(dú) to 357

“少”(shǎo). This correction is grammatically cor- 358

rect, but deviates from the original meaning of the 359

sentence. From the perspective of phonetics, a 360

more suitable correction should be “度”(dù), which 361

shares the same pronunciation as the erroneous 362

word. The DISC model can make this correction 363

by considering the semantic and phonetic informa- 364

tion of the sentence. 365

In Figure 2(b), the DISC alleviates over- 366

correction. The CSC model mistakenly alters 367

“肃”(sù) to “恕”(shù), yet the similarity interven- 368

tion rectifies this error. Specifically, since the most 369

similar to a character is the character itself, when 370

a CSC model incorrectly tends to correct over pre- 371

serve on a correct sentence, the DISC module can 372

increase the score of the character itself compared 373

to other correction options based on similarity, 374

which sometimes avoids unnecessary corrections. 375

6 Discussion 376

We select the SIGHAN15 along with two domains 377

from the LEMON database, ENC and MEC, to 378

conduct further analysis. 379

Robustness of similarity hyperparameters. As 380

illustrated in Figure 3, the incorporation of our 381
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Figure 3: The average scores in ENC, MEC and
SIGHAN15 with different values of α and β. The solid
lines represent the results of ReLM + DISC, and the
dashed lines represent the results of the original ReLM.

Model ENC MEC SIG15 Avg
ReLM 47.7 53.9 80.2 60.6

+ DISC 50.9 57.7 81.4 63.3
+ Confusion set 47.1 56.0 78.0 60.4
+ Confusion set; 41.5 48.7 80.7 57.0
+ DISC (phonetic) 49.1 56.1 80.1 61.8
+ DISC (glyph) 49.4 53.3 80.3 61.0
+ DISC (phonetic &)
├SimG1 50.5 56.8 81.4 62.9
├SimG2 50.5 57.4 81.4 63.1
├SimG3 51.3 57.5 81.2 63.3
└SimG4 51.6 56.9 80.8 63.1

Table 4: Ablation results in two kinds of confusion sets
and different components of DISC. “;” represents the
confusion set from Wang et al. (2019). “SimGi ” means
using similarities of phonetic and the ith part of glyph.

DISC module into the ReLM model consistently382

improves its performance across a wide range of383

α and β values. The flat curve of α indicates that384

the performance of our DISC model is robust to385

the selection of α. In contrast, the value curve of386

β is relatively steep, showing a clear trend of ris-387

ing first and then decreasing, reaching the highest388

value in the interval of r0.6, 0.8s. This phenomenon389

indicates that phonetic and glyph similarities are390

complementary, with phonetic similarity being rel-391

atively more important than glyph similarity.392

Effectiveness of DISC module. We degrade the393

DISC module to a simple confusion set constraint394

decoding strategy. We investigate two confusion395

sets: one derived from our similarity computation396

strategy5 and another pre-existing one provided397

by Wang et al. (2018). The results are shown in398

the second part of Table 4. From the results, we399

can see that both confusion sets fail to consistently400

improve the model’s performance, indicating that401

5We treat a character pair as confused if their similarity
score was greater than 0.5.

Model Speed (ms/sent) Slowdown
ReaLiSe 24.5 –

+ DISC 27.5 1.143ˆ

SCOPE 138.6 –
+ DISC 143.4 1.035ˆ

ReLM 12.7 –
+ DISC 12.8 1.010ˆ

Table 5: The decoding time per sentence with a batch
size of 1 on SIGHAN15. The results are the average
time of three runs.

the confusion set constraint decoding strategy is 402

sensitive to the quality of the confusion set. The 403

confusion set from Wang et al. (2018) yields im- 404

provements on SIGHAN15, yet we observe that 405

it encompasses greater than 97% of the erroneous 406

character pairs present in SIGHAN15. Conversely, 407

it results in performance degradation on other test 408

sets, highlighting the domain-specific limitations 409

of such confusion sets. 410

Effectiveness of components of the DISC mod- 411

ule. We conduct an ablation study on the compo- 412

nents of the DISC module. The results are shown 413

in the third part of Table 4. The removal of ei- 414

ther phonetic or glyph knowledge from the DISC 415

module results in performance deterioration across 416

various benchmarks. Notably, the absence of pho- 417

netic similarity has a lesser effect on SIGHAN15 418

but a stronger impact on LEMON. The results also 419

show that the four components involved in calcu- 420

lating glyph similarity are independently effective. 421

However, the exclusion of any three typically leads 422

to a marginal decline in error correction perfor- 423

mance, though exceptions do exist, such as ENC. 424

This phenomenon verifies the necessity of multi- 425

dimensional similarity measurement for compre- 426

hensive modeling of glyph similarity. Combin- 427

ing these often results in consistent improvements. 428

Moreover, the fusion of phonetic and glyph simi- 429

larities achieves the optimal error correction perfor- 430

mance, affirming the necessity of integrating these 431

two similarities. 432

Impact on decoding efficiency. We examine the 433

influence of the DISC module on decoding speed, 434

with the results shown in Table 5. Phonetic and 435

glyph similarities can be pre-calculated and DISC 436

only need to index them during decoding. Thus, 437

the time taken to decode each sentence increased 438

merely by 14.3%, 3.5%, and 1.0% for ReaLiSe, 439

SCOPE, and ReLM, respectively. The minor slow- 440
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down in decoding speed incurred by the DISC441

module is deemed acceptable considering the sub-442

stantial enhancement it brings to the model’s per-443

formance. Notably, SCOPE exhibits significantly444

slower decoding speeds compared to the other two445

models, which we speculate may be attributed to446

its iterative decoding approach.447

7 Related Work448

7.1 Model Architecture Shift449

Most early works on CSC employed a three-step450

pipeline, i.e., 1) detecting potential erroneous char-451

acters, 2) constructing new sentences by replacing452

erroneous characters with new ones based on a453

confusion set; and 3) evaluating the probability454

of the constructed sentences based on an n-gram455

language model and choose the one with the high-456

est probability (Yeh et al., 2013; Yu and Li, 2014;457

Huang et al., 2014; Xie et al., 2015).458

In the current deep-learning era, especially with459

the prevalence of PLMs, recent models directly per-460

form character-level replacement via classification,461

as introduced in Section 2. There also exist some462

works that employ a two-step pipeline architecture,463

which first detects potentially erroneous characters464

and then replaces them at the detected positions465

(Zhang et al., 2020; Huang et al., 2023).466

7.2 Utilizing Confusion Sets467

At both training and inferencing phases.468

Cheng et al. (2020) construct two character graphs,469

one based on phonetic relatedness, and the other470

based on glyph relatedness, and employ GCN to ob-471

tain new character representations as extra inputs.472

Huang et al. (2023) use two confusion sets, one473

encoding phonetic relatedness, and the other encod-474

ing glyph relatedness. Given a potential spelling er-475

ror, they use a classification module to judge which476

confusion set the error belongs to, with an extra477

training loss. During the test phase, the model can478

only consider characters from the corresponding479

confusion set according to the classification result.480

At only the inferencing phase. Wang et al.481

(2019); Bao et al. (2020) use the confusion set as482

constraints upon the search space, i.e., allowing the483

model to only consider characters in the confusion484

set. Please note that this is a decoding interven-485

tion technique as well, and is closely related to our486

work.487

7.3 Utilizing Phonetic and Glyph Information 488

Besides the use of confusion sets, there exist some 489

works that directly utilize phonetic and glyph infor- 490

mation to enhance CSC models. Liu et al. (2021); 491

Li et al. (2022) add an extra task of predicting the 492

phonetic of each input character. Xu et al. (2021) 493

use GRU to encode Pinyin, and use CNN to encode 494

glyphs (font pictures) for each input character, as 495

extra character representations. 496

7.4 Decoding Intervention 497

A typical decoding intervention approach is to use 498

a language model to intervene in the decoding pro- 499

cess of a sequence-to-sequence model. This idea 500

has already been studied in many NLP tasks, in- 501

cluding machine translation (Gülçehre et al., 2015), 502

automatic speech recognition (Kannan et al., 2018; 503

Zhao et al., 2019), and grammatical error correc- 504

tion (Zhou et al., 2023). 505

Besides using confusion sets for reducing search 506

space, as discussed above, there exists an interest- 507

ing work on the cross-domain CSC scenario. Lv 508

et al. (2023) employ a word dictionary in the target 509

domain to assist the decoding process. 510

8 Conclusions 511

We propose a streamlined, plug-and-play decoding 512

intervention strategy that enhances CSC models by 513

leveraging calculated phonetic and glyph similari- 514

ties through a tailored algorithm. Unlike methods 515

that alter model training, our training-free strat- 516

egy only modifies the decoding process, making 517

it adaptable to almost all mainstream CSC mod- 518

els. Experiments on multiple CSC benchmarks 519

demonstrate that our method significantly enhances 520

the performance of baseline models, and even sur- 521

passes the current SOTA CSC models. Further- 522

more, experimental analyses demonstrate that our 523

DISC module aids the model in accurately identi- 524

fying candidate characters which are more similar, 525

effectively mitigating the issue of over-correction. 526

Our research has transcended the limitations of tra- 527

ditional confusion set decoding intervention, prov- 528

ing that specific measures and combinations of pho- 529

netic and glyph similarities are necessary. 530

Limitations 531

We believe that our work can be further improved 532

from two aspects. First, our experiments focus on 533

the CSC datasets, while our approach can apply 534

to other languages such as Japanese and Korean. 535
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Second, as a general-use technique, our proposed536

approach for determining character similarity may537

not be optimal for CSC in specific domains or sce-538

narios. In that case, we may need to consider more539

factors besides phonetic and glyph information to540

compute character similarity.541
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A Implementation Details677

We use the official implementation of ReaLiSe678

and directly utilize the checkpoint provided by679

its GitHub repository,6 which initializes the se-680

mantic encoder with the weights of chinese-681

roberta-wwm-ext.7 ReLM uses the offi-682

cial BERT weights bert-base-chinese,8 and683

only offered the checkpoint after pre-training in 34684

million monolingual sentences that are synthesized685

by confusion set. We fine-tune it on SIGHANs and686

ECSpell with a batch size of 128 and a learning687

rate of 3e-5, and the MFT strategy (Wu et al., 2023)688

6https://github.com/DaDaMrX/ReaLiSe
7https://huggingface.co/hfl/chinese-r

oberta-wwm-ext
8https://huggingface.co/bert-base-chi

nese

Training Set #Sent Avg. Length #Errors
SIGHAN15 2,339 31.3 2,549
SIGHAN14 3,437 49.6 3,799
SIGHAN13 700 41.8 343
Wang271K 271,329 42.6 381,962
ECSpell_LAW 1,960 30.7 1,681
ECSpell_MED 3,000 50.2 2,260
ECSpell_ODW 1,720 41.2 1,578

Test Set #Sent Avg. Length #Errors
SIGHAN15 1,100 30.6 703
SIGHAN14 1,062 50.0 771
SIGHAN13 1,000 74.3 1,224
ECSpell_LAW 500 29.7 390
ECSpell_MED 500 49.6 356
ECSpell_ODW 500 40.5 404
LEMON 22,252 35.4 12,055

Table 6: Statistics of the datasets, including the number
of sentences, the average length of sentences, and the
number of errors.

is used during training. SCOPE utilizes the pre- 689

trained weights from the ChineseBERT-base,9 690

and we leverage their official implementation for 691

fine-tuning.10 Due to our decoding intervention 692

strategy being deterministic, without any random 693

factors, the experiments are conducted only once. 694

All experiments are conducted on one Tesla V100S- 695

PCIE-32GB GPU. 696

B Details of datasets 697

SIGHANs. Following the setup of previous work, 698

we employ SIGHAN 13/14/15 datasets (Wu et al., 699

2013; Yu et al., 2014; Tseng et al., 2015) as 700

our training sets, in conjunction with Wang271K 701

(Wang et al., 2018), which consists of 271K syn- 702

thetically generated instances. We employ the test 703

sets of SIGHAN13/14/15 for evaluation. 704

ECSpell. ECSpell (Lv et al., 2023) encompasses 705

data from three domains: law, medical treatment, 706

and official document writing. Unlike SIGHANs 707

from Chinese learner texts, the sentences in EC- 708

Spell are derived from CNS texts. 709

LEMON. LEMON (Wu et al., 2023) also orig- 710

inates from CNS texts, containing over 22K in- 711

stances spanning 7 domains. Given its lack of a 712

dedicated training set, LEMON serves as a bench- 713

9https://huggingface.co/ShannonAI/Chi
neseBERT-base

10https://github.com/jiahaozhenbang/SC
OPE
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mark for evaluating the domain adaptation capabil-714

ity of CSC models.715

We conduct detailed statistics on the above716

datasets, and the results are presented in Table 6.717
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