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ABSTRACT

Solving combinatorial optimization (CO) on graphs has been attracting increasing
interests from the machine learning community whereby data-driven approaches
were recently devised to go beyond traditional manually-designated algorithms. In
this paper, we study the robustness of a combinatorial solver as a blackbox regard-
less it is classic or learning-based though the latter can often be more interesting
to the ML community. Specifically, we develop a practically feasible robustness
metric for general CO solvers. A no-worse optimal cost guarantee is developed as
such the optimal solutions are not required to achieve for solvers, and we tackle the
non-differentiable challenge in input instance disturbance by resorting to black-box
adversarial attack methods. Extensive experiments are conducted on 14 unique
combinations of solvers and CO problems, and we demonstrate that the perfor-
mance of state-of-the-art solvers like Gurobi can degenerate by over 20% under the
given time limit bound on the hard instances discovered by our robustness metric,
raising concerns about the robustness of combinatorial optimization solvers.

1 INTRODUCTION
The combinatorial optimization (CO) problems on graphs are widely studied due to their important
applications including aligning cross-modality labels (Lyu et al., 2020), discovering vital seed users
in social networks (Zhu et al., 2019), tackling graph matching problems (Wang et al., 2020; 2022)
and scheduling jobs in data centers (Mao et al., 2019), etc. However, CO problems are non-trivial to
solve due to the NP-hard challenge, whereby the optimal solution can be nearly infeasible to achieve
for even medium-sized problems. Existing approaches to practically tackle CO include heuristic
methods (Van Laarhoven & Aarts, 1987; Whitley, 1994), powerful branch-and-bound solvers (Gurobi
Optimization, 2020; The SCIP Optimization Suite 8.0, 2021; Forrest et al., 2022) and recently
developed learning-based models (Khalil et al., 2017; Yu et al., 2020; Kwon et al., 2021).

Despite the success of solvers in various combinatorial tasks, little attention has been paid to the
vulnerability and robustness of combinatorial solvers. As pointed out by Yehuda et al. (2020), we
cannot teach a perfect solver to predict satisfying results for all input CO problems. Within the
scope of the solvers and problems studied in this paper, our results shows that the performance of
the solver may degenerate a lot given certain data distributions that should lead to the same or better
solutions compared to the original distribution assuming the solver works robustly. We also validate
in experiments that such a performance degradation is neither caused by the inherent discrete nature
of CO. Such a discovery raises our concerns about the robustness (i.e. the capability to perform stably
w.r.t. perturbations on problem instances) of combinatorial solvers, which is also aware by Varma
& Yoshida (2021); Geisler et al. (2021). However, Varma & Yoshida (2021) focuses on theoretical
analysis and requires the optimal solution, which is infeasible to reach in practice. Geisler et al. (2021)
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Table 1: We make a (no strict) analogy by comparing the proposed ROCO framework with two
popular attacking paradigms FGSM (Goodfellow et al., 2015) and RL-S2V (Dai et al., 2018). ϵ-
perturb means the change of one pixel should be bounded in ϵ. B-hop neighbourhood means the new
attack edges can only connect two nodes with distance less than B.

Method Data Task Attack target Attack budget Attack principle

FGSM image classification pixels ϵ-Perturb invisible change
RL-S2V graph classification edges (connectivity) # edge B-hop neighbour

ROCO (ours) CO instance solving CO edges (constraints/cost) # edge no worse optimum

applies the attack-and-defense study in deep learning into learning-based combinatorial optimization
models, requiring a differentiable neural network that is infeasible for general solvers that can often be
undifferentiable. Our paper also differs from the namely “robust optimization” (Buchheim & Kurtz,
2018), where the expected objective score is optimized given known data distribution. We summarize
the challenges and our initiatives of evaluating the robustness of existing solvers as follows:

1) Robustness metric without optimal solutions: The underlying NP-hard challenge of combinato-
rial optimization prohibits us from obtaining the optimal solutions. However, the robustness metric
proposed by Varma & Yoshida (2021) requires optimal solutions, making this metric infeasible in
practice. In this paper, we propose a problem modification based robustness evaluation method,
whereby the solvers’ performances are evaluated on problems that can guarantee no worse optimal
costs. That is, the optimal solution of the modified problem instance gives better objective value than
the original problem, which resolves the needs of the optimal solution.

2) Robustness metric of general (non-differentiable) solvers: Despite the recently developed
deep-learning solvers, most existing solvers are non-differentiable due to the discrete combinatorial
nature. Thus, the gradient-based robustness metric by Geisler et al. (2021) has the limitation to
generalize to general solvers. In this paper, we develop a reinforcement learning (RL) based attacker
that modifies the CO problems to get hard problem instances (where the solvers perform poorly) with
no worse optimal costs. Regarding arbitrary types of solvers as black-boxes, the RL agent is trained
by policy gradient without requiring the solver to be differentiable. Our framework also owns the
flexibility where the agent can be replaced by other search schemes e.g. simulated annealing.

Being aware that many CO problems can be essentially formulated as a graph problem and there
are well-developed graph-based learning models (Scarselli et al., 2008; Kipf & Welling, 2016;
Velickovic et al., 2017), the scope of this paper is restricted within combinatorial problems on graphs
following (Khalil et al., 2017; Wang et al., 2021). To develop a problem modification method that
achieves no worse optimal costs, we propose to modify the graph structure with a problem-dependent
strategy exploiting the underlying problem natures. Two strategies are developed concerning the
studied four combinatorial problems: 1) loosening the constraints such that the feasible space can be
enlarged while the original optimal solution is preserved; 2) lowering the cost of a partial problem
such that the objective value of the original optimal solution can become better. Such strategies are
feasible when certain modifications are performed on the edges, and tackle the challenge that we have
no access to the optimal solutions.The generated data distributions can also be close to the original
data by restricting the number of edges modified. The graph modification steps are performed by our
proposed attackers that generate problem instances where the solvers’ performances degenerate, and
we ensure the no worse optimal costs guarantee by restricting the action space of the attackers.

Our framework can be seen as the attack on the solvers and how much the worst cases near the clean
instances will do harm to the solver are considered as the robustness. Tbl. 1 compares our framework
to classical works on adversarial attacks for images/graphs. The highlights of this paper are:

1) We propose Robust Combnaotorial Optimization (ROCO), a general framework (see Fig. 1) to
empirically evaluate the robustness of CO solvers on graphs. It is performed without requiring
optimal value or differentiable property.

2) We design a novel robustness evaluation method with no worse optimal costs guarantee to
eliminate the urgent requirements for the optimal solution of CO problems. Specifically, we develop
a reinforcement learning (RL) based attacker combined with other search-based attackers to regard
the solvers as black-boxes, even they are non-differentiable solvers.

3) Comprehensive case studies are conducted on four common combinatorial tasks: Directed Acyclic
Graph Scheduling, Asymmetric Traveling Salesman Problem, Maximum Coverage, and Maximum
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Coverage with Separate Coverage Constraint, with three kinds of solvers: traditional solvers, learning-
based solver and specific MILP solver like Gurobi.

The results presented in this paper may raise the community’s attention to the robustness, e.g. big
performance drop for the commercial solver Gurobi though it is not a big surprise given the NP-hard
nature of many CO problems. It can also be connected to data augmentation for learning-based CO
solvers or other methods like parameter tuning to improve solvers’ robustness (see Appendix K for
more results and discussions). We leave more advanced defense strategies for future work which is
still an open problem (Yehuda et al., 2020).

Remark. Note we somewhat ‘abuse’ the term ‘attack’ which in fact originates from the area of
adversarial attack/defense e.g. Goodfellow et al. (2015). Here we use it to express the concept of hard
case mining on ‘clean’ (i.e. raw) instances. In fact, we try to make an analogy between the attacks for
image data and our case while we are also aware there are fundamental differences. To ease readers’
potential confusion and make the presentation more precise, we will give the formal definition of
attack in our context for CO solvers’ robustness evaluation in Def. 1 in Sec. 2.1.

The related work is deferred to Appendix A, which mainly refers to the solvers for combinatorial
optimization on graphs including traditional and recent learning-based solvers, as well as adversarial
attack and defense especially for graph learning.

2 THE ROCO FRAMEWORK

2.1 ADVERSARIAL ROBUSTNESS FOR CO

Formulation. In general, a CO problem aims to find the optimal solution under a set of constraints
(usually encoded by a latent graph). Here we formulate a CO problem Q as:

min
x

c(x, Q) s.t. hi(x, Q) ≤ 0, i = 1, ..., I (1)

where x denotes the decision variable (i.e. solution) that should be discrete, c(x, Q) denotes the cost
function given problem instance Q and {hi(x, Q)}Ii=1 represents the set of constraints. For example,
in DAG scheduling, the constraints ensure that the solution x, i.e. the execution order of the DAG
job nodes, lies in the feasible space and does not conflict the topological dependency structure of Q.
However, due to the NP-hard nature, the optimal solution x∗ can be intractable within polynomial
time. Therefore, we use a solver x̂ = fθ(Q), which gives a mapping fθ : Q → X to approximate
the optimal solution x∗. In this work, θ are solvers’ parameters (e.g. weights and biases in a neural
solver, hyperparameters in Gurobi), Q ∈ Q is the problem instance, and x̂ ∈ X is the approximated
solution. x̂ also lies in the feasible space that satisfies all the constraints.

Solvers’ robustness. In this paper, we would like to raise the concern that the estimation capability
of the solvers can be unstable and fail on certain hard instances. Thus, we need methods to discover
the non-trivial hard instances for the solvers as the robustness metric where a more robust solver can
perform better on hard instances. Here non-trivial means these hard instances are not obtained by
trivial operations like increasing the size of problems. In short, given a certain solver fθ, we design an
attacker (i.e. perturbation model) g to modify the existing clean instances Q̃ = g(fθ, Q) and discover
hard instances around. For example, the attacker can modify a limited number of constraints in
Q to get a new problem Q̃. Besides working as a robustness metric, the discovered hard instances
can guide the parameter setting of solvers, i.e. design solvers’ parameters θ for better performance
(robustness) on hard instances, which is beyond the scope of this paper and we mainly focus on
developing the first practically feasible robustness metric. Some preliminary results on hard case
utilization are presented in Appendix K.

Robustness metric. A natural evaluation of the solvers’ robustness is to use the gap c(x̂, Q)−c(x∗, Q)
(Varma & Yoshida, 2021), where a narrower gap stands for a better performance. However, the
optimum x∗ is usually unavailable due to the NP-hardness. In this paper, we propose a robustness
evaluation method without requiring the optimal solution, and the attack is defined by:

Definition 1 (Successful Attack). Given a solver fθ and a clean CO problem instance Q, we obtain
a new problem Q̃ = g(fθ, Q) by the attacker g s.t. the optimal cost value after perturbation will
become no-worse, i.e. c(x̃∗, Q̃) ≤ c(x∗, Q), where x̃∗ denotes the new optimal solution. A successful
attack occurs when c(fθ(Q̃), Q̃) > c(fθ(Q), Q).
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Figure 1: Overview and intuition of our attack framework. Left: Overview of our attack framework
ROCO for CO solvers. ROCO targets on the CO problems which can be encoded by graphs (often
holds in practice). Here modifying the edges in the encoded graph represents modifying constraints
or lowering the cost in CO. Right: The definition of a successful attack.
The intuition is that we restrict the attacker to discover a new problem instance with no-worse optimal
cost value, such that the gap between the solver and the optimal will be definitely enlarged if the
solver gives a worse cost value:

c(x̃∗, Q̃) ≤ c(x∗, Q), c(fθ(Q̃), Q̃) > c(fθ(Q), Q)⇒
c(fθ(Q), Q)− c(x∗, Q) < c(fθ(Q̃), Q̃)− c(x̃∗, Q̃),

(2)

which represents a successful attack (see Fig. 1(b)).

Attacker’s target. In conclusion, the attacker should maximize the solver’s cost value after perturba-
tion while conforming to the no-worse restriction. Therefore, we formulate our attack objective:

max
Q̃

c(fθ(Q̃), Q̃)− c(fθ(Q), Q)

s.t. Q̃ = g(fθ, Q), c(x̃∗, Q̃) ≤ c(x∗, Q)
(3)

As a consensus in the filed of robustness, the robustness definition should be against the attacker’s
objective (Carlini et al., 2019; Chen et al., 2022a). Now with the attack objective, we can successively
define solvers’ robustness quantitatively:
Definition 2 (Solvers’ Robustness). Given a certain solver fθ on a test dataset D consisted of CO
problems, its robustness r is defined as the inverse of the expected worst case cost value after attacked
by the attacker g under the no worse optimal cost constraint:

r = −EQ∼D[max
Q̃

c(fθ(Q̃), Q̃)]

s.t. Q̃ = g(fθ, Q), c(x̃∗, Q̃) ≤ c(x∗, Q)
(4)

We add the negative sign in Eq. 4 so that a higher value denotes better robustness.

Attacker’s constraints. Two types of strategies are developed to meet the no worse optimal cost
constraint for the attackers: 1) Loosening the constraints of the problem. In this way, the original
optimal solution still lies in the feasible space and its cost is not affected, while the enlarged feasible
space may include better solutions. Therefore, the new optimal cost cannot be worse than the original
one, and we discover this strategy effective for DAG scheduling (see Section 3.1). 2) Modifying a
partial problem by lowering the costs. Such a strategy ensures that the cost that corresponds to the
original optimal solution can never become worse, and there are also chances to introduce solutions
with lower costs. We demonstrate its successful application in traveling salesman (see Section 3.2)
and max coverage problems (see Section 3.3 & Appendix C).

Attack via graph modification. As mentioned above, a CO problem Q can usually be encoded
by a latent graph G = (V,E). For example, the DAG problem can be represented by a directed
acyclic graph (see Fig. 4), s.t. the graph nodes stand for the DAG jobs, the directed edges denote
the sequential constraints for the jobs, and the node features represent the jobs’ completion time.
Hence, the perturbation to the problem instance can be conducted by modifications to the graph
structure (Dai et al., 2018). Besides, to get non-trivial hard instances around clean examples, the
attack is limited within a given attack budget K, e.g. the attacker can remove ≤ K edges in a DAG
problem Q. Typically, in our setting, the graph modification is all conducted by modifying edges.
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2.2 IMPLEMENTATIONS OF THE ATTACKER

Random attack baseline. The baseline simply chooses and modifies K random edges sequentially,
then calculates the new cost. We compare other attackers (which achieve much higher attack effects)
to the random attack baseline to claim that our framework can uncover far more hard instances than
the inherent instability caused by the CO problems.

Reinforcement learning attacker (ROCO-RL). We use Eq. 3 as the objective and resort to reinforce-
ment learning (RL) to find Q̃ in a data-driven manner. Specifically, we modify the graph structure and
compute c(fθ(Q̃), Q̃) alternatively, getting rewards that will be fed into the PPO (Schulman et al.,
2017) framework and train the agent.

Given an instance (fθ, Q) along with a modification budget K, we model the attack via sequential
edge modification as a Markov Decision Process (MDP):

State. The current problem instance Qk (i.e. the problem instance Q̃ obtained after k actions) is
treated as the state. The original problem instance Q0 = Q is the starting state.

Action. The attacker is allowed to modify edges in the graph. So a single action at time step
k is ak ∈ Ak ⊆ Ek. Here our action space Ak is usually a subset of all the edges Ek since
we can narrow the action space (i.e. abandon some useless edge candidates) according to the
previous solution fθ(Q

k) to speed up our algorithm. Furthermore, we decompose the action space
(O(|V |2) → O(|V |)) by transforming the edge selection into two sequential node selections: first
selecting the start node, then the end node.

Reward. The objective of the new CO problem Qk+1 is c(fθ(Qk+1), Qk+1). To maximize the new
cost value, we define the reward as the increase of the objective:

r = c(fθ(Q
k+1), Qk+1)− c(fθ(Q

k), Qk) (5)

Terminal. Once the agent modifies K edges or edge candidates become empty, the process stops.

The input and constraints of a CO problem can often be encoded in a graph G = (V,E), and the PPO
agent (i.e. the actor and the critic) should behave according to the graph features. We resort to the
Graph Neural Networks (GNNs) for graph embedding:

n = GNN(Gk), g = AttPool(n) (6)

where Gk is the corresponding graph of problem Qk, the matrix n (with the size of node number
× embedding dim) is the node embedding. An attention pooling is used to extract a graph level
embedding g. The GNN model can differ by the CO problems (details in Appendix D). After graph
feature extraction, we design the actor and critic nets:

Critic. It predicts the value of each state Qk. Since it aims at reward maximization, a max-pooling
layer is adopted over all node features which are concatenated (denoted by [·||·]) with the graph
embedding g, fed into a network (e.g. ResNet block (He et al., 2016)) for value prediction:

V(Qk) = ResNet1([MaxPool(n)||g]) (7)

Actor. The edge selection is implemented by selecting the start and end node sequentially. The action
scores are computed using two independent ResNet blocks, and a Softmax layer is added to regularize
the scores into probability [0, 1]:

P (a1) = Softmax(ResNet2([n||g])),
P (a2|a1) = Softmax(ResNet3([n||n[a1]||g))

(8)

where n[a1] denotes node a1’s embedding. We add the feature vector of the selected start node for the
end node selection. For training, actions are sampled by their probabilities. For testing, beam search is
used to find the optimal solution: actions with top-B probabilities are chosen for each graph in the last
time step. Only those actions with top-B rewards will be reserved for the next search step (see Alg. 1).

Other attacker implementations. We also implement three traditional attack algorithms for compar-
ison: random search, optimum-guided search and simulated annealing.

i) Random Search (ROCO-RA): In each iteration, an edge is randomly chosen to be modified in the
graph and it will be repeated for K iterations. Different from the random attack baseline without any
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search process, we will run N attack trials and choose the best solution. Despite its simplicity, it can
reflect the robustness of solvers with the cost of time complexity O(NK).

ii) Optimum-Guided Search (ROCO-OG): This method focuses on finding the optimum solution
during each iteration. We use beam search to maintain the best B current states and randomly sample
M different actions from the candidates to generate next states. The number of iterations is set to be
no more than K. The time complexity is O(BMK).

Algorithm 1: ROCO: Attack via iterative edge
manipulation on the input graph

Input: Input problem Q; solver fθ; max number of
actions K; beam size B.

Q0
1..B ← Q; Q̃← Q; # set initial state

for k ← 1..K do
for b← 1..B do

# do beam search for problems in last step
Predict P (a1), P (a2|a1) on Qk−1

b ;
Select (a1, a2) with top-B probabilities;

for each (b, a1, a2) pair do
Q′(b, a1, a2)← modify edge (a1, a2) in
Qk−1

b ;
if c(fθ, Q′(b, a1, a2)) > c(fθ, Q

∗) then
Q̃← Q′(b, a1, a2)
# update the best attacked problem

Sort Q′(·, ·, ·) w.r.t. cost values by decreasing
order;

Qk
1..B ← Q′

1..B ; # select top-B for next step

Output: Best attacked problem instance Q̃.

iii) Simulated Annealing (ROCO-SA): Sim-
ulated annealing (Van Laarhoven & Aarts,
1987) comes from the idea of annealing and
cooling used in physics for particle crystal-
lization. In our scenario, a higher tempera-
ture indicates a higher probability of accept-
ing a worse solution, allowing to jump out
of the local optimum. As the action num-
ber increases, the temperature decreased, and
we tend to reject bad solutions. The detailed
process is shown in Appendix B and we will
repeat it for N times. SA is a fine-tuned al-
gorithm and we can use grid search to find
the best parameter to fit the training set. Its
time complexity is O(NMK).

Tbl. 7 in Appendix I concludes the attack-
ers’ property and complexity. Since the three
traditional algorithms are inherently stochas-
tic, we run them multiple times. The trained
RL attacker behaves deterministicly and we
choose the best trained model.

3 STUDIED CO TASKS AND RESULTS

We conduct experiments on four representative CO tasks: Directed Acyclic Graph Scheduling, Asym-
metric Traveling Salesman Problem, Maximum Coverage and Maximum Coverage with Separate
Coverage Constraint. Considering the page limitation, the details of the last task is postponed to
Appendix C. We also test the robustness of representative solvers including heuristics (Helsgaun,
2017; Grandl et al., 2014), branch-and-bound solvers (Forrest et al., 2022; The SCIP Optimization
Suite 8.0, 2021; Gurobi Optimization, 2020) and learning-based methods (Kwon et al., 2021). The
detailed graph embedding methods for the four tasks is shown in Appendix D. In Appendix I, we
provide training and evaluation hyperparameters of different solvers for fair time comparison and
reproducibility. Experiments are run on our heterogeneous cluster with RTX 2080Ti and RTX 3090.

Metrics. The quantitative robustness has been defined in Def. 2, and here we propose a more intuitive
metric of robustness in terms of ratios, which is also against the attacker’s objective. Typically, we
just adopt the relative change rate between the cost value after attacked and the cost of the incumbent
optimal solution, i.e. the best solution we can find, so that the ratio is proportional to the attacker’s
objective. In the result tables, we report the raw cost value of different solvers under different attacks.
Besides, we also report the robustness ratio for ROCO-RL, which is the best attacker in most cases.

3.1 TASK I: DIRECTED ACYCLIC GRAPH SCHEDULING

Many task scheduling systems formulate the job stages and their dependencies as a Directed Acyclic
Graph (DAG) (Saha et al., 2015; Chambers et al., 2010), as shown in Fig. 4. The data center has
limited computing resources to allocate the jobs with different resource requirements. These jobs can
run in parallel if all their parent jobs have finished and the required resources are available. Our goal
is to minimize the makespan (i.e. finish all jobs as fast as possible.)

Solvers. We choose three popular heuristic solvers as our attack targets. First, the Shortest Job
First algorithm chooses the jobs greedily with minimum completion time. Second, the Critical Path
algorithm finds the bottlenecks and finishes the jobs in the critical path sequence. Third, the Tetris
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Table 2: Evaluation on DAG scheduling. Clean makespans are results on the clean test set. Stronger
attackers result in larger attacked makespans. Random denotes the random attack baseline with the
mean and std tested for 100 trials. ROCO-RA/OG/SA are tested for 10 trials to calculate the mean
and std. ROCO-RL is reported with a single value since it is invariant to random seeds. The ratio in
red is the robustness raio defined in metrics. A lower ratio denotes a more robust solver.

Solver Size: Clean Makespan Attack Method (Attacked Makespans (×105))
#job (×105) ↓ Random ROCO-RA ROCO-OG ROCO-SA ROCO-RL

Shortest Job First 50 1.0461 1.0406± 0.0035 1.0574± 0.0013 1.0600± 0.0019 1.0622± 0.0007 1.0608 (r = 28.94%)
Critical Path 50 0.8695 0.8828± 0.0077 0.9402± 0.0038 0.9480± 0.0021 0.9528± 0.0013 0.9500 (r = 15.47%)

Tetris 50 0.8227 0.8582± 0.0079 0.8952± 0.0049 0.9218± 0.0066 0.9380± 0.1153 0.9397 (r = 14.22%)

Shortest Job First 100 1.9160 1.8832± 0.0075 1.9210± 0.0006 1.9239± 0.0008 1.9239± 0.0008 1.9263 (r = 26.85%)
Critical Path 100 1.6018 1.6279± 0.0167 1.7391± 0.0045 1.7456± 0.0043 1.7480± 0.0003 1.7498 (r = 15.22%)

Tetris 100 1.5186 1.5830± 0.0196 1.7201± 0.0055 1.7099± 0.0111 1.7418± 0.0074 1.7526 (r = 15.41%)

Shortest Job First 150 2.8578 2.8281± 0.0074 2.8818± 0.0020 2.8898± 0.0023 2.8950± 0.0014 2.8964 (r = 28.91%)
Critical Path 150 2.4398 2.4254± 0.0203 2.5698± 0.0093 2.5928± 0.0090 2.6020± 0.0029 2.6069 (r = 16.02%)

Tetris 150 2.2469 2.3581± 0.0270 2.4988± 0.0191 2.5039± 0.0202 2.5399± 0.0058 2.5329 (r = 12.73%)

(Grandl et al., 2014) scheduling algorithm models the jobs as 2-dimension blocks in the Tetris games
according to their finishing time and resource requirement.
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Figure 2: Left: RL Attack results w.r.t. attack bud-
gets K on TPC-H-50 dataset for solvers Shortest
Job First(SJF), Critical Path(CP) and Tetris(TS).
Attack ratio is the ratio of the increased makespan
after the attack to the clean makespan. Right: RL
Attack results w.r.t. attack budgets K on TPC-H-
50/100/150 datasets for the Tetris (TS) solver.

Attack model. The edges in a DAG represent
job dependencies, and removing edges will relax
the constraints. After removing existing edges
in a DAG, it is obvious that the new solution
will be equal to or better than the original with
fewer restrictions. Therefore, the attack model
selectively removes existing edges.

Dataset. We use TPC-H dataset1, composed
of business-oriented queries and concurrent data
modification. Many DAGs referring to compu-
tation jobs, have tens or hundreds of stages with
different duration and numbers of parallel tasks.
We gather the DAGs randomly and generate three different sizes of datasets, TPC-H-50, TPC-H-100,
TPC-H-150, each with 50 training and 10 testing samples. The DAG nodes have two properties:
execution time and resource requirement.

Results and analysis. Tbl. 2 reports the results of our four attack methods. In the designed attack
methods, RL outperforms other learning-free methods in most cases, illustrating the correctness
of our feature extraction techniques and training framework. It is worth noting that even the simplest
random search (ROCO-RA) can cause a significant performance degradation to the CO solvers,
showing their vulnerability and the effectiveness of the attack framework. Besides, all four attack
methods perform better than the random attack baseline, which usually leads to a shorter makespan
than the clean instances (unsuccessful attack), proving that our attack framework can find more
hard instances than those because of the inherent instability of CO problems. Fig. 2 (left) shows
the attack ratio for different solvers on TPC-H-50. In general, the attack ratio increases then flattens
out w.r.t. attack budgets, corresponding with the fact that we can find more hard instances under
a larger searching space (but harder to find new successfully attacked instances as we remove more
constraints). Fig. 2 (right) demonstrates the effect of attack budgets on different sizes of datasets
using the solver Tetris. The figure illustrates that attack ratios on smaller datasets tend to flatten
first (larger datasets allow for more attack actions), which can guide us to select the right number
of attack actions for different datasets. We also conduct experiments to verify the generalizability of
ROCO-RL in Appendix L, which shows that our attacker can be trained efficiently on small problem
instances, then be directly used on larger problems.

3.2 TASK II: ASYMMETRIC TRAVELING SALESMAN

The classic traveling salesman problem (TSP) is to find the shortest cycle to travel across all the
cities. Here we tackle the extended version asymmetric TSP (ATSP) for generality.

Solvers. The robustness of four algorithms are evaluated: First, Nearest Neighbour greedily adds
the nearest city to the tour. Second, Furthest Insertion finds the city with the furthest distance to
existing cities in the tour and inserts it. Third, Lin-Kernighan Heuristic (LKH3) (Helsgaun, 2017) is

1http://tpc.org/tpch/default5.asp
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Table 3: Evaluation of solvers for ATSP. Stronger attacker result in larger attacked tour lengths.
MatNet (fixed) represents training MatNet with 10000 fixed ATSP instances.

Solver Problem Clean Tour Attack Method (Attacked Tour Length (×106))
Size: # city (×106) ↓ Random ROCO-RA ROCO-OG ROCO-SA ROCO-RL

Nearest Neighbour 20 1.9354 1.9143± 0.0259 2.1307± 0.0153 2.1162± 0.0323 2.1344± 0.0159 2.1858(r = 49.76%)
Furthest Insertion 20 1.6092 1.5847± 0.0142 1.6953± 0.0105 1.6926± 0.0117 1.7183± 0.0114 1.7469 (r = 19.69%)

LKH3 20 1.4595 1.4201± 0.0089 1.4599± 0.0003 1.4599± 0.0004 1.4610± 0.0017 1.4611 (r = 0.11%)
MatNet 20 1.4616 1.4237± 0.0089 1.4674± 0.0012 1.4683± 0.0006 1.4683± 0.0009 1.4708 (r = 0.77%)

MatNet (fixed) 20 1.4623 1.4227± 0.0086 1.4665± 0.0013 1.4687± 0.0004 1.4714± 0.0013 1.4737 (r = 0.97%)

Nearest Neighbour 50 2.2247 2.2221± 0.0131 2.3635± 0.0082 2.3809± 0.0096 2.4058± 0.0151 2.4530 (r = 47.58%)
Furthest Insertion 50 1.9772 1.9730± 0.0091 2.0593± 0.0071 2.0466± 0.0125 2.0632± 0.0089 2.1150 (r = 27.25%)

LKH3 50 1.6621 1.6493± 0.0042 1.6653± 0.0007 1.6656± 0.0007 1.6682± 0.0010 1.6679 (r = 0.35%)
MatNet 50 1.6915 1.6786± 0.0051 1.7153± 0.0012 1.7204± 0.0016 1.7255± 0.0012 1.7279 (r = 3.96%)

MatNet(fixed) 50 1.6972 1.6894± 0.0054 1.7171± 0.0021 1.7205± 0.0005 1.7279± 0.0007 1.7349 (r = 4.38%)

Nearest Neighbour 100 2.1456 2.1423± 0.0079 2.2319± 0.0099 2.2213± 0.0152 2.2273± 0.0112 2.2533 (r = 42.95%)
Furthest Insertion 100 1.9209 1.9188± 0.0061 1.9762± 0.0088 1.9782± 0.0111 1.9853± 0.0063 2.0144 (r = 27.79%)

LKH3 100 1.5763 1.5716± 0.0016 1.5826± 0.0006 1.5848± 0.0005 1.5856± 0.0003 1.5862 (r = 0.62%)
MatNet 100 1.6545 1.6492± 0.0036 1.6772± 0.0012 1.6815± 0.0005 1.6841± 0.0007 1.6873 (r = 7.04%)

MatNet (fixed) 100 1.6556 1.6498± 0.0037 1.6788± 0.0008 1.6823± 0.0003 1.6846± 0.0015 1.6919 (r = 7.33%)

the traditional SOTA TSP solver. Finally, Matrix Encoding Networks (MatNet) (Kwon et al., 2021)
claims as a SOTA learning-based solver for ATSP and flexible flow shop (FFSP).

Attack model. The attack is to choose an edge and half its value, by which we get a no-worse
theoretical optimum since the length of any path will maintain the same or decrease. To reduce the
action space, we will not select the edges in the current path predicted by the solver at the last time
step. An attack example is shown in Fig. 5 in Appendix E.

Dataset. The dataset comes from (Kwon et al., 2021), consisting of ‘tmat’ class ATSP instances which
have the triangle inequality and are widely studied by the operation research community (Cirasella
et al., 2001). We solve the ATSP of three sizes, 20, 50 and 100 cities. The distance matrix is fully
connected and asymmetric, and each dataset consists of 50 training samples and 20 testing samples.

Results and analysis. Tbl. 3 reports the attack results of four target solvers. where the RL based attack
outperforms other methods in most cases. Note that LKH3 is the most robust among all compared
solvers. We attribute the phenomenon to two aspcets of LKH3: Different initial states- LKH3 will
take 4 runs with diffenent initial states in our setting; Step by step improvement- Specifically, LKH3
uses k-opt (Lin, 1965) to iteratively reorder and optimize the result tour sequence. The introduction
of randomization and optimization should contribute to the strong robustness of LKH3. Inspired by
this idea, we conduct experiments to improve the robustness of Nearest Neighbor and Furtherest
Insertion in Tbl. 9 and Tbl. 10. MatNet generates different random problem instances for training
in each iteration. The comparison between “MatNet” and “MatNet (fixed)” proves that the huge
amount of i.i.d. training instances promotes both the performance and the robustness of the model.
As Yehuda et al. (2020) points out, learning-based solvers for CO cannot be trained sufficiently due
to the theoretical limitation of data generation. Thus, the training paradigm with large unlabeled data
can be a good choice for learning-based CO solvers. Besides, feeding hard samples discovered by
ROCO to “MatNet (fixed)” to conduct adversarial training may also promote robustness (see Tbl. 11).

3.3 TASK III: MAXIMUM COVERAGE

The maximum coverage (MC) problem is widely studied in approximation algorithms. Specifically,
as input we will be given several sets S = {S1, S2, ..., Sm} and a number k. The sets consist of
weighted elements e ∈ E and may have overlap with each other. Our goal is to select at most k of
these sets such that the maximum weight of elements are covered. The above problem can be
formulated as follows, where w(·) : E → R denotes the weight of a certain element.

max
S′

∑
e∈E

w(e)× I(e ∈
⋃

Si∈S′

Si) s.t. S ′ ⊆ S, |S ′| ≤ k (9)

Solvers. It has been shown that the greedy algorithm choosing a set that contains the largest weight
of uncovered elements achieves an approximation ratio of (1− 1

e ) (Hochbaum, 1996). which has also
been proved to be the best-possible polynomial-time approximation algorithm for maximum coverage
unless P=NP (Feige, 1998). So we choose it to serve as our first attack target. Besides, the maximum
coverage problem is quite suitable to be formulated as an integer linear program (ILP). Using Google
ORTools API2, we transform Eq. 9 into the ILP form and attack three other general-purpose solvers:

2https://developers.google.com/optimization
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Table 4: Evaluation for MC. The time limit is in brackets for B&B solvers, which is set long enough
to output a feasible solution in the clean dataset. Stronger attackers result in smaller attacked weights.

Solver Problem Size: Clean Weight Attack Method (Attacked Weight (×104))
#set-#element (×104) ↑ Random ROCO-RA ROCO-OG ROCO-SA ROCO-RL

Greedy 100-200 0.7349 0.7353± 0.0007 0.7252± 0.0012 0.7255± 0.0013 0.7253± 0.0007 0.7239(r = 3.36%)
CBC(0.5s) 100-200 0.7115 0.7020± 0.0122 0.6161± 0.0206 0.5448± 0.0255 0.5423± 0.0315 0.5029 (r = 32.87%)
SCIP(0.5s) 100-200 0.7184 0.7116± 0.0053 0.6850± 0.0013 0.6808± 0.0025 0.6803± 0.0015 0.6788 (r = 9.38%)

Gurobi(0.5s) 100-200 0.7491 0.7495± 0.0004 0.7460± 0.0004 0.7441± 0.0006 0.7426± 0.0008 0.7409 (r = 1.09%)

Greedy 150-300 1.1328 1.1330± 0.0011 1.1207± 0.0019 1.1183± 0.0021 1.1201± 0.0017 1.1182 (r = 2.64%)
CBC(1s) 150-300 1.0510 1.0181± 0.0192 0.8975± 0.0386 0.8054± 0.0487 0.7959± 0.0482 0.7527 (r = 34.46%)
SCIP(1s) 150-300 1.0847 1.0867± 0.0027 1.0544± 0.0017 1.0467± 0.0016 1.0486± 0.0012 1.0443 (r = 9.07%)

Gurobi(1s) 150-300 1.1485 1.1486± 0.0009 1.1391± 0.0008 1.1358± 0.0011 1.1332± 0.0005 1.1314 (r = 1.49%)

Greedy 200-400 1.4659 1.4665± 0.0013 1.4537± 0.0019 1.4533± 0.0019 1.4552± 0.0013 1.4466 (r = 2.84%)
CBC(1.5s) 200-400 1.4248 1.4088± 0.0219 1.2053± 0.0475 1.0966± 0.0575 1.0866± 0.0705 1.0418 (r = 30.03%)
SCIP(1.5s) 200-400 1.3994 1.3952± 0.0049 1.3636± 0.0013 1.3608± 0.0017 1.3629± 0.0018 1.3536 (r = 9.09%)

Gurobi(1.5s) 200-400 1.4889 1.4879± 0.0013 1.4754± 0.0022 1.4721± 0.0018 1.4697± 0.0003 1.4684 (r = 1.38%)

Gurobi (the SOTA commercial solver) (Gurobi Optimization, 2020), SCIP (The SCIP Optimization
Suite 8.0, 2021), and CBC (an open-sourced MILP solver written in C++) (Forrest et al., 2022), to
find their vulnerabilities. These solvers are set the same appropriate time limit.

Calibrated time. In line with Nair et al. (2020), we use calibrated time to measure running time of
task solving to reduce the interference of backend running scripts and the instability of the server.
The main idea is to solve a small calibration MIP continuously and use the average running time to
measure the speed of the machine when solving different instances. Details are given in Appendix G.

Attack model. The MC problem can achieve a no-worse optimum if we add new elements into
certain sets, as we can cover more elements while not exceeding the threshold k. MC can be treated
as a bipartite graph, where edges only exist between a set node and an element node inside the set.
So our attack model is to add edges between set nodes and elements nodes, leading to a theoretically
better optimum but can mislead the solvers. To reduce the action space, we only add edges for the
unchosen sets, since adding edges for selected sets will not affect the solver’s solution.

Dataset. For the MC problem, the distribution follows ORLIB3. The dataset consists of three
set-element pairs 100-200, 150-300, and 200-400, each with 50 training and 20 testing samples.

Results and analysis. Tbl. 4 records the attack results of four target solvers. The RL based attack
outperforms other methods across all cases in this scenario, showing the promising power of our
feature extraction method and policy gradient model. Besides, the attackers have even found some
instances for CBC where it cannot figure out feasible solutions under the given time limit, strongly
demonstrating the vulnerability of the solvers. This effect also appears in the more challenging
task Maximum Coverage with Separate Coverage Constraint MCSCC for Gurobi in Appendix C.
Typically, our attack model to MC problems is equivalent to modifying the objective coefficients
of the original ILP model of MC problem, which might incur numerical issues for ILP solver such
as unstable matrix factorization. Since we can access the source code of CBC solver and SCIP
solver respectively, we find that the SCIP solver is equipped with more modules improving numerical
stability of solving process, such as scaling, presolving and primal heuristics, etc. Besides, SCIP also
benefits from implementing more classes of branching policy and cutting planes that aim to improve
the dual bound, than CBC. The experimental results are in line with the expectation for the tested
ILP solvers, where CBC solver performs worse than SCIP solver in terms of both solution quality
and robustness. Compared to the open-sourced solvers, the commercial solver Gurobi performs
undoubtedly better in the perspective of both solution quality and robustness. One step further, we
conduct experiments on tuning the hyperparameters of Gurobi to improve its robustness in Tbl. 12.

4 CONCLUSION

We propose Robust Combinatorial Optimization (ROCO), the first general framework to evaluate the
robustness of combinatorial solvers on graphs without requiring optimal solutions or the differentiable
property. Alleviating these two requirements makes it generalized and flexible, helping us conduct an
extensive evaluation of the robustness of 14 unique combinations of different solvers and problems,
showing the effectiveness and potential of our methods. Moreover, we also provide insights to the
robustness of solvers and conduct various experiments to improve their robustness, which we believe
can encourage future works to develop more robust CO solvers.

3http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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A RELATED WORKS

Combinatorial optimization solvers. Traditional CO algorithms include but not limited to greedy
algorithms, heuristic algorithms like simulated annealing (SA) (Van Laarhoven & Aarts, 1987),
Lin–Kernighan–Helsgaun (LKH3) (Helsgaun, 2017), and branch-and-bound solvers like CBC (Forrest
et al., 2022), SCIP (The SCIP Optimization Suite 8.0, 2021), and Gurobi (Gurobi Optimization, 2020).
Besides, learning-based methods have also been proposed to tackle these problems. A mainstream
approach using deep learning is to predict the solution end-to-end, such as the supervised model
Pointer Networks (Vinyals et al., 2015), reinforcement learning models S2V-DQN (Khalil et al.,
2017) and MatNet (Kwon et al., 2021). Though these methods did perform well on different types of
CO problems, they are not that robust and universal, as discussed in Bengio et al. (2021), the solvers
may get stuck around poor solutions in many cases. The sensitivity of CO algorithms is theoretically
characterized in Varma & Yoshida (2021), however the metric in Varma & Yoshida (2021) requires
optimal solutions which are usually unavailable in practice concerning the NP-hard challenge in CO.

Adversarial attack and defense for neural networks. Since the seminal study Szegedy et al. (2014)
shows that small input perturbations can change model predictions, many adversarial attack methods
have been devised to construct such attacks. In general, adversarial attacks can be roughly divided
into two categories: white-box attacks with access to the model gradients, e.g. Goodfellow et al.
(2015); Madry et al. (2018); Carlini & Wagner (2017), and black-box attacks, with only access to the
model predictions, e.g. Ilyas et al. (2018); Narodytska & Kasiviswanathan (2016). Besides image and
text adversarial attacks (Jia & Liang, 2017), given the importance of graph-related applications and
the successful applications of graph neural networks (GNN) (Scarselli et al., 2008), more attention is
recently paid to the robustness of GNNs (Dai et al., 2018). Orthogonal to designing more effective
attacks, there is an interesting line of works that seek to inspect the nature of attacks, such as through
the frequency perspective (Chen et al., 2022b; Lin et al., 2022; Yash Sharma, 2019).

In the mean time, many defense strategies like adversarial training Ganin et al. (2016); Tramèr et al.
(2020); Ren et al. (2022b) have also been proposed to counter this series of attack methods. Besides,
as graph matching (GM) is a classic CO problem, Ren et al. (2022a) shows how to fulfill attack and
defense on GM, which reveals the vulnerability of deep GM by perturbing visual pixels and graph
structure iteratively and improves the robustness of deep GM by separating appearance-similar nodes
to be distributed more broadly.

B TRADITIONAL ATTACK ALGORITHM

As an example of traditional attack algorithm, we list the pseudo code of SA in Algorithm 2.

Algorithm 2: Simulated Annealing (SA) Attack
Input: Input problem Q; solver fθ; max number of actions K; action sample number M ;

Temperature decay ∆T ; coefficient β; bias eps.
Q0 ← Q; Q∗ ← Q0; T ← 1; # initial temperature
for k ← 1..K do

flag = False; # if action is available
for i← 1..M do

Random sample an edge (x, y) in edge candidates of Qk−1;
Q̃← add/delete the edge (x, y) in Qk−1; # new state by tentative action
P = exp(β(c(fθ,Q̃)−c(fθ,Q

k−1)+eps
T ); # action acceptance probability

if Random(0, 1) ≤ P then
flag = True; Qk ← Q̃; Q∗ ← Qk

break;

if flag = False then
break;

T = T ·∆T ;
Output: Problem instance G∗.
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Figure 3: Gurobi’s average time cost (no time limit) in solving clean or attacked MCSCC problems.
Experiments are run on 3 datasets (20 instances) of different sizes.

C EXPERIMENTS-TASK IV: MAXIMUM COVERAGE WITH SEPARATE
COVERAGE CONSTRAINTS

We also study a more complicated version of the former MC problem: the maximum coverage
problem with separate coverage constraint (MCSCC), which is NP-hard as proved in Appendix F.2.
Specifically, the elements E can be classified into the black ones B and the white ones W (i.e.
E = W ∪ B,W ∩ B = ∅). And our goal is to select a series of sets S ′ ⊆ S to maximize the
coverage of black element weights while covering no more than k white elements. The problem
can be represented by a bipartite graph, where edges only exist between a set node and an element
node covered by the set. The problem can be formulated as:

max
S′

∑
b∈B

w(b)× I(b ∈
⋃

Si∈S′

C+(Si))

s.t. S ′ ⊆ S, |
⋃

Si∈S′

C−(Si)| ≤ k
(10)

where w(·) denotes the weight of a certain element, C(·) denotes the set of elements covered by a set,
and C+(·) and C−(·) denotes the set of elements in C(·) with black and white labels, respectively.

Solvers. As an enhanced version of MC, the MCSCC problem is very challenging and here we
propose three different solvers as the target for attacking. First, the trivial Local algorithm iterates
over the sets sequentially, adding any sets that will not exceed the threshold k. Second, we adopt a
more intelligent Greedy Average algorithm that always chooses the most cost-effective (the ratio of
the increase of black element weights to the increase of a number of covered white elements) set at
each step until the threshold k is exceeded. Third, we formulate the problem into the standard ILP
form (details in Appendix F.3) and solve it by Gurobi (Gurobi Optimization, 2020).

Attack model. Our attack model chooses to add non-existing black edges that connect sets to black
elements, which can lead to a theoretically better optimum since we can possibly cover more black
elements while not exceeding the threshold k. Further, in order to reduce the action space, we only
select the unchosen sets, otherwise it will be useless since adding edges for selected sets will not
affect a solver’s output solution. A successful attack example is shown in Fig. 6 in Appendix E.

Dataset. There is a lack of large-scale real-world datasets for MCSCC. Thus, we keep the data
distribution similar to the MC problem and randomly generate the dataset (Kwon et al., 2021) for
training. Specifically, the dataset consists of three configs of set-black element-white element: 30-
150-3K, 60-300-6K and 100-500-10K, each with 50 training samples and 10 testing samples. More
details about the dataset are presented in Appendix H.

Results and analysis. Tbl. 5 shows the attack results on our simulated dataset. Both traditional and
RL approaches achieve significant attack effects, while RL outperforms the others in most cases
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Table 5: Evaluation of solvers for MCSCC (notations are kept in line with MC in Table 4). Since
MCSCC incorporates more constraints and is more challenging, our ROCO attackers show a more
significant effect compared to MC, suggesting that solvers may be more vulnerable on CO prob-
lems that are inherently more challenging (e.g. with more complicated constraints). The greedy
average algorithm is the most robust probably due to its worst-case guarantee known as submodular-
ity (Hochbaum, 1996).

Solver Problem Size: Clean Weight ↑ Attack Method (Attacked Weight)
#set-#b elem.-#w elem. Random ROCO-RA ROCO-OG ROCO-SA ROCO-RL

Local Search 30-150-3K 9.5713 9.5474± 0.0325 9.4966± 0.0057 9.4976± 0.0105 9.4899± 0.0029 9.4861(r = 49.79%)
Greedy Average 30-150-3K 18.0038 18.2541± 0.1710 17.5141± 0.0288 17.4331± 0.0414 17.5177± 0.0396 17.1414 (r = 9.28%)

Gurobi(1s) 30-150-3K 18.8934 19.2297± 0.1795 16.9266± 0.2135 15.4132± 0.3552 15.3055± 0.3684 14.2740 (r = 24.45%)

Local Search 60-300-6K 24.9913 25.0413± 0.0625 24.8738± 0.0100 24.7914± 0.035 24.8189± 0.0375 24.8014 (r = 42.54%)
Greedy Average 60-300-6K 43.1625 43.1539± 0.0475 42.7697± 0.0388 42.7611± 0.0475 42.7222± 0.0388 42.1741 (r = 2.29%)

Gurobi(2s) 60-300-6K 41.1828 41.8005± 0.4407 38.2382± 0.3459 37.3322± 0.4201 38.2918± 0.3665 36.0432 (r = 16.49%)

Local Search 100-500-10K 22.9359 22.9634± 0.0482 22.7616± 0.0206 22.6538± 0.0183 22.7455± 0.0206 22.5804 (r = 56.06%)
Greedy Average 100-500-10K 51.3905 51.4008± 0.0308 50.7481± 0.0719 50.5169± 0.1747 50.6865± 0.0411 50.5631 (r = 1.61%)

Gurobi(5s) 100-500-10K 49.3296 52.8192± 0.3803 48.1375± 0.3597 47.4386± 0.4933 49.2013± 0.2467 43.4866 (r = 15.38%)

(especially for Gurobi). We can see from Tbl. 5 that the degradation of Gurobi after attack is much
more obvious than that in MC, possibly because the computation progress of MCSCC can include
more vulnerable steps than MC. Fig. 3 shows the average time cost (no time limit) for Gurobi in
solving MCSCC problems. The figure illustrates that solving time on the attacked instances is longer
than those on the clean ones by a large margin, proving the promising power of our attack framework.

D GRAPH EMBEDDING FOR SPECIFIC TASKS

We discuss specific graph embedding metrics for different kinds of CO problems for reproducibility.

D.1 TASK I: DIRECTED ACYCLIC GRAPH SCHEDULING

Since the task is a directed acyclic graph, we use GCN to encode the state in the original graph
and its reverse graph with inversely directed edges separately. Then we concatenate the two node
embeddings and use an attention pooling layer to extract the graph-level embedding for Eq. 6:

n = [GCN1(G)||GCN2(reverse(G))], g = AttPool(n). (11)

D.2 TASK II: ASYMMETRIC TRAVELING SALESMAN PROBLEM

Since the graph is fully connected, we use GCN to encode the state in the graph. Then we use an
attention pooling layer to extract the graph-level embedding. Eq. 6 becomes:

n = [GCN(G)], g = AttPool(n). (12)

D.3 TASK III: MAXIMUM COVERAGE

For the RL attack method, different from DAG and ATSP, MC has a unique bipartite graph structure.
Therefore, we resort to SAGEConv, which can handle bipartite data, for graph feature extraction. As
input, we classify the nodes into two classes (subsets Is and elements Ie) and associate them with two
dimension one-hot tensors. Besides, we add one more dimension for element nodes, which records
their weights. Eq. 6 becomes:

ne = SAGEConv1(Is, Ie), ns = SAGEConv2(Ie, Is)
ge = AttPool1(ne), gs = AttPool2(ns)

(13)

D.4 TASK IV: MAXIMUM COVERAGE WITH SEPARATE COVERAGE CONSTRAINTS

The graph embedding mechanism for MCSCC is exactly the same as MC since they can both be
represented by a bipartite graph except that we add one more one-hot dimension to distinguish
between black and white elements.
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E SUCCESSFUL ATTACK EXAMPLES

E.1 TASK I: DIRECTED ACYCLIC GRAPH SCHEDULING

A successful attack example is shown in Fig. 4.

Figure 4: DAG attack on Shortest Job First algorithm. The edges show sequential dependencies. The
(x, y) tuple of each node means running time (x) and resource occupancy rate (y).

E.2 TASK II: ASYMMETRIC TRAVELING SALESMAN PROBLEM

A successful attack example is shown in Fig. 5.

Figure 5: ATSP attack on Nearest Neighbour algorithm. The directed edge represents the distance
between two nodes. The attack action on edge AC will cause 2 further distance.

E.3 TASK III: MAXIMUM COVERAGE AND TASK IV: MAXIMUM COVERAGE WITH SEPARATE
COVERAGE CONSTRAINTS

Successful attack examples are shown in Fig. 6.

F FORMULAS AND PROOFS

F.1 NO-WORSE OPTIMAL SOLUTION GUARANTEE

We will prove that the attack constrains can guarantee no-worse optimal solution.

Proposition 1. Given the clean CO problem Q and the new instance Q̃ obtained by the attacker.
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Figure 6: Left: MC attack on Greedy algorithm. The threshold k of the sets is 2 and all the elements
have unit weight. Attacks on edges A2 and A4 will cause a lower covered weight. Right: MCSCC
attack on Greedy Average algorithm. The threshold k of the white elements is 5 and the value near the
black element represents its weight. Attack on edge Aa causes a lower covered black element weight.

1. If the attacker removes some of the constraints or makes constraints easier to reach, which is
defined as the first strategy loosening the constraints, the optimal solution will be no-worse.

2. If the attacker decreases the value of the objective function obtained from some feasible solutions,
which is defined as the second strategy lowering the cost, the optimal solution will be no-worse.

Proof. We define x∗ and x̃∗ as the optimal solution, X and X̃ as the feasible solution set in Q and Q̃.
According to the formulation in Eq.1, we have

min
x

c(x, Q) s.t. hi(x, Q) ≤ 0, i = 1, ..., I (14)

min
x̃

c(x̃, Q̃) s.t. h̃i(x̃, Q̃) ≤ 0, i = 1, ..., Ĩ (15)

1. The attacker modifies the constraints hi to h̃i in three ways: 1) Stay the same. For each same
solution x, h̃i(x, Q̃) = hi(x, Q). 2) Remove the constraint. The constraint hi(x, Q) is no longer
in Q̃. 3) Acquire lower value. For each same solution x, h̃i(x, Q̃) ≤ hi(x, Q). Hence, the
less than zero inequality is easier to achieve. Because if we have hi(x, Q) ≤ 0, there must be
h̃i(x, Q̃) ≤ 0.

Three parts of the constraints ensure each feasible solution x ∈ X satisfies the constraints in Q
still satisfies the constraints in Q̃. Therefore, we have X ⊆ X̃ . Since the cost function does not
change and x∗ ∈ X̃ , the optimal solution in new instance Q̃ can be at least the same. Meanwhile,
The new feasible solution set X̃ −X may provide a better solution. In conclusion, the optimal
solution will be no-worse.

2. The attacker decreases the cost function in the new instance Q̃ where c(x, Q̃) ≤ c(x, Q) for each
instance x. The constraints stay the same so that X = X̃ . For x∗, there is c(x∗, Q̃) ≤ c(x∗, Q)

and x∗ ∈ X̃ which means the optimal solution in Q̃ will be no-worse.

F.2 MCSCC NP-HARD PROVEMENT

We prove that the decision problem of MCSCC is NP-complete, thus the optimization problem of
MCSCC in our paper is NP-hard. For the sake of our proof, here we redefine MCSCC and give
definition of a traditional NP-Complete problem: Set Covering.

The decision problem of MCSCC. Given a series of sets R = {R1, R2, ..., Rn} along with an
element set consisted of white and black elements E =W∪B. The sets cover certain elements (white
C−(Ri) or black C+(Ri)) which have their weights w(e). Does there exist a collection of these sets
R′ ⊆ R to cover ≥M black elements weight while influence no more than k white elements?

Set Covering. Given a set U of elements, a collection S1, S2, . . . , Sn of subsets of U , and integer k,
does there exist a collection of ≤ k of these sets whose union equals to U?
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First, we need to show that MCSCC is NP. Given a collection of selected sets R′ =
{R1, R2, . . . , Rm}, we can simply traverse the set, recording the covered black and white ele-
ments. Then, we can assert whether the covered black element number is no more than k and
fraudulent monetary value is no less than m.

Since the certification process can be done in O(n2), we can tell that MCSCC is NP. Then, for
NP-hardness, we can get it reduced from Set Covering.

Suppose we have a Set Covering instance, we construct an equivalent MCSCC problem as follows:

• Create |U | black elements with weight 1, corresponding to elements in Set Covering.
• Create n sets, set C+(Ri) = Si.
• Connect each set to a different white element of weight 1.
• Set the white element threshold kw equal to the set number threshold ks.
• Set black element weight target M = |U |.
Suppose we find a collection of sets which meet the conditions of MCSCC, then we select subsets
in Set Covering Si iff we select Ri. The total number of subsets is no more than kw(ks) since
the influenced white element number is equal to |R′|. The subsets also cover U since the covered
black element weight (each with amount 1) is no less than |U |. Similarly, we can prove that we can
find a suitable subset collection for MCSCC if we have found a collection of subsets that meet the
conditions of Set Covering. So we can induce that Set Covering ≤p MCSCC.

Thus, we have proved that the decision problem of MCSCC is NP-Complete.

F.3 MCSCC ILP FORMULATION

As discussed in the main text, B denotes the set of black elements,W represents the set of white
elements, S refers to the collection of sets and E denotes the element set. Using notations above, we
can translate Eq. 10 into standard ILP form as follows:

max
∑
i∈B

Y [i]×W [i], s.t.
∑
i∈W

Y [i] ≤ k

for i = 1 . . . |E|, (Y [i]− 0.5)(0.5−
|R|∑
j=1

X[j]× I(i in E[j])) ≤ 0

(16)

where X[j] ∈ {0, 1} denotes set Sj is chosen (1) or not (0), Y [i] ∈ {0, 1} shows whether element i
has been covered by the chosen sets. Besides, W [i] ∈ R records the weight of the elements while
E[j] ⊆ E is the corresponding elements of set Sj . The third equation ensures the element binary
variable Y [i] to be 1 iff it has been covered by a certain set (if ∃X[j] = 1 and element i ∈ E[j], then
the formula in the second bracket is negative, ensuring Y [i] to be 1; else if element i is not covered
by any chosen sets, then the second formula is positive and Y [i] must be 0).

G CALIBRATED TIME

Considering the instability of the server and the interference of other running programs, calibrated
time is designed to evaluate the server speed within a small period of time. Specifically, we define the
speed as the reciprocal of the Wall clock time to solve a given calibration MIP. The calibration MIP
is generated in the stable condition and solved K times to record the basic speed speedbase. When
evaluating the other instances, we will first evaluate the calibration MIP K times to calculate the
current speed speednow. K is the number of samples, which is set as 20 in our experiments.

To fairly measure the solvers’ performance under different computational resources, take MC prob-
lems as an example, a given calibration MIP is also a specified MC problem to design time limits for
different server speeds. Specifically, the new time limit for the solver will be set as:

New Time Limit =
speedbase

speednow

× Uniform Time Limit (17)
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H MCSCC DATASET

Besides the distribution rules of MC, we generate the MCSCC dataset mainly by two rules: 1) The
black element weights are uniformly distributed in the range [0, 1]. 2) The number of black elements
is 5% of white elements. 3) The covered black element weights and wight element numbers of sets
follow a Gaussian distribution with a large standard deviation, to enlarge the differences between the
sets.
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Figure 7: The distribution of black element weights covered by different sets. The x − y pair in
legends means the set can cover weights in range [x, y].

Fig. 7 shows the black element weights covered by different sets in a 100-500-10K problem instance.
As we can see, few well-designed sets can cover most weights while the others can be regarded as
complementary to these sets. This design enlarges the difference between the different quality of
solutions, therefore promoting the potential to be attacked.

I EXPERIMENT SETUPS

Experiment environments. DAG and ATSP experiments are run on a GeForce RTX 2080Ti while
MC and MCSCC experiments are run on a GeForce RTX 3090 (20GB). We implement our models
with Python 3.7, PyTorch 1.9.0 and PyTorch Geometric 1.7.2.

RL settings. Tbl. 6 records the hyperparameters for RL during the training process. Trust region
clip factor is a parameter in PPO agent to avoid model collapse. We also adopt some common policy-
gradient training tricks like reward normalization and entropy regularization during training processes.

Attacker hyperparameters. For fair comparison of different attackers and the consideration of RL in-
ference time, the hyperparameters are set to ensure similar evaluation time across different attack meth-
ods. According to the time complexity we calculate in Tbl. 7, here we specify the following parame-
ters: number of iterations N , beam search size B and number of different actions M in each iteration.

• DAG: ROCO-RA N = 30; ROCO-OG B = 3, M = 9; ROCO-SA N = 5, M = 6; ROCO-RL
B = 3.

• ATSP: ROCO-RA N = 130; ROCO-OG B = 5, M = 25; ROCO-SA N = 13, M = 10;
ROCO-RL B = 5.

• MC: ROCO-RA N = 220; ROCO-OG B = 6, M = 36; ROCO-SA N = 22, M = 10; ROCO-RL
B = 6.
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Table 6: RL parameter configuration in tasks
DAG, ATSP, MC and MCSCC.

Parameters DAG ATSP MC & MCSCC

Actions# 20 10 10
Reward discount factor 0.95 0.95 0.95
Trust region clip factor 0.1 0.1 0.1

GNN type GCN GCN SAGEConv
GNN layers# 5 3 3
Learning rate 1e-4 1e-3 1e-3

Node feature dimensions# 64 20 16

Table 7: Comparison of our attackers. Random-
ness means it will produce different results in
different trials. Trained means whether the param-
eters are tuned by a training set.

Attack Method Randomness Trained Time Complexity

ROCO-RA ✓ O(NK)
ROCO-OG ✓ O(BMK)
ROCO-SA ✓ ✓ O(NMK)
ROCO-RL ✓ O(B2K)

Table 8: The ratio of budget K to average number of edges in different task. Each task has three
datasets of different sizes, which is denoted by small, medium and large in the table.

Tasks Average Number of edges |E| in three sizes Budget K Ratio K/|E|Small Size Medium Size Large Size

DAG 468 930 1386 20 1.44% ∼ 4.27%
ATSP 400 2500 10000 10 0.10% ∼ 2.50%

MC 1260 1873 2497 10 0.40% ∼ 0.79%
MCSCC 4680 9567 16171 10 0.06% ∼ 0.21%

• MCSCC: ROCO-RA N = 250; ROCO-OG B = 6, M = 36; ROCO-SA N = 25, M = 10;
ROCO-RL B = 6.

J ANALYSIS OF ATTACK BUDGET

Unnoticeable Property. The perturbation to the problem instance is conducted by modifications to
the graph structure. To get non-trivial hard instances around clean examples, the attack is limited
within a given attack budget K, which means at most K edges can be modified in a graph. Tbl. 1
compares our framework to classical works on adversarial attacks for images and graphs. Similar to
the ϵ-Perturb budget (Goodfellow et al., 2015) in image classification task and the number of edges
modification (Dai et al., 2018) in graph classification task, we use the number of edges modification
budget to satisfy the unnoticeable property. Tbl. 8 shows the ratio of budget K to the average number
of edges in these tasks. The low ratio shows that our modification to the original graph is minor.
Apart from this, we also show the relation between the attack effect and the attack budget in the next
paragraph.
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Figure 8: Relation between attack percentage
to attack budget K in the DAG task with prob-
lem size 50.
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Figure 9: Relation between attack percentage
to attack budget K in the ATSP task with
problem size 20.

Sensitivity to the Budget K. To evaluate sensitivity of the proposed method to the budget K across
different tasks, we define attack percentage as the ratio of the performance loss in current edge budget
to the the performance loss in the budget upper bound. For example, in ATSP task, the budget upper
bound is 10 and we can will get 0% attack percentage using 0 edge modification and 100% using
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Table 9: Comparison of different number of swapped node pairs k on the “step by step improvement”
modification for Nearest Neighbour algorithm on the dataset ATSP-20. Lower clean tour length
represents better original performance, while lower attacked tour length and robustness ratio denote
better robustness.

Solver Clean Tour Length ↓ Attacked Tour Length ↓ Robustness Ratio ↓
Nearest Neighbour(Original) 1.9354 2.0867 42.97%
Nearest Neighbour(k = 3) 1.7519 1.8838 29.07%
Nearest Neighbour(k = 5) 1.7258 1.8504 26.78%
Nearest Neighbour(k = 8) 1.7253 1.8462 26.50%

Table 10: Comparison of different initial city number s on the “different start state” modification for
Furthest Insertion algorithm on the dataset ATSP-20.

Solver Clean Tour Length ↓ Attacked Tour Length ↓ Robustness Ratio ↓
Furthest Insertion(Original) 1.6092 1.6959 16.20%

Furthest Insertion(s = 3) 1.5602 1.6246 11.31%
Nearest Neighbour(s = 10) 1.5207 1.5774 8.07%
Nearest Neighbour(s = 20) 1.5005 1.5504 6.23%

Table 11: Adversarial training(AT) for MatNet on dataset ATSP-20. MatNet-X means we use X
fixed ATSP instances for training while MatNet-X-AT means we use X hard cases generated from
the clean instances by our framework.

Data Type MatNet-1000 MatNet-1000-AT MatNet-10000 MatNet-10000-AT MatNet

Clean instances 1.4687 1.4691 1.4623 1.4626 1.4616
Hard instances 1.4761 1.4742 1.4737 1.4703 1.4708

10 edge modification. Fig. 8-11 show the relation between attack percentage to attack budget in
different tasks. In Fig. 8, the three solvers all reach the high attack percentage using few budget. It
may be more appropriate to reduce the budget because of marginal utility. Corresponding to this, it is
possible for LKH3 to improve the attack performance as the budget rises shown in Fig. 9. Therefore,
the sensitivity to budget K can help set the appropriate attack budget in practice.
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Figure 10: Relation between attack percent-
age to attack budget K in the MC task with
problem size 100-200.
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Figure 11: Relation between attack percent-
age to attack budget K in the MCSCC task
with problem size 30-150-3k.

K ROBUSTNESS IMPROVEMENT

Apart from evaluating the robustness of the solvers, here we provide some preliminary yet positive
results on improving solvers’ robustness, while a full solution is indeed beyond the scope of this
paper as we focus more on practical robustness evaluation.
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Table 12: Hyperparameter tuning for Gurobi on MC(100-200). We focus on tuning two important hy-
perparameters: MIPFocus and Heuristics through Gurobi’s API, which are described more detailedly
in text.

Hyperparameter Hard Example Weight↑ Clean Weight ROCO-RL Robustness Ratio↓
MIPFocus=0, Heurstics=0.00 0.7414 0.7480 0.7418 0.83%
MIPFocus=0, Heurstics=0.05 0.7409 0.7491 0.7409 1.09%
MIPFocus=0, Heurstics=0.10 0.7386 0.7483 0.7383 1.34%
MIPFocus=1, Heurstics=0.00 0.7488 0.7478 0.7430 0.64%
MIPFocus=1, Heurstics=0.05 0.7472 0.7490 0.7427 0.84%
MIPFocus=1, Heurstics=0.10 0.7455 0.7480 0.7410 0.94%
MIPFocus=2, Heurstics=0.00 0.7466 0.7460 0.7395 0.87%
MIPFocus=2, Heurstics=0.05 0.7448 0.7475 0.7398 1.03%
MIPFocus=2, Heurstics=0.10 0.7433 0.7466 0.7383 1.11%

Adversarial Training. We perform adversarial training (AT) for MatNet (fixed training data) on
dataset ATSP-20. Tbl. 11 presents our main results on AT. Specifically, MatNet-1000 denotes we
use 1000 fixed ATSP instances to train the MatNet, while MatNet-1000-AT represents that we use
1000 hard instances generated by the ROCO-RL attacker to adversarially train the MatNet. The
table shows that after AT, MatNet achieves obviously better results on the hard instances, at the cost
of a bit performance degradation on the clean instances. However, AT cannot compensate for the
insufficiency of training data, as we can see that the performance of MatNet-1000-AT is still worse
than MatNet-10000 on the hard examples. The reason why we do not conduct AT on the original
MatNet is that it trains for 2000 epochs, each with 10000 randomly generated ATSP instances, which
is too large a number for us to generate adversarial samples. Notably, the results in the table are
relatively close to each other which may introduce bias in the experiments. This implies that we may
further explore other CO problems to test the effectiveness of AT, which we leave for the future work.

LKH3-guided robustness improvement. As we find from Tbl. 3 that LKH3 is the most robust
solver for the ATSP problem, we try to adapt its randomization and optimization strategies to the
Nearest Neighbour and the Furthest Insertion algorithm to promote their robustness.

First, we develop Nearest Neighbour (Step by step improvement). Instead of the well-designed
optimization method k-opt (Lin, 1965) of LKH3, here we just greedily swap a pair of nodes on the
solution obained by Nearest Neighbour for k times. For each time we will enumerate all the node
pairs and calculate the corresponding reduced tour length, then find the best pair to swap. We do
experiments for different number of swaps k on the dataset ATSP20. The robustness ratios (the lower
the better) in Tbl. 9 are calculated w.r.t. the incumbent optimal solution. The incumbent optimal tour
length is 1.4595 obtained by LKH3. We can find the clean tour length decreases, and the robustness
increases with a larger value of k. Another interesting phenomenon is that the solver with k = 5
and k = 8 have similar clean tour lengths, while the latter is obviously more robust than the former.
These results demonstrate that the optimization process does contribute greatly to the robustness of
the solver.

Second, we develop Furthest Insertion (Different start state). The Furthest Insertion algorithm
will be influenced by the initial city and generate different solutions accordingly. Therefore, we can
set s different cities as the initial city and choose the best solution as our result. We do experiments
for different number of start states s on the dataset ATSP20. From Tbl. 10, we can find that the
clean tour length decreases, and the robustness increases with a larger value of s, which proves that
randomization does contribute to the robustness of the solver.

Hyperparameter tuning. We use hard examples to tune the hyperparameters of Gurobi on the MC
problem (problem size 100-200). We refer to Gurobi’s Documentation in Gurobi Optimization (2020)
and choose two important hyperparameters: MIPFocus and Heuristics, which are easily set by the
python interface of Gurobi. Specifically, MIPFocus (integer, default 0, set between 0 and 3) allows
us to modify our high-level solution strategy. By default, the Gurobi MIP solver strikes a balance
between finding new feasible solutions and proving that the current solution is optimal. A higher
MIPFocus will focus on proving optimality more. Heuristics (double, default 0.05, set between 0 and
1) determines the amount of time spent in MIP heuristics. Larger values produce more and better
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feasible solutions, at a cost of slower progress in the best bound. We generate 100 hard examples
from the testing dataset and tune the two hyperparameters using grid search for MIPFocus ∈ [0, 1, 2]
and Heuristics ∈ [0, 0.05, 0.10].

As we can see from Tbl. 12, the robustness ratio (Clean Weight - ROCO-RL) / Clean Weight declines
almost as the hard example weight (averaged over the cost value on 100 hard examples) increases. This
shows that tuning the Gurobi hyperparameters is indeed useful to promote its robustness. Moreover,
we can see that the hard example weight is the largest when MIPFocus=1 and Heuristics=0.0, which
shows that Gurobi needs to pay more attention to narrowing the optimal bound to better deal with the
hard examples.

L GENERALIZABILITY

One potential drawback of ROCO is its scalability. Since the training of the proposed RL strategy
requires calling of the solver at each timestep, the training process indeed takes a relative long time
(taking at most one day in our largest dataset setting, acceptable compared to common RL pipelines).
However, the inference process is still efficient since we only need to take one forward pass with
beam search. To resolve the concern that ROCO cannot scale to graphs in real-world scenarios, we
provide additional results to show ROCO-RL’s generalizability from small to large graphs.

Table 13: Evaluation results of ROCO-RL’s generalizability on DAG. Each row denotes results
on a testing size using models trained with different problem sizes, each column denotes testing a
model trained on a certain problem size with different sizes of testing data. The robustness ratios are
calculated w.r.t. the incumbent optimal solution. Lower robustness ratios denote better robustness.

Solver Shortest Job First Critical Path Tetris
Size: #job 50 100 150 50 100 150 50 100 150

50 28.95% 28.59% 28.55% 15.34% 15.22% 14.86% 14.22% 13.67% 13.02%
100 26.79% 26.85% 26.99% 14.94% 15.22% 14.90% 11.57% 15.41% 14.29%
150 28.73% 28.63% 28.91% 16.02% 14.95% 15.58% 12.87% 15.53% 12.73%
300 28.10% 27.67% 27.26% 15.91% 16.16% 16.23% 13.09% 14.83% 12.38%

As we can see from Tbl. 13, the RL agents trained on small graphs can be used to modify problems
with larger graph sizes, achieving great performance degradation for different solvers. These results
strongly support that ROCO can be trained on small graphs and then be used to measure
robustness on large graphs.

M FURTHER DISCUSSIONS

Limitations. First of all, as our framework is designed for combinatorial optimization problems
on graphs, it needs non-trivial reformulation to fit into CO problems cannot encoded by graphs.
Secondly, the principle of designing our attack action is based on the graph modification to achieve
no-worse optimum, which may not be applicable to all CO problems.

Potential Negative Impacts. As we propose the first general framework to evaluate the robustness
of combinatorial solvers on graphs, this may be used by unscrupulous people to attack different
solvers, increasing the burden on engineers to cope with the malicious attacks.

Outlook. Our paradigm opens up new space for further research, including the aspects: 1) Utilizing
the hard cases generated by our framework to design defense models, such as adversarial training and
hyperparameter tuning. 2) Developing a more general attack framework for CO problems that cannot
be represented by graphs. 3) Besides our studied tasks, the attacking idea of loosening constraints
and lowering costs is also generalizable on a wide range of CO problems such as Maximum Cut and
Minimum Vertex Cover, which need further evaluation on their robustness.
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