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ABSTRACT

Multi-modal Large Language Models (MLLMs) have recently achieved enhanced
performance across various vision-language tasks including visual grounding ca-
pabilities. However, the adversarial robustness of visual grounding remains un-
explored in MLLMs. To fill this gap, we use referring expression comprehension
(REC) as an example task in visual grounding and propose three adversarial at-
tack paradigms as follows. Firstly, untargeted adversarial attacks induce MLLMs
to generate incorrect bounding boxes for each object. Besides, exclusive targeted
adversarial attacks cause all generated outputs to the same target bounding box. In
addition, permuted targeted adversarial attacks aim to permute all bounding boxes
among different objects within a single image. Extensive experiments demonstrate
that the proposed methods can successfully attack visual grounding capabilities of
MLLMs. Our methods not only provide a new perspective for designing novel
attacks but also serve as a strong baseline for improving the adversarial robustness
for visual grounding of MLLMs.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) (Alayrac et al., 2022; Chen et al., 2022; Liu et al.,
2023; Li et al., 2021; 2023), such as GPT-4 (OpenAI, 2023), integrate visual modality into large lan-
guage models (LLMs) and have achieved state-of-the-art performance across various multi-modal
tasks, including image captioning and visual question answering. Recent advancements in research
(Chen et al., 2023a;b; Peng et al., 2023) have further unlocked the potential visual grounding capa-
bilities of MLLMs. Through this grounding capability, MLLMs can accurately recognize objects,
locate them, and provide visual responses, such as bounding boxes, thereby facilitating additional
vision-language tasks, including referring expression comprehension.

Despite the impressive multi-modal performance of MLLMs, recent studies (Dong et al., 2023; Zhao
et al., 2023; Carlini et al., 2023; Qi et al., 2023; Gao et al., 2024a;b; Yang et al., 2024) have revealed
their susceptibility of MLLMs against adversarial attacks. Adversarial attacks manipulate input data
with an imperceptible perturbation with the intention of misleading the model, often resulting in
incorrect outputs. Most existing adversarial attacks on MLLMs have made main efforts on the image
captioning and visual question answering task. Specifically, they craft an adversarial image that
closely resembles the original image and employ it to prompt MLLMs, which can induce MLLMs
to generate a wrong caption or reply an incorrect answer. However, the adversarial robustness on
visual grounding is still unclear.

In this paper, we study the impact of adversarial attacks on visual grounding capabilities of MLLMs
at first. As a representative example, we evaluate the adversarial robustness for visual grounding of
MLLMs specifically through the task of referring expression comprehension. Referring expression
comprehension (REC) is the process of identifying and localizing objects within an image based on
a given textual prompt, ultimately generating bounding boxes of objects. Following previous work
(Dong et al., 2023; Zhao et al., 2023), we focus on visual modality and aim to craft adversarial
images with an imperceptible perturbation to perform adversarial attacks.
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Figure 1: Three adversarial attack paradigms are proposed to evaluate the adversarial robustness for
visual grounding of MLLMs.

Concretely, three attack paradigms are proposed tailored for REC of MLLMs as follows. Firstly, an
untargeted attack aims to reduce the accuracy of bounding box predictions. This attack is deemed
successful if the objects in the adversarial images are incorrectly located based on the original textual
prompt. Besides, based on the type of target bounding box, two categories of targeted adversarial
attacks are proposed, i.e., exclusive targeted adversarial attacks and permuted targeted adversarial
attacks. Exclusive targeted adversarial attacks deceive MLLMs to generate the same target bound-
ing box, such as top left corner, regardless of their ground-truths. In contrast, permuted targeted
adversarial attacks assign different target bounding boxes to different objects with the attacking goal
of rearranging all bounding boxes within a single image.

The main contributions of this work are three-fold: (1) To the best of our knowledge, we are the
first to reveal the adversarial threat in visual grounding of MLLMs. (2) We propose three attack
paradigms to evaluate grounding adversarial robustness of MLLMs, including untargeted adver-
sarial attacks, exclusive targeted adversarial attacks and permuted targeted adversarial attacks. (3)
Extensive experiments are conducted, which verify the effectiveness of our proposed attacks.

2 THE PROPOSED ATTACK

2.1 PRELIMINARIES

Given an image x and multiple input textual prompts T = {ti}Ni=1, referring expression compre-
hension (REC) aims to locate corresponding target objects by bounding boxes B = {bi}Ni=1. During
training of MLLMs, these bounding boxes are transformed into the textual formatting and MLLMs
are trained using the auto-regressive loss. Successful REC by MLLMs is assumed when Intersection
over Union (IoU) between the ground-truth and predicted bounding boxes exceeds 0.5.

Threat model. The goal of attackers is to optimize an imperceptible perturbation to craft adversarial
images x̂ to achieve adversarial attacks. Specifically, the involved perturbation is restricted within
a predefined magnitude ϵ in l∞ norm, ensuring it difficult to detect. As suggested in Bagdasaryan
et al. (2023); Qi et al. (2023), we assume that the victim MLLMs can be accessed in full knowledge,
including both architectures and parameters of victim MLLMs.

2.2 UNTARGETED ADVERSARIAL ATTACKS

Untargeted adversarial attacks craft adversarial images x̂ with the aim of causing MLLMs to predict
a bounding box that deviates from its ground-truth bi when given an input textual prompt ti. To this
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end, we propose two methods to mislead the MLLM’s predictions, i.e., image embedding attack
and textual bounding box attack.

Image embedding attack. MLLMs first use vision encoders f(·) to extract image embeddings
and generate the textual formatting of bounding boxes. Hence, image embedding attack can be
implemented by maximizing the l2 distance of the image embeddings between the original image x
and the adversarial image x̂. The disrupted image embeddings will result in the model’s inability
to accurately predict the bounding boxes based on the input textual prompts. The objective function
can be formulated as:

max
x

||f(x̂)− f(x)||22, s.t. ||x̂− x||∞ ≤ ϵ. (1)

Textual bounding box attack. Based on the original image x and the input textual prompt ti,
MLLMs g(·) will generate the textual formatting of the bounding box bi in an auto-regressive man-
ner. Concretely, MLLMs aim to estimate the probability of a next token given its context, including
the original image x, the input textual prompt ti, and previous generated M tokens. Given the textual
formatting of ground-truth bounding box bi = {bji}Lj=1, the objective function can be formulated as:

min
x

L∑
j=1

log pg(b
j
i | b

j<M
i ; x; ti), s.t. ||x̂− x||∞ ≤ ϵ, (2)

where bj<M
i denotes the previous generated M tokens. Textual bounding box attacks minimize the

log-likelihood of the textual formatting of the ground-truth bounding box.

2.3 TARGETED ADVERSARIAL ATTACKS

Targeted adversarial attacks craft adversarial images x̂ with the goal of causing MLLMs to predict
a target bounding box different from the ground-truth bounding box bi when given an input textual
prompt ti. Based on the type of target bounding box, two targeted attack paradigms are proposed,
including exclusive targeted adversarial attacks and permuted targeted adversarial attacks.

Exclusive targeted adversarial attacks. Regardless of the input textual prompt, exclusive targeted
adversarial attacks deceive MLLMs to locate all objects in images to the same target bounding
box, denoted as bu. To achieve this attack, given the textual formatting of target bounding box
bu = {bju}Lj=1, the objective function can be formulated as:

max
x

L∑
j=1

log pg(b
j
u | bj<M

u ; x; ti), s.t. ||x̂− x||∞ ≤ ϵ, (3)

where bj<M
u denotes previous generated M tokens. Exclusive targeted adversarial attacks maximize

the log-likelihood of the textual formatting of the same target bounding box.

Permuted targeted adversarial attacks. Permuted targeted adversarial attacks aim to rearrange
bounding box of all objects within an image. The target bounding box is determined based on the
ground-truth bounding box. Given an input textual prompt ti associated with the corresponding
bounding box bi, permuted targeted adversarial attacks set the target bounding box as b(i+1) mod N ,
where N represents the number of objects within the image. This approach ensures that each object’s
bounding box is shifted to the next object, effectively rearranging all bounding boxes in the image.
The objective function can be formulated as:

max
x

L∑
j=1

log pg(b
j
(i+1) mod N | bj<M

(i+1) mod N ; x; ti), s.t. ||x̂− x||∞ ≤ ϵ, (4)

where L denotes the token number of textual formatting of target bounding box and bj<M
(i+1) mod N

denotes previous generated M tokens. Permuted targeted adversarial attacks maximize the log-
likelihood of the textual formatting of the target bounding box, which is shifted from another object
within an image.
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Table 1: The IoU@0.5 (%) of two proposed untargeted adversarial attack methods against MiniGPT-
v2 on three datasets. The lower values correspond to a stronger attack.

Method RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val test

No attack 84.96 89.39 82.15 76.22 82.57 70.30 81.61 82.01
Image embedding attacks 29.58 35.60 19.23 21.86 27.78 12.64 19.28 19.91
Textual bounding box attacks 43.60 49.60 36.58 36.18 42.42 28.65 36.74 37.41

Table 2: The IoU@0.5 (%) of two proposed targeted adversarial attack paradigms against MiniGPT-
v2 on three datasets. The higher values correspond to a stronger attack.

Method RefCOCO RefCOCO+ RefCOCOg
val test-A test-B val test-A test-B val test

Exclusive (No attack) 0.14 0.08 0.22 0.11 0.05 0.21 0.20 0.04
Exclusive 62.12 63.94 60.98 61.93 62.90 61.11 60.96 60.77
Permuted (No attack) 5.69 5.17 7.43 10.65 7.87 14.1 10.09 10.15
Permuted 27.87 30.26 29.37 29.91 30.66 33.22 30.12 29.69

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

Models and datasets. We consider the 7B version of MiniGPT-v2 Chen et al. (2023a) as the sand-
box to launch our attack. Moreover, RefCOCO (Kazemzadeh et al., 2014) and RefCOCO+ (Yu et al.,
2016), and RefCOCOg (Mao et al., 2016) are considered as benchmark datasets for evaluation.

Baselines and setups. To optimize three proposed adversarial attacks, we perform the projected
gradient descent (PGD) (Madry et al., 2018) algorithm in T = 100 iterations. Besides, the perturba-
tion magnitude is set as ϵ = 16 within l∞ restriction, following Dong et al. (2023); Qi et al. (2023),
and the step size is set as α = 1. In exclusive targeted adversarial attacks, the top left corner, which
accounts for 4% of the total area is set as the target bounding box.

Evaluation metrics. We employ Intersection over Union (IoU) with a threshold of 0.5 (IoU@0.5)
as the evaluation metric. A prediction is considered correct if the IoU between the predicted
and ground-truth bounding boxes is greater than 0.5. For untargeted adversarial attacks, a lower
IoU@0.5 value indicates a more effective attack. Conversely, for the two proposed targeted adver-
sarial attacks, a higher IoU@0.5 value signifies a more effective attack.

3.2 MAIN RESULTS

Table 1 presents the results of the two proposed untargeted adversarial attack methods, with the
results without attacks serving as a baseline for comparison. Image embedding attacks reduce the
average IoU@0.5 value to 23.24%, while textual bounding box attacks decrease it to an average
value of 33.90%. This difference in effectiveness may be attributed to the fact that image embedding
attacks disrupt the original image features, directly impacting the visual grounding capabilities of
MLLMs. In contrast, textual bounding box attacks primarily affect the textual generation process of
MLLMs, which might not have as significant an effect on tasks that heavily rely on visual input.

Table 2 shows the results of two proposed targeted adversarial attack paradigms. The results without
attacks refer to the experiments when original images are used as inputs, with no adversarial per-
turbations, but with altered labels. Exclusive targeted adversarial attacks can enhance the average
IoU@0.5 from 0.13% to 61.84%. Meanwhile, Permuted targeted adversarial attacks can improve
the IoU@0.5 from 8.89% to 30.14%. It can be observed that permuted targeted adversarial attacks
are more challenging. The reason is potentially that the area and position of target bounding box
area in exclusive targeted adversarial attacks are larger and fixed, whereas the area and position of
the target bounding box in permuted targeted adversarial attacks are more refined and random.
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4 RELATED WORK

4.1 MULTIMODAL LARGE LANGUAGE MODELS

Multimodal large language models (MLLMs) integrate vision modalities into large language models
(LLMs) to extend their capabilities, broadening their scope beyond standard textual understanding
and improving their performance across various multimodal tasks (Li et al., 2022a; Zhu et al., 2023;
Chen et al., 2023a; Ma et al., 2022a;b; 2024). Recent studies unlock visual grounding capabilities
of MLLMs to address localization tasks with region-aware functionalities. Specifically, KOSMOS-
2 (Peng et al., 2023) and VisionLLM (Wang et al., 2024a) introduce additional location tokens to
the vocabulary, enabling the conversion of coordinates into textual representations, thereby enhanc-
ing regional comprehension. Moreover, Shikra (Chen et al., 2023b) and MiniGPT-v2 (Chen et al.,
2023a) directly represent spatial coordinates using natural language, simplifying the integration of
spatial data into the model. Despite the effective performance, the security threat for visual ground-
ing of MLLMs, including adversarial learning (Goodfellow et al., 2015; Carlini et al., 2019; Dong
et al., 2023), backdoor learning (Li et al., 2022b; Gao et al., 2023b;a; Bai et al., 2023a), poisoning
learning (Shafahi et al., 2018), and Trojan learning (Rakin et al., 2020; Bai et al., 2022a; 2023b), has
not been studied well.

4.2 ADVERSARIAL ATTACKS

Adversarial attacks (Goodfellow et al., 2015; Dong et al., 2018; Ilyas et al., 2018; Zhang et al.,
2019; Bai et al., 2020b;a; 2021; 2022b) have been widely studied for classification models, where
imperceptible and carefully crafted perturbations are applied to input data to mislead the model into
producing incorrect predictions. Inspired by the adversarial vulnerability observed in vision tasks,
early efforts are devoted to investigating adversarial attacks against MLLMs (Dong et al., 2023;
Gao et al., 2024a; Wang et al., 2024b). However, the adversarial robustness of MLLMs with visual
grounding ability is still under-explored. Since visual grounding reveals the model’s perception
process (Zhang et al., 2018; Li & Sigal, 2021), it can serve as a good proxy to understand the model
behavior before and after the adversarial attacks. To this end, we designing effective attack methods
to evaluate the adversarial robustness of MLLMs with grounding ability.

5 CONCLUSION

In this paper, we aim to craft imperceptible perturbations to generate adversarial images, evaluating
the adversarial robustness for visual grounding of MLLMs. We propose three adversarial attack
paradigms: untargeted adversarial attacks, exclusive targeted adversarial attacks, and permuted tar-
geted adversarial attacks. Comprehensive experimental results on three benchmark datasets, namely
RefCOCO, RefCOCO+, and RefCOCOg, demonstrate the effectiveness of our proposed attacks. We
hope that our proposed adversarial attacks can serve as a baseline to evaluate the visual grounding
ability in adversarial robustness of MLLMs and inspire more research to focus on visual grounding
of MLLMs.

ETHICS STATEMENT

Please note that we restrict all experiments in the laboratory environment and do not support our
adversarial attacks in the real scenario. The purpose of our work is to raise the awareness of the
concern in availability of MLLMs and call for practitioners to pay more attention to the visual
grounding in adversarial robustness of MLLMs and model trustworthy deployment.
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