
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NON-LINEAR ACTIVATION SOOTHES NTK CONDITION-
ING FOR WIDE NEURAL NETWORKS: A STUDY IN THE
RELU CASE

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-linear activation functions are well known to improve the expressivity of
neural networks, which is the main reason of their wide implementation in neural
networks. In this work, we showcase a new and interesting property of certain
non-linear activations, focusing on the most popular example of its kind – Rectified
Linear Unit (ReLU). By comparing the cases with and without this non-linear
activation, we show that the ReLU has the following effects: (a) better data
separation, i.e., a larger angle separation for similar data in the feature space of
model gradient, and (b) better NTK conditioning, i.e., a smaller condition number
of neural tangent kernel (NTK). Furthermore, we show that the ReLU network
depth (i.e., with more ReLU activation operations) further magnifies these effects.
Note that, without the non-linear activation, i.e., in a linear neural network, the
data separation and NTK condition number always remain the same as in the case
of a linear model, regardless of the network depth. Our results imply that ReLU
activation, as well as the depth of ReLU network, helps improve the worst-case
convergence rate of GD, which is closely related to the NTK condition number.

1 INTRODUCTION

Non-linear activation functions, such as rectified linear unit (ReLU), are well known for their ability to
increase the expressivity of neural networks. A non-linearly activated neural network can approximate
any continuous function to arbitrary precision, as long as there are enough neurons in the hidden
layers (Hornik et al., 1989; Cybenko, 1989; Hanin & Sellke, 2017), while its linear counterpart –
linear neural network, which has no non-linear activation functions applied, can only represent linear
functions of the input. In addition, deeper neural networks, which have more non-linearly activated
layers, have exponentially greater expressivity than shallower ones (Telgarsky, 2015; Poole et al.,
2016; Raghu et al., 2017; Montufar et al., 2014; Wang et al., 2018), indicating that the network depth
promotes the power of non-linear activation functions.

A natural question is: Does the non-linear activation have other beneficial effects (especially on
optimization), in addition to increasing the expressivity? Our answer is yes!

In this paper, we showcase a new and interesting property of certain non-linear activations, focusing
on the ReLU instance: the ReLU non-linearity improves data separation in the feature space of model
gradient, and helps to decrease the condition number of neural tangent kernel (NTK). We also show
that the depth of the ReLU network further magnifies these effects, namely, a deeper ReLU activated
neural network has a better data separation and a smaller NTK condition number, than a shallower
one.

Specifically, we first show the better separation phenomenon, i.e., the improved data separation for
similar data in the model gradient feature space. We prove that, for an infinitely wide ReLU network
f at its random initialization, any pair of data input vectors x and z that have similar directions (i.e.,
small but non-zero angle θin between x and z) become more directionally separated in the model
gradient space (i.e., model gradient angle ϕ between ∇f(x) and ∇f(z) is larger than θin). We also
find that deeper ReLU networks result in even better data separation, i.e., larger ϕ.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We further show the better NTK conditioning property of ReLU, i.e., smaller NTK condition number.
First, we prove that, as a consequence of the better data separation, the NTK condition number of a
infinitely wide ReLU network is strictly smaller than that of the Gram matrix, if the dataset contains
two non-degenerate samples. Moreover, as the ReLU network depth increases, the NTK condition
number monotonically decreases. Then, we remove this data size assumption on two-layer ReLU
networks, and prove the same better NTK conditioning, regardless of the data size as long as the
dataset is not degenerated. The intuition is that, if there exists a pair of similar inputs x and z in the
training set (i.e., the angle between x and z is small), which is usually the case for large datasets, then
the Gram matrix and NTK of linear neural networks must have close-to-zero smallest eigenvalues,
resulting in extremely large NTK condition numbers. The ReLU activation make these similar data
more separated (enlarges the small angles between data), hence it helps to increase the smallest
eigenvalues of NTK, which in turn leads to a smaller NTK condition number.

Note that, when the non-linear activation is absent, as in an infinitely wide linear neural network f̄
of any finite depth, the model gradient angle ϕ̄ is always equivalent to the input angle θin, and the
NTK condition number κ̄ also remains identical to κ0 of the Gram matrix. With this comparison, we
conclude that the better separation phenomenon, i.e., ϕ > θin, and the better NTK conditioning, i.e.,
κ < κ0, observed for ReLU networks, are attributed to the non-linear activation.

We experimentally verify these findings on finite but wide neural networks. It also suggests that these
results hold for finite networks.

Condition number and optimization theory. Recent optimization theories showed that the NTK
condition number, or the smallest eigenvalue of NTK, controls the theoretical convergence rate
of gradient descent algorithms on wide neural networks (Du et al., 2018; 2019; Liu et al., 2022).
Combined with these theories, our findings imply that: (a), the ReLU activation function helps
improving the worst-case convergence rate of gradient descent, and (b), deeper wide ReLU networks
have faster convergence rate than shallower ones. Experimentally, we indeed find that deeper ReLU
networks converges faster than shallower ones.

In this paper, we focus on the special case of ReLU, the most commonly used non-linear activation
function. It remains theoretically an open question what are the effects of other non-linear activations
on NTK conditioning and theoretical convergence rates. While it need different analysis techniques
and we would like to leave it as a future work, we provide some preliminary numerical results in
Appendix F. It suggests that the non-linear activation effect on the NTK conditioning can be positive
(decreasing κ, as for tanh) or negative (increasing κ, as for sigmoid). It is worth to note that, in either
case, a larger network depth, where more non-linear activation are operated, magnifies the effect.

Contributions. We summarize our contributions below. We find that:

• the ReLU non-linearity induces better separation between similar data in the feature space of model
gradient. A larger depth of the ReLU network magnifies this better separation phenomenon.

• ReLU non-linearity has the effect of decreasing the condition number of the NTK matrix. A larger
depth of the ReLU network further enhances this better NTK conditioning property.

• This better NTK conditioning property leads to faster convergence rate of gradient descent. We
empirically verify this on various real world datasets.

The paper is organized as follow: Section 2 describes the setting and defines the key quantities
and concepts, and analyzes linear neural networks as the baseline for comparison; Section 3 and
4 discuss our main results on the better separation and better conditioning of ReLU non-linear
activation, respectively; Section 5 discusses the implication on theoretical convergence rates; Section
6 concludes the paper. Proofs of theorems and main corollaries can be found in the appendix.

1.1 RELATED WORK

Studying a specific type of non-linear activation function, especially ReLU, is a common setting in
the literature. This is largely due to the fact that ReLU has emerged to be the dominant choice of
activation functions in neural networks used in practice, since Nair & Hinton (2010); Krizhevsky
et al. (2012). ReLU activated neural networks have received wide research attention, ranging from
optimization (Li & Yuan, 2017; Du et al., 2018; Zou et al., 2020), expressivity (Hanin & Sellke, 2017;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Yarotsky, 2017; Wang et al., 2018), generalization (Zheng et al., 2019; Ji & Telgarsky, 2019; Cao &
Gu, 2020), etc.

NTK and its spectrum have been extensively studied (Lee et al., 2019; Bietti & Mairal, 2019; Liu
et al., 2020; Fan & Wang, 2020; Geifman et al., 2020; Xiao et al., 2020; Nguyen et al., 2021; Belfer
et al., 2021; Chen & Xu, 2021), since the discovery of constant NTK for infinitely wide neural
networks (Jacot et al., 2018). Velikanov & Yarotsky (2021) shows that the NTK spectrum of an
infinitely wide ReLU network asymptotically exhibits a power law. Its distribution is further shown
to be similar to that of Laplace kernel (Geifman et al., 2020; Chen & Xu, 2021), and can be computed
(Fan & Wang, 2020). Nguyen et al. (2021) analyzed the upper and lower bounds for the smallest NTK
eigenvalue in O() and Ω(), respectively. With the assumption of spherically uniformly distributed
data where the spectrum of (elementary-wise) power of the Gram matrix becomes simplified, Murray
et al. (2023), utilizing Hermite polynomials and power series expansion of NTK, provides the order
of the smallest eigenvalue of the NTK of two-layer ReLU network in the infinite width limit. Under
the same data setting, Basri et al. (2019) computed the NTK eigenvalues for the two-layer ReLU
network. Relying on the values of off-diagonal entries of the NTK matrix in the infinite depth limit,
another work Xiao et al. (2020) analyzed the asymptotic dependence of the NTK condition number on
the network depth L for ReLU networks, which shows a decreasing trend as L increases, consistent
with our result.

In contrast to prior works, we are able to distill the effect of ReLU activation function via a sharp
comparison between scenarios with and without ReLU, at any finite depth without data distribution
assumption. Note that, without an assumption on data distribution, NTK spectral analysis becomes
much harder and many data-distribution-dependent results may not hold any more. Moreover, at finite
depth, off-diagonal entries of the NTK matrix has not converged and are typically quite different
from its infinite depth limit, which makes analysis even harder.

We are aware of a prior work (Arora et al., 2018) which has results of similar flavor. It shows that the
depth of a linear neural network may help to accelerate optimization via an implicit pre-conditioning
of gradient descent. We note that this prior work is in an orthogonal direction, as its analysis is based
on the linear neural network, which is activation-free, while our work focus on the better-conditioning
effect of ReLU activation function.

2 SETUP AND PRELIMINARIES

Notations for general purpose. We denote the set {1, 2, · · · , n} by [n]. We use bold lowercase
letters, e.g., v, to denote vectors, and capital letters, e.g., A, to denote matrices. Given a vector, ∥ · ∥
denotes its Euclidean norm. Inner product between two vectors is denoted by ⟨·, ·⟩. Given a matrix A,
we denote its i-th row by Ai:, its j-th column by A:j , and its entry at i-th row and j-th column by
Aij . We also denote the expectation (over a distribution) of a variable by E[·], and the probability of
an event by P[·]. For a model f(w;x) which has parameters w and takes x as input, we use ∇f to
denote its first derivative w.r.t. the parameters w, i.e., ∇f := ∂f/∂w.

(Fully-connected) ReLU neural network. Let x ∈ Rd be the input, ml be the width (i.e., number
of neurons) of the l-th layer, W (l) ∈ Rml×ml−1 , l ∈ [L+ 1], be the matrix of the parameters at layer
l, and σ(z) = max{0, z} be the ReLU activation function. A (fully-connected) ReLU neural network
f , with L hidden layers, is defined as:

α(0)(x) = x

α(l)(x) =

√
2

√
ml

σ
(
W (l)α(l−1)(x)

)
, ∀l ∈ {1, 2, · · · , L}, (1)

f(x) = W (L+1)α(L)(x).

We also denote α̃(l)(x) ≜
√
2√
ml

W (l)α(l−1)(x). Following the NTK initialization scheme (Jacot et al.,
2018), these parameters are randomly initialized i.i.d. according to the normal distribution N (0, 1).
The scaling factor

√
2/
√
ml is introduced to normalize the hidden neurons (Du et al., 2019). We

denote the collection of all the parameters by w.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Without loss of generality, we set the layer widths as
m0 = d, mL+1 = 1, and ml = m, for l ∈ [L]. (2)

and call m as the network width.

Gradient feature and neural tangent kernel (NTK). Given a model f (e.g., a neural network)
with parameters w, we consider the vector ∇f(w;x) is the gradient feature for the input x. The
NTK K is defined as

K(w;x1,x2) = ⟨∇f(w;x1),∇f(w;x2)⟩, (3)
where x1 and x2 are two arbitrary network inputs. For a given dataset D = {(xi, yi)}ni=1, there is a
gradient feature matrix F such that each row Fi·(w) = ∇f(w;xi) for all i ∈ [n]. The n× n NTK
matrix K(w) is defined such that its entry Kij(w), i, j ∈ [n], is K(w;xi,xj). It is easy to see that
the NTK matrix

K(w) = F (w)F (w)T . (4)
Note that the NTK for a linear model reduces to the Gram matrix G.

Infinite width limit. Recent discovery is that, when m is sufficiently large or infinite, the NTK and
gradient feature becomes almost constant during training by gradient descent (Jacot et al., 2018; Liu
et al., 2020). Hence, it suffices to analyze these quantities only at the network initialization, which
shall extend to all the optimization procedure.

For theoretical analysis, following Jacot et al. (2018), we focus on the infinite network width limit,
while let the network depth L being a fixed constant. Specifically, the width of each hidden layer
goes to infinity successively. This setting allows us to analyze the NTK in a cleaner way without
worrying about the uncertainty arising from different random seeds of network initialization. The
difference of NTKs between infinite width and finite but large width is minimal Du et al. (2018), and
converge to zero Jacot et al. (2018). We use finite network width for experimental evaluations.

Linear neural network. For a comparison purpose, we also consider a linear neural network f̄ ,
which is the same as the ReLU neural network f (defined above), except that the activation function
is the identity function σ(z) = z and that the scaling factor is 1/

√
m (we adopt the network width

setting in Eq.(2)):

ᾱ(0)(x) = x, ᾱ(l)(x) =
1√
m
W (l)ᾱ(l−1)(x), ∀l ∈ {1, 2, · · · , L}, f̄(x) = W (L+1)ᾱ(L)(x). (5)

Input feature and Gram matrix. Given a dataset D = {(xi, yi)}ni=1, we denote its (input) feature
matrix by X , where each row Xi· = xT

i . The Gram matrix is defined as G = XXT ∈ Rd×d, with
each Gij = xT

i xj .

Condition number. The condition number κ of a positive definite matrix A is defined as the ratio
between its maximum eigenvalue and minimum eigenvalue:

κ = λmax(A)/λmin(A). (6)

Embedding angle and model gradient angle. For a specific input x, we call the vector α(l)(x)
as the l-embedding of x. We also call ∇f , i.e., the derivative of model f with respect to all its
parameters, as the model gradient. In the following analysis, we frequently use the following concepts:
embedding angle and model gradient angle.
Definition 2.1 (embedding angle and model gradient angle). Given two arbitrary inputs x, z ∈
Rd, define the l-embedding angle, θ(l)(x, z) ≜ arccos

(
⟨α(l)(x),α(l)(z)⟩

∥α(l)(x)∥∥α(l)(z)∥

)
, as the angle be-

tween the l-embedding vectors α(l)(x) and α(l)(z), and the model gradient angle, ϕ(x, z) ≜

arccos
(

⟨∇f(x),∇f(z)⟩
∥∇f(x)∥∥∇f(z)∥

)
, as the angle between the model gradient vectors ∇f(x) and ∇f(z).

We also denote θ(0) by θin, as θ(0) is just the angle between the original inputs.

In the rest of the paper, we specifically refer the NTK matrix, NTK condition number, l-embedding
angle and model gradient angle for the ReLU neural network as K, κ, θ(l) and ϕ, respectively, and
refer their linear neural network counterparts as K̄, κ̄, θ̄(l) and ϕ̄, respectively. We also denote the
condition number of Gram matrix G by κ0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.1 LINEAR NEURAL NETWORK: THE BASELINE FOR COMPARISON

To distill the effect of the non-linear activation function, we need a activation-free case as the baseline
for comparison. This baseline is the linear neural network f̄ , with the same width and depth as f .

Theorem 2.2. Consider the linear neural network f̄ as defined in Eq.(5). In the limit of infinite
network width m → ∞ and at network initialization w0, the following relations hold:

• for any input x ∈ Rd: ∥ᾱ(l)(x)∥ = ∥x∥, ∀l ∈ [L]; and ∥∇f(w0;x)∥ = (L+ 1)∥x∥.

• for any inputs x, z ∈ Rd: θ̄(l)(x, z) = θin(x, z), ∀l ∈ [L]; and ϕ̄(x, z) = θin(x, z).

This theorem states that, without a non-linear activation function, both the feature embedding maps
α(l) : x 7→ α(l)(x) and the model gradient map ∇f : x 7→ ∇f(x) fail to change the geometrical
relationship between any data samples. For any input pairs, the embedding angles θ̄(l) and ϕ̄ remain
the same as the input angle θin. Therefore, it is not surprising that the NTK of a linear network is the
same as the Gram matrix (up to a constant factor), as formally stated in the following corollary.

Corollary 2.3 (NTK condition number of linear networks). Consider a linear neural network f̄ as
defined in Eq.(5). In the limit of infinite network width m → ∞ and at network initialization, the
NTK matrix K̄ = (L+ 1)2G. Moreover, κ̄ = κ0.

This corollary tells that, for a linear neural network, regardless of its depth L, the NTK condition
number κ̄ is always equal to the condition number κ0 of the Gram matrix G. Therefore, any non-zero
deviations, δϕ ≜ ϕ − θin from the input angle θin, and δκ ≜ κ − κ0 from the Gram condition
number κ0, observed for a non-linearly activated network f , should be attributed to the corresponding
non-linear activation.

3 RELU INDUCES BETTER DATA SEPARATION IN MODEL GRADIENT SPACE

In this section, we show that the ReLU non-linearity helps data separation in the model gradient
space. Specifically, for two arbitrary inputs x and z with small θin(x, z), we show that the model
gradient angle ϕ(x, z) is strictly larger than θin(x, z), implying a better angle separation of the two
data points in the model gradient space. Moreover, we show that the model gradient angle ϕ(x, z)
monotonically increases with the number of layers L, indicating that deeper network (more ReLU
non-linearity) has better angle separation.

Embedding vectors and embedding angles. We start with investigating the relations among the
l-embedding vectors α(l) and the embedding angles θ(l).

Lemma 3.1. Consider the ReLU network f defined in Eq.(1) at its initialization, and define function
g : [0, π) → [0, π) as g(z) = arccos

(
π−z
π cos z + 1

π sin z
)
. In the infinite network width limit

m → ∞, for all l ∈ [L], the following relations hold:

• for any input x ∈ Rd, ∥α(l)(x)∥ = ∥x∥;

• for any two inputs x, z ∈ Rd, θ(l)(x, z) = g
(
θ(l−1)(x, z)

)
. Let gl(·) be the l-fold composi-

tion of g(·), then
θ(l)(x, z) = gl (θin(x, z)) . (7)

The lemma states that, during forward propagation, the l-embedding vectors for each input keeps
unchanged in magnitude, and the embedding angles θ(l) between any two inputs are governed by the
closed form function g. Please see Appendix A for the plot of the function and detailed discussion
about its properties. As a highlight, g has the following property: g is approximately the identity
function g(z) ≈ z for small z, i.e., z ≪ 1. This property directly implies the following theorem.

Theorem 3.2. Given any inputs x, z such that θin(x, z) = o(1), for each l ∈ [L], the l-embedding
angle θ(l)(x, z) can be expressed as

θ(l)(x, z) = θin(x, z)−
l

3π
(θin(x, z))

2 + o
(
(θin(x, z))

2
)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Model gradient angles ϕ vs. input angle θin (according to Lemma 3.3). Linear neural
networks, of any depth L, always have ϕ̄ = θin, as the black dash line showed. ReLU neural networks
with various depths have better data separation ϕ > θin for similar data (i.e., small θin). Moreover,
deeper ReLU networks have better separation than shallow ones for similar data. All neural networks
are infinitely wide.

We see that, at the small angle regime θin = o(1), the embedding angles θ(l) at any layer l is the
same as the input angle θin at the lowest order. In addition, the higher order corrections are always
negative making θ(l) < θin. We also note that the correction term ∆θ(l) ≜ θ(l) − θin is linearly
dependent on layer l at its lowest order.

Model gradient angle. Now, we investigate the model gradient angle ϕ and its relation with the
embedding angles θ(l) and input angle θin, for the ReLU network.
Lemma 3.3. Consider the ReLU network defined in Eq.(1) with L hidden layers and infinite network
width m. Given two arbitrary inputs x and z, the angle ϕ(x, z) between the model gradients ∇f(x)
and ∇f(z) satisfies

cosϕ(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (8)

Moreover, ∥∇f(x)∥ = (L+ 1)∥x∥, for any x.

Better data separation with ReLU. Comparing with Theorem 2.2 for linear neural networks, we
see that the non-linear ReLU activation only affects the relative direction, but not the the magnitude,
of the model gradient. Combining Lemmas 3.3 and 3.1, we get the relation between ϕ and the input
angle θin. Figure 1 plots ϕ as a function of θin for different network depth L.

The key observation is that: for relatively small input angles (say θin < 60◦), the model gradient
angle ϕ is always greater than the input angle θin. This suggests that, after the mapping ∇f : x 7→
∇f(x) from the input space to model gradient space, data inputs becomes more (directionally)
separated, if they are similar in the input space (i.e., with small θin). Comparing to the linear neural
network case, where ϕ̄(x, z) = θin(x, z) as in Theorem 2.2, we see that the ReLU non-linearity
results in a better angle separation ϕ(x, z) > ϕ̄(x, z) for similar data.

Another observation is that: deeper ReLU networks lead to larger model gradient angles, when
θin < 60◦. This indicates that deeper ReLU networks, which has more layers of ReLU non-linear
activation, makes the model gradient more separated between inputs. Note that, in the linear network
case, the depth does not affect the gradient angle ϕ̄.

In particular, the following theorem quantifies the better data separation in the regime of small input
angle θin = o(1).
Theorem 3.4 (Better separation with ReLU). Consider two network inputs x, z ∈ Rd, with small
input angle θin(x, z) = o(1), and the ReLU network defined in Eq.(1) with L hidden layers and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

infinite network width m. At the network initialization, the angle ϕ(x, z) between the model gradients
∇f(x) and ∇f(z) satisfies

cosϕ(x, z) =

(
1− L

2π
θin + o(θin)

)
cos θin. (9)

Noticing the negative sign within the factor
(
1− L

2π θin + o(θin)
)
, we know that the factor is less

than 1 and we obtain that: ϕ(x, z) > θin(x, z) = ϕ̄(x, z). Noticing the depth L dependence of this
factor, we also get that: the deeper the ReLU network (i.e., larger L) is, the larger ϕ is, in the regime
θin = o(1).

Remark 3.5 (Separation in distance). Indeed, the better angle separation discussed above implies a
better separation in Euclidean distance as well. This can be easily seen by recalling from Lemma 3.3
that the model gradient mapping ∇f preserves the norm (up to a universal factor L+ 1).

We also point out that, Figure 1 indicates that for large input angles (say θin > 60◦) the model
gradient angle ϕ is always large (greater than 60◦). Hence, non-similar data never become similar in
the model gradient feature space.

4 RELU INDUCES SMALLER NTK CONDITION NUMBER OF NTK

In this section, we show both theoretically and experimentally that, the ReLU non-linearity induces a
decrease in the NTK condition number κ. Moreover, a ReLU network with larger depth L, which
means more non-linear activations in operation, the NTK condition number κ is generically smaller.

Connection between condition number and model gradient angle. The smallest eigen-
value and condition number of NTK are closely related to the smallest model gradient angle
mini,j∈[n] ϕ(xi,xj), through the gradient feature matrix F . Think about the case if ϕ(xi,xj) = 0
(i.e., ∇f(xi) is parallel to ∇f(xj)) for some i, j ∈ [n], then F , hence NTK K, is not full rank and
the smallest eigenvalue λmin(K) is zero, leading to an infinite condition number κ. Similarly, if
mini,j∈[n] ϕ(xi,xj) is small, the smallest eigenvalue λmin(K) is also small, and condition number
κ is large, as stated in the following proposition (see proof in Appendix B).

Proposition 4.1. Consider a n × n positive definite matrix A = BBT , where matrix B ∈ Rn×d,
with d > n, is of full row rank. Suppose that there exist i, j ∈ [n] such that the angle ϕ between
vectors Bi· and Bj· is small, i.e., ϕ ≪ 1, and that there exist constant C > c > 0 such that
c ≤ ∥Bk·∥ ≤ C for all k ∈ [n]. Then, the smallest eigenvalue λmin(A) = O(ϕ2), and the condition
number κ = Ω(1/ϕ2).

Therefore, a good data angle separation in the model gradient features, i.e., mini,j∈[n] ϕ(xi,xj) not
too small, is a necessary condition such that the condition number κ is not too large. As is shown in
the last section, the ReLU non-linearity makes the samples more separated when mapped from the
input data space to the model gradient feature space. Hence, it is expected that the NTK condition
number will decrease in the presence of the ReLU non-linearity.

Smaller NTK condition number. Theoretically, we consider the infinite width limit. We require
that the dataset is not degenerated, i.e., xi ∦ xj for all i, j. This is a mild and commonly used setting
in the literature, see for example Du et al. (2018). We require that the first layer weights W (1) be
trainable and fix the other layers in the following theorem. This is also a common setting in literature
to simplify the analysis Du et al. (2018).

Theorem 4.2. Consider the ReLU network in Eq.(38) in the limit m → ∞ and at initialization. Let
the first layer weights W (1) be trainable and fix the other layers. We compare the two scenarios: (a)
the network with the ReLU activation, and (b) the network with all the ReLU activation removed.
The smallest eigenvalue λmin(K) of its NTK in scenario (a) is larger than that in scenario (b):
λmin(Ka) > λmin(Kb), and the NTK condition number κ in scenario (a) is less than that in
scenario (b): κa < κb. Moreover, for two ReLU neural networks f1 of depth L1 and f2 of depth L2

with L1 > L2, we have κf1 < κf2 .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This theorem confirms the expectation that the NTK condition number κ should be decreased, as a
consequence of the existence of the ReLU non-linearity. This theorem also shows that the depth of
ReLU network enhances this better NTK conditioning.

The high-level intuition behind the proof of this theorem is that: the derivative of ReLU function,
σ′(z) = I{z≥0}, resembles a binary gate which has open and close states. When there are ReLU
implemented, the model gradient map ∇f : x 7→ ∇f(x) increases the directional diversity of the
vectors ∇f(x), thanks to the high dimension of model gradient space and the different activation
patterns of the hidden layer for different samples x. Hence, it is expected that the feature matrix F ,
as well as the NTK matrix K, is better conditioned.

Indeed, fixing the top layer weights is not a necessary requirement and can be removed. In our
experiments in Section 4.1 where all the layers are trainable, we observe the phenomena of better
data separation and better NTK conditioning. Theoretically, We consider the special case where the
dataset is of size 2.
Theorem 4.3. Consider a L-layer ReLU neural network f as defined in Eq.(1) in the infinite width
limit m → ∞ and at initialization. We compare the NTK condition numbers κa and κb of the two
scenarios: (a) the network with the ReLU activation, and (b) the network with all the ReLU activation
removed. Consider the dataset D = {(x1, y1), (x2, y2)} with the input angle θin between x1 and
x2 small, θin = o(1). Then, the NTK condition number κa < κb. Moreover, for two ReLU neural
networks f1 of depth L1 and f2 of depth L2 with L1 > L2, we have κf1 < κf2 .

4.1 EXPERIMENTAL EVIDENCE

Here, we experimentally show that better data separation and better conditioning happen in practice.

Dataset. We use the following datasets: synthetic dataset, MNIST (LeCun et al., 1998), FashionM-
NIST (f-MNIST) (Xiao et al., 2017), SVHN (Netzer et al., 2011) and Librispeech (Panayotov et al.,
2015). The synthetic data consists of 2000 samples which are randomly drawn from a 5-dimensional
Gaussian distribution with zero-mean and unit variance. The MNIST, f-MNIST and SVHN datasets
are image datasets where each input is an image. The Librispeech is a speech dataset including 100
hours of clean speeches. In the experiments, we use a subset of Librispeech with 50, 000 samples,
and each input is a 768-dimensional vector representing a frame of speech audio and we follow (Hui
& Belkin, 2020) for the feature extraction.

Models. For each of the datasets, we use a ReLU activated fully-connected neural network architec-
ture to process. The ReLU network has L hidden layers, and has 512 neurons in each of its hidden
layers. The ReLU network uses the NTK parameterization and initialization strategy (see (Jacot et al.,
2018)). For each dataset, we vary the network depth L from 0 to 10. Note that L = 0 corresponding
to the linear model case. In addition, for comparison, we use a linear neural network, which has the
same architecture with the ReLU network except the absence of activation function.

Results. For each dataset and given network depth L, we evaluate both the smallest pairwise model
gradient angle mini,j∈[n] ϕ(xi,xj) and the NTK condition number κ, at the network initialization.
We take 5 independent runs over 5 random initialization seeds, and report the average. In each run, we
used a A-100 GPU to compute the NTK, which took 4 ∼ 10 hours. The results are shown in Figure 2.
We compare the two scenarios of with and without the ReLU activation function. As one can easily
see from the plots, a ReLU network (depth L = 1, 2, · · · , 10) always have a better separation of data
(i.e., larger smallest pairwise model gradient angle), and a better NTK conditioning (i.e., smaller
NTK condition number), than its corresponding linear network (compare the solid line and dash line
of the same color). Furthermore, the monotonically decreasing NTK condition number shows that a
deeper ReLU network have a better conditioning of NTK.

5 OPTIMIZATION ACCELERATION

Recently studies showed strong connections between the NTK condition number and the theoretical
convergence rate of gradient descent algorithms on wide neural networks (Du et al., 2018; 2019;
Soltanolkotabi et al., 2018; Allen-Zhu et al., 2019; Zou et al., 2020; Oymak & Soltanolkotabi, 2020;
Liu et al., 2022). In Du et al. (2018; 2019), the authors derived the worst-case convergence rates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Network depth L

0

5

10

15

20

25

30

35

M
od

el
 g

ra
di

en
t a

ng
le

 m
in

i,j
[n

]
(x

i,x
j)

Librispeech: ReLU
MNIST: ReLU

Synthetic: ReLU
SVHN: ReLU

f-MNIST: ReLU

Linear
Linear
Linear
Linear
Linear

(a) Minimum ϕ (in degrees ◦) vs. depth

0 2 4 6 8 10
Network depth L

103

104

105

106

107

108

109

1010

Co
nd

iti
on

 n
um

be
r

Synthetic: Relu
MNIST: Relu
SVHN: Relu

f-MNIST: Relu
Librispeech: Relu

Linear
Linear
Linear
Linear
Linear

(b) NTK condition number vs. depth

Figure 2: Better separation (left) and better NTK conditioning (right) of ReLU network. Solid
lines are for ReLU networks, and dash lines are for linear networks. Left: ReLU network works
better in separating similar data, while linear network remains similar to a linear model. Right: ReLU
network has better conditioning of NTK than linear network and linear model. Note that L = 0
corresponds to the case of a linear model, and the NTK in this case is the Gram matrix.

explicitly in terms of the smallest eigenvalue of NTK λmin(K), L(wt) ≤ (1−ηλmin(K)/2)tL(w0),
where L is the square loss function and t is the time stamp of the algorithm. Later on, in Liu et al.
(2022), the NTK condition number is explicitly involved in the convergence rate:

L(wt) ≤ (1− κ−1)tL(w0). (10)

Although κ is evaluated on the whole optimization path, all these theories used the fact that NTK is
almost constant for wide neural networks and an evaluation at the initialization w0 is enough.

As a smaller NTK condition number (or larger smallest eigenvalue of NTK) implies a faster worst-
case convergence rate, our findings suggest that: (a), the ReLU activation function helps improving
the worst-case convergence rate of gradient descent, and (b), deeper wide ReLU networks have faster
convergence rate than shallower ones.

We experimentally verify this implication. Specifically, we train the ReLU networks, with depth L
ranging from 1 to 10, for the datasets MNIST, f-MNIST and Librispeech. For all the training tasks,
we use cross entropy loss as the objective function and use mini-batch stochastic gradient descent
(SGD) of batch size 500 to optimize. For each task, we find its optimal learning rate by grid search.
On MNIST and f-MNIST, we train 500 epochs, and on Librispeech, we training 2000 epochs.

The curves of training loss against epochs are shown in Figure 3. We observe that, for all these
datasets, a deeper ReLU network always converges faster than shallower ones. This is consistent with
the theoretical prediction that the deeper ReLU network, which has smaller NTK condition number,
has faster theoretical convergence rate.

6 CONCLUSION AND DISCUSSIONS

In this work, we showed the beneficial effects of ReLU non-linear activation on the data separation in
feature space and on the NTK conditioning. We also showed that more sequential ReLU activation
operations, i.e., larger network depth, magnifies these effects. As the NTK conditioning is closely
related to theoretical convergence rate of gradient descent, our findings also suggest a positive role of
the ReLU activation function in optimization theories.

Infinite depth. In this work, we focused on the finite depth scenario which is the more interesting
case from a practical point of view. Our small angle regime analysis (Theorem 3.2, 3.4 and 4.3) do
not directly extend to the infinite depth case. But, as Lemma 3.3 and Figure 1 indicate, the ϕ(θin)
function seems to converge to a step function when L → ∞, which implies orthogonality between

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Epochs

100

Tr
ai

ni
ng

 lo
ss

MNIST
Linear model
Depth=1
Depth=2
Depth=3
Depth=4
Depth=5
Depth=6
Depth=7
Depth=8
Depth=9
Depth=10

0 100 200 300 400 500
Epochs

100

FashionMNIST
Linear model
Depth=1
Depth=2
Depth=3
Depth=4
Depth=5
Depth=6
Depth=7
Depth=8
Depth=9
Depth=10

0 250 500 750 1000 1250 1500 1750 2000
Epochs

2 × 100

3 × 100

4 × 100

Librispeech
Linear model
Depth=1
Depth=2
Depth=3
Depth=4
Depth=5
Depth=6
Depth=7
Depth=8
Depth=9
Depth=10

Figure 3: Training curve of ReLU networks with different depths. On each of these datasets, we
see that deeper ReLU network always converges faster than shallower ones.

model gradient vectors, hence a NTK condition number being 1. This is consistent with the prior
knowledge that NTK converges to 1 in the infinite depth limit (Radhakrishnan et al., 2023).

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244–253. PMLR, 2018.

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. Advances in Neural Information Processing
Systems, 32, 2019.

Yuval Belfer, Amnon Geifman, Meirav Galun, and Ronen Basri. Spectral analysis of the neural
tangent kernel for deep residual networks. arXiv preprint arXiv:2104.03093, 2021.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3349–3356, 2020.

Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In
International Conference on Learning Representations, 2021.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–
1685, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-
width neural networks. Advances in Neural Information Processing Systems, 33, 2020.

Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and Basri Ronen. On
the similarity between the laplace and neural tangent kernels. Advances in Neural Information
Processing Systems, 33:1451–1461, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Boris Hanin and Mark Sellke. Approximating continuous functions by relu nets of minimal width.
arXiv preprint arXiv:1710.11278, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. arXiv preprint arXiv:2006.07322, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Proceedings of the 25th International Conference on Neural Information
Processing Systems-Volume 1, pp. 1097–1105, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
Advances in neural information processing systems, 30, 2017.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. Characterizing the spectrum of
the ntk via a power series expansion. In International Conference on Learning Representations,
2023.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. Proc. Int. Conf. Neural Inf. Process.
Syst. Workshops, 2011.

Quynh Nguyen, Marco Mondelli, and Guido F Montufar. Tight bounds on the smallest eigenvalue
of the neural tangent kernel for deep relu networks. In International Conference on Machine
Learning, pp. 8119–8129. PMLR, 2021.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Wide and deep neural networks
achieve consistency for classification. Proceedings of the National Academy of Sciences, 120(14):
e2208779120, 2023. doi: 10.1073/pnas.2208779120.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory, 65(2):742–769, 2018.

Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

Maksim Velikanov and Dmitry Yarotsky. Explicit loss asymptotics in the gradient descent training of
neural networks. Advances in Neural Information Processing Systems, 34:2570–2582, 2021.

Qingcan Wang et al. Exponential convergence of the deep neural network approximation for analytic
functions. arXiv preprint arXiv:1807.00297, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and generaliza-
tion in deep neural networks. In International Conference on Machine Learning, pp. 10462–10472.
PMLR, 2020.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Nenghai Yu, and Tie-Yan Liu. Capacity control
of relu neural networks by basis-path norm. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 5925–5932, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine Learning, 109(3):467–492, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROPERTIES OF FUNCTION g

Recall that the function g : [0, π) → [0, π) is defined as (see Lemma 3.1)

g(z) = arccos

(
π − z

π
cos z +

1

π
sin z

)
, (11)

Figure 4 shows the plot of this function. From the plot, we can easily find the following properties.

Figure 4: Curve of the function g(θ). As can be seen, g(θ) is monotonic, and is approximately the
identity function y = θ in the small angle region (θ ≪ 90◦).

Proposition A.1 (Properties of g). The function g defined in Eq.(11) has the following properties:

1. g is a monotonically increasing function;

2. g(z) ≤ z, for all z ∈ [0, π); and g(z) = z if and only if z = 0;

3. for any z ∈ [0, π), the sequence {gl(z)}∞l=1 is monotonically decreasing, and has the limit
liml→∞ gl(z) = 0.

It is worth to note that the last property of g function immediately implies the collapse of embedding
vectors from different inputs in the infinite depth limit L → ∞. This embedding collapse has been
observed in prior works Poole et al. (2016); Schoenholz et al. (2016) (although by different type of
analysis) and has been widely discussed in the literature of Edge of Chaos.
Theorem A.2. Consider the same ReLU neural network as in Lemma 3.1. Given any two inputs x, z ∈
Rd, the sequence of angles between their l-embedding vectors, {θ(l)(x, z)}Ll=1, is monotonically
decreasing. Moreover, in the limit of infinite depth,

lim
L→∞

θ(L)(x, z) = 0, (12)

and there exists a vector α such that, for any input x, the last layer L-embedding

α(L)(x) = ∥x∥α. (13)

Proof of Proposition A.1. Part 1. First, we consider the auxiliary function g̃(z) = π−z
π cos z +

1
π sin z. We see that

dg̃(z)

dz
= −

(
1− z

π

)
sin z ≤ 0, ∀z ∈ [0, π).

Hence, g̃(z) is monotonically decreasing on [0, π). Combining with the monotonically decreasing
nature of the arccos function, we get that g is monotonically increasing.

Part 2. It suffices to prove that cos z ≤ g̃(z) and that the equality holds only at z = 0. For z = 0,
it is easy to check that cos z = g̃(z), as both z and sin z are zero. For z ∈ (0, π/2), noting that
tan z − z > 0, we have

g̃(z) =
π − z

π
cos z +

1

π
sin z = cos z +

1

π
(−z + tan z) cos z > cos z. (14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

For z = π/2, we have cosπ/2 = 0 < 1/π = g̃(π/2). For z ∈ (π/2, π), we have the same relation
as in Eq.(14). The only differences are that, in this case, cos z < 0 and tan z − z < 0. Therefore, we
still get g̃(z) > cos z for z ∈ (π/2, π).

Part 3. From part 2, we see that g(z) < z for all z ∈ (0, π). Hence, for any l, gl+1(z) < gl(z).
Moreover, since z = 0 is the only fixed point such that g(z) = z, in the limit l → ∞, gl(z) → 0.

B PROOF OF PROPOSITION 4.1

Proof. Consider the matrix B and the n vectors bk ≜ Bk·, k ∈ [n]. The smallest singular value
square of matrix B is defined as

σ2
min(B) = min

v ̸=0

vTBBTv

vTv
= min

v ̸=0

∥
∑

k vkbk∥2

∥v∥2
.

Since the angle ϕ between bi = Bi· and bj = Bj· is small, let v′ be the vector such that v′i = ∥bj∥,
v′j = −∥bi∥ and v′k = 0 for all k ̸= i, j. Then

σ2
min(B) ≤

∥
∑

k v
′
kbk∥2

∥v′∥2
=

∥∥∥∥∥ ∥bj∥√
∥bi∥2 + ∥bj∥2

bi −
∥bi∥√

∥bi∥2 + ∥bj∥2
bj

∥∥∥∥∥
2

=
2∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
(1− cosϕ)

=
∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
ϕ2 +O(ϕ4).

Since A = BBT , the smallest eigenvalue λmin(A) of A is the same as σ2
min(B).

On the other hand, the largest eigenvalue λmax(A) of matrix A is lower bounded by tr(A)/n. Note
that the diagonal entries Akk = ∥bk∥. Hence, c ≤ λmax(A) ≤ C. Therefore, the condition number
κ = λmax(A)/λmin(A) = Ω(1/ϕ2).

C PROOFS OF THEOREMS FOR LINEAR NEURAL NETWORK

C.1 PROOF OF THEOREM 2.2

Proof. First of all, we provide a useful lemma.

Lemma C.1. Consider a matrix A ∈ Rm×d, with each entry of A is i.i.d. drawn from N (0, 1). In
the limit of m → ∞,

1

m
ATA → Id×d, in probability. (15)

We first consider the embedding vectors ᾱ(l) and the embedding angles θ̄(l). By definition in Eq.(5),
we have, for all l ∈ [L] and input x ∈ Rd,

ᾱ(l)(x) =
1

ml/2
W (l)W (l−1) · · ·W (1)x. (16)

Note that at the network initialization entries of W (l) are i.i.d. and follows N (0, 1). Hence, the inner
product

⟨ᾱ(l)(x), ᾱ(l)(z)⟩ = 1

ml
xTW (1)T · · ·W (l−1)TW (l)TW (l)W (l−1) · · ·W (1)z

(a)
= xT z,

where in step (a) we recursively applied Lemma C.1 l times. Putting z = x, we get ∥ᾱ(l)(x)∥ = ∥x∥,
for all l ∈ [L]. By the definition of embedding angles, it is easy to check that θ̄(l)(x, z) = θin(x, z),
for all l ∈ [L].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Now, we consider the model gradient ∇f̄ and the model gradient angle ϕ̄. As we consider the model
gradient only at network initialization, we don’t explicitly write out the dependence on w0, and we
write ∇f̄(w0,x) simply as ∇f̄(x). The model gradient ∇f̄ can be decomposed as

∇f̄(x) = (∇1f̄(x),∇2f̄(x), · · · ,∇L+1f̄(x)), with∇lf̄(x) =
∂f̄(x)

∂W (l)
,∀l ∈ [L+ 1]. (17)

Hence, the inner product

⟨∇f̄(x),∇f̄(z)⟩ =
L+1∑
l=1

⟨∇lf̄(x),∇lf̄(z)⟩,

and for all l ∈ [l + 1],

⟨∇lf̄(x),∇lf̄(z)⟩ = ⟨ᾱ(l−1)(x), ᾱ(l−1)(z)⟩ · ⟨
L+1∏

l′=l+1

1√
m
W (l′)T ,

L+1∏
l′=l+1

1√
m
W (l′)T ⟩ (b)

= xT z.

Here in step (b), we again applied Lemma C.1. Therefore,

⟨∇f̄(x),∇f̄(z)⟩ = (L+ 1)xT z. (18)
Putting z = x, we get ∥∇f(x)∥ = (L+ 1)∥x∥. By the definition of model gradient angle, it is easy
to check that ϕ̄(x, z) = θin(x, z).

D PROOFS OF THEOREMS FOR RELU NETWORK

D.1 PRELIMINARY RESULTS

Before the proofs, we introduce some useful notations and lemmas. The proofs of these lemmas are
deferred to Appendix E.

Given a vector v ∈ Rp, we define the following diagonal indicator matrix:
I{v≥0} = diag

(
I{v1≥0}, I{v2≥0}, · · · , I{vp≥0}

)
, (19)

with

I{vi≥0} =

{
1 vi ≥ 0,
0 vi < 0.

Lemma D.1. Consider two vectors v1,v2 ∈ Rp and a p-dimensional random vector w ∼
N (0, Ip×p). Denote θ as the angle between v1 and v2, i.e., cos θ = ⟨v1,v2⟩

∥v1∥∥v2∥ . Then, the prob-
ability

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] =
1

2
− θ

2π
. (20)

Lemma D.2. Consider two arbitrary vectors v1,v2 ∈ Rp and a random matrix W ∈ Rq×p with
entries Wij i.i.d. drawn from N (0, 1). Denote θ as the angle between v1 and v2, and define
u1 =

√
2√
qσ(Wv1) and u2 =

√
2√
qσ(Wv2). Then, in the limit of q → ∞,

⟨u1,u2⟩ =
1

π
((π − θ) cos θ + sin θ) ∥v1∥∥v2∥. (21)

Lemma D.3. Consider two arbitrary vectors v1,v2 ∈ Rp and two random matrices U ∈ Rs×q and
W ∈ Rq×p, where all entries Uij , i ∈ [s] and j ∈ [q], and Wkl, k ∈ [q] and l ∈ [p], are i.i.d. drawn
from N (0, 1). Denote θ as the angle between v1 and v2, and define matrices A1 =

√
2√
qUI{Wv1≥0}

and A2 =
√
2√
qUI{Wv2≥0}. Then, in the limit of q → ∞, the matrix

A1A
T
2 =

π − θ

π
Is×s. (22)

Lemma D.4. Consider matrix B = AAT with A ∈ Rn×p and a random matrix W ∈ Rq×p where
all entries of W are i.i.d. drawn from N (0, 1). Define the tensor A′ ∈ Rn×p×q, such that A′

ikl :=√
2AikI{Wl:Ai:≥0}. Let B′ ∈ Rn×n be the matrix such that each entry B′

ij =
∑

k,l A
′
iklA

′
jkl. Then,

in the limit of q → ∞, the smallest and largest eigenvalues satisfy: λmin(B
′) > λmin(B), and

λmax(B
′) < λmax(B).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D.2 PROOF OF LEMMA 3.1

Proof. Consider an arbitrary layer l ∈ [L] of the ReLU neural network f at initialization. Given
two arbitrary network inputs x, z ∈ Rd, the inputs to the l-th layer are α(l−1)(x)) and α(l−1)(z)),
respectively.

By definition, we have

α(l)(x) =

√
2

m
σ
(
W (l)α(l−1)(x)

)
, α(l)(z) =

√
2

m
σ
(
W (l)α(l−1)(z)

)
, (23)

with entries of W (l) being i.i.d. drawn from N (0, 1). Recall that, by definition, the angle between
α(l−1)(x)) and α(l−1)(z)) is θ(l−1)(x, z). Applying Lemma D.2, we immediately have the inner
product

⟨α(l)(z), α(l)(x)⟩ =1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
× ∥α(l−1)(x)∥∥α(l−1)(z)∥. (24)

In the special case of x = z, we have θ(l−1)(x, z) = 0, and obtain from the above equation that

∥α(l)(x)∥2 = ∥α(l−1)(x)∥2. (25)

Apply Eq.(25) back to Eq.(24), we also get

cos θ(l)(x, z) =
⟨α(l)(z), α(l)(x)⟩
∥α(l)(x)∥∥α(l)(z)∥

=
1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
(26)

That is θ(l)(x, z) = g(θ(l−1)(x, z)). Recursively apply this relation, we obtain the desired result.

D.3 PROOF OF THEOREM 3.2

Proof. By Lemma 3.1, we have that

cos θ(l)(x, z) =

(
1− θ(l−1)(x, z)

π

)
cos θ(l−1)(x, z) +

1

π
sin θ(l−1)(x, z)

= cos θ(l−1)(x, z)

(
1 +

1

π

(
tan θ(l−1)(x, z)− θ(l−1)(x, z)

))
= cos θ(l−1)(x, z)

(
1 +

1

3π
(θ(l−1)(x, z))3 + o

(
(θ(l−1)(x, z))3

))
.

Noting that the Taylor expansion of the cos function at zero is cos z = 1 − 1
2z

2 + o(z3), one can
easily check that, for all l ∈ [L],

θ(l)(x, z) = θ(l−1)(x, z)− 1

3π
(θ(l−1)(x, z))2 + o

(
(θ(l−1)(x, z))2

)
. (27)

Note that θ(l)(x, z) ≤ θ(l−1)(x, z) = o(1/L). Iteratively apply the above equation, one gets, for all
l ∈ [L], if θ(0)(x, z) = o(1/L),

θ(l)(x, z) = θ(0)(x, z)− l

3π
(θ(0)(x, z))2 + o

(
(θ(0)(x, z))2

)
. (28)

D.4 PROOF OF LEMMA 3.3

Proof. The model gradient ∇f(x) is composed of the components ∇lf(x) ≜
∂f
∂W l , for l ∈ [L+ 1].

Each such component has the following expression: for l ∈ [L+ 1]

∇lf(x) = α(l−1)(x)δ(l)(x), (29)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where

δ(l)(x) =

(
2

m

)L−l+1
2

W (L+1)I{α̃(L)(x)≥0}W
(L)I{α̃(L−1)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0}. (30)

Note that in Eq.(29), ∇lf(x) is an outer product of a column vector α(l−1)(x) ∈ Rml−1×1 (ml−1 = d
if l = 1, and ml−1 = m otherwise) and a row vector δ(l)(x) ∈ R1×ml (ml = 1 if l = L + 1, and
ml = m otherwise).

First, we consider the inner product ⟨∇lf(z),∇lf(x)⟩, for l ∈ [L+ 1].1 By Eq.(29), we have

⟨∇lf(z),∇lf(x)⟩ = ⟨δ(l)(z), δ(l)(x)⟩ · ⟨α(l−1)(z), α(l−1)(x)⟩. (31)

For ⟨α(l−1)(z), α(l−1)(x)⟩, applying Lemma 3.1, we have

⟨α(l−1)(z), α(l−1)(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z). (32)

For ⟨δ(l)(z), δ(l)(x)⟩, by definition Eq.(30), we have

⟨δ(l)(z), δ(l)(x)⟩ =
(

2

m

)L−l+1

×W (L+1)I{α̃(L)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0,α̃(l)(z)≥0}W
(l+1)T︸ ︷︷ ︸

A

· · · I{α̃(L)(z)≥0}W
(L+1)T

Recalling that α̃(l) = W (l)α̃(l−1) and applying Lemma D.3 on the the term A above, we obtain

⟨δ(l)(z), δ(l)(x)⟩ = π − θ(l−1)(x, z)

π
⟨δ(l+1)(z), δ(l+1)(x)⟩.

Recursively applying the above formula for l′ = l, l + 1, · · · , L, and noticing that δ(L+1) = 1, we
have

⟨δ(l)(z), δ(l)(x)⟩ =
L+1∏

l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (33)

Combining Eq.(31), (32) and (33), we have

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z)

L−1∏
l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (34)

For the inner product between the full model gradients, we have

⟨∇f(z),∇f(x)⟩ =
L+1∑
l=1

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥
L∑

l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(
1− θ(l

′)(x, z)

π

)]
.

(35)
Putting x = z in the above equation, we have θ(l)(x, z) = 0 for all l ∈ [L], and obtain

∥∇f(x)∥2 = ∥x∥2 · (L+ 1). (36)

Hence, we have

cosϕ(x, z) =
⟨∇f(z),∇f(x)⟩
∥∇f(x)∥∥∇f(z)∥

=
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (37)

1With a bit of abuse of notation, we refer to the flattened vectors of ∇lf in the inner product.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.5 PROOF OF THEOREM 3.4

Proof. For simplicity of notation, we don’t explicitly write out the dependent on the inputs x, z, and
write θ(l) ≜ θ(l)(x, z), and ϕ ≜ ϕ(x, z). We start the proof with the relation provided by Lemma 3.3.

cosϕ(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)

L−1∏
l′=l

(1− θ(l
′)/π)

]
(a)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

π
tan θ(l

′) − 1

π
θ(l

′)

) L−1∏
l′=l

(1− θ(l
′)/π)

]
(b)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

3π
(θ(l

′))3 + o(θ(l
′))3
) L−1∏

l′=l

(1− θ(l
′)/π)

]
(c)
=

cos θ(0)

L+ 1

L∑
l=0

[
l−1∏
l′=0

(
1 +

1

3π
(θ(0))3 + o(θ(0))3

)

×
L−1∏
l′=l

(
1− 1

π
θ(0) +

l′

3π2
(θ(0))2 + o((θ(0))2)

)]

=
cos θ(0)

L+ 1

L∑
l=0

(
1− L− l

π
θ(0) +

(L− l)(2L− l − 2)

3π2
(θ(0))2 + o((θ(0))2)

)
= cos θ(0)

(
1− L

2
θ(0) + o(θ(0))

)
.

D.6 PROOF OF THEOREM 4.2

Proof. First of all, we note that in scenario (b), i.e., the network with all ReLU activation removed,
the network simply becomes a linear neural network (while with the same trainable parameters W (1)

as the ReLU network in scenario (a)). By the analysis in Section 2.1, we can easily see that the NTK
matrix in scenario (b) is equivalent to the Gram matrix G, and κb = κ0. Hence, whenever comparing
the two scenarios, it suffices to compare the NTK K (and its condition number κ) of ReLU network
with the Gram matrix G (and its condition number κ0).

We prove the theorem by induction.

Base case: ReLU neural network of depth L = 1. First, consider the shallow ReLU neural
network

f(W ;x) =

√
2√
m
vTσ(Wx), (38)

where W are the trainable parameters.

The model gradient, for an arbitrary input x, can be written as

∇f(x) = xδ(x) ∈ Rd×m, (39)

where δ(x) ∈ R1×m has the following expression

δ(x) =

√
2

m
vT I{Wx≥0}.

At initialization, W is a random matrix. Recall that the NTK K = FFT , where the gradient feature
matrix F consist of the gradient feature vectors ∇f(x) for all x for the dataset. Applying Lemma
C.1 in the limit of m → ∞, we have that each entry Kij is equivalent to

∑
k,l A

′
iklA

′
jkl, with

A′
ikl :=

√
2XikI{Wl:Xi:≥0}, where X ∈ Rn×d is the matrix of input data. Then apply Lemma D.4,

we immediately have that

λmin(K) > λmin(G), λmax(K) < λmax(G).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hence, we have that κa < κb.

In addition, note that this network has one hidden layer, and that the “zero-hidden layer” network is
just simply the linear model. For linear model, the NTK is simply the Gram matrix. Hence, for the
base case, we have κf1 < κf2 = κ0, with network f1 of depth 1 and network f2 of depth 0.

Induction hypothesis. Suppose that, for a ReLU network fL−1 of depth L− 1, its NTK condition
number κL−1 is strictly smaller than κ0.

Induction step. Now, let’s consider the two ReLU networks fL of depth L and fL−1. It is suffices
to prove that κL < κL−1. The model gradients, for any given input x, can be written as:

∇fL(x) = xδL(x) ∈ Rd×m, ∇fL−1(x) = xδL−1(x) ∈ Rd×m,

where

δL(x) =

√
2

m
W (L+1)I{W (L)α(L−1)≥0}

√
2

m
W (L)I{W (L−1)α(L−2)≥0} · · ·

√
2

m
W (2)I{W (1)α(0)≥0}

δL−1(x) =

√
2

m
W (L)I{W (L−1)α(L−2)≥0} · · ·

√
2

m
W (2)I{W (1)α(0)≥0}

Note that the matrix W (L) has different dimensions for fL and fL−1.

Using the same argument as in the base case, as well as applying Lemma C.1 when contracting the
δ(x)’s, we directly obtain κL < κL−1.

D.7 PROOF OF THEOREM 4.3

Proof. First, let’s consider the scenario (a), i.e. the ReLU network with ReLU unremoved. According
to the definition of NTK and Lemma 3.3, the NTK matrix K for this dataset D = {(x1, y1), (x2, y2)}
is (NTK is normalized by the factor 1/(L+ 1)2):

K =

(
∥∇f(x1)∥2 ⟨∇f(x1),∇f(x2)⟩

⟨∇f(x2),∇f(x1)⟩ ∥∇f(x2)∥2
)

=

(
∥x1∥2 ∥x1∥∥x2∥ cosϕ

∥x1∥∥x2∥ cosϕ ∥x2∥2
)
.

The eigenvalues of the NTK matrix K are given by

λ1(K) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
, (40a)

λ2(K) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
. (40b)

In the scenario (b), the ReLU activation is removed in the network, resulting in a linear neural network.
In this case, the NTK is equivalent to the Gram matrix G, as given by Corollary 2.3. We have

G =

(
∥x1∥2 xT

1 x2

xT
1 x2 ∥x2∥2

)
=

(
∥x1∥2 ∥x1∥∥x2∥ cos θin

∥x1∥∥x2∥ cos θin ∥x2∥2
)
,

and its eigenvalues as

λ1(G) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
,

λ2(G) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
.

By Theorem 3.4, we have cosϕ < cos θin, when θin = o(1) and θin ̸= 0. Hence, we have the
following relations

λ1(G) > λ1(K) > λ2(K) > λ2(G),

which immediately implies κa < κb.

When comparing ReLU networks with different depths, i.e., network f1 with depth L1 and network
f2 with depth L2 with L1 > L2, notice that in Eq.(40) the top eigenvalue λ1 monotonically decreases
in ϕ, and the bottom (smaller) eigenvalue λ2 monotonically increases in ϕ. By Theorem 3.4, we

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

know that the deeper ReLU network f1 has a better data separation than the shallower one f2, i.e.,
ϕf1 > ϕf2 . Hence, we get

λ1(Kf2) > λ1(Kf1) > λ2(Kf1) > λ2(Kf2). (41)

Therefore, we obtain κf1 < κf2 . Namely the deeper ReLU network has a smaller NTK condition
number.

E TECHNICAL PROOFS

E.1 PROOF OF LEMMA C.1

Proof. We denote Aij as the (i, j)-th entry of the matrix A. Therefore, (ATA)ij =
∑m

k=1 AkiAkj .
First we find the mean of each (ATA)ij . Since Aij are i.i.d. and has zero mean, we can easily see
that for any index k,

E[AkiAkj] =

{
1, if i = j

0, otherwise
.

Consequently,

E[(
1

m
ATA)ij] =

{
1, if i = j

0, otherwise
.

That is E[1mATA] = Id.

Now we consider the variance of each (ATA)ij . If i ̸= j we can explicitly write,

V ar

[
1

m
(ATA)ij

]
=

1

m2
· E

[
m∑

k1=1

m∑
k2=1

Ak1iAk1jAk2iAk2j

]

=
1

m2
·

m∑
k1=1

m∑
k2=1

E [Ak1iAk1jAk2iAk2j]

=
1

m2

 m∑
k=1

E
[
A2

kiA
2
kj

]
+
∑

k1 ̸=k2

E [Ak1iAk1jAk2iAk2j]

=

1

m2

 m∑
k=1

E
[
A2

ki

]
E
[
A2

kj

]
+
∑

k1 ̸=k2

E[Ak1i]E[Ak1j]E[Ak2i]E[Ak2j]

=

1

m2
· (m+ 0) =

1

m
.

In the case of i = j, then,

V ar

[
1

m
(ATA)ii

]
=

1

m2
· V ar

[
m∑

k=1

A2
ki

]
=

1

m2
·

m∑
k=1

V ar
[
A2

ki

] (a)
=

1

m2
(m · 2) = 2

m
. (42)

In the equality (a) above, we used the fact that A2
ki ∼ χ2(1). Therefore, limm→∞ V ar(1

m (ATA)) =
0.

Now applying Chebyshev’s inequality we get,

Pr(| 1
m
ATA− Id| ≥ ϵ) ≤

V ar(1
m (ATA))

ϵ
(43)

Obviously for any ϵ ≥ 0 as m → ∞, the R.H.S. goes to zero. Thus, 1
mATA → Id×d, in probability.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.2 PROOF OF LEMMA D.1

Proof. Note that the random vector w is isotropically distributed and that only inner products wTv1

and wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).

In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (44)

Then,

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] = P[(w̃Tv1 ≥ 0) ∧ (w̃Tv2 ≥ 0)] =
1

2π

∫ π
2

θ−π
2

dω =
1

2
− θ

2π
.

E.3 PROOF OF LEMMA D.2

Proof. Note that the ReLU activation function σ(z) can be written as zIz≥0. We have,

⟨u1,u2⟩ =
2

q
vT
1 W

T I{Wv1≥0,Wv2≥0}Wv2

=
2

q

q∑
i=1

vT
1 (Wi·)

T I{Wi·v1≥0,Wi·v2≥0}Wi·v2

q→∞
= 2Ew∼N (0,Ip×p)[v

T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

Note that the random vector w is isotropically distributed and that only inner products wTv1 and
wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).

In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (45)

Then, in the limit of q → ∞,

⟨u1,u2⟩ = 2Ew∼N (0,Ip×p)[v
T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

= 2Ew̃∼N (0,I2×2)[v
T
1 w̃I{w̃Tv1≥0,w̃Tv2≥0}w̃

Tv2]

= 2∥v1∥∥v2∥ · Ew̃∼N (0,I2×2)[∥w̃∥2] · 1

2π

∫ π
2

θ−π
2

cosω cos(θ − ω)dω

= 2∥v1∥∥v2∥ · 2 ·
1

4π
((π − θ) cos θ + sin θ)

= ∥v1∥∥v2∥
1

π
((π − θ) cos θ + sin θ) .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.4 PROOF OF LEMMA D.3

Proof.

A1A
T
2 =

2

q

q∑
k=1

U·kI{Wk·v1≥0,Wk·v2≥0}(U·k)
T

q→∞
= 2 · Eu∼N (0,Is×s),w∼N (0,Ip×p)[uu

T I{wTv1≥0,wTv2≥0}]

(a)
= 2 · Eu∼N (0,Is×s)[uu

T] · Ew∼N (0,Ip×p)[I{wTv1≥0,wTv2≥0}]

= 2 · Eu∼N (0,Is×s)[uu
T] · P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)]

(b)
=

π − θ

π
Is×s.

In the step (a) above, we used the fact that U is independent of W , v1 and v2. In the step (b) above,
we applied Lemma D.1, and used the fact that Eu∼N (0,Is×s)[uu

T] = Is×s.

E.5 PROOF OF LEMMA D.4

Proof. Starting from the definition of the smallest eigenvalue, we have that λmin(B
′) satisfies

λmin(B
′) = min

u̸=0

uTB′u

∥u∥2

= min
u̸=0

∑q
l=1

∑p
k=1(

∑n
i=1

√
2uiAikI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

= min
u̸=0

q∑
l=1

∑n
i=1 2(uiI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

∑p
k=1(

∑n
i=1

√
2uiAikI{Wl:Ai:≥0})

2∑n
i=1 2(uiI{Wl:Ai:≥0})2

(a)
> min

u̸=0

q∑
l=1

∑n
i=1 2(uiI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

λmin(B). (46)

In the inequality (a) above, we made the following treatment: for each fixed l, we consider
uiI{Wl:Ai:≥0} as the i-th component of a vector u′

l; by definition, the minimum eigenvalue of
matrix B = AAT

λmin(B) = min
u′ ̸=0

(u′)TBu′/∥u′∥2 ≤ (u′
j)

TBu′
j/∥u′

j∥2, ∀j; (47)

moreover, this ≤ inequality becomes equality, if and only if all u′
j are the same and equal to

argminu′ ̸=0(u
′)TGu′/∥u′∥2. It is easy to see, when the dataset is not degenerate, for different j,

u′
j are different, hence only the strict inequality < holds in step (a).

Continuing from Eq.(46), we have

λmin(B
′) > min

u̸=0

q∑
l=1

∑n
i=1 2(uiI{{Wl:Ai:≥0})

2∑n
i=1 u

2
i

λmin(B)

= min
u̸=0

∑n
i=1 2u

2
i

∑q
l=1 I{{Wl:Ai:≥0})∑n
i=1 u

2
i

λmin(B)

= min
u̸=0

∑n
i=1 u

2
i∑n

i=1 u
2
i

λmin(B) = λmin(B).

Therefore, we have that λmin(B
′) > λmin(B).

As for the largest eigenvalue λmax(B
′), we can apply the same logic above for λmin(K) (except

replacing the min operator by max and have < in step (a)) to get λmax(B
′) < λmax(B).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7
number of hidden layers

103

104

105

106

107

108

109

1010

NT
K

co
nd

iti
on

 n
um

be
r

Sigmoid
SVHN
F-MNIST
MNIST
CIFAR-10

1 2 3 4 5 6 7
number of hidden layers

100

200

300

400

500

600

NT
K

co
nd

iti
on

 n
um

be
r

tanh
SVHN
F-MNIST
MNIST
CIFAR-10

Figure 5: NTK condition number vs. depth, for sigmoid-activated network and tanh-activated
network.

F NUMERICAL RESULTS OF OTHER ACTIVATION FUNCTIONS

In this section, we show some preliminary numerical results of some other non-linear activation
functions, although the main focus of this paper is ReLU.

Specifically, analogous to what we did for ReLU network, we compute the NTK condition number for
the following two types of non-linearly activated neural networks at random initialization: sigmoid-
activated network and tanh-activated network. In both cases, we use the same network width, 512,
as in Figure 2 for ReLU network. The scaling factor,

√
2/ml in Eq.(1), was replaced by

√
cσ/ml,

where cσ is a activation-specific constant and is defined as cσ =
(
Ex∼N (0,1)[σ(x)

2]
)−1

(see for
example Eq.(2) of Du et al. (2019)).

Figure 5 shows the dependence of the NTK condition number on the network depth. We observe that
different non-linear activation function may have different effects on the NTK condition numbers κ.
As the figure tells, tanh also helps to decrease the condition number (similar to ReLU), while sigmoid
has the opposite effect, worsening the NTK conditioning.

A theoretical analysis of these non-linear activation functions are out of the scope of this paper, but
we expect future work will theoretically clarify the exact effects of different types of non-linear
activation functions.

23

	Introduction
	Related work

	Setup and Preliminaries
	Linear neural network: the baseline for comparison

	ReLU induces better data separation in model gradient space
	ReLU induces smaller NTK condition number of NTK
	Experimental evidence

	Optimization acceleration
	Conclusion and discussions
	Properties of function g
	Proof of Proposition 4.1
	Proofs of Theorems for linear neural network
	Proof of Theorem 2.2

	Proofs of Theorems for ReLU network
	Preliminary results
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.4
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Technical proofs
	Proof of Lemma C.1
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4

	Numerical results of other activation functions

