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Abstract
Bytes form the basis of the digital world and thus
are a promising building block for multimodal
foundation models. Yet the excessive length of
bytestreams requires new architectural paradigms
for Byte Language Models. Therefore, we present
the Multiscale BLM (MBLM), a model-agnostic
hierarchical decoder stack that allows training
with context windows of 5M bytes on single
GPU in full precision. Our experiments demon-
strate that hybrid Transformer/Mamba architec-
tures are efficient in handling extremely long byte
sequences during training while achieving near-
linear generational efficiency. Source code has
already been publicly released and MBLM can
be installed from PyPI at: https://github.
com/ai4sd/multiscale-byte-lm.

1. Introduction
To address the computational overhead of long sequence
modeling, prior work has aimed to mitigate the quadratic
complexity of Transformers with computationally more effi-
cient, hierarchical Transformers (Yu et al., 2023; Pagnoni
et al., 2024; Nawrot et al., 2021) or Mamba models op-
timized for fast inference (Wang et al., 2024). However,
these approaches depend on modality-specific setups which
limit their generalization. We here introduce the Multiscale
Byte Language Model (MBLM), a model– and modality-
agnostic architecture for causal byte language modeling
that composes Transformer, Mamba or even LSTM blocks.
MBLMs extend the MegaByte hierarchy (Yu et al., 2023) to
an unlimited number of stages, and predict the next byte of
a large input bytestream by refining input sequence repre-
sentations through a hierarchy of generic decoder models,
while enabling precise control over stage parallelism. With
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a 2D MBLM composed of a global Mamba (Wang et al.,
2024; Dao & Gu, 2024) and a local Transformer decoder
(Vaswani et al., 2017), we demonstrate that hybrid hier-
archies minimize computational requirements during both
training and inference, outperforming other architectures on
long sequences (>100K bytes). MBLMs provide granular
control over the discretization intensity – we demonstrate
that a 3D MBLM can efficiently train on sequences of up to
5M bytes on a single GPU. Yet, it has to be emphasized that
there is no free lunch: MBLMs trade memory with perfor-
mance, thus a 2D MBLM will always be inferior to a plain
1D Transformer on a context window that the 1D model can
fit. MBLMs come into play to train on sequence lengths
that yield memory errors with traditional approaches. Last,
while we evaluate MBLMs on (multimodal) byte-streams,
they can equally be combined with standard subword tok-
enization and thus find application in general NLP.

2. Related work
MBLMs builds upon MegaByte (Yu et al., 2023), a causal
BLM with a hierarchy of two Transformer decoders, en-
abling subquadratic self-attention and context windows up
to 1.2M bytes. MegaByte processes patch representations
of the input sequence with a global decoder, refines these
representations, and feeds them into a local model to au-
toregressively predicts bytes. Incorporating Mamba (Gu
& Dao, 2023) at the byte level, MambaByte (Wang et al.,
2024) demonstrated, without the need of a hierarchy, su-
perior performance over MegaByte in a FLOP-controlled
setting across various datasets. Our goal is to generalize the
hierarchy of MegaByte to arbitrary depth and allow to com-
pose flexibly Transformer and Mamba blocks. A concurrent,
improvement of MegaByte is the Byte Latent Transformer
(BLT), which dynamically splits bytes into patches based
on the entropy of the next byte (Pagnoni et al., 2024).

3. Methods
3.1. MBLM

The MBLM consists of N causal decoder models Mi≤N

that are stacked hierarchically. The first N − 1 stages
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M1, . . . ,MN−1 contain global models. The final stage
MN contains the local model. Each model Mi operates
on inputs with a hidden state of dimension Di ∈ N and a
patch/context size Pi ∈ R. Inputs to an MBLM module
are sequences of B batches, each of length L. Similar to
MegaByte (Yu et al., 2023), MBLMs scale through input
length compression and aim to operate on sequences of
length Lmax =

∏N
i=1 Pi, see Figure A1 for a 3D MBLM.

Figure 1: A 3D MBLM with two global and one local decoders
and corresponding patch sizes P1 = 5, P2 = 3, P3 = 2, operating
on an input sequence x = {x0, x2, . . . , x29}. Inputs to each stage
are prepended with a trainable start token <S>. The updated patch
representations of the input sequence output by the global models
are added to the inputs of the next stage. The local model generates
individual bytes, and the final outputs are concatenated.

Patch Embedder. MBLMs employ a patch embedder that
ingests and embeds a sequence x ∈ RB×L, adds positional
encodings and chunks it into patches for each stage:
First, embed the bytes in x for each stage i and reshape to
a nested sequence of patch embeddings:

xemb
i

reshape−−−−→ Pemb
i ∈ RB×P1×...×PN×DN (1)

If L cannot be factored into P1 × . . . × PN , the inner se-
quence lengths P2 to PN are padded. Then, we project
token embeddings to patches for the global stages. Recall
that all Pemb

i ∈ RB×P1×...×PN×DN are of the same shape.
For each stage, we flatten the embeddings and apply a linear
projection to the model dimension of stage i:

W patch
i : RB×P1×...×Pi×(Pi+1×...×PN×DN )

→ RB×P1×...×Pi×Di
(2)

GLOBAL MODEL PROJECTIONS

The global models perform inter-patch modeling by cap-
turing dependencies between patches and output updated
patch representations. They are added to the token embed-
dings of the next stage, allowing patches to receive global

sequence information from the leftward context. In order to
process all patches contained in Pemb

i in parallel with Mi,
we reshape Pemb

i to a new batch dimension Ki:

Pemb
i ∈ RB×P1...×Pi×Di

pack−−→ Pemb′
i ∈ RKi×Pi×Di (3)

with Ki = B ·
i−1∏
j=1

Pj ∀i > 1.

For deep hierarchies, K ∈ R becomes large. For this rea-
son, all but the first stage trade performance for memory
efficiency by leveraging gradient checkpointing: Instead of
processing all K patches in parallel, we optionally divide
them into c smaller chunks and recompute intermediate acti-
vations during the backward pass. This approach allows for
much larger batch sizes and input sequences, albeit at the
cost of slower training. To propagate information, outputs
of global stage i are linearly projected to the dimension of
the next stage i+1 with W global

i : RDi → RDi+1 and added
to the patch embedding Pemb′ of the next stage. Expressed
as a recurrence relation:

Input to Mi︷︸︸︷
P in
i =

Embedding of stage i︷ ︸︸ ︷
Pemb′
i +

Output of Mi−1︷ ︸︸ ︷
Pout
i−1W

global
i−1 (4)

Output of Mi︷︸︸︷
Pout
i = concat

c

(
Mi(P in

i )
)

(5)

with P in
i ∈ R

Ki
c ×Pi×Di

The first global stage has no parent patch representation. The
base case of the recurrence and input to the first model in
the hierarchy is thus given by P in

1 = Pemb′
1 ∈ RB×P1×D1 .

LOCAL INTRA-PATCH MODELING

The input to the local stage is given by P in
N ∈ RKN×PN×DN .

Unlike the global models, whose primary role is to contex-
tualize patches, the local model performs byte-level intra-
patch modeling by autoregressively predicting individual
bytes starting from the trainable start token. The output of
the local model is then projected to logits through a linear
layer and reshaped to output y ∈ RB×L×V .

Stage Models. Hierarchical sequence models have mostly
leveraged Transformers and aimed to reduce the quadratic
cost of self-attention. However, we show that even models
with linear scaling like Mamba (Gu & Dao, 2023) can bene-
fit from compression through patchification. Notably, a 1D
MBLM with a Mamba block is roughly equivalent to Mam-
babyte (Wang et al., 2024) while a 2D MBLM with two
Transformers is equivalent to Megabyte (Yu et al., 2023).

3.2. Datasets & Evaluation

We evaluate the performance of MBLMs in terms of lan-
guage modeling on the Project Gutenberg (PG19) dataset
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(Rae et al., 2019). PG19 contains 28,752 English-language
books (11.6 GB). We select this dataset for comparability to
prior art (Yu et al., 2023; Wang et al., 2024) and because, on
average, each book is around 411 KB, which allows long-
range language modeling on consecutive bytes in the same
document. Additional statistics are included in Appendix B.
We use bits-per-byte (BPB) (Gao et al., 2020) as the pri-
mary evaluation metric for byte-level modeling and report
word-level perplexities (PPL) to facilitate comparisons with
future work. BPB, related to perplexity, quantifies the av-
erage number of bits needed to encode each byte of data
and can be seen as a compression measure where a lower
value indicates a higher probability of correctly predicting
the next byte (Rae et al., 2021): BPB = log2(e

ℓbyte) =
ℓbyte

ln 2
where ℓbyte is the observed average negative log-likelihood
stemming from a byte vocabulary. All MBLMs are matched
to 360M parameters and trained on 8 NVIDIA A100 SXM4
80 GB GPUs in parallel using a custom-built distributed
PyTorch trainer. For further details on model, training and
evaluation metrics, please see Appendix A, C and D.

4. Results
Scaling Byte Language Models. As the first three-stage
(3D) hierarchical model of its kind, an MBLM comprising
a global Mamba followed by two Transformer decoders can
process byte sequences of 5M bytes during training on a
single A100 80 GB GPU with standard automatic mixed
precision. Within 15 hours of training the MBLM processed
100 GB of UTF-8 bytes and achieved 2.448 BPB on the
PG19 test set (Figure 2). Due to the unprecedented nature

Figure 2: Training loss progression of a 3D MBLM with 350M
parameters and a context window of 5M bytes on a single GPU.

of a 5M context window training, this experiment naturally
lacks comparison to previous work. To undermine this, Ta-
ble 1 shows how the same Transformer decoder scales to
twice the sequence length when incorporated into a two- or
three-stage MBLM, thanks to optimized computational effi-
ciency through input compression. Naturally, since MBLMs
scale by compressing the input sequence, regular 1D mod-
els outperform hierarchical models when the sequence fits
into memory. This underscores that hierarchical architec-

MBLM \ Context size 8192 16384 32768

1D Transformer 30.5 56.2 out of memory
2D Transformer 19.6 35.8 68.2
3D Transformer 15.9 28.2 53.0

Table 1: Memory usage (in GB) during training of three 360M
parameter MBLMs on a single GPU. Hierarchical Transformers
scale to 2x the sequence length. Batch size was 2.

tures are specifically designed for extremely long-sequence
modeling. Moreover, for a given sequence length Lmax, hi-
erarchies with larger global sequence lengths will consume
more memory but perform better (e.g., Lmax = 10, 000 and
a 2D MBLM with P = [5000, 2] vs. P = [1000, 10]).

Performant Hierarchies. When comparing various types
of 2D MBLMs to MegaByte (Yu et al., 2023) (i.e., a 2D
MBLM with two Transformers), we find that both hybrid
and Mamba-based MBLMs outperform a Transformers-
based MegaByte model when trained on 200 GB of PG19
text (Table 2). Unlike previous hierarchical architectures,

Hierarchy Global & local model Test PPL Test BPB

MegaByte Transformer (2x) 278.79 1.370
MBLM Mamba, Transformer 163.29 1.240
MBLM Mamba, Mamba 119.37 1.164

Table 2: Comparison of MegaByte to MBLM architectures on byte
sequences of length 98,304. Hybrid and Mamba-based MBLMs
outperform MegaByte on the same amount of data. All models
used patch sizes of (8192, 12) for global/local model.

MBLMs can be configured with an unlimited amount of
stages and different decoder models at each stage. On con-
text windows exceeding 1M bytes, hybrid models again
outperform Transformer MBLMs (Table 3). To fit the 3D

3D MBLM configuration Test PPL Test BPB

Transformer (3x) 5420.66 2.092
Mamba, Transformer (2x) 5351.71 2.089

Table 3: After training on 200 GB with a context window of more
than 1M bytes (1,048,576), hybrid MBLMs with a first global
Mamba perform slightly better than pure Transformer hierarchies.

models in Table 3 on a single GPU, we use a physical batch
size of 1. With inner model context sizes of (8192, 16, 8),
the input tensor at stage 3 is given by x3 ∈ R131072×8×D3 .
Previous multiscale models like MegaByte (Yu et al., 2023)
advocate for full parallelism at every stage which is often
infeasible for extremely long inputs. Instead MBLMs batch
the 2nd and 3rd stage into 10 and 20 chunks, respectively,
and re-computes intermediate activations. This enables each
MBLM to train at approximately 75-80% memory utiliza-
tion on a single A100 80 GB GPU.
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Inference Context Extrapolation. To investigate infer-
ence throughput and context extrapolation capabilities, we
evaluate four different MBLMs on byte input sequences
ranging from 8,192 to 991,232 in length L. These include
two 1D modules trained with an 8K context window and two
2D modules trained with a 100K context window. Since the
1D Transformer uses rotary position embeddings (Su et al.,
2024), input length is only bound by compute requirements.
Efficient inference solutions for 1D models, such as KV
caches (Ott et al., 2019), have been widely adopted. In its
recurrent mode, Mamba can even process each step in con-
stant time by passing the SSM state through the recurrence.
However, implementing a dedicated inference pipeline in
a hierarchical setting poses significant challenges because
patches form a compressed representation of chunks of the
input sequence, making it infeasible to cache and reuse
previously computed results effectively. As a result, all
MBLMs containing a Mamba-2 block still compute a par-
allel scan over the sequence during inference. While both
SSM representations are expected to be numerically equal,
this results in longer generation times per token and con-
strains the model’s scalability linearly with respect to the
context size. Figure 3 visualizes the time-per-byte for 1D

Figure 3: The time it takes to generate a single byte as a function
of context size for 1D and 2D MBLMs. Hybrid MBLMs exhibit
near-linear generational efficiency.

and 2D MBLMs as a function of context length. This result
demonstrates that hybrid hierarchies with a global Mamba
and local Transformer decoder are able to generate tokens
with near-linear efficiently up to 1M bytes. Instead, gener-
ating bytes on extended context windows quickly becomes
infeasible for regular Transformers due to their O(L2) com-
plexity. Surprisingly, when extending the context windows
of the 1D models during inference by 120x (Zhao et al.,
2024; Ben-Kish et al., 2024), they perform competitively to
the 2D models trained with this context length, suggesting
that much of the context is ignored by the models (Fig-
ure A2). We hypothesized that this is due to the PG19 data
and questioned its suitability for large context extrapolation
by conducting an ablation study with Llama 2-7B (Touvron
et al., 2023) (pre-trained on a context size of 4K) and focus
on small context sizes up to 8,192 bytes.

Figure 4: Relative improvement in word-level perplexities for
consecutive context lengths for the 1D SSM, 2D SSM-Transformer
and Llama baseline

Figure 4 shows the relative improvement in word-level per-
plexities for consecutive context lengths for the 1D SSM,
2D SSM-Transformer and Llama: On PG19, all models per-
form strictly better for larger context size. However, given a
context length ≥ 4,000 bytes, the relative decrease in per-
plexity diminishes even for a performant LLM like Llama,
indicating that 4K bytes are likely enough to reasonably
predict the next few bytes in a PG19 book.

5. Discussion
Here we introduced the Multiscale Byte Language Model
(MBLM), a hierarchical, model-agnostic architecture capa-
ble of scaling to the unprecedented length of 5M bytes on a
single GPU. MBLMs operates in stages of autoregressive
models: Byte sequences are divided into patches, embed-
ded, and refined as they pass through the hierarchy, culmi-
nating in a local model that autoregressively predicts bytes
within each patch. This approach enables efficient process-
ing of very long byte sequences through compression. While
Mamba-based hierarchies performed best, hybrid models
combining Mamba for global stages and Transformer de-
coders for local stages achieved an optimal balance between
performance and computational efficiency. Hybrid models
also converged faster and exhibit near-linear generational
efficiency during inference. We recommend evaluating
MBLMs on tasks requiring long contexts, such as multi-
modal document summarization or needle in a haystack
tasks and investigating their performance when scaled to bil-
lions of parameters. The MBLM architecture, available as a
PyPi package, provides a modular and flexible framework
for further development. With the right technical extensions,
we believe MBLMs are well-suited to process sequences
spanning tens of millions of bytes and driving future inno-
vations in hierarchical architectures.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Our work is particularly focused
on improving context window length in language models
which may allow future algorithms to sift through larger
amounts of data in one shot. There are many potential
societal consequences of such work, none which we feel
must be specifically highlighted here.

References
Ben-Kish, A., Zimerman, I., Abu-Hussein, S., Cohen,

N., Globerson, A., Wolf, L., and Giryes, R. Deci-
mamba: Exploring the length extrapolation potential
of mamba, 2024. URL https://arxiv.org/abs/
2406.14528. under review.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dao, T. and Gu, A. Transformers are SSMs: Generalized
models and efficient algorithms through structured state
space duality. In International Conference on Machine
Learning (ICML), 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012/.

Nawrot, P., Tworkowski, S., Tyrolski, M., Kaiser, Ł., Wu, Y.,
Szegedy, C., and Michalewski, H. Hierarchical transform-
ers are more efficient language models. arXiv preprint
arXiv:2110.13711, 2021.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S.,
Ng, N., Grangier, D., and Auli, M. fairseq: A fast,
extensible toolkit for sequence modeling. In Ammar,
W., Louis, A., and Mostafazadeh, N. (eds.), Proceed-
ings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguis-
tics (Demonstrations), pp. 48–53, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-4009. URL https:
//aclanthology.org/N19-4009/.

Pagnoni, A., Pasunuru, R., Rodriguez, P., Nguyen, J.,
Muller, B., Li, M., Zhou, C., Yu, L., Weston, J., Zettle-
moyer, L., Ghosh, G., Lewis, M., Holtzman, A., and
Iyer, S. Byte latent transformer: Patches scale bet-
ter than tokens, 2024. URL https://arxiv.org/
abs/2412.09871.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoff-
mann, J., Song, F., Aslanides, J., Henderson, S.,
Ring, R., Young, S., Rutherford, E., Hennigan, T.,
Menick, J., Cassirer, A., Powell, R., van den Driess-
che, G., Hendricks, L. A., Rauh, M., Huang, P.-S.,
et al. Scaling language models: Methods, analysis &
insights from training gopher. ArXiv, abs/2112.11446,
2021. URL https://api.semanticscholar.
org/CorpusID:245353475.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and
Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. Neurocomput., 568(C), March
2024. ISSN 0925-2312. doi: 10.1016/j.neucom.
2023.127063. URL https://doi.org/10.1016/
j.neucom.2023.127063.

Touvron, H., Martin, L., Stone, K., Albert, P., Alma-
hairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhar-
gava, P., Bhosale, S., Bikel, D., et al. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush,
A. M. Mambabyte: Token-free selective state space
model. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=X1xNsuKssb.

5

https://arxiv.org/abs/2406.14528
https://arxiv.org/abs/2406.14528
https://aclanthology.org/D18-2012/
https://aclanthology.org/N19-4009/
https://aclanthology.org/N19-4009/
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/1911.05507
https://api.semanticscholar.org/CorpusID:245353475
https://api.semanticscholar.org/CorpusID:245353475
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=X1xNsuKssb
https://openreview.net/forum?id=X1xNsuKssb


Multiscale Byte Language Models

Wu, S., Tan, X., Wang, Z., Wang, R., Li, X., and Sun, M.
Beyond language models: Byte models are digital world
simulators, 2024.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettle-
moyer, L., and Lewis, M. Megabyte: Predicting million-
byte sequences with multiscale transformers. In Oh, A.,
Naumann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 78808–78823, 2023.

Zhao, L., Feng, X., Feng, X., Zhong, W., Xu, D., Yang,
Q., Liu, H., Qin, B., and Liu, T. Length extrapolation of
transformers: A survey from the perspective of positional
encoding. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pp. 9959–9977, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
582. URL https://aclanthology.org/2024.
findings-emnlp.582/.

6

https://aclanthology.org/2024.findings-emnlp.582/
https://aclanthology.org/2024.findings-emnlp.582/


Multiscale Byte Language Models

A. Model Details
All our models pre-trained on the PG19 dataset are matched to 360 million parameters, which is achieved simply by varying
the number of layers for each model in the hierarchy. Model names are abbreviated; S stands for Mamba-2 and T for
Transformers.

Figure A1: The Multiscale Byte Language Model (MBLM) processes bytestreams from any modality that can be serialized into
bytes. Each stage in the hierarchical architecture employs a decoder model to generate a new representation for input patches, which is
subsequently passed to the next stage as augmented input. The final output of the MBLM is a bytestream formed by concatenating the
outputs of the last stage, n.

COMMON MODEL CONFIGURATION

We keep the model-specific configuration constant: For Mamba-2 models, we use a model dimension of 1024, an SSM state
expansion factor 128, a local convolution width of 4, a block expansion factor of 2 and 64 as the head dimension. Mamba-2
models operate without positional embeddings. Transformer models use a model dimension of 1024, 16 attention heads of
dimension 64 and a feed-forward expansion factor of 2. The attention layers employ rotary positional embeddings (RoPE)
(Su et al., 2024). Positional encodings are only employed in 2D or 3D multiscale hierarchies for Transformer decoder models.
This ensures that all models can be used for context extrapolation experiments. An exception to the default configuration is
the 5 million context size experiment, which uses hidden dimensions of size 256. Throughout all experiments, we used the
same context/patch sizes for hierarchical constellations, which are summarized in Table A1.

Context size \ Hierarchy 1D 2D 3D

8192 8192 1024, 8 256, 8, 4
16384 16384 2048, 8 512, 8, 4
32768 32768 4096, 8 1024, 8, 4
98304 - 8192, 12 -
1048576 - - 8192, 16, 8
5000000∗ - - 1000, 200, 25

Table A1: Context/patch sizes across all experiments, denoted from global to local. The MBLM with a 5M context size (denoted with ∗)
uses different model configuration than others, as noted above.

LANGUAGE MODELING EXPERIMENTS

Table A2 summarizes the number of layers for each of the models pre-trained on PG19 (Rae et al., 2019). We train models
with context sizes larger than 98,304 on 200 billion bytes and all others on 30 billion bytes form PG19.
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Model \ Input length 8,192 16,384 32,768 98,304 524,288 1,048,576 5,000,000

1D T 42 41 39 - - - -
1D S 54 - - - - - -
2D SS 24, 28 - - 27, 24 - - -
2D ST 25, 21 - - 24, 21 - - -
2D TS 25, 20 - - - - - -
2D TT 22, 19 22, 19 22, 19 21, 18 - - -
3D STT - - - - 14, 12, 9 9, 8, 8 1, 1, 1
3D TTT 15, 12, 10 15, 12, 10 15, 12, 10 - - 8, 7, 7 -

Table A2: The number of layers, denoted from global to local, for the 360 million parameter models.

We do not use MBLMs’ gradient checkpointing for 8K models. For the 100K we use two chunks at the second stage and for
the 3D-1M model we use 10 chunks at stage 2 and 20 chunks at stage 3.

B. Dataset Details
For all experiments, we use a byte vocabulary of 255 + 1 tokens, with token ID 257 designated as the <pad> token to
enable sequence padding within minibatches. This method aligns with byte-level models like bGPT (Wu et al., 2024), which
employ an <eop> (end-of-patch) token with ID 257 to pad patches. While our <pad> token is not used during training
on PG19, it is required during inference to pad patches for prompts that are shorter than the context size. The individual
books in PG19, stored in .txt format, are read as bytes from disk and combined into a single bytearray data structure
without textual preprocessing. While most PG19 books are within the ASCII character set, some contain Unicode characters
outside the ASCII range and are thus encoded in UTF-8. From this byte sequence, we sample subsequences for training
based on the context size of the corresponding model. While our data ingestion process is simple and unbiased, the lack of
language-specific preprocessing introduces noisy input data, including ASCII control characters like NUL and CR (carriage
return), which are usually absent from subword-based vocabularies. A significant portion of the data comprises space
characters and newlines. Table A3 contains statistics for PG19, which we use to derive word-level perplexities.

LB LW LB/LW

Train 11,678,184,667 1,966,200,384 5.9395
Validation 17,733,002 3,007,061 5.8971
Test 41,289,101 6,966,499 5.9268

Table A3: PG19 (Rae et al., 2019) dataset statistics. LB is the number of UTF-8 encoded bytes, LW the number of space-separated
words. To count the words, we read all books into a single Unicode string and then split at all common whitespace characters (“n, “r, “t,
“f) using Python’s str.split.

C. Training Recipes
Hyperparameters for all PG19 experiments are listed in Table A4. Prior to our experiments, we validated a few hyperparam-
eters suggested by prior art to train hierarchical models and SSMs respectively:

Learning rate Unlike Megabyte (Yu et al., 2023), we find that using a peak learning rate of 1e−3 results in the best
performance on PG19 among the tested 1D and 2D models and other learning rates 4e−4, 8e−4

Positional encodings for Mamba In preliminary experiments, we test the addition of fixed positional embeddings to the
input sequence and find that the SSM performs best without any positional information, regardless of the position in
the hierarchy.

Similar to Yu et al. (2023) and Wang et al. (2024), we use the AdamW optimizer with β = (0.9, 0.95) with a linear
warmup of 10% of the total gradient steps followed by cosine annealing. While the physical batch sizes used vary between
experiments and are set to maximize GPU efficiency, we use gradient accumulation to arrive at the same gradient step (see
Table A4). We keep all models in full float32 precision and use PyTorch’s Automatic Mixed Precision package to enable
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Parameter Value

Learning rate 0.001
Gradient step 48
Gradient clipping 1
Attention/SSM dropout 0

Table A4: Hyperparameters for the PG19 experiments.

float16 precision for the backward passes and the integration of FlashAttention (Dao, 2024). Our Mamba-2 models are
built using the mamba-ssm1 (version 2.2.2) and causal-conv1d2 (version 1.4.0) packages. The Transformer models
are based on megabyte-pytorch3 (version 0.3.5), which also served as a baseline implementation for MBLM. Any
parameter we did not explicitly mention above would use the default value in the corresponding package versions above. We
use PyTorch 2.4.1 and train all models on 8 NVIDIA A100 SXM4 80GB GPUs in parallel using a custom-built distributed
trainer. For each experiment, we follow a data-parallel approach and split the training datasets among the GPUs.

D. Evaluation
Given the average negative log-likelihood ℓsubword, Gao et al. (2020) define bits-per-byte as:

BPB =
LS

LB
log2(e

ℓsubword) (6)

where LS and LB is the length of the dataset in subwords/tokens and length of the dataset in bytes, respectively. If we solely
model on bytes, i.e., LS = LB , this definition can be simplified to:

BPB = ℓbyte log2 e =
ℓbyte

ln 2
(7)

In order to translate between the metrics, we can derive word-level perplexities (Wang et al., 2024), which are often used in
language modeling. Word-level perplexities are more interpretable and better aligned with human understanding as they
measure uncertainty at the level of entire words rather than subwords or bytes. They also facilitate fairer comparisons
between models with different tokenization schemes by reducing (though not eliminating) biases introduced by tokenizer
differences through normalization. With LW denoting the number of space-separated words in a corpus, PPLword can be
derived from either ℓbyte or ℓsubword:

PPLword = exp

(
LB

LW
ℓbyte

)
PPLword = exp

(
LS

LW
ℓsubword

)
(8)

LS , LB and LW for PG19 are summarized in Table A3. In practice, both PPL and BPB can be understood as scaled variants
of the cross-entropy between two distributions. Importantly, minimizing cross-entropy will result in smaller absolute values
for both PPL and BPB, which all indicate a more performant model.

E. Llama-7B Word-Level Perplexities
We calculate perplexity on subword context sizes varying from 64 to 8,192 on a quantized Llama-2-7B model4 (Touvron
et al., 2023) using the llama.cpp project5. We recall that there are a total of LW = 3, 007, 061 whitespace-separated
words in the PG19 validation set. Tokenizing the validation set with the SentencePiece-based Llama tokenizer results in
LS = 5, 106, 780 subwords. Using the llama.cpp CLI does not give us the direct negative log-likelihood, ℓsubword, so
we have to convert the obtained subword-level perplexity values to word-level perplexities by continuing from Equation 8.
Since ℓsubword = ln(PPLsubword), using basic logarithm rules, we derive:

PPLword = e

(
LS
LW

ℓsubword

)
= e

(ln PPLsubword)
LS
LW = PPL

LS
LW

subword (9)

1https://github.com/state-spaces/mamba
2https://github.com/Dao-AILab/causal-conv1d
3https://github.com/lucidrains/MEGABYTE-pytorch
4https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q5 K S.gguf
5https://github.com/ggerganov/llama.cpp

9

https://github.com/state-spaces/mamba
https://github.com/Dao-AILab/causal-conv1d
https://github.com/lucidrains/MEGABYTE-pytorch
https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q5_K_S.gguf
https://github.com/ggerganov/llama.cpp


Multiscale Byte Language Models

From the above numbers, LS

LW
≈ 1.6982, meaning that a single word in PG19’s validation set word consists of approximately

1.7 Llama-subwords. For comparison, Wang et al. (2024) report LS

LW
= 1.45 when fitting a SentencePiece tokenizer (Kudo

& Richardson, 2018) on PG19’s validation set. We also note that there are ≈ 3.4724 bytes per subword, which we use to
convert between subword- and byte-level context lengths.

F. Additional Figures

Figure A2: Word-level perplexities as a function of context size for 1D and 2D MBLMs.

Figure A3: A 3D MBLM module with two global and one local decoder models and corresponding patch sizes P1 = 5, P2 = 3, P3 = 2,
operating on an input sequence x = {x0, x2, . . . , x29}. Inputs to each stage are prepended with a trainable start token <S>. The updated
patch representations of the input sequence output by the global models are added to the inputs of the next stage. The local model
generates individual bytes, and the final outputs are concatenated.
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G. PG19 Generational Examples
In all generated samples, whitespaces are removed. Based on the prompt, presented in red, 256 bytes are generated and
converted to a string. For conciseness, we show the start and end of the prompt and omit some content, which is denoted by
an ellipsis. All prompts originate from books contained in the PG19 validation set (Rae et al., 2019).

2D-100K SSM-TRANSFORMER

There is no sugar cane known anywhere to-day in th (...) number of otherwise remarkably distinct forms may
be recognized some of which were illustrated in a previous publication, Bureau of Agriculture Bulletin No. 27,
Citriculture in the Philippines, 1913, and referred to C. histrix with the statement that ”some of these forms
unquestionably will be recognized as subspecies on closer study, or possibly as separate species.” Since then several
plants of this type in the citrus collection assembled and antimony in Aloeso are also combined. Those in the first
fifteenth century likewise have been distinguished, but the species occurs in emergency and consists of two parts in
the caterpillar which though often taken no leaves are next reduced. Specimens of other Granata have been found in
a museum which was found generally at Manila . . and A. and occurred in Colorado and other small communities.
Buddhisches, tompsing scientifically the time occupied in scientific research, have previously

Dawson had often come in and out of the room durin (...) motion was required to alleviate the agony of fury that
seized upon the Cagots at such times. In this desire for rapid movement, the attack resembled the Neapolitan
tarantella; while in the mad deeds they performed during such attacks, they were not unlike the northern Berserker.
In Béarn especially, those suffering from this madness were dreaded by the pure race; the Béarnais, going to cut their
wooden clogs in the great forests that layaround them, accumulated their old equipment, and spent their supplies
under small vessels and towards the pillaginian regions which they would have drawn from it. But in so far as the
Fairies were concerned on the matter, they were left to grant their reasons to the cautious Battery and his friends.
The only alley of considerable importance, and whence too many of the adventurous scientific men, have appeared
when they entered the school, or where the place has been called a masquerade and the choi

2D-100K SSM-SSM

He had an envelope in his starboard mitten, and, c (...) are forbidden crossing this property, under penalty of the law.’
But land! I’d used that short-cut ever sence I’d been in Bayport–which was more’n a year–and old man Davidson
and me was good friends, so I cal’lated the signs was intended for boys, and hove ahead without paying much
attention to ’em. ’Course I knew that the old man–and, what was more important, the old lady–had gone abroad
and that the son was expected down, but that didn’t make it any good. The time was fast enough in the morning to
launch up a fat pirate lord in a thresh-open carriage an’ walk out to the dock, that can stand it on fifty yards with his
head turned to look at the cruise. It’s most lucky for a while. He’s not at home this time. I guess he’s gone to the
pier pond. Said I was there and he says that that he can tell his ’and that’s more the truth. To-morrow night I’ll go
down to see how Jim Buck works. I can’t see how he’s going. There’s a chance for

In a House of Commons that counted Pitt, Fox, Burk (...) usiness with his secretaries. Hundreds of times, probably,
I have called him out of bed, and have, in short, seen him in every situation and in his most unreserved moments. As
he knew I should not ask anything of him, and as he reposed so much confidence in me as to be persuaded that I
should never use any information I might obtain from him for any unfair purpose, he talked freely before me of men
and things, of actual, meditated, or questionable, general matters, and of all matters that require the utmost collision.
On one occasion the project proposed to place my position at the head of some five or six influential members of
parliament on the line of steamships, or those who had a distinct presidential interest in the theatre, a misdemeanour
and inducement making me the interest of the community towards the committee; the people of the country and
statesmen of eminence at Lichfield could not be more maturely charged than I am than Mr. Gr
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