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ABSTRACT

Non-linear activation functions are well known to improve the expressivity of
neural networks, which is the main reason of their wide implementation in neural
networks. In this work, we showcase a new and interesting property of certain
non-linear activations, focusing on the most popular example of its kind – Rectified
Linear Unit (ReLU). By comparing the cases with and without this non-linear
activation, we show that the ReLU has the following effects: (a) better data
separation, i.e., a larger angle separation for similar data in the feature space of
model gradient, and (b) better NTK conditioning, i.e., a smaller condition number
of neural tangent kernel (NTK). Furthermore, we show that the ReLU network
depth (i.e., with more ReLU activation operations) further magnifies these effects.
Note that, without the non-linear activation, i.e., in a linear neural network, the
data separation and NTK condition number always remain the same as in the case
of a linear model, regardless of the network depth. Our results imply that ReLU
activation, as well as the depth of ReLU network, helps improve the worst-case
convergence rate of GD, which is closely related to the NTK condition number.

1 INTRODUCTION

Non-linear activation functions, such as rectified linear unit (ReLU), are well known for their ability to
increase the expressivity of neural networks. A non-linearly activated neural network can approximate
any continuous function to arbitrary precision, as long as there are enough neurons in the hidden
layers (Hornik et al., 1989; Cybenko, 1989; Hanin & Sellke, 2017), while its linear counterpart –
linear neural network, which has no non-linear activation functions applied, can only represent linear
functions of the input. In addition, deeper neural networks, which have more non-linearly activated
layers, have exponentially greater expressivity than shallower ones (Telgarsky, 2015; Poole et al.,
2016; Raghu et al., 2017; Montufar et al., 2014; Wang et al., 2018), indicating that the network depth
promotes the power of non-linear activation functions.

A natural question is: Does the non-linear activation have other beneficial effects (especially on
optimization), in addition to increasing the expressivity? Our answer is yes!

In this paper, we showcase a new and interesting property of certain non-linear activations, focusing
on the ReLU instance: the ReLU non-linearity improves data separation in the feature space of model
gradient, and helps to decrease the condition number of neural tangent kernel (NTK). We also show
that the depth of the ReLU network further magnifies these effects, namely, a deeper ReLU activated
neural network has a better data separation and a smaller NTK condition number, than a shallower
one.

Specifically, we first show the better separation phenomenon, i.e., the improved data separation for
similar data in the model gradient feature space. We prove that, for an infinitely wide ReLU network
f at its random initialization, any pair of data input vectors x and z that have similar directions (i.e.,
small but non-zero angle θin between x and z) become more directionally separated in the model
gradient space (i.e., model gradient angle ϕ between ∇f(x) and ∇f(z) is larger than θin). We also
find that deeper ReLU networks result in even better data separation, i.e., larger ϕ.
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We further show the better NTK conditioning property of ReLU, i.e., smaller NTK condition number.
First, we prove that, as a consequence of the better data separation, the NTK condition number of a
infinitely wide ReLU network is strictly smaller than that of the Gram matrix, if the dataset contains
two non-degenerate samples. Moreover, as the ReLU network depth increases, the NTK condition
number monotonically decreases. Then, we remove this data size assumption on two-layer ReLU
networks, and prove the same better NTK conditioning, regardless of the data size as long as the
dataset is not degenerated. The intuition is that, if there exists a pair of similar inputs x and z in the
training set (i.e., the angle between x and z is small), which is usually the case for large datasets, then
the Gram matrix and NTK of linear neural networks must have close-to-zero smallest eigenvalues,
resulting in extremely large NTK condition numbers. The ReLU activation make these similar data
more separated (enlarges the small angles between data), hence it helps to increase the smallest
eigenvalues of NTK, which in turn leads to a smaller NTK condition number.

Note that, when the non-linear activation is absent, as in an infinitely wide linear neural network f̄
of any finite depth, the model gradient angle ϕ̄ is always equivalent to the input angle θin, and the
NTK condition number κ̄ also remains identical to κ0 of the Gram matrix. With this comparison, we
conclude that the better separation phenomenon, i.e., ϕ > θin, and the better NTK conditioning, i.e.,
κ < κ0, observed for ReLU networks, are attributed to the non-linear activation.

We experimentally verify these findings on finite but wide neural networks. It also suggests that these
results hold for finite networks.

Condition number and optimization theory. Recent optimization theories showed that the NTK
condition number, or the smallest eigenvalue of NTK, controls the theoretical convergence rate
of gradient descent algorithms on wide neural networks (Du et al., 2018; 2019; Liu et al., 2022).
Combined with these theories, our findings imply that: (a), the ReLU activation function helps
improving the worst-case convergence rate of gradient descent, and (b), deeper wide ReLU networks
have faster convergence rate than shallower ones. Experimentally, we indeed find that deeper ReLU
networks converges faster than shallower ones.

In this paper, we focus on the special case of ReLU, the most commonly used non-linear activation
function. It remains theoretically an open question what are the effects of other non-linear activations
on NTK conditioning and theoretical convergence rates. While it need different analysis techniques
and we would like to leave it as a future work, we provide some preliminary numerical results in
Appendix F. It suggests that the non-linear activation effect on the NTK conditioning can be positive
(decreasing κ, as for tanh) or negative (increasing κ, as for sigmoid). It is worth to note that, in either
case, a larger network depth, where more non-linear activation are operated, magnifies the effect.

Contributions. We summarize our contributions below. We find that:

• the ReLU non-linearity induces better separation between similar data in the feature space of model
gradient. A larger depth of the ReLU network magnifies this better separation phenomenon.

• ReLU non-linearity has the effect of decreasing the condition number of the NTK matrix. A larger
depth of the ReLU network further enhances this better NTK conditioning property.

• This better NTK conditioning property leads to faster convergence rate of gradient descent. We
empirically verify this on various real world datasets.

The paper is organized as follow: Section 2 describes the setting and defines the key quantities
and concepts, and analyzes linear neural networks as the baseline for comparison; Section 3 and
4 discuss our main results on the better separation and better conditioning of ReLU non-linear
activation, respectively; Section 5 discusses the implication on theoretical convergence rates; Section
6 concludes the paper. Proofs of theorems and main corollaries can be found in the appendix.

1.1 RELATED WORK

Studying a specific type of non-linear activation function, especially ReLU, is a common setting in
the literature. This is largely due to the fact that ReLU has emerged to be the dominant choice of
activation functions in neural networks used in practice, since Nair & Hinton (2010); Krizhevsky
et al. (2012). ReLU activated neural networks have received wide research attention, ranging from
optimization (Li & Yuan, 2017; Du et al., 2018; Zou et al., 2020), expressivity (Hanin & Sellke, 2017;
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Yarotsky, 2017; Wang et al., 2018), generalization (Zheng et al., 2019; Ji & Telgarsky, 2019; Cao &
Gu, 2020), etc.

NTK and its spectrum have been extensively studied (Lee et al., 2019; Bietti & Mairal, 2019; Liu
et al., 2020; Fan & Wang, 2020; Geifman et al., 2020; Xiao et al., 2020; Nguyen et al., 2021; Belfer
et al., 2021; Chen & Xu, 2021), since the discovery of constant NTK for infinitely wide neural
networks (Jacot et al., 2018). Velikanov & Yarotsky (2021) shows that the NTK spectrum of an
infinitely wide ReLU network asymptotically exhibits a power law. Its distribution is further shown
to be similar to that of Laplace kernel (Geifman et al., 2020; Chen & Xu, 2021), and can be computed
(Fan & Wang, 2020). Nguyen et al. (2021) analyzed the upper and lower bounds for the smallest NTK
eigenvalue in O() and Ω(), respectively. With the assumption of spherically uniformly distributed
data where the spectrum of (elementary-wise) power of the Gram matrix becomes simplified, Murray
et al. (2023), utilizing Hermite polynomials and power series expansion of NTK, provides the order
of the smallest eigenvalue of the NTK of two-layer ReLU network in the infinite width limit. Under
the same data setting, Basri et al. (2019) computed the NTK eigenvalues for the two-layer ReLU
network. Relying on the values of off-diagonal entries of the NTK matrix in the infinite depth limit,
another work Xiao et al. (2020) analyzed the asymptotic dependence of the NTK condition number on
the network depth L for ReLU networks, which shows a decreasing trend as L increases, consistent
with our result.

In contrast to prior works, we are able to distill the effect of ReLU activation function via a sharp
comparison between scenarios with and without ReLU, at any finite depth without data distribution
assumption. Note that, without an assumption on data distribution, NTK spectral analysis becomes
much harder and many data-distribution-dependent results may not hold any more. Moreover, at finite
depth, off-diagonal entries of the NTK matrix has not converged and are typically quite different
from its infinite depth limit, which makes analysis even harder.

We are aware of a prior work (Arora et al., 2018) which has results of similar flavor. It shows that the
depth of a linear neural network may help to accelerate optimization via an implicit pre-conditioning
of gradient descent. We note that this prior work is in an orthogonal direction, as its analysis is based
on the linear neural network, which is activation-free, while our work focus on the better-conditioning
effect of ReLU activation function.

2 SETUP AND PRELIMINARIES

Notations for general purpose. We denote the set {1, 2, · · · , n} by [n]. We use bold lowercase
letters, e.g., v, to denote vectors, and capital letters, e.g., A, to denote matrices. Given a vector, ∥ · ∥
denotes its Euclidean norm. Inner product between two vectors is denoted by ⟨·, ·⟩. Given a matrix A,
we denote its i-th row by Ai:, its j-th column by A:j , and its entry at i-th row and j-th column by
Aij . We also denote the expectation (over a distribution) of a variable by E[·], and the probability of
an event by P[·]. For a model f(w;x) which has parameters w and takes x as input, we use ∇f to
denote its first derivative w.r.t. the parameters w, i.e., ∇f := ∂f/∂w.

(Fully-connected) ReLU neural network. Let x ∈ Rd be the input, ml be the width (i.e., number
of neurons) of the l-th layer, W (l) ∈ Rml×ml−1 , l ∈ [L+ 1], be the matrix of the parameters at layer
l, and σ(z) = max{0, z} be the ReLU activation function. A (fully-connected) ReLU neural network
f , with L hidden layers, is defined as:

α(0)(x) = x

α(l)(x) =

√
2

√
ml

σ
(
W (l)α(l−1)(x)

)
, ∀l ∈ {1, 2, · · · , L}, (1)

f(x) = W (L+1)α(L)(x).

We also denote α̃(l)(x) ≜
√
2√
ml

W (l)α(l−1)(x). Following the NTK initialization scheme (Jacot et al.,
2018), these parameters are randomly initialized i.i.d. according to the normal distribution N (0, 1).
The scaling factor

√
2/
√
ml is introduced to normalize the hidden neurons (Du et al., 2019). We

denote the collection of all the parameters by w.
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Without loss of generality, we set the layer widths as
m0 = d, mL+1 = 1, and ml = m, for l ∈ [L]. (2)

and call m as the network width.

Gradient feature and neural tangent kernel (NTK). Given a model f (e.g., a neural network)
with parameters w, we consider the vector ∇f(w;x) is the gradient feature for the input x. The
NTK K is defined as

K(w;x1,x2) = ⟨∇f(w;x1),∇f(w;x2)⟩, (3)
where x1 and x2 are two arbitrary network inputs. For a given dataset D = {(xi, yi)}ni=1, there is a
gradient feature matrix F such that each row Fi·(w) = ∇f(w;xi) for all i ∈ [n]. The n× n NTK
matrix K(w) is defined such that its entry Kij(w), i, j ∈ [n], is K(w;xi,xj). It is easy to see that
the NTK matrix

K(w) = F (w)F (w)T . (4)
Note that the NTK for a linear model reduces to the Gram matrix G.

Infinite width limit. Recent discovery is that, when m is sufficiently large or infinite, the NTK and
gradient feature becomes almost constant during training by gradient descent (Jacot et al., 2018; Liu
et al., 2020). Hence, it suffices to analyze these quantities only at the network initialization, which
shall extend to all the optimization procedure.

For theoretical analysis, following Jacot et al. (2018), we focus on the infinite network width limit,
while let the network depth L being a fixed constant. Specifically, the width of each hidden layer
goes to infinity successively. This setting allows us to analyze the NTK in a cleaner way without
worrying about the uncertainty arising from different random seeds of network initialization. The
difference of NTKs between infinite width and finite but large width is minimal Du et al. (2018), and
converge to zero Jacot et al. (2018). We use finite network width for experimental evaluations.

Linear neural network. For a comparison purpose, we also consider a linear neural network f̄ ,
which is the same as the ReLU neural network f (defined above), except that the activation function
is the identity function σ(z) = z and that the scaling factor is 1/

√
m (we adopt the network width

setting in Eq.(2)):

ᾱ(0)(x) = x, ᾱ(l)(x) =
1√
m
W (l)ᾱ(l−1)(x), ∀l ∈ {1, 2, · · · , L}, f̄(x) = W (L+1)ᾱ(L)(x). (5)

Input feature and Gram matrix. Given a dataset D = {(xi, yi)}ni=1, we denote its (input) feature
matrix by X , where each row Xi· = xT

i . The Gram matrix is defined as G = XXT ∈ Rd×d, with
each Gij = xT

i xj .

Condition number. The condition number κ of a positive definite matrix A is defined as the ratio
between its maximum eigenvalue and minimum eigenvalue:

κ = λmax(A)/λmin(A). (6)

Embedding angle and model gradient angle. For a specific input x, we call the vector α(l)(x)
as the l-embedding of x. We also call ∇f , i.e., the derivative of model f with respect to all its
parameters, as the model gradient. In the following analysis, we frequently use the following concepts:
embedding angle and model gradient angle.
Definition 2.1 (embedding angle and model gradient angle). Given two arbitrary inputs x, z ∈
Rd, define the l-embedding angle, θ(l)(x, z) ≜ arccos

(
⟨α(l)(x),α(l)(z)⟩

∥α(l)(x)∥∥α(l)(z)∥

)
, as the angle be-

tween the l-embedding vectors α(l)(x) and α(l)(z), and the model gradient angle, ϕ(x, z) ≜

arccos
(

⟨∇f(x),∇f(z)⟩
∥∇f(x)∥∥∇f(z)∥

)
, as the angle between the model gradient vectors ∇f(x) and ∇f(z).

We also denote θ(0) by θin, as θ(0) is just the angle between the original inputs.

In the rest of the paper, we specifically refer the NTK matrix, NTK condition number, l-embedding
angle and model gradient angle for the ReLU neural network as K, κ, θ(l) and ϕ, respectively, and
refer their linear neural network counterparts as K̄, κ̄, θ̄(l) and ϕ̄, respectively. We also denote the
condition number of Gram matrix G by κ0.
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2.1 LINEAR NEURAL NETWORK: THE BASELINE FOR COMPARISON

To distill the effect of the non-linear activation function, we need a activation-free case as the baseline
for comparison. This baseline is the linear neural network f̄ , with the same width and depth as f .

Theorem 2.2. Consider the linear neural network f̄ as defined in Eq.(5). In the limit of infinite
network width m → ∞ and at network initialization w0, the following relations hold:

• for any input x ∈ Rd: ∥ᾱ(l)(x)∥ = ∥x∥, ∀l ∈ [L]; and ∥∇f(w0;x)∥ = (L+ 1)∥x∥.

• for any inputs x, z ∈ Rd: θ̄(l)(x, z) = θin(x, z), ∀l ∈ [L]; and ϕ̄(x, z) = θin(x, z).

This theorem states that, without a non-linear activation function, both the feature embedding maps
α(l) : x 7→ α(l)(x) and the model gradient map ∇f : x 7→ ∇f(x) fail to change the geometrical
relationship between any data samples. For any input pairs, the embedding angles θ̄(l) and ϕ̄ remain
the same as the input angle θin. Therefore, it is not surprising that the NTK of a linear network is the
same as the Gram matrix (up to a constant factor), as formally stated in the following corollary.

Corollary 2.3 (NTK condition number of linear networks). Consider a linear neural network f̄ as
defined in Eq.(5). In the limit of infinite network width m → ∞ and at network initialization, the
NTK matrix K̄ = (L+ 1)2G. Moreover, κ̄ = κ0.

This corollary tells that, for a linear neural network, regardless of its depth L, the NTK condition
number κ̄ is always equal to the condition number κ0 of the Gram matrix G. Therefore, any non-zero
deviations, δϕ ≜ ϕ − θin from the input angle θin, and δκ ≜ κ − κ0 from the Gram condition
number κ0, observed for a non-linearly activated network f , should be attributed to the corresponding
non-linear activation.

3 RELU INDUCES BETTER DATA SEPARATION IN MODEL GRADIENT SPACE

In this section, we show that the ReLU non-linearity helps data separation in the model gradient
space. Specifically, for two arbitrary inputs x and z with small θin(x, z), we show that the model
gradient angle ϕ(x, z) is strictly larger than θin(x, z), implying a better angle separation of the two
data points in the model gradient space. Moreover, we show that the model gradient angle ϕ(x, z)
monotonically increases with the number of layers L, indicating that deeper network (more ReLU
non-linearity) has better angle separation.

Embedding vectors and embedding angles. We start with investigating the relations among the
l-embedding vectors α(l) and the embedding angles θ(l).

Lemma 3.1. Consider the ReLU network f defined in Eq.(1) at its initialization, and define function
g : [0, π) → [0, π) as g(z) = arccos

(
π−z
π cos z + 1

π sin z
)
. In the infinite network width limit

m → ∞, for all l ∈ [L], the following relations hold:

• for any input x ∈ Rd, ∥α(l)(x)∥ = ∥x∥;

• for any two inputs x, z ∈ Rd, θ(l)(x, z) = g
(
θ(l−1)(x, z)

)
. Let gl(·) be the l-fold composi-

tion of g(·), then
θ(l)(x, z) = gl (θin(x, z)) . (7)

The lemma states that, during forward propagation, the l-embedding vectors for each input keeps
unchanged in magnitude, and the embedding angles θ(l) between any two inputs are governed by the
closed form function g. Please see Appendix A for the plot of the function and detailed discussion
about its properties. As a highlight, g has the following property: g is approximately the identity
function g(z) ≈ z for small z, i.e., z ≪ 1. This property directly implies the following theorem.

Theorem 3.2. Given any inputs x, z such that θin(x, z) = o(1), for each l ∈ [L], the l-embedding
angle θ(l)(x, z) can be expressed as

θ(l)(x, z) = θin(x, z)−
l

3π
(θin(x, z))

2 + o
(
(θin(x, z))

2
)
.

5
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Figure 1: Model gradient angles ϕ vs. input angle θin (according to Lemma 3.3). Linear neural
networks, of any depth L, always have ϕ̄ = θin, as the black dash line showed. ReLU neural networks
with various depths have better data separation ϕ > θin for similar data (i.e., small θin). Moreover,
deeper ReLU networks have better separation than shallow ones for similar data. All neural networks
are infinitely wide.

We see that, at the small angle regime θin = o(1), the embedding angles θ(l) at any layer l is the
same as the input angle θin at the lowest order. In addition, the higher order corrections are always
negative making θ(l) < θin. We also note that the correction term ∆θ(l) ≜ θ(l) − θin is linearly
dependent on layer l at its lowest order.

Model gradient angle. Now, we investigate the model gradient angle ϕ and its relation with the
embedding angles θ(l) and input angle θin, for the ReLU network.
Lemma 3.3. Consider the ReLU network defined in Eq.(1) with L hidden layers and infinite network
width m. Given two arbitrary inputs x and z, the angle ϕ(x, z) between the model gradients ∇f(x)
and ∇f(z) satisfies

cosϕ(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (8)

Moreover, ∥∇f(x)∥ = (L+ 1)∥x∥, for any x.

Better data separation with ReLU. Comparing with Theorem 2.2 for linear neural networks, we
see that the non-linear ReLU activation only affects the relative direction, but not the the magnitude,
of the model gradient. Combining Lemmas 3.3 and 3.1, we get the relation between ϕ and the input
angle θin. Figure 1 plots ϕ as a function of θin for different network depth L.

The key observation is that: for relatively small input angles (say θin < 60◦), the model gradient
angle ϕ is always greater than the input angle θin. This suggests that, after the mapping ∇f : x 7→
∇f(x) from the input space to model gradient space, data inputs becomes more (directionally)
separated, if they are similar in the input space (i.e., with small θin). Comparing to the linear neural
network case, where ϕ̄(x, z) = θin(x, z) as in Theorem 2.2, we see that the ReLU non-linearity
results in a better angle separation ϕ(x, z) > ϕ̄(x, z) for similar data.

Another observation is that: deeper ReLU networks lead to larger model gradient angles, when
θin < 60◦. This indicates that deeper ReLU networks, which has more layers of ReLU non-linear
activation, makes the model gradient more separated between inputs. Note that, in the linear network
case, the depth does not affect the gradient angle ϕ̄.

In particular, the following theorem quantifies the better data separation in the regime of small input
angle θin = o(1).
Theorem 3.4 (Better separation with ReLU). Consider two network inputs x, z ∈ Rd, with small
input angle θin(x, z) = o(1), and the ReLU network defined in Eq.(1) with L hidden layers and

6
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infinite network width m. At the network initialization, the angle ϕ(x, z) between the model gradients
∇f(x) and ∇f(z) satisfies

cosϕ(x, z) =

(
1− L

2π
θin + o(θin)

)
cos θin. (9)

Noticing the negative sign within the factor
(
1− L

2π θin + o(θin)
)
, we know that the factor is less

than 1 and we obtain that: ϕ(x, z) > θin(x, z) = ϕ̄(x, z). Noticing the depth L dependence of this
factor, we also get that: the deeper the ReLU network (i.e., larger L) is, the larger ϕ is, in the regime
θin = o(1).

Remark 3.5 (Separation in distance). Indeed, the better angle separation discussed above implies a
better separation in Euclidean distance as well. This can be easily seen by recalling from Lemma 3.3
that the model gradient mapping ∇f preserves the norm (up to a universal factor L+ 1).

We also point out that, Figure 1 indicates that for large input angles (say θin > 60◦) the model
gradient angle ϕ is always large (greater than 60◦). Hence, non-similar data never become similar in
the model gradient feature space.

4 RELU INDUCES SMALLER NTK CONDITION NUMBER OF NTK

In this section, we show both theoretically and experimentally that, the ReLU non-linearity induces a
decrease in the NTK condition number κ. Moreover, a ReLU network with larger depth L, which
means more non-linear activations in operation, the NTK condition number κ is generically smaller.

Connection between condition number and model gradient angle. The smallest eigen-
value and condition number of NTK are closely related to the smallest model gradient angle
mini,j∈[n] ϕ(xi,xj), through the gradient feature matrix F . Think about the case if ϕ(xi,xj) = 0
(i.e., ∇f(xi) is parallel to ∇f(xj)) for some i, j ∈ [n], then F , hence NTK K, is not full rank and
the smallest eigenvalue λmin(K) is zero, leading to an infinite condition number κ. Similarly, if
mini,j∈[n] ϕ(xi,xj) is small, the smallest eigenvalue λmin(K) is also small, and condition number
κ is large, as stated in the following proposition (see proof in Appendix B).

Proposition 4.1. Consider a n × n positive definite matrix A = BBT , where matrix B ∈ Rn×d,
with d > n, is of full row rank. Suppose that there exist i, j ∈ [n] such that the angle ϕ between
vectors Bi· and Bj· is small, i.e., ϕ ≪ 1, and that there exist constant C > c > 0 such that
c ≤ ∥Bk·∥ ≤ C for all k ∈ [n]. Then, the smallest eigenvalue λmin(A) = O(ϕ2), and the condition
number κ = Ω(1/ϕ2).

Therefore, a good data angle separation in the model gradient features, i.e., mini,j∈[n] ϕ(xi,xj) not
too small, is a necessary condition such that the condition number κ is not too large. As is shown in
the last section, the ReLU non-linearity makes the samples more separated when mapped from the
input data space to the model gradient feature space. Hence, it is expected that the NTK condition
number will decrease in the presence of the ReLU non-linearity.

Smaller NTK condition number. Theoretically, we consider the infinite width limit. We require
that the dataset is not degenerated, i.e., xi ∦ xj for all i, j. This is a mild and commonly used setting
in the literature, see for example Du et al. (2018). We require that the first layer weights W (1) be
trainable and fix the other layers in the following theorem. This is also a common setting in literature
to simplify the analysis Du et al. (2018).

Theorem 4.2. Consider the ReLU network in Eq.(38) in the limit m → ∞ and at initialization. Let
the first layer weights W (1) be trainable and fix the other layers. We compare the two scenarios: (a)
the network with the ReLU activation, and (b) the network with all the ReLU activation removed.
The smallest eigenvalue λmin(K) of its NTK in scenario (a) is larger than that in scenario (b):
λmin(Ka) > λmin(Kb), and the NTK condition number κ in scenario (a) is less than that in
scenario (b): κa < κb. Moreover, for two ReLU neural networks f1 of depth L1 and f2 of depth L2

with L1 > L2, we have κf1 < κf2 .
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This theorem confirms the expectation that the NTK condition number κ should be decreased, as a
consequence of the existence of the ReLU non-linearity. This theorem also shows that the depth of
ReLU network enhances this better NTK conditioning.

The high-level intuition behind the proof of this theorem is that: the derivative of ReLU function,
σ′(z) = I{z≥0}, resembles a binary gate which has open and close states. When there are ReLU
implemented, the model gradient map ∇f : x 7→ ∇f(x) increases the directional diversity of the
vectors ∇f(x), thanks to the high dimension of model gradient space and the different activation
patterns of the hidden layer for different samples x. Hence, it is expected that the feature matrix F ,
as well as the NTK matrix K, is better conditioned.

Indeed, fixing the top layer weights is not a necessary requirement and can be removed. In our
experiments in Section 4.1 where all the layers are trainable, we observe the phenomena of better
data separation and better NTK conditioning. Theoretically, We consider the special case where the
dataset is of size 2.
Theorem 4.3. Consider a L-layer ReLU neural network f as defined in Eq.(1) in the infinite width
limit m → ∞ and at initialization. We compare the NTK condition numbers κa and κb of the two
scenarios: (a) the network with the ReLU activation, and (b) the network with all the ReLU activation
removed. Consider the dataset D = {(x1, y1), (x2, y2)} with the input angle θin between x1 and
x2 small, θin = o(1). Then, the NTK condition number κa < κb. Moreover, for two ReLU neural
networks f1 of depth L1 and f2 of depth L2 with L1 > L2, we have κf1 < κf2 .

4.1 EXPERIMENTAL EVIDENCE

Here, we experimentally show that better data separation and better conditioning happen in practice.

Dataset. We use the following datasets: synthetic dataset, MNIST (LeCun et al., 1998), FashionM-
NIST (f-MNIST) (Xiao et al., 2017), SVHN (Netzer et al., 2011) and Librispeech (Panayotov et al.,
2015). The synthetic data consists of 2000 samples which are randomly drawn from a 5-dimensional
Gaussian distribution with zero-mean and unit variance. The MNIST, f-MNIST and SVHN datasets
are image datasets where each input is an image. The Librispeech is a speech dataset including 100
hours of clean speeches. In the experiments, we use a subset of Librispeech with 50, 000 samples,
and each input is a 768-dimensional vector representing a frame of speech audio and we follow (Hui
& Belkin, 2020) for the feature extraction.

Models. For each of the datasets, we use a ReLU activated fully-connected neural network architec-
ture to process. The ReLU network has L hidden layers, and has 512 neurons in each of its hidden
layers. The ReLU network uses the NTK parameterization and initialization strategy (see (Jacot et al.,
2018)). For each dataset, we vary the network depth L from 0 to 10. Note that L = 0 corresponding
to the linear model case. In addition, for comparison, we use a linear neural network, which has the
same architecture with the ReLU network except the absence of activation function.

Results. For each dataset and given network depth L, we evaluate both the smallest pairwise model
gradient angle mini,j∈[n] ϕ(xi,xj) and the NTK condition number κ, at the network initialization.
We take 5 independent runs over 5 random initialization seeds, and report the average. In each run, we
used a A-100 GPU to compute the NTK, which took 4 ∼ 10 hours. The results are shown in Figure 2.
We compare the two scenarios of with and without the ReLU activation function. As one can easily
see from the plots, a ReLU network (depth L = 1, 2, · · · , 10) always have a better separation of data
(i.e., larger smallest pairwise model gradient angle), and a better NTK conditioning (i.e., smaller
NTK condition number), than its corresponding linear network (compare the solid line and dash line
of the same color). Furthermore, the monotonically decreasing NTK condition number shows that a
deeper ReLU network have a better conditioning of NTK.

5 OPTIMIZATION ACCELERATION

Recently studies showed strong connections between the NTK condition number and the theoretical
convergence rate of gradient descent algorithms on wide neural networks (Du et al., 2018; 2019;
Soltanolkotabi et al., 2018; Allen-Zhu et al., 2019; Zou et al., 2020; Oymak & Soltanolkotabi, 2020;
Liu et al., 2022). In Du et al. (2018; 2019), the authors derived the worst-case convergence rates

8
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Figure 2: Better separation (left) and better NTK conditioning (right) of ReLU network. Solid
lines are for ReLU networks, and dash lines are for linear networks. Left: ReLU network works
better in separating similar data, while linear network remains similar to a linear model. Right: ReLU
network has better conditioning of NTK than linear network and linear model. Note that L = 0
corresponds to the case of a linear model, and the NTK in this case is the Gram matrix.

explicitly in terms of the smallest eigenvalue of NTK λmin(K), L(wt) ≤ (1−ηλmin(K)/2)tL(w0),
where L is the square loss function and t is the time stamp of the algorithm. Later on, in Liu et al.
(2022), the NTK condition number is explicitly involved in the convergence rate:

L(wt) ≤ (1− κ−1)tL(w0). (10)

Although κ is evaluated on the whole optimization path, all these theories used the fact that NTK is
almost constant for wide neural networks and an evaluation at the initialization w0 is enough.

As a smaller NTK condition number (or larger smallest eigenvalue of NTK) implies a faster worst-
case convergence rate, our findings suggest that: (a), the ReLU activation function helps improving
the worst-case convergence rate of gradient descent, and (b), deeper wide ReLU networks have faster
convergence rate than shallower ones.

We experimentally verify this implication. Specifically, we train the ReLU networks, with depth L
ranging from 1 to 10, for the datasets MNIST, f-MNIST and Librispeech. For all the training tasks,
we use cross entropy loss as the objective function and use mini-batch stochastic gradient descent
(SGD) of batch size 500 to optimize. For each task, we find its optimal learning rate by grid search.
On MNIST and f-MNIST, we train 500 epochs, and on Librispeech, we training 2000 epochs.

The curves of training loss against epochs are shown in Figure 3. We observe that, for all these
datasets, a deeper ReLU network always converges faster than shallower ones. This is consistent with
the theoretical prediction that the deeper ReLU network, which has smaller NTK condition number,
has faster theoretical convergence rate.

6 CONCLUSION AND DISCUSSIONS

In this work, we showed the beneficial effects of ReLU non-linear activation on the data separation in
feature space and on the NTK conditioning. We also showed that more sequential ReLU activation
operations, i.e., larger network depth, magnifies these effects. As the NTK conditioning is closely
related to theoretical convergence rate of gradient descent, our findings also suggest a positive role of
the ReLU activation function in optimization theories.

Infinite depth. In this work, we focused on the finite depth scenario which is the more interesting
case from a practical point of view. Our small angle regime analysis (Theorem 3.2, 3.4 and 4.3) do
not directly extend to the infinite depth case. But, as Lemma 3.3 and Figure 1 indicate, the ϕ(θin)
function seems to converge to a step function when L → ∞, which implies orthogonality between

9
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Figure 3: Training curve of ReLU networks with different depths. On each of these datasets, we
see that deeper ReLU network always converges faster than shallower ones.

model gradient vectors, hence a NTK condition number being 1. This is consistent with the prior
knowledge that NTK converges to 1 in the infinite depth limit (Radhakrishnan et al., 2023).
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A PROPERTIES OF FUNCTION g

Recall that the function g : [0, π) → [0, π) is defined as (see Lemma 3.1)

g(z) = arccos

(
π − z

π
cos z +

1

π
sin z

)
, (11)

Figure 4 shows the plot of this function. From the plot, we can easily find the following properties.

Figure 4: Curve of the function g(θ). As can be seen, g(θ) is monotonic, and is approximately the
identity function y = θ in the small angle region (θ ≪ 90◦).

Proposition A.1 (Properties of g). The function g defined in Eq.(11) has the following properties:

1. g is a monotonically increasing function;

2. g(z) ≤ z, for all z ∈ [0, π); and g(z) = z if and only if z = 0;

3. for any z ∈ [0, π), the sequence {gl(z)}∞l=1 is monotonically decreasing, and has the limit
liml→∞ gl(z) = 0.

It is worth to note that the last property of g function immediately implies the collapse of embedding
vectors from different inputs in the infinite depth limit L → ∞. This embedding collapse has been
observed in prior works Poole et al. (2016); Schoenholz et al. (2016) (although by different type of
analysis) and has been widely discussed in the literature of Edge of Chaos.
Theorem A.2. Consider the same ReLU neural network as in Lemma 3.1. Given any two inputs x, z ∈
Rd, the sequence of angles between their l-embedding vectors, {θ(l)(x, z)}Ll=1, is monotonically
decreasing. Moreover, in the limit of infinite depth,

lim
L→∞

θ(L)(x, z) = 0, (12)

and there exists a vector α such that, for any input x, the last layer L-embedding

α(L)(x) = ∥x∥α. (13)

Proof of Proposition A.1. Part 1. First, we consider the auxiliary function g̃(z) = π−z
π cos z +

1
π sin z. We see that

dg̃(z)

dz
= −

(
1− z

π

)
sin z ≤ 0, ∀z ∈ [0, π).

Hence, g̃(z) is monotonically decreasing on [0, π). Combining with the monotonically decreasing
nature of the arccos function, we get that g is monotonically increasing.

Part 2. It suffices to prove that cos z ≤ g̃(z) and that the equality holds only at z = 0. For z = 0,
it is easy to check that cos z = g̃(z), as both z and sin z are zero. For z ∈ (0, π/2), noting that
tan z − z > 0, we have

g̃(z) =
π − z

π
cos z +

1

π
sin z = cos z +

1

π
(−z + tan z) cos z > cos z. (14)
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For z = π/2, we have cosπ/2 = 0 < 1/π = g̃(π/2). For z ∈ (π/2, π), we have the same relation
as in Eq.(14). The only differences are that, in this case, cos z < 0 and tan z − z < 0. Therefore, we
still get g̃(z) > cos z for z ∈ (π/2, π).

Part 3. From part 2, we see that g(z) < z for all z ∈ (0, π). Hence, for any l, gl+1(z) < gl(z).
Moreover, since z = 0 is the only fixed point such that g(z) = z, in the limit l → ∞, gl(z) → 0.

B PROOF OF PROPOSITION 4.1

Proof. Consider the matrix B and the n vectors bk ≜ Bk·, k ∈ [n]. The smallest singular value
square of matrix B is defined as

σ2
min(B) = min

v ̸=0

vTBBTv

vTv
= min

v ̸=0

∥
∑

k vkbk∥2

∥v∥2
.

Since the angle ϕ between bi = Bi· and bj = Bj· is small, let v′ be the vector such that v′i = ∥bj∥,
v′j = −∥bi∥ and v′k = 0 for all k ̸= i, j. Then

σ2
min(B) ≤

∥
∑

k v
′
kbk∥2

∥v′∥2
=

∥∥∥∥∥ ∥bj∥√
∥bi∥2 + ∥bj∥2

bi −
∥bi∥√

∥bi∥2 + ∥bj∥2
bj

∥∥∥∥∥
2

=
2∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
(1− cosϕ)

=
∥bi∥2∥bj∥2

∥bi∥2 + ∥bj∥2
ϕ2 +O(ϕ4).

Since A = BBT , the smallest eigenvalue λmin(A) of A is the same as σ2
min(B).

On the other hand, the largest eigenvalue λmax(A) of matrix A is lower bounded by tr(A)/n. Note
that the diagonal entries Akk = ∥bk∥. Hence, c ≤ λmax(A) ≤ C. Therefore, the condition number
κ = λmax(A)/λmin(A) = Ω(1/ϕ2).

C PROOFS OF THEOREMS FOR LINEAR NEURAL NETWORK

C.1 PROOF OF THEOREM 2.2

Proof. First of all, we provide a useful lemma.

Lemma C.1. Consider a matrix A ∈ Rm×d, with each entry of A is i.i.d. drawn from N (0, 1). In
the limit of m → ∞,

1

m
ATA → Id×d, in probability. (15)

We first consider the embedding vectors ᾱ(l) and the embedding angles θ̄(l). By definition in Eq.(5),
we have, for all l ∈ [L] and input x ∈ Rd,

ᾱ(l)(x) =
1

ml/2
W (l)W (l−1) · · ·W (1)x. (16)

Note that at the network initialization entries of W (l) are i.i.d. and follows N (0, 1). Hence, the inner
product

⟨ᾱ(l)(x), ᾱ(l)(z)⟩ = 1

ml
xTW (1)T · · ·W (l−1)TW (l)TW (l)W (l−1) · · ·W (1)z

(a)
= xT z,

where in step (a) we recursively applied Lemma C.1 l times. Putting z = x, we get ∥ᾱ(l)(x)∥ = ∥x∥,
for all l ∈ [L]. By the definition of embedding angles, it is easy to check that θ̄(l)(x, z) = θin(x, z),
for all l ∈ [L].
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Now, we consider the model gradient ∇f̄ and the model gradient angle ϕ̄. As we consider the model
gradient only at network initialization, we don’t explicitly write out the dependence on w0, and we
write ∇f̄(w0,x) simply as ∇f̄(x). The model gradient ∇f̄ can be decomposed as

∇f̄(x) = (∇1f̄(x),∇2f̄(x), · · · ,∇L+1f̄(x)), with∇lf̄(x) =
∂f̄(x)

∂W (l)
,∀l ∈ [L+ 1]. (17)

Hence, the inner product

⟨∇f̄(x),∇f̄(z)⟩ =
L+1∑
l=1

⟨∇lf̄(x),∇lf̄(z)⟩,

and for all l ∈ [l + 1],

⟨∇lf̄(x),∇lf̄(z)⟩ = ⟨ᾱ(l−1)(x), ᾱ(l−1)(z)⟩ · ⟨
L+1∏

l′=l+1

1√
m
W (l′)T ,

L+1∏
l′=l+1

1√
m
W (l′)T ⟩ (b)

= xT z.

Here in step (b), we again applied Lemma C.1. Therefore,

⟨∇f̄(x),∇f̄(z)⟩ = (L+ 1)xT z. (18)
Putting z = x, we get ∥∇f(x)∥ = (L+ 1)∥x∥. By the definition of model gradient angle, it is easy
to check that ϕ̄(x, z) = θin(x, z).

D PROOFS OF THEOREMS FOR RELU NETWORK

D.1 PRELIMINARY RESULTS

Before the proofs, we introduce some useful notations and lemmas. The proofs of these lemmas are
deferred to Appendix E.

Given a vector v ∈ Rp, we define the following diagonal indicator matrix:
I{v≥0} = diag

(
I{v1≥0}, I{v2≥0}, · · · , I{vp≥0}

)
, (19)

with

I{vi≥0} =

{
1 vi ≥ 0,
0 vi < 0.

Lemma D.1. Consider two vectors v1,v2 ∈ Rp and a p-dimensional random vector w ∼
N (0, Ip×p). Denote θ as the angle between v1 and v2, i.e., cos θ = ⟨v1,v2⟩

∥v1∥∥v2∥ . Then, the prob-
ability

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] =
1

2
− θ

2π
. (20)

Lemma D.2. Consider two arbitrary vectors v1,v2 ∈ Rp and a random matrix W ∈ Rq×p with
entries Wij i.i.d. drawn from N (0, 1). Denote θ as the angle between v1 and v2, and define
u1 =

√
2√
qσ(Wv1) and u2 =

√
2√
qσ(Wv2). Then, in the limit of q → ∞,

⟨u1,u2⟩ =
1

π
((π − θ) cos θ + sin θ) ∥v1∥∥v2∥. (21)

Lemma D.3. Consider two arbitrary vectors v1,v2 ∈ Rp and two random matrices U ∈ Rs×q and
W ∈ Rq×p, where all entries Uij , i ∈ [s] and j ∈ [q], and Wkl, k ∈ [q] and l ∈ [p], are i.i.d. drawn
from N (0, 1). Denote θ as the angle between v1 and v2, and define matrices A1 =

√
2√
qUI{Wv1≥0}

and A2 =
√
2√
qUI{Wv2≥0}. Then, in the limit of q → ∞, the matrix

A1A
T
2 =

π − θ

π
Is×s. (22)

Lemma D.4. Consider matrix B = AAT with A ∈ Rn×p and a random matrix W ∈ Rq×p where
all entries of W are i.i.d. drawn from N (0, 1). Define the tensor A′ ∈ Rn×p×q, such that A′

ikl :=√
2AikI{Wl:Ai:≥0}. Let B′ ∈ Rn×n be the matrix such that each entry B′

ij =
∑

k,l A
′
iklA

′
jkl. Then,

in the limit of q → ∞, the smallest and largest eigenvalues satisfy: λmin(B
′) > λmin(B), and

λmax(B
′) < λmax(B).
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D.2 PROOF OF LEMMA 3.1

Proof. Consider an arbitrary layer l ∈ [L] of the ReLU neural network f at initialization. Given
two arbitrary network inputs x, z ∈ Rd, the inputs to the l-th layer are α(l−1)(x)) and α(l−1)(z)),
respectively.

By definition, we have

α(l)(x) =

√
2

m
σ
(
W (l)α(l−1)(x)

)
, α(l)(z) =

√
2

m
σ
(
W (l)α(l−1)(z)

)
, (23)

with entries of W (l) being i.i.d. drawn from N (0, 1). Recall that, by definition, the angle between
α(l−1)(x)) and α(l−1)(z)) is θ(l−1)(x, z). Applying Lemma D.2, we immediately have the inner
product

⟨α(l)(z), α(l)(x)⟩ =1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
× ∥α(l−1)(x)∥∥α(l−1)(z)∥. (24)

In the special case of x = z, we have θ(l−1)(x, z) = 0, and obtain from the above equation that

∥α(l)(x)∥2 = ∥α(l−1)(x)∥2. (25)

Apply Eq.(25) back to Eq.(24), we also get

cos θ(l)(x, z) =
⟨α(l)(z), α(l)(x)⟩
∥α(l)(x)∥∥α(l)(z)∥

=
1

π

(
(π − θ(l−1)(x, z)) cos θ(l−1)(x, z) + sin θ(l−1)(x, z)

)
(26)

That is θ(l)(x, z) = g(θ(l−1)(x, z)). Recursively apply this relation, we obtain the desired result.

D.3 PROOF OF THEOREM 3.2

Proof. By Lemma 3.1, we have that

cos θ(l)(x, z) =

(
1− θ(l−1)(x, z)

π

)
cos θ(l−1)(x, z) +

1

π
sin θ(l−1)(x, z)

= cos θ(l−1)(x, z)

(
1 +

1

π

(
tan θ(l−1)(x, z)− θ(l−1)(x, z)

))
= cos θ(l−1)(x, z)

(
1 +

1

3π
(θ(l−1)(x, z))3 + o

(
(θ(l−1)(x, z))3

))
.

Noting that the Taylor expansion of the cos function at zero is cos z = 1 − 1
2z

2 + o(z3), one can
easily check that, for all l ∈ [L],

θ(l)(x, z) = θ(l−1)(x, z)− 1

3π
(θ(l−1)(x, z))2 + o

(
(θ(l−1)(x, z))2

)
. (27)

Note that θ(l)(x, z) ≤ θ(l−1)(x, z) = o(1/L). Iteratively apply the above equation, one gets, for all
l ∈ [L], if θ(0)(x, z) = o(1/L),

θ(l)(x, z) = θ(0)(x, z)− l

3π
(θ(0)(x, z))2 + o

(
(θ(0)(x, z))2

)
. (28)

D.4 PROOF OF LEMMA 3.3

Proof. The model gradient ∇f(x) is composed of the components ∇lf(x) ≜
∂f
∂W l , for l ∈ [L+ 1].

Each such component has the following expression: for l ∈ [L+ 1]

∇lf(x) = α(l−1)(x)δ(l)(x), (29)
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where

δ(l)(x) =

(
2

m

)L−l+1
2

W (L+1)I{α̃(L)(x)≥0}W
(L)I{α̃(L−1)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0}. (30)

Note that in Eq.(29), ∇lf(x) is an outer product of a column vector α(l−1)(x) ∈ Rml−1×1 (ml−1 = d
if l = 1, and ml−1 = m otherwise) and a row vector δ(l)(x) ∈ R1×ml (ml = 1 if l = L + 1, and
ml = m otherwise).

First, we consider the inner product ⟨∇lf(z),∇lf(x)⟩, for l ∈ [L+ 1].1 By Eq.(29), we have

⟨∇lf(z),∇lf(x)⟩ = ⟨δ(l)(z), δ(l)(x)⟩ · ⟨α(l−1)(z), α(l−1)(x)⟩. (31)

For ⟨α(l−1)(z), α(l−1)(x)⟩, applying Lemma 3.1, we have

⟨α(l−1)(z), α(l−1)(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z). (32)

For ⟨δ(l)(z), δ(l)(x)⟩, by definition Eq.(30), we have

⟨δ(l)(z), δ(l)(x)⟩ =
(

2

m

)L−l+1

×W (L+1)I{α̃(L)(x)≥0} · · ·W (l+1)I{α̃(l)(x)≥0,α̃(l)(z)≥0}W
(l+1)T︸ ︷︷ ︸

A

· · · I{α̃(L)(z)≥0}W
(L+1)T

Recalling that α̃(l) = W (l)α̃(l−1) and applying Lemma D.3 on the the term A above, we obtain

⟨δ(l)(z), δ(l)(x)⟩ = π − θ(l−1)(x, z)

π
⟨δ(l+1)(z), δ(l+1)(x)⟩.

Recursively applying the above formula for l′ = l, l + 1, · · · , L, and noticing that δ(L+1) = 1, we
have

⟨δ(l)(z), δ(l)(x)⟩ =
L+1∏

l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (33)

Combining Eq.(31), (32) and (33), we have

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥ cos θ(l−1)(x, z)

L−1∏
l′=l−1

(
1− θ(l

′)(x, z)

π

)
. (34)

For the inner product between the full model gradients, we have

⟨∇f(z),∇f(x)⟩ =
L+1∑
l=1

⟨∇lf(z),∇lf(x)⟩ = ∥x∥∥z∥
L∑

l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(
1− θ(l

′)(x, z)

π

)]
.

(35)
Putting x = z in the above equation, we have θ(l)(x, z) = 0 for all l ∈ [L], and obtain

∥∇f(x)∥2 = ∥x∥2 · (L+ 1). (36)

Hence, we have

cosϕ(x, z) =
⟨∇f(z),∇f(x)⟩
∥∇f(x)∥∥∇f(z)∥

=
1

L+ 1

L∑
l=0

[
cos θ(l)(x, z)

L−1∏
l′=l

(1− θ(l
′)(x, z)/π)

]
. (37)

1With a bit of abuse of notation, we refer to the flattened vectors of ∇lf in the inner product.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.5 PROOF OF THEOREM 3.4

Proof. For simplicity of notation, we don’t explicitly write out the dependent on the inputs x, z, and
write θ(l) ≜ θ(l)(x, z), and ϕ ≜ ϕ(x, z). We start the proof with the relation provided by Lemma 3.3.

cosϕ(x, z) =
1

L+ 1

L∑
l=0

[
cos θ(l)

L−1∏
l′=l

(1− θ(l
′)/π)

]
(a)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

π
tan θ(l

′) − 1

π
θ(l

′)

) L−1∏
l′=l

(1− θ(l
′)/π)

]
(b)
=

1

L+ 1

L∑
l=0

[
cos θ(0)

l−1∏
l′=0

(
1 +

1

3π
(θ(l

′))3 + o(θ(l
′))3
) L−1∏

l′=l

(1− θ(l
′)/π)

]
(c)
=

cos θ(0)

L+ 1

L∑
l=0

[
l−1∏
l′=0

(
1 +

1

3π
(θ(0))3 + o(θ(0))3

)

×
L−1∏
l′=l

(
1− 1

π
θ(0) +

l′

3π2
(θ(0))2 + o((θ(0))2)

)]

=
cos θ(0)

L+ 1

L∑
l=0

(
1− L− l

π
θ(0) +

(L− l)(2L− l − 2)

3π2
(θ(0))2 + o((θ(0))2)

)
= cos θ(0)

(
1− L

2
θ(0) + o(θ(0))

)
.

D.6 PROOF OF THEOREM 4.2

Proof. First of all, we note that in scenario (b), i.e., the network with all ReLU activation removed,
the network simply becomes a linear neural network (while with the same trainable parameters W (1)

as the ReLU network in scenario (a)). By the analysis in Section 2.1, we can easily see that the NTK
matrix in scenario (b) is equivalent to the Gram matrix G, and κb = κ0. Hence, whenever comparing
the two scenarios, it suffices to compare the NTK K (and its condition number κ) of ReLU network
with the Gram matrix G (and its condition number κ0).

We prove the theorem by induction.

Base case: ReLU neural network of depth L = 1. First, consider the shallow ReLU neural
network

f(W ;x) =

√
2√
m
vTσ(Wx), (38)

where W are the trainable parameters.

The model gradient, for an arbitrary input x, can be written as

∇f(x) = xδ(x) ∈ Rd×m, (39)

where δ(x) ∈ R1×m has the following expression

δ(x) =

√
2

m
vT I{Wx≥0}.

At initialization, W is a random matrix. Recall that the NTK K = FFT , where the gradient feature
matrix F consist of the gradient feature vectors ∇f(x) for all x for the dataset. Applying Lemma
C.1 in the limit of m → ∞, we have that each entry Kij is equivalent to

∑
k,l A

′
iklA

′
jkl, with

A′
ikl :=

√
2XikI{Wl:Xi:≥0}, where X ∈ Rn×d is the matrix of input data. Then apply Lemma D.4,

we immediately have that

λmin(K) > λmin(G), λmax(K) < λmax(G).
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Hence, we have that κa < κb.

In addition, note that this network has one hidden layer, and that the “zero-hidden layer” network is
just simply the linear model. For linear model, the NTK is simply the Gram matrix. Hence, for the
base case, we have κf1 < κf2 = κ0, with network f1 of depth 1 and network f2 of depth 0.

Induction hypothesis. Suppose that, for a ReLU network fL−1 of depth L− 1, its NTK condition
number κL−1 is strictly smaller than κ0.

Induction step. Now, let’s consider the two ReLU networks fL of depth L and fL−1. It is suffices
to prove that κL < κL−1. The model gradients, for any given input x, can be written as:

∇fL(x) = xδL(x) ∈ Rd×m, ∇fL−1(x) = xδL−1(x) ∈ Rd×m,

where

δL(x) =

√
2

m
W (L+1)I{W (L)α(L−1)≥0}

√
2

m
W (L)I{W (L−1)α(L−2)≥0} · · ·

√
2

m
W (2)I{W (1)α(0)≥0}

δL−1(x) =

√
2

m
W (L)I{W (L−1)α(L−2)≥0} · · ·

√
2

m
W (2)I{W (1)α(0)≥0}

Note that the matrix W (L) has different dimensions for fL and fL−1.

Using the same argument as in the base case, as well as applying Lemma C.1 when contracting the
δ(x)’s, we directly obtain κL < κL−1.

D.7 PROOF OF THEOREM 4.3

Proof. First, let’s consider the scenario (a), i.e. the ReLU network with ReLU unremoved. According
to the definition of NTK and Lemma 3.3, the NTK matrix K for this dataset D = {(x1, y1), (x2, y2)}
is (NTK is normalized by the factor 1/(L+ 1)2):

K =

(
∥∇f(x1)∥2 ⟨∇f(x1),∇f(x2)⟩

⟨∇f(x2),∇f(x1)⟩ ∥∇f(x2)∥2
)

=

(
∥x1∥2 ∥x1∥∥x2∥ cosϕ

∥x1∥∥x2∥ cosϕ ∥x2∥2
)
.

The eigenvalues of the NTK matrix K are given by

λ1(K) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
, (40a)

λ2(K) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2ϕ

)
. (40b)

In the scenario (b), the ReLU activation is removed in the network, resulting in a linear neural network.
In this case, the NTK is equivalent to the Gram matrix G, as given by Corollary 2.3. We have

G =

(
∥x1∥2 xT

1 x2

xT
1 x2 ∥x2∥2

)
=

(
∥x1∥2 ∥x1∥∥x2∥ cos θin

∥x1∥∥x2∥ cos θin ∥x2∥2
)
,

and its eigenvalues as

λ1(G) =
1

2

(
∥x1∥2 + ∥x2∥2 +

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
,

λ2(G) =
1

2

(
∥x1∥2 + ∥x2∥2 −

√
∥x1∥4 + ∥x2∥4 + ∥x1∥2∥x2∥2 cos 2θin

)
.

By Theorem 3.4, we have cosϕ < cos θin, when θin = o(1) and θin ̸= 0. Hence, we have the
following relations

λ1(G) > λ1(K) > λ2(K) > λ2(G),

which immediately implies κa < κb.

When comparing ReLU networks with different depths, i.e., network f1 with depth L1 and network
f2 with depth L2 with L1 > L2, notice that in Eq.(40) the top eigenvalue λ1 monotonically decreases
in ϕ, and the bottom (smaller) eigenvalue λ2 monotonically increases in ϕ. By Theorem 3.4, we
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know that the deeper ReLU network f1 has a better data separation than the shallower one f2, i.e.,
ϕf1 > ϕf2 . Hence, we get

λ1(Kf2) > λ1(Kf1) > λ2(Kf1) > λ2(Kf2). (41)

Therefore, we obtain κf1 < κf2 . Namely the deeper ReLU network has a smaller NTK condition
number.

E TECHNICAL PROOFS

E.1 PROOF OF LEMMA C.1

Proof. We denote Aij as the (i, j)-th entry of the matrix A. Therefore, (ATA)ij =
∑m

k=1 AkiAkj .
First we find the mean of each (ATA)ij . Since Aij are i.i.d. and has zero mean, we can easily see
that for any index k,

E[AkiAkj ] =

{
1, if i = j

0, otherwise
.

Consequently,

E[(
1

m
ATA)ij ] =

{
1, if i = j

0, otherwise
.

That is E[ 1mATA] = Id.

Now we consider the variance of each (ATA)ij . If i ̸= j we can explicitly write,

V ar

[
1

m
(ATA)ij

]
=

1

m2
· E

[
m∑

k1=1

m∑
k2=1

Ak1iAk1jAk2iAk2j

]

=
1

m2
·

m∑
k1=1

m∑
k2=1

E [Ak1iAk1jAk2iAk2j ]

=
1

m2

 m∑
k=1

E
[
A2

kiA
2
kj

]
+
∑

k1 ̸=k2

E [Ak1iAk1jAk2iAk2j ]


=

1

m2

 m∑
k=1

E
[
A2

ki

]
E
[
A2

kj

]
+
∑

k1 ̸=k2

E[Ak1i]E[Ak1j ]E[Ak2i]E[Ak2j ]


=

1

m2
· (m+ 0) =

1

m
.

In the case of i = j, then,

V ar

[
1

m
(ATA)ii

]
=

1

m2
· V ar

[
m∑

k=1

A2
ki

]
=

1

m2
·

m∑
k=1

V ar
[
A2

ki

] (a)
=

1

m2
(m · 2) = 2

m
. (42)

In the equality (a) above, we used the fact that A2
ki ∼ χ2(1). Therefore, limm→∞ V ar( 1

m (ATA)) =
0.

Now applying Chebyshev’s inequality we get,

Pr(| 1
m
ATA− Id| ≥ ϵ) ≤

V ar( 1
m (ATA))

ϵ
(43)

Obviously for any ϵ ≥ 0 as m → ∞, the R.H.S. goes to zero. Thus, 1
mATA → Id×d, in probability.
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E.2 PROOF OF LEMMA D.1

Proof. Note that the random vector w is isotropically distributed and that only inner products wTv1

and wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).

In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (44)

Then,

P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)] = P[(w̃Tv1 ≥ 0) ∧ (w̃Tv2 ≥ 0)] =
1

2π

∫ π
2

θ−π
2

dω =
1

2
− θ

2π
.

E.3 PROOF OF LEMMA D.2

Proof. Note that the ReLU activation function σ(z) can be written as zIz≥0. We have,

⟨u1,u2⟩ =
2

q
vT
1 W

T I{Wv1≥0,Wv2≥0}Wv2

=
2

q

q∑
i=1

vT
1 (Wi·)

T I{Wi·v1≥0,Wi·v2≥0}Wi·v2

q→∞
= 2Ew∼N (0,Ip×p)[v

T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

Note that the random vector w is isotropically distributed and that only inner products wTv1 and
wTv2 appear, hence we can assume without loss of generality that (if not, one can rotate the
coordinate system to make it true):

v1 = ∥v1∥(1, 0, 0, · · · , 0),
v2 = ∥v2∥(cos θ, sin θ, 0, · · · , 0).

In this setting, the only relevant parts of w are its first two scalar components w1 and w2. Define w̃
as

w̃ = (w1, w2, 0, · · · , 0) =
√

w2
1 + w2

2(cosω, sinω, 0, · · · , 0). (45)

Then, in the limit of q → ∞,

⟨u1,u2⟩ = 2Ew∼N (0,Ip×p)[v
T
1 wI{wTv1≥0,wTv2≥0}w

Tv2]

= 2Ew̃∼N (0,I2×2)[v
T
1 w̃I{w̃Tv1≥0,w̃Tv2≥0}w̃

Tv2]

= 2∥v1∥∥v2∥ · Ew̃∼N (0,I2×2)[∥w̃∥2] · 1

2π

∫ π
2

θ−π
2

cosω cos(θ − ω)dω

= 2∥v1∥∥v2∥ · 2 ·
1

4π
((π − θ) cos θ + sin θ)

= ∥v1∥∥v2∥
1

π
((π − θ) cos θ + sin θ) .
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E.4 PROOF OF LEMMA D.3

Proof.

A1A
T
2 =

2

q

q∑
k=1

U·kI{Wk·v1≥0,Wk·v2≥0}(U·k)
T

q→∞
= 2 · Eu∼N (0,Is×s),w∼N (0,Ip×p)[uu

T I{wTv1≥0,wTv2≥0}]

(a)
= 2 · Eu∼N (0,Is×s)[uu

T ] · Ew∼N (0,Ip×p)[I{wTv1≥0,wTv2≥0}]

= 2 · Eu∼N (0,Is×s)[uu
T ] · P[(wTv1 ≥ 0) ∧ (wTv2 ≥ 0)]

(b)
=

π − θ

π
Is×s.

In the step (a) above, we used the fact that U is independent of W , v1 and v2. In the step (b) above,
we applied Lemma D.1, and used the fact that Eu∼N (0,Is×s)[uu

T ] = Is×s.

E.5 PROOF OF LEMMA D.4

Proof. Starting from the definition of the smallest eigenvalue, we have that λmin(B
′) satisfies

λmin(B
′) = min

u̸=0

uTB′u

∥u∥2

= min
u̸=0

∑q
l=1

∑p
k=1(

∑n
i=1

√
2uiAikI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

= min
u̸=0

q∑
l=1

∑n
i=1 2(uiI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

∑p
k=1(

∑n
i=1

√
2uiAikI{Wl:Ai:≥0})

2∑n
i=1 2(uiI{Wl:Ai:≥0})2

(a)
> min

u̸=0

q∑
l=1

∑n
i=1 2(uiI{Wl:Ai:≥0})

2∑n
i=1 u

2
i

λmin(B). (46)

In the inequality (a) above, we made the following treatment: for each fixed l, we consider
uiI{Wl:Ai:≥0} as the i-th component of a vector u′

l; by definition, the minimum eigenvalue of
matrix B = AAT

λmin(B) = min
u′ ̸=0

(u′)TBu′/∥u′∥2 ≤ (u′
j)

TBu′
j/∥u′

j∥2, ∀j; (47)

moreover, this ≤ inequality becomes equality, if and only if all u′
j are the same and equal to

argminu′ ̸=0(u
′)TGu′/∥u′∥2. It is easy to see, when the dataset is not degenerate, for different j,

u′
j are different, hence only the strict inequality < holds in step (a).

Continuing from Eq.(46), we have

λmin(B
′) > min

u̸=0

q∑
l=1

∑n
i=1 2(uiI{{Wl:Ai:≥0})

2∑n
i=1 u

2
i

λmin(B)

= min
u̸=0

∑n
i=1 2u

2
i

∑q
l=1 I{{Wl:Ai:≥0})∑n
i=1 u

2
i

λmin(B)

= min
u̸=0

∑n
i=1 u

2
i∑n

i=1 u
2
i

λmin(B) = λmin(B).

Therefore, we have that λmin(B
′) > λmin(B).

As for the largest eigenvalue λmax(B
′), we can apply the same logic above for λmin(K) (except

replacing the min operator by max and have < in step (a)) to get λmax(B
′) < λmax(B).
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Figure 5: NTK condition number vs. depth, for sigmoid-activated network and tanh-activated
network.

F NUMERICAL RESULTS OF OTHER ACTIVATION FUNCTIONS

In this section, we show some preliminary numerical results of some other non-linear activation
functions, although the main focus of this paper is ReLU.

Specifically, analogous to what we did for ReLU network, we compute the NTK condition number for
the following two types of non-linearly activated neural networks at random initialization: sigmoid-
activated network and tanh-activated network. In both cases, we use the same network width, 512,
as in Figure 2 for ReLU network. The scaling factor,

√
2/ml in Eq.(1), was replaced by

√
cσ/ml,

where cσ is a activation-specific constant and is defined as cσ =
(
Ex∼N (0,1)[σ(x)

2]
)−1

(see for
example Eq.(2) of Du et al. (2019)).

Figure 5 shows the dependence of the NTK condition number on the network depth. We observe that
different non-linear activation function may have different effects on the NTK condition numbers κ.
As the figure tells, tanh also helps to decrease the condition number (similar to ReLU), while sigmoid
has the opposite effect, worsening the NTK conditioning.

A theoretical analysis of these non-linear activation functions are out of the scope of this paper, but
we expect future work will theoretically clarify the exact effects of different types of non-linear
activation functions.
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