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SUMMARY

A potentially organizing goal of the brain and cognitive sciences is to accurately explain domains of human
intelligence as executable, neurally mechanistic models. Years of research have led to models that capture
experimental results in individual behavioral tasks and individual brain regions. We here advocate for taking
the next step: integrating experimental results from many laboratories into suites of benchmarks that, when
considered together, push mechanistic models toward explaining entire domains of intelligence, such as
vision, language, and motor control. Given recent successes of neurally mechanistic models and the surging
availability of neural, anatomical, and behavioral data, we believe that now is the time to create integrative
benchmarking platforms that incentivize ambitious, unified models. This perspective discusses the advan-
tages and the challenges of this approach and proposes specific steps to achieve this goal in the domain
of visual intelligence with the case study of an integrative benchmarking platform called Brain-Score.
INTRODUCTION

Brain processing is an interplay of inter-connected networks of

neurons, which, taken together, allow us to perceive the world

around us, predict what will happen next, communicate with

each other, manipulate objects, andmuchmore. Since the ability

to solve such problems evolved to enable survival and reproduc-

tion in the world, we envision that the neural mechanisms,

together with the behavioral abilities corresponding to each

such problem domain, offer a useful scale at which to study

the brain. These ‘‘naturally intelligent’’ neural algorithms underly-

ing each domain are not only scientifically fascinating, they are

an untapped goldmine of next-generation human-intelligent ma-

chine systems and other applications.

However, it has been extremely challenging to explain even a

single domain of human intelligence in terms of underlying neural

mechanisms of the interacting sub-networks. For example,

consider the domain of visual intelligence in primates. Even

though we know that the cascade of neural impulses within the

cortical areas V1, V2, V4, and inferior temporal (IT) cortex, in co-

ordination with other subcortical and motor regions, underlie our

ability to recognize and report objects in the world, we still lack a

complete understanding of how neural signals mechanistically

support complex visual behaviors in particular and visual intelli-

gence more broadly.

Because of the daunting complexity of each domain of intelli-

gence, much of neuroscience started with a ‘‘divide and conquer

later’’ strategy: focus the scope of investigation on single brain re-
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gions (such as V1) or single psychophysical domains, and study

each region or behavioral domain with simple models, often

describing a small set of carefully parameterized experiments.

The hope in this approach is thatwewill eventually beable to scale

up the building blocks (or ‘‘principles’’) by combining them into an

accurate unified model of the entire domain. Scientists, ourselves

included, agree on both the continuous necessity of mapping out

the space of building blocks but also the ultimate objective of uni-

fied modeling of entire domains of human intelligence. However,

scientists disagree on when the time is right to start scaling up.

Some of the field views it as currently premature to build unified

models, because the underlying building blocks have not yet

been sufficiently elaborated.

Here, we advocate for the alternative point of view that, based

on recent developments, the time is now to build neurally mech-

anistic models of domains of intelligence and to test them

against empirical data in order to develop better and better

models by scaling up the right combinations of building blocks.

To enable these large-scale modeling efforts, we argue that

serious efforts must be spent on integrative benchmarking:

Specify a set of behaviors that together define a domain of

intelligence, and assemble neural and behavioral data from

across its supported domain, in order to guide and

constrain neurally mechanistic models that are capable

of generating that set of behaviors.

Each such integrative, executable network model would be an

account of how the brain might accomplish the domain of
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Figure 1. Can We Build Integrative Models of
Intelligence?
Prior work has attempted to ‘‘divide and conquer
later,’’ creating models that are accurate but limited
in their domain of explanation (describing only a part
of the elephant but missing the integrative picture;
upper panel). We believe the time is right to begin
evaluating and developing models that simulta-
neously explain a broad set of empirical phenom-
ena. Our belief is that models that aim to capture
more of these benchmarks simultaneously will lead
to faster progress toward models of an entire
domain of intelligence. A single lab cannot accom-
plish this endeavor—communities need to share
empirical benchmarks and candidate models
through a common platform. Here we propose the
Brain-Score 1.0 platform (see text).
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intelligence in question in terms of basic mechanistic compo-

nents (e.g., interconnected integrate and fire neurons). In that

fundamental sense, such models are neurally mechanistic hy-

potheses, and, as such, they make unequivocal predictions

that can be falsified by empirical neural and behavioral data.

By not mandating these hypotheses to have additional qualifica-

tions—e.g., that they be simple and immediately explainable,

which to us are not obvious criteria for something as complex

as the brain—we are able to thoroughly test models with minimal

assumptions, while reaping the benefits of having ‘‘merely’’ ac-

curate models of brain function (see Looking Ahead).

Under our view, this next phase of scientific progress is then

driven by a continuous cycle of model (i.e., hypothesis) creation,

model prediction, and model testing against all experimental re-

sults. Doing so will move the field forward by encouraging the

creation of unified, neurally mechanistic models, culling those

that are less accurate and drawing focus and further model en-

gineering work to improving and extending the most accurate

models (a.k.a. the leading scientific hypotheses).

We here refer to models that attempt to predict all relevant

neural activity and behavioral data in a domain of human intelli-

gence as ‘‘integrative models’’ or ‘‘unified models.’’ We refer to

models that are built only with artificial ‘‘neurons’’ and connec-

tions of those neurons as ‘‘neurally mechanistic models.’’ And

we refer to the currently assembled set of empirical behavioral

and neural measurements as ‘‘integrative benchmarks’’

(see later).

Given the stated goal (explain a domain of intelligence) and

scientific approach of hypothesis testing in the form of model

testing (outlined above), the primary purpose of this perspective

is to introduce a software platform called Brain-Score as a pro-

posed method of implementing this approach in the domain of
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visual intelligence. Brain-Score has been

built to enable shared community bench-

marking, precisely to facilitate this cyclic

process of using brain and cognitive sci-

ence results to hone in on better and better

neural network models of particular do-

mains of natural intelligence (Figure 1)

(Schrimpf et al., 2018). As of this writing,

Brain-Score 1.0 focuses on visual object

intelligence in primates, which ismediated,
in large part, by the complex and highly interconnected circuit

identified as the ventral visual stream (DiCarlo et al., 2012). Later,

we discuss how the same integrative benchmarking approach

could be extended to other domains of human intelligence.

Critically, model testing as implemented by Brain-Score is only

one step of the cyclic process. The other step in the process—

model building (i.e., hypothesis creation)—is just as important,

and different strategies exist in our community to develop inte-

grative models, which we also discuss in this perspective.

Piecewise Efforts Are Only the First Step
Until very recently, it was impossible to study primate visual intel-

ligence using integrative, neurally mechanistic models because

no existing model (neurally mechanistic or otherwise) was

capable of rivaling behavioral performance of humans or other

primates in real-world object recognition. Because of this, the

full-scale problem just seemed too hard to take on all at once.

Hence, rather than aiming to understand all of visual intelli-

gence and the underlying neural mechanisms in their totality,

the field necessarily had to begin with the study of different

sub-parts of the problem. Psychophysicists studied elements

of visually driven behaviors (e.g., orientation discrimination),

cognitive neuroscientists aimed to elucidate brain sub-regions

that might be differentially involved (e.g., in different categories

of objects), and visual neurophysiologists provided partial char-

acterizations of neural responses in different areas of the ventral

(V1, V2, V4, IT, etc.) and dorsal visual processing streams. The

implicit hope was that these segregated endeavors would some-

day, somehow result in a unified model of the neural mecha-

nisms of primate visual processing and primate visual intelli-

gence more broadly. In sum, our field strongly embraced the

‘‘divide and conquer later’’ approach.
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Collectively, all these important lines of work and many

others form the basis of our current knowledge of visual pro-

cessing in the brain and visually intelligent behavior. But, for

those of us working in this area over the last 20 years, this felt

like we were grasping at only individual parts of an elephant,

while simultaneously hoping to somehow grasp the bigger pic-

ture (Figure 1). In the analogy, each experiment probes a

different part: one describes the sharp tusk, another the floppy

ears, a third the tail, and so forth. Each individual experiment by

itself is unable to obtain an integrative perspective on its own.

While none of these experiments and resulting datasets is

wrong, when considered in isolation, each is incomplete. In

short, each domain of intelligence is just too big for one exper-

iment or one laboratory, and our collective results seem much

less than their sum.

We are not dismissing the discovery of building blocks, as this

first step importantly shapes the types of hypotheses (models)

that are built. But the ‘‘divide and conquer later’’ approach will

clearly not be enough. Instead, we here advocate for now putting

more focus on putting together and implementing at scale the

existing principles that our field already has so that they can be

collectively tested on an integrative set of benchmarks and

determine if and where we are falling short.

Why Don’t We Already Have Unified Neurally
Mechanistic Models of Intelligence?
Consider building a new model of visual intelligence in pri-

mates. For instance, this model might include a new type of

circuit recurrence, more biologically correct single neurons,

topographic organization of neural selectivity, a novel unsuper-

vised learning strategy, or a proposed way to make an even

simpler, more conceptually or theoretically intuitive model

than those currently leading the field. To resolve whether any

such new model is ‘‘better’’ than previous models, it must

be evaluated on how well it agrees with all relevant empirical

measurements.

This is no easy task. Which measurements are the most rele-

vant? Where are those measurements and how does one gain

access to them? Further, even if the measurements were avail-

able, will it be possible to use them in a way that can be fairly

compared with the way that others have attempted to explain

those same measurements with other models? Data alone are

often not enough, as comparative metrics together with the cor-

rect experimental paradigm on models (‘‘benchmarks’’; see

later) can be difficult to implement without knowing the experi-

ment by heart.

All those hurdles explain why a modeler will usually choose to

take the current standard approach: rather than collaborate on

unifying models, they will take a more individualistic approach

by defining a new, and thus necessarily more narrow, sub-prob-

lem that is more tractable. In taking this approach, the individ-

ual’s only hope is that this sub-problem will reveal some yet-

to-be-discovered brain principle, and the job of integrating this

sought-after principle and all other principles into a unifiedmodel

is left for some future day.

We believe that day has arrived for the domain of primate vi-

sual intelligence, and we built Brain-Score 1.0 to incentivize

and facilitate this collaborative, integrative approach.
Brain-Score 1.0
To incentivize integrative model building efforts, we propose

Brain-Score 1.0: an integrative benchmarking platform for the

primate visual ventral stream and its supported behaviors.

Now that the ability exists to build end-to-end neurally mecha-

nistic models capable of rivaling primate performance in visual

object recognition tasks (see Why Now?), the primary purpose

of Brain-Score 1.0 is to provide a central repository where

(ideally) all brain data pertinent to the problem of ventral stream

processing and object perception behaviors are maintained in a

form adequate for model benchmarking, along with the currently

leading models to date and their evaluation scores. We refer to

this as version 1.0 to indicate that it focuses only on visual intel-

ligence, and, even in that domain, it is still far fromwhere it should

ideally be (for example, it currently only includes ventral stream

cortical processing, see later).

Proposed Rules of the Road
Achieving this collaborative goal requires some consensus on

standards of what a solution (i.e., a specific model, as motivated

above)mustminimally be able to do and explain. In the domain of

visual intelligence (of which the ventral visual stream supports a

still unknown portion), models must make the following three

commitments (‘‘rules of the road’’):

(1) Take input that is the same as the input to the primate

retina (spatiotemporal patterns of spectral luminance—

i.e., images and movies). We decide in favor of pixel input

over stimulus parameters because pixels are applicable

to virtually any experiment whereas the set of possible pa-

rametrizations would only grow longer as more experi-

ments are added.

(2) Be built using only internal parts that approximate those of

biological neural networks, with mapping commitments

from internals of the model to biological brain regions

and actual neurons (that is, ‘‘black box’’ components are

not allowed). Because the brain is a biological neural

network (plus its support structures), the most accurate,

neurally mechanistic model of any domain of intelligence

must be within the class of all possible artificial neural net-

works. That model might look very different from the artifi-

cial neural networks in use today, but the general principle

of networks of neurons (the neuron doctrine) will prevail.

(3) Be capable of attempting the same behavioral tasks that

are performed in visually guided experiments. Note that,

taken together, this set of tasks and their natural general-

izations is, in effect, Brain-Score’s current operational

definition of the ‘‘domain’’ of visual intelligence: an opera-

tional definition that is not closed, but can—and must—

naturally expand as new tasks are tested and added.

The Three Key Elements of Brain-Score
A Software Standard Implementation for Brain Models

The first key element of the Brain-Score 1.0 platform is the adop-

tion of the rules of the road (above) via software that helps mod-

elers make these commitments on any proposed model and en-

forces these commitments in model evaluation. Specifically, the

Brain-Score software platform defines a common interface that
Neuron 108, November 11, 2020 3



Figure 2. Brain Models
The set of Brain Score benchmarks evaluates the match of Brain Models on their match to Brain Measures. Brain Measures can entail, for example, neural spike
rates and behavioral responses, which together represent the key internal and external functional measures of the underlying system of interest—here, the ventral
visual stream (top green panel). The brain areas shown here are not exhaustive of the brain regions critical to visual intelligence but are simply a starting point.
Brain Models are in silico brain hypotheses that can be experimented on like a natural brain, for instance, by ‘‘recording’’ from area V1 or IT or by probing it for
behavioral responses. Since most machine learning models (termed Base Models) do not make the commitments necessary for such experimentation, Brain-
Score provides an API and tools for conversion. These entail translating pixels into degrees visual angle, layers into brain regions, artificial neuron activations into
spike rates, probabilities into behavioral output, and so on (bottom red panel).
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all candidate models should follow to be evaluated. Models that

follow that common API are referred to as BrainModels (Figure 2).

This common API forces commitments on, for instance, how

many of the model’s first layer of neurons correspond to a degree

of visual angle, which model layers correspond to which brain re-

gions, and how model neuronal activations are scaled to biolog-

ical neural firing rates, so that the Brain Model makes unequivocal

predictions.

Because of this common API, candidate Brain Models in the

Brain-Score platform can unequivocally be compared and

become easy to experiment on as if they are biological sub-

jects: showing stimuli, recording, perturbing, and so forth

become straightforward. Since all models follow the same

interface, this solves the technical differences and commitment

ambiguities presented by the large pool of possible candidate

models in the machine learning and computer vision commu-

nities.
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Brain-Score is therefore agnostic to the exact implementation:

it does not matter if it is a deep network from computer vision, or

a hand-designed model, as long as it makes predictions on ex-

periments by implementing the API.

One downside of this Brain Model standardization is

that artificial neural network (ANN) models from other commu-

nities (e.g., computer vision) may not be instantly available

as possible hypotheses about primate visual intelligence,

but this (slight) cost of translation of the newest such models

to Brain Models is unavoidable for the overarching goal

of integrative and fair quantitative engagement with a wide

range of experimental data and the resulting model-to-model

comparisons. To help modelers overcome this energy

barrier, the Brain-Score platform provides a standard imple-

mentation to convert their models (in standard machine

learning frameworks, e.g., PyTorch, TensorFlow, Keras) to

Brain Models.
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Given these tools, if a modeler is still not (yet) interested in

making such API commitments for their models, then their

models cannot (yet) be evaluated as a model candidate by

Brain-Score. This is the platform’s reflection of one of its core

scientific values: Hypotheses of the neural mechanisms of any

domain of intelligence must be falsifiable, and the Brain Model

API formalizes this for the primate ventral stream.

Benchmarks for Comparison to Experimental Data

The second key element of Brain-Score is its set of experi-

mental benchmarks that can be—and must be—continually

expanded (see Figure 1). Each such benchmark relies on

experimental data (e.g., neural activity, behavioral responses,

etc.), but each is importantly more than those data. Specifically,

each benchmark specifies the steps to reproduce the experi-

ment on a candidate Brain Model and applies a particular un-

ambiguous metric to compare resulting model data with exper-

imental data. Thus, all models can be directly compared as

they are tested under the same conditions and with the same

set of benchmarks. We emphasize that data alone are not

enough and that benchmarks are necessary to engage with

integrative models.

Examples of benchmarks include single neural predictions in

particular visual areas to particular image sets, distributions of

tuning functions in each visual area, patterns of behavioral per-

formance in particular visually guided tasks, and so on. The

intent of the platform is to (1) adopt many (or ideally all) of

the experimental benchmarks that are already implicit in the

field but have not yet been formalized, standardized, and

aggregated, and (2) to establish a platform for rapid deploy-

ment of new benchmarks as new experimental data become

available. Multiple benchmarks might derive from the same un-

derlying experimental data (for example, each using a different

metric and/or focusing on a particular subset of the data). De-

pending on the experimental data in question, the computa-

tional construction of each benchmark will usually require

some data processing to render into standard formats, equate

measurement conventions, clarify in detail experimental condi-

tions, expose and account for the uncertainty range in each

measurement, etc.

For many brain scientists, the term ‘‘benchmark’’ may sound

unusual or inappropriate. However, the motivation of bench-

marks is not new to brain science: the operations that are applied

to experimental data to make a benchmark are exactly analo-

gous to the analyses that experimental brain scientists have

decided are important to extracting meaning from data. This

has two important consequences: first, it means that Brain-

Score implicitly adopts the prior beliefs of experimentalists in

the field, thus respecting and incorporating the added value of

those experimental efforts rather than simply asking for experi-

mentalists’ raw data and starting from scratch. Examples include

choices of firing rate analysis windows (e.g., mean rates in a la-

tency-adjusted time window), aggregating particular conditions

(e.g., all face images) and contrasting particular conditions

(e.g., tuning sharpness over visual gratings), summarizing over

population measures (e.g., RDMs), and many others. Second,

it means that Brain-Score does not always need to start with

new experiments (Marques and DiCarlo, 2019) or with entirely

raw experimental data buried deep in the bowels of individual
laboratories but can instead harvest many benchmarks from

the published literature.

However, what is almost entirely new to brain science is the

formal practice of benchmarking. Specifically, once the data

and metrics have been defined and standardized in the Brain-

Score platform, each resulting benchmark is a valuable model

test (a.k.a. model constraint) that can now be accessed by any

interested modeler via checking their model’s Brain-Score on

that particular benchmark (below). Facilitating the actual prac-

tice of benchmarking in brain science is a major goal of the

Brain-Score platform.

Scores to Quantify and Guide Progress

For each and every candidate Brain Model, the Brain-Score plat-

form produces a concise summary evaluation on each and every

benchmark in the form of an explicit score on each benchmark

(e.g., a score for predicting IT neural responses to a set of im-

ages), an explicit aggregated score over related sets of bench-

marks (e.g., an overall IT score), and an explicit overall score

(for Brain-Score 1.0, this is an overall ventral stream score).

These scores precisely communicate up-to-date model accom-

plishments, enable direct comparison betweenmodels, and thus

can be used to guide new models.

To reproducibly score models on benchmarks, we share Brain

Models and benchmarks in the form of executable code that re-

moves any ambiguities.

Brain-Score Challenges and Proposed Solutions
To take these goals seriously, we need to implement the three

key elements of Brain-Score (above), and in doing so, choices

need to be made and challenges need to be overcome:

How Do We Choose the Experimental Benchmarks?

Within a domain of intelligence, many benchmarks (i.e., a partic-

ular set of experimental data with a particular choice of metric)

might be considered. Choosing the right benchmarks to score

models is a difficult question, and the choices here might easily

begin to reflect the slightly different goals that our community

has previously been interested in, and thus there is the danger

of taking us back toward piecewise efforts (Figure 1). Because

of this, we adopt an inclusive view: for any given domain of intel-

ligence, we endorse all benchmarks that seem even distantly

relevant to that domain because we believe that, taken together,

these will converge to a set of benchmarks that push our field to-

ward an accurate unifiedmodel. In practice, placing benchmarks

on the Brain-Score platform requires effort; thus, those re-

searchers that are willing to participate and help in this effort

will tend to implicitly shape benchmark priorities. We focus

most on the benchmarks that will most differentiate between

models, but generally try to incorporate all benchmarks our field

produces because it is still useful to know if all or no models cap-

ture a particular benchmark.

In Brain-Score 1.0, which focuses on the primate ventral visual

stream, we include benchmarks with both neural and behavioral

datasets in the context of the ventral visual stream because we

are ultimately interested in how neurons mechanistically imple-

ment visual behaviors. We believe that the metrics and concep-

tual setup can be naturally transferred to other domains of intel-

ligence (see Looking Ahead). At the moment, the neural

measurements are electrode recordings from non-human
Neuron 108, November 11, 2020 5
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primates—the ventral stream of human primates has been

shown to be near identical (Kriegeskorte et al., 2008), and we

believe electrode recordings are the least filtered andmost direct

measurements and thus added them first. Brain-Score, howev-

er, is not restricted to this recording modality, and measure-

ments such as fMRI are good candidates for the next set of

benchmarks that the community could implement. The current

behavioral datasets are match-to-sample tasks performed by

human subjects, but we again see this as only a small beginning

and are hoping the community will add benchmarks based on a

variety of visual tasks.

The difficulty in being inclusive of many different kinds of neu-

ral (e.g., recordingmodalities) and behavioral (e.g., tasks) bench-

marks is that models need to implement all of them in order to be

scored. As stated in The Three Key Elements of Brain-Score, we

provide software to help modelers as much as possible, but the

choices we make may be sub-optimal as we are not domain ex-

perts in all types of ventral streammeasurements. To keep things

manageable, we currently restrict neural data to neural record-

ings at the anatomical specificity of visual areas (e.g., V1, IT)

from both human and non-human primates. In the future, we

might also include neural perturbation benchmarks (e.g., stimu-

lation or lesion studies). Due to the slightly different anatomy be-

tween humans and macaques, we anticipate models might have

to provide per-species commitments to anatomy. Behavioral

data of any visual task are accepted, but we hope behavioral

benchmark submissions will provide software that enables

models to attempt the same task that the biological subjects

were required to perform.

Further, our current belief is that for many—but not all—ap-

plications, we may be able to abstract away measurements

below the level of spikes (see later). Thus, the initial Brain-

Score neural benchmarks are all derived from spiking mea-

sures. Once models at this level of abstraction are powerful

enough, expanding them into even more spatially precise re-

gimes would allow new progress on connecting to measures

of sub-cellular and molecular processes, which would in turn

enable new model-guided applications at the molecular and

genetic levels.

Will Experimentalists Submit Benchmarks to

Brain-Score?

In our experience thus far, a lack of experimental data is not the

most pressing problem. A successful strategy has been to simply

ask labs if they would be willing to share data (Majaj et al., 2015;

Rajalingham et al., 2018; Cadena et al., 2019; David et al., 2004;

Freeman et al., 2013; Kar et al., 2019), and modelers interested

in evaluating their models (i.e., the ‘‘second person’’ working

with the data) then do the work of building benchmarks (Schrimpf

et al., 2018; Nayebi et al., 2018; Kubilius et al., 2019). We further

give the option of using data only as a private benchmark, that

is, models can be run on the benchmark and can obtain a score,

but the data itself are not released. In practice, collaborating with

other groups to develop new benchmarks has worked well so far,

and many researchers have contributed their data.

Should We Summarize All Benchmark Scores in a Single

Brain-Score?

The spirit of integrative benchmarking is that models we most

value are those that score well on all of the available benchmarks
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(see Introduction). Incentivizing this requires some kind of aggre-

gation of scores across all benchmarks (e.g., the mean of all

scores, the worst of all scores, etc.). Of course, we could choose

to weight the scores differently, which makes explicit which

benchmarks we (the field) think are most important. Because

that seems arbitrary at the moment, Brain-Score 1.0 computes

a neutral (equal) weighting of all scores. Going forward, one

idea could be to hierarchically aggregate scores based on asso-

ciated region and to then equally weigh those regions; that is,

there will be an overall V1 score, which is the mean of a spatial

frequency score, a center surround score, etc., which in turn

are again the mean of specific benchmark scores.

As more benchmarks are accumulated, we hope this issue will

initiate active community-wide discussions and meetings as to

which benchmarks matter most and why. Researchers in each

domain of intelligence may not all agree about the relative impor-

tance of each benchmark, but not yet having a common discus-

sion ground such as Brain-Score signals that we do not even

care that wemay not agree. And divided we fail. In short, figuring

out how to best aggregate (i.e., weight) the individual bench-

marks is part of the scientific discussion Brain-Score intends

to facilitate.

Will Anyone Submit Models to Brain-Score?

Brain-Score offers a straightforward way to empirically demon-

stratemodel match-to-brain, minimizing the need for implement-

ing metrics and gathering data (see Why Don’t We Already Have

Unified Neurally Mechanistic Models of Intelligence?). While

empirical benchmarks to compare models are abundant in ma-

chine learning, the same is not true in neuroscience (but see,

e.g., Neural Prediction Challenge, Algonauts [Cichy et al.,

2019]), and to our knowledge, Brain-Score is currently the

largest-scale benchmarking platform to do so.

Such benchmarks allowmodelers to be rewarded for the most

brain-like model, and our hope is that this recognition will draw

engineering talent and effort toward model building for neurosci-

ence, rather than only competing on machine learning bench-

marks. For the modeling community, successful models on

Brain-Score can also be used as good starting points for new

models and changes to the model evaluated by tracking

changes in the scores.

How Can We Deal with the Possibility that Models May

Overfit Some or All Brain-Score Benchmarks?

One should rightly worry that a high benchmark score might indi-

cate the ability of the model to re-express the results that align

with the benchmark, rather than the ability of the model to also

capture a similar benchmark if new data were collected (i.e.,

new subjects, new neurons, new images, etc.). In machine

learning, this situation is referred to as ‘‘overfitting.’’ In particular,

by Brain-Score making public the test scores of models on a

benchmark, over successive model development cycles, newer

models might start overfitting that benchmark. We propose to

guard against this in at least four ways: (1) restrict the number

of test scores a model submitter can obtain (for instance, only

weekly); (2) estimate generalization errors in the benchmark

scores to ensure new data are likely to be captured equally

well, e.g., by cross-validation; (3) dynamically add more and

more benchmarks to strongly constrain the model and

discourage overfitting to single experiments—in other words,



ll
OPEN ACCESSPerspective

Please cite this article in press as: Schrimpf et al., Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence, Neuron
(2020), https://doi.org/10.1016/j.neuron.2020.07.040
incentivize generalization to new benchmarks; (4) embrace the

idea that if some model in the future has ‘‘fit’’ enough bench-

marks and generalizes well to the newest benchmark, it might

have ‘‘overfit’’ the entire domain in question. At that point we

can declare success for the goal stated at the outset of the

perspective—finding accurate neurally mechanistic models of

the domain.

Who Is Going to Maintain the Brain-Score Platform?

While most programming libraries’ core developers are paid for

their work by their respective companies, comparable grants in

academia for software engineers are only just starting. In prac-

tice, a similar setup can be deployed by a group of labs: each di-

verts some of their resources to pay for a developer maintaining

the platform; in return, their researchers can more efficiently

compare models or test them on benchmarks and benefit from

premium support. We further hope the community will actively

contribute to the open-source code base by adding metrics,

data, benchmarks, and models and by improving the technical

infrastructure.

Why Now?
Putting together the principles we have already learned into

large-scale, integrative models has arguably been the next

step in computational neuroscience for some time. In the domain

of visual intelligence, we see two reasons that now is the right

time to take this step.

Recent Availability of Mechanistic Models of Visual

Processing

Visual neuroscience modeling traditionally comprises pro-

posals of many different kinds of model functions: scientists

studying LGN have, for instance, emphasized gain control

models through lateral interactions, while others studying

V1 have focused on edge detection and sparsity constraints,

and others studying V2, V4, and IT have put forward texture,

curvature, and face models, respectively. None of these

perspectives is wrong, though all are incomplete. Attempts at

integrative models of vision such as HMAX (Riesenhuber and

Poggio, 1999) were initially promising, but at the time swayed

by shortcomings in the model’s behavioral performance (rela-

tive to humans).

However, the situation has changed drastically in recent years.

Thanks to the accumulating advances in the ability to scale deep

neural networks, we now have ‘‘end-to-end’’ models that rival

human performance over the entire domain of visual object

recognition tasks. Indeed, several neuroscience labs (Yamins

et al., 2014; Cichy et al., 2016; Nayebi et al., 2018; Kubilius

et al., 2019) have been able to develop end-to-end models of vi-

sual object recognition that (1) take pixels as input, (2) produce

behavioral categorizations as outputs, (3) are generally consis-

tent with the ventral stream architecture, and (4) demonstrate in-

ternal ‘‘unit’’ response properties at each level of the network

that are individually fairly similar to actual neurophysiological

unit responses and other brain measurements at the corre-

sponding levels.

Crucially, these models, while still far from complete, are the

first neurally mechanistic models that are built at scale (that is,

they can, within limits, take any retinal image as input) and that

can rival the behavioral performance of primates in this sub-
domain of visual intelligence (object recognition). By now,

there are dozens of such models (e.g., Krizhevsky et al.,

2012; He et al., 2015; Huang et al., 2017; Howard et al., 2017;

Zoph and Le, 2017; Bassett et al., 2018; Richards et al., 2019;

Cichy and Kaiser, 2019). How can we determine which of

these models best captures brain processing? Even more

importantly, because all of the existing models are almost

surely incorrect in some way, how do we organize our data

and ongoing experiments to incentivize the next generation

of these at-scale, neurally mechanistic models? Brain-Score

is our answer.

Increasing Availability of Brain Data Benchmarks

In addition to the availability of neurally mechanistic end-to-end

models, we are also starting to see an increasing availability

of brain data and an increase in ways to compare data with

neurally mechanistic models (referred to as ‘‘metrics’’). Years

of research in our community has resulted in many datasets,

and with advanced recording techniques, the pace of acquiring

new data is gaining momentum (Hong and Lieber, 2019): more

neurons can be recorded simultaneously, at multiple cortical

depths; recording durations are increasing from days to

months; and upcoming wireless recording techniques will

allow large amounts of data to be collected rapidly. Similarly,

low-cost, large-scale behavioral experiments utilizing online

platforms have already become ubiquitous, allowing collection

of behavioral measurements from hundreds of subjects. Given

the availability of data, combining individual experiments into

an integrative set of benchmarks that constrain model candi-

dates is now a possibility.

The ImageNet competition—a large set of annotated images

and associated performance benchmarks (Deng et al., 2009)—

has paved the way for better and better computer vision models,

and we hope Brain-Score will incentivize similar modeling efforts

in computational neuroscience that result in better and better

Brain Models (Figure 3). Even with only the initial set of data

currently in Brain-Score, the first success of guided model build-

ing has already been shown with a newmodel, CORnet (Kubilius

et al., 2019): a compact hierarchical recurrent neural network

that more closely follows brain anatomy (few layers and recur-

rent). But because of Brain-Score, we also know that this model

is not yet meeting all existing benchmarks. Even more impor-

tantly, with the availability of the Brain-Score platform, we are

looking forward to CORnet soon being surpassed by the next

generation of neurally mechanistic models from another group

in the field.

Building the Next Generation of Integrative Models
As stated in Proposed Rules of the Road, neurally mechanistic

models of intelligencemust bewithin the class of all possible arti-

ficial neural networks, although they might look very different

from today’s models. Engineering accurate such models

currently involves a lot of guesswork, and we propose to make

use of the history of scores across an integrative set of bench-

marks to provide more guidance for this process.

Many early models emerging from the ‘‘divide and conquer

later’’ approach tended to be relatively simple and low in the

number of parameters (e.g., models of V1 neural responses

were simple functions of a fitted, preferred orientation angle)—
Neuron 108, November 11, 2020 7



Figure 3. Incentivizing Integrative Brain Modeling
In engineering andmachine learning, a common evaluation of eachmodel’s ability to performwell on a large set of recognition tasks (ImageNet) helped incentivize
computer vision out of toy problems into more and more powerful computer vision systems that generalized to real-world challenges (today’s ‘‘AI’’). We believe
that Brain-Score will have a similar effect on computational neuroscience—leading our field to higher-fidelity, more generalizable models in neuroscience. Our
first hint of success of this strategy is with the model CORnet, which was built with guidance from neuroscience (recurrence), and because its Brain-Score is
higher than prior models, that model building effort is thus rewarded. While we do not presume to know the best next modeling steps, we can—andmust—create
incentives (Brain-Score) that nourish and reward the best models, regardless of where they originate.
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perhaps as a consequence of the relatively narrow empirical

scope of each sub-problem. But additionally, developing simple

models borne out of narrow empirical domains might have been

preferred a priori because of the perception that science has a

long history of success of this approach. Under this approach,

mathematically or conceptually elegant descriptions of nature

extracted from sub-parts of some natural domain become the

basis for capturing the full domain (e.g., planetary motion from

Newton’s laws of mechanics). We refer to this as a ‘‘principles-

driven’’ approach to modeling and note that any such simple

model must eventually be scaled up to engagewith the full extent

of a domain of human intelligence.

We view as an alternative approach ‘‘reverse-engineering’’ (Di-

Carlo, 2018): effectively searching through the very large class of

all possible neural network models by iteratively improving the

current best model, based on guidance from benchmarks. Since

the delta in benchmark scores reveal model changes that are

most effective at improving model accuracy, these model

changes can then be iteratively fleshed out and improved upon

in a virtuous cycle of model engineering and model testing

against experimental benchmarks. But even though Brain-Score

can provide these delta ‘‘gradients’’ over model generations, it

does not reveal the specific next steps to improve models.

Should a new normalization be added? Does topography

improve behavioral match? Whether and how detailed changes

to the models can be inferred from benchmarks and past model

scores is an open challenge. The specific improvements to a

model in the reverse-engineering approach are thus a combina-

tion of manual and automated search of new architectural com-

ponents, training objectives, loss functions, and so on—but,

importantly, all under the guidance and constraint of myriad

experimental benchmarks.

Ultimately, the best models might come out of a combination

of principles-driven and reverse-engineering approaches where

model components are first roughly defined (principles-driven)

and then scaled up and their hyper-parameters iteratively opti-
8 Neuron 108, November 11, 2020
mized (reverse-engineering). For any newly proposed unified

model from either combination of approaches, an integrative

benchmarking platform such as Brain-Score is vital in order to

evaluate which models are the most accurate on a wide range

of benchmarks.

Looking Ahead
We see integrative benchmarking as the next step to building

neurally mechanistic models of domains of human visual

intelligence. Summarizing the many advantages stated

throughout the text, we argue that integrative benchmarking

can inform model development with the history of comparable

and reproducible scores over generations of models. These

scores will provide a useful gradient that will point out which

changes have led to which kinds of improvements, and the

availability of the benchmarking platform will rally more

human talent to the cause, resulting in new, more accurate

models (Figure 3). Some experimental benchmarks will turn

out to be harder for models to meet than others, and we

believe that Brain-Score will help create a future in which ex-

perimentalists are lauded for their ability to produce new

benchmarks that separate competing models or that show

that all current models are inadequate. Most importantly,

this friendly competition between models and experimental

benchmarks will drive the scientific cycle of ‘‘strong infer-

ence’’ (Platt, 1964), wherein new benchmarks dissociate

models while new models aim to integratively capture all

benchmarks. Each new model will be thus be a closer and

closer approximation of the true neural mechanisms of the

domain of intelligence, with all the attendant benefits of

discovering that truth (see Are Accurate In Silico Models Use-

ful on Their Own?).

Next Steps for Brain-Score

The Brain-Score platform has seen many updates since its

inception in late 2018, such as more data, public benchmarks,

and an automated submission system. While we are excited
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about what has been accomplished, we were hoping to have

accomplished more since then. The major hurdles have been

of a technical nature: we first had to conceptually define a model

interface that would allow for many different interactions while

being straightforward to use, set up infrastructure to, e.g., auto-

matically score models, and develop code that would be easy to

use and adapt for the community. These things took a lot of time

but were necessary to scale to many models and many

benchmarks.

The six scored benchmarks currently live on Brain-Score are

way too few of what we think we need—yet they are the biggest

set of benchmarks that we are aware of. And each has hundreds

to thousands of individual comparison points (image level com-

parisons). To add many more benchmarks, we can also turn to

published results with a recently developed framework to digest

papers into quantitative benchmarks (Marques and DiCarlo,

2019). Applying this framework together with community contri-

butions makes for 23 new benchmarks that are in the pipeline

and will be released soon. We hope the community will add

many more.

Can Integrative Benchmarking and Modeling Be Applied

to Other Domains of Intelligence besides Vision?

While we believe that all domains of human intelligence must ul-

timately be captured as unified models discovered via integra-

tive benchmarking, some domains are more ready than others

to do this. Specifically, domains that fulfill the following criteria

are, in our view, ready to take this next step:

(1) Sensory inputs to the system need to be clearly defined

(e.g., in visual object recognition [OR], patterns of photons

striking the central retina, approximated as pixels).

(2) Important outputs need to be clearly defined in the form of

behaviors (e.g., in OR, choice among alternative names,

visual search for target object, etc.).

(3) The parts of the brain primarily involved in performing

these behaviors in response to inputs need to be reason-

ably well established (e.g., in OR, the ventral stream).

(4) Initial neural and behavioral data exist, and techniques

exist to easily collect more (e.g., in OR, chronic array re-

cordings along the ventral stream, Amazon Mechanical

Turk behavioral experiments, etc.).

(5) First models exist that (1) accept the defined system

input, (2) perform at least some of the behaviors, (3) use

internal parts that can be physically mapped to parts in

the involved brain areas (i.e., the models are neurally

mechanistic in that sense), and (4) explain and predict

some non-trivial portion of the data.

Why Emphasize In Silico Models over Principles and

Theory?

One core belief in this perspective is that new in silico models of

visual intelligence can be built based on the ideas, concepts,

principles, and small-scale models our field has already pro-

duced. That is, we propose that the next important phase in

our field may not depend on first discovering new conceptual

models, new principles underlying neural processing, or a unified

theory of brain function. Indeed, models (engineered systems)

have often preceded theoretical understanding in the history of

science and technology (LeCun, 2017): for instance, in physics,
Kepler’s empirical laws of planetary motion building on Brahe’s

careful measurements preceded Newton’s more general laws

of physics by over 80 years (Ajemian and Hogan, 2010). More

recently, certain deep neural networks have proven to be sur-

prisingly accurate models of each and every layer of the ventral

visual stream and visual object recognition behavior, despite

lacking a unifying theory for those models. Following the prac-

tical success of these models, they are now the subject of

much theoretical work (Banburski et al., 2019; Golowich et al.,

2018; Belkin et al., 2019; Casper et al., 2019). Similarly, Brain

Models are already starting to inform theory: for instance, with

model reduction methods of retina models (Tanaka et al., 2019).

A practical argument is even more compelling: we (scientists)

have no way to possibly know if our field’s current ideas, con-

cepts, principles, and theories are sufficient to explain the phe-

nomena of interest (neural and behavioral data) in a domain of in-

telligence until our existing principles are combined into in silico

models that are scaled up for that domain and a wide-ranging

collection of neural and behavioral benchmarks is brought to

bear to evaluate each model’s successes and failures. That is,

we see no practical way forward on testing our field’s current

concepts and principles without something akin to Brain-Score.

Our overarching belief is that a science of any domain of nat-

ural intelligence will almost surely move through—but likely not

end with—accurate neurally mechanistic models of that domain.

This next movement—accurate integrative in silico models—is

what Brain-Score aims to incentivize and accomplish, which

will lay the foundation for theorists to later build upon.

Are Accurate In Silico Models Useful on Their Own?

Even without a complete set of principles and theories of brain

processing (above), accurate simulations of the brain’s working

(i.e., in silico unified models) have far-reaching practical applica-

tions. For example, focusing on vision, such possible applica-

tions include:

Research: In the ventral visual stream, models of this type are

already being used to focus experimental resources on the most

interesting aspects of brain function that are not yet accurately

described (Tang et al., 2018; Kar et al., 2019; Hénaff et al.,

2019; Kietzmann et al., 2019; Golan et al., 2019). In addition,

by drawing on the predictive accuracy of these models, neuro-

scientists can now use them to control individual neurons and

entire populations of neurons deep in the visual system via

model-synthesized patterns of light applied to retinae (Bashivan

et al., 2019; Ponce et al., 2019).

AI: As our field discovers models that are ever more closely

aligned to primate brains and human behavior, we will in fact

be discovering machine systems that (e.g.) successfully gener-

alize more like humans, are less susceptible to adversarial at-

tacks, and potentially more energetically efficient.

Brain-Machine Interfaces: Sufficiently accurate integrative

models of visual processing can be used to determine complex,

non-intuitive microstimulation patterns that should be applied in

mid- and high-level visual areas to replicate visual percepts (e.g.,

in blind individuals).

Brain Disorders: For most disorders, the treatment goal is to

precisely modulate brain activity in a helpful way. While it is

commonly assumed that such interventions will be best deliv-

ered via new pharmaceuticals (difficult to target precisely) or
Neuron 108, November 11, 2020 9
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perhaps with inserted probes (dangerous and still not precise),

accurate in silico models might reveal entirely new treatment

possibilities: for instance, by directing the synthesis of patterns

of light delivered to the retina that predictably and precisely

modulate entire populations of neurons deep in the brain at sin-

gle-neuron resolution.

The key overall point is that all of the above applications—and

myriad others not yet imagined—may not require new principles,

theories or even ‘‘understanding’’ (however that is defined for

each of us). But each potential application area will get ever bet-

ter with ever more accurate in silico, neurally mechanistic

models. Brain-Score incentivizes the discovery of those models

in domains of intelligence that are ripe to do so.
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Kietzmann, T.C., Spoerer, C.J., Sörensen, L.K.A., Cichy, R.M., Hauk, O., and
Kriegeskorte, N.; Proceedings of the National Academy of Sciences (2019).
Recurrence is required to capture the representational dynamics of the human
visual system. Proc. Natl. Acad. Sci. USA 116, 21854–21863.

Kriegeskorte, N., Mur,M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka,
K., and Bandettini, P.A. (2008). Matching categorical object representations in
inferior temporal cortex of man and monkey. Neuron 60, 1126–1141.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet Classification
with DeepConvolutional Neural Networks. Neural Information Processing Sys-
tems (NIPS). arXiv, 1102.0183.

Kubilius, J., Schrimpf, M., Hong, H., Majaj, N.J., Rajalingham, R., Issa, E.B.,
Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., et al. (2019). Brain-like ob-
ject recognition with high-performing shallow recurrent ANNs. arXiv,
1909.06161.

LeCun, Y. (2017). My take on Ali Rahimi’s ‘‘Test of Time’’ award talk at NIPS.
https://www2.isye.gatech.edu/�tzhao80/Yann_Response.pdf.

Majaj, N.J., Hong, H., Solomon, E.A., and DiCarlo, J.J. (2015). Simple Learned
Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict
Human Core Object Recognition Performance. J. Neurosci. 35, 13402–13418.

Marques, T., and DiCarlo, J.J. (2019). A meta-analysis of current DNNs as
models of low-level visual processing. Bernstein Conference. https://doi.org/
10.12751/nncn.bc2019.0088.

Nayebi, A., Bear, D., Kubilius, J., Kar, K., Ganguli, S., Sussillo, D., DiCarlo, J.J.,
and Yamins, D.L. (2018). Task-driven convolutional recurrent models of the vi-
sual system. Advances in Neural Information Processing Systems, 5295–5306.

Platt, J.R. (1964). Strong Inference: Certain systematic methods of scientific
thinking may produce much more rapid progress than others. Science 146,
347–353.

Ponce, C.R., Xiao, W., Schade, P.F., Hartmann, T.S., Kreiman, G., and Living-
stone, M.S. (2019). Evolving Images for Visual Neurons Using a Deep

http://refhub.elsevier.com/S0896-6273(20)30605-X/sref1
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref1
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref2
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref2
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref2
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref3
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref3
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref4
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref4
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref5
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref5
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref5
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref6
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref6
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref6
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref6
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref7
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref7
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref7
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref8
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref8
https://doi.org/10.1038/srep27755
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref10
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref10
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref10
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref10
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref11
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref11
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref12
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref12
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref12
https://www.wired.com/story/to-advance-artificial-intelligence-reverse-engineer-the-brain/
https://www.wired.com/story/to-advance-artificial-intelligence-reverse-engineer-the-brain/
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref14
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref14
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref15
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref15
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref15
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref16
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref16
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref16
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref17
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref17
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref18
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref18
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref19
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref19
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref20
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref20
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref21
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref21
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref21
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref22
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref22
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref22
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref23
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref23
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref23
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref24
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref24
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref24
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref24
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref25
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref25
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref25
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref26
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref26
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref26
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref27
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref27
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref27
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref27
https://www2.isye.gatech.edu/%7Etzhao80/Yann_Response.pdf
https://www2.isye.gatech.edu/%7Etzhao80/Yann_Response.pdf
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref29
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref29
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref29
https://doi.org/10.12751/nncn.bc2019.0088
https://doi.org/10.12751/nncn.bc2019.0088
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref31
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref31
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref31
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref32
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref32
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref32
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref33
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref33


ll
OPEN ACCESSPerspective

Please cite this article in press as: Schrimpf et al., Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence, Neuron
(2020), https://doi.org/10.1016/j.neuron.2020.07.040
Generative Network Reveals Coding Principles andNeuronal Preferences. Cell
177, 999–1009.e10.

Rajalingham, R., Issa, E.B., Bashivan, P., Kar, K., Schmidt, K., and DiCarlo, J.J.
(2018). Large-scale, high-resolution comparison of the core visual object
recognition behavior of humans, monkeys, and state-of-the-art deep artificial
neural networks. J. Neurosci. 38, 7255–7269.

Richards, B.A., Lillicrap, T.P., Beaudoin, P., Bengio, Y., Bogacz, R., Christen-
sen, A., Clopath, C., Costa, R.P., de Berker, A., Ganguli, S., et al. (2019). A
deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recog-
nition in cortex. Nat. Neurosci. 2, 1019–1025.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N.J., Rajalingham, R., Issa, E.B.,
Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., et al. (2018). Brain-Score:
Which Artificial Neural Network for Object Recognition is most Brain-Like? bio-
Rxiv. https://doi.org/10.1101/407007.
Tanaka, H., Nayebi, A., Maheswaranathan, N., McIntosh, L., Baccus, S., and
Ganguli, S. (2019). From deep learning to mechanistic understanding in neuro-
science: the structure of retinal prediction. Neural Information Processing Sys-
tems (NeurIPS), 8535–8545.

Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega
Caro, J., Hardesty, W., Cox, D., and Kreiman, G. (2018). Recurrent com-
putations for visual pattern completion. Proc. Natl. Acad. Sci. USA 115,
8835–8840.

Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and Di-
Carlo, J.J. (2014). Performance-optimized hierarchical models predict neu-
ral responses in higher visual cortex. Proc. Natl. Acad. Sci. USA 111,
8619–8624.

Zoph, B., and Le, Q.V. (2017). Neural Architecture Search with Reinforcement
Learning. In International Conference on Learning Representations (ICLR). ar-
Xiv, 1611.01578.
Neuron 108, November 11, 2020 11

http://refhub.elsevier.com/S0896-6273(20)30605-X/sref33
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref33
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref34
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref34
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref34
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref34
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref35
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref35
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref35
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref36
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref36
https://doi.org/10.1101/407007
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref38
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref38
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref38
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref38
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref39
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref39
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref39
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref39
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref40
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref40
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref40
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref40
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref41
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref41
http://refhub.elsevier.com/S0896-6273(20)30605-X/sref41

	Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence
	Piecewise Efforts Are Only the First Step
	Why Don’t We Already Have Unified Neurally Mechanistic Models of Intelligence?
	Brain-Score 1.0
	Proposed Rules of the Road
	The Three Key Elements of Brain-Score
	A Software Standard Implementation for Brain Models
	Benchmarks for Comparison to Experimental Data
	Scores to Quantify and Guide Progress

	Brain-Score Challenges and Proposed Solutions
	How Do We Choose the Experimental Benchmarks?
	Will Experimentalists Submit Benchmarks to Brain-Score?
	Should We Summarize All Benchmark Scores in a Single Brain-Score?
	Will Anyone Submit Models to Brain-Score?
	How Can We Deal with the Possibility that Models May Overfit Some or All Brain-Score Benchmarks?
	Who Is Going to Maintain the Brain-Score Platform?

	Why Now?
	Recent Availability of Mechanistic Models of Visual Processing
	Increasing Availability of Brain Data Benchmarks

	Building the Next Generation of Integrative Models
	Looking Ahead
	Next Steps for Brain-Score
	Can Integrative Benchmarking and Modeling Be Applied to Other Domains of Intelligence besides Vision?
	Why Emphasize In Silico Models over Principles and Theory?
	Are Accurate In Silico Models Useful on Their Own?

	Acknowledgments
	References


