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Abstract

Assignment, a task to match a limited number of elements, is a fundamental1

problem in informatics. Many assignment problems have no exact solvers due2

to their NP-hardness or incomplete input, and their approximation algorithms3

have been studied for a long time. However, individual practical applications4

have various objective functions and prior assumptions, which usually differ from5

academic studies. This gap hinders applying the algorithms to real problems6

despite their theoretically ensured performance. In contrast, a learning-based7

method can be a promising solution to fill the gap. To open a new vista for8

real-world assignment problems, we propose a novel neural network architecture,9

WeaveNet. Its core module, feature weaving layer, is stacked to model frequent10

communication between elements in a parameter-efficient way for solving the11

combinatorial problem of assignment. To evaluate the model, we approximated12

one of the most popular non-linear assignment problems, stable matching with two13

different strongly NP-hard settings. The experimental results showed its impressive14

performance among the learning-based baselines. Furthermore, we achieved better15

or comparative performance to the state-of-the-art algorithmic method, depending16

on the size of problem instances.17

1 Introduction18

From multiple object tracking to job matching, assignment problems can represent a wide variety of19

applications. An assignment problem is typically defined on a bipartite graph, a graph with two sets20

of nodes A and B with edges E = A ⇥ B (N = |A|, M = |B|, N � M ). On the graph, the task21

is to find a matching m 2 {0, 1}A⇥B (a set of edges represented as a binary matrix) that satisfies22

constraints and/or maximizes objectives. Depending on real-world scenes, there must be various23

objectives and constraints for m. A typical constraint is a one-to-one correspondence (i.e., every node24

has at most one matched partner in m) and, for simplicity, we always assume it in this paper.25

Matching stability is another example of such constraints. It is a non-linear constraint first introduced26

for a hospital-student assignment problem (Gale and Shapley, 1962) based on the preferences of27

hospitals among students and vice versa. We say a matching m is unstable when there exist a 2 A28

and b 2 B which are unmatched in m (mab = 0) but both prefer each other more than their partner29

in m. We can obtain a stable matching m in O(N2) by the Gale-Shapley (GS) algorithm (Gale30

and Shapley, 1962). However, when m is expected to have the minimum difference in the total31

satisfactions between sides A and B (known as sex-equal stable matching), the problem becomes32

strongly NP-hard
1 (Kato, 1993; McDermid and Irving, 2014).33

In addition to the NP-hardness, we also face difficulties to obtain the best assignment when assignment34

candidates may randomly disappear (e.g., multiple object tracking with occlusions (Emami et al.,35

2020) or joint matching in multi-person pose estimation (Cao et al., 2017)). In such cases, we need36

1
strongly NP-hard is a subclass of NP-hard and considered more complex than general NP-hard problems
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to compensate for the inputs of incomplete information by its stochastic properties. The traditional37

methods often use sub-optimal approximations to avoid solving complex assignment problems.38

A differential assignment model can be a future option that enables end-to-end training for such39

applications.40

Toward such future applications, this paper aims to propose an effective and promising differential41

solver for assignment problems. The contribution of this paper is four-fold:42

1. We proposed WeaveNet, a novel neural network architecture for assignment problems and43

set-encoder, a novel local structure.44

2. We proposed a novel technique, split batch normalization, to deal with a strong asymmetry45

in input distributions for sides A and B.46

3. We focused on stable matching, a classical non-linear assignment problem actively studied47

even in recent years, and proposed a novel evaluation protocol2 with pseudo costs, which48

enables us to compare learning-based solvers and algorithmic solvers directly.49

4. We achieved a better performance with the state-of-the-art algorithmic baseline when50

N = 20, and a comparative performance when N = 30. We also outperformed any51

learning-based baselines with a large margin.52

2 Related work53

Despite the recent research interest in deep learning technology, we hardly have a fully differential54

assignment solver. As long as authors know, there are two past attempts to solve assignment problems55

by a fully differential model. Li (2019) has tried to solve stable matching by multiple layer perceptrons56

(MLP). Their contribution is in the proposed relaxation of the non-linear stability constraint to a57

differential loss function. However, the MLP is too redundant to learn the assignment strategy without58

overfitting. In addition, the proposed auxiliary loss to maintain the output to be one-to-one matching59

(symmetric doubly stochastic function) overly constrains the solution search space. In this study, we60

propose a parameter-efficient differential model and a weaker but sufficient constraint to output a61

one-to-one matching.62

The second attempt is made by Gibbons et al. (2019), where Deep Bipartite Matching (DBM) is63

proposed. They tested their model with the weapon-target assignment (WTA) problem. WTA is a64

classical NP-hard problem whose state-of-the-art algorithm (Ahuja et al., 2007) could find optimal65

solution when N  20 in the experiment although there is no theoretical guarantee. In this sense,66

we can consider WTA is empirically easier than sex-equal stable matching, for which we have no67

such efficient solvers even for N = 5. In addition, DBM is trained in a supervised manner or with68

reinforcement learning, which is hard to apply to a larger N . Furthermore, the implementation details69

are not completely explained, and their dataset and source codes are not publicly available. Finally,70

the architecture of DBM is still parameter-redundant, and their local structure is sub-optimal. In this71

study, we propose a more parameter-efficient two-stream architecture, WeaveNet, with a novel local72

structure, set-encoder, both of which have significant impacts on the performance.73

In addition to the above methods, it is natural to consider using graph convolutional networks (GCNs).74

However, there are no GCN methods for assignment problems due to the over-smoothing problem (Li75

et al., 2018; Oono and Suzuki, 2020). Because any graph-convolutional layer summarizes the output76

with neighboring nodes, its smoothing effect eliminates expressive power for node classification. To77

avoid such elimination, GIN (Xu et al., 2019), the state-of-the-art GCN method, stacks only two78

layers for a node classification task. Such elimination is critical for an assignment-problem solver79

because it needs to identify any slight difference through frequent communication among nodes.80

Unlike GIN, our model retains edge-wise features rather than node-wise summaries, which does not81

cause the smoothing problem. Therefore, we can make the model very deep, which any traditional82

graph convolutional networks cannot.83

3 Stable matching problem as a benchmark task84

To evaluate learning-based assignment solvers, we adopt two strongly NP-hard variants of stable85

matching. They have been actively studied for a long time (Kato, 1993; Iwama et al., 2010; Dworczak,86

2The source code and datasets are included in this submission and will be publicly available.
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2016; Gupta et al., 2019) and their state-of-the-art algorithm by Tziavelis et al. (2019) must be a87

strong baseline against learning-based methods. Hence, we set these two variants as the benchmark88

task for learning-based assignment problems.89

An instance I of a stable matching problem consists of two sets of agents A and B on a bipartite90

graph. Fig. 1 illustrates an example of I . Each agent ai in A (0 < i  N) has a preference list p
A
i ,91

which is an ordered set of elements in B and p
A
ij = rank(bj ; pAi ) is the index of bj in the list p

A
i . ai92

prefers bj to bj0 if p
A
ij < p

A
ij0 . Similarly, each agent bj in B(0 < j  M) has a preference list p

B
j .93
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Figure 1: An example of assignment, where m (black edges) is not stable due to the blocking pair
(the orange edge), while m

0 (green edges) is stable.

For a matching m, we say that an unmatched pair {av, bw}(mvw = 0) blocks m if av’s partner94

bj (mvj = 1) and bw’s partner ai (miw = 1) satisfy the conditions p
A
vw < p

A
vj and p

B
wv < p

B
wi. Here,95

{av, bw} is called a blocking pair (the orange edge blocks a matching of black edges in the figure).96

A matching is stable if (and only if) it includes no blocking pair (the green edges in the figure). Note97

that I always has at least one stable matching, and the Gale-Shapley (GS) algorithm can find it in98

O(N2). However, the GS algorithm has a biased nature, where one side is prioritized and the other99

side only gets the least preferable result among all the possibilities of stable matching.100

To compensate for the unfairness, we can introduce diverse objectives to maintain a stable matching101

fair. Among them, the following two objectives make the stable matching problem strongly NP-hard.102

The first one is Sex equality cost (SEq) (Gusfield and Irving, 1989). It focuses on the unfairness103

brought by the gap between the two sides’ satisfaction and defined by104

SEq(m; I)= |P (m;A) � P (m;B)|, P (m;A) =
X

{ai,bj}2m

p
A
ij , P (m;B) =

X

{ai,bj}2m

p
B
ji. (1)

The other is Balance cost (Bal) (Feder, 1995; Gupta et al., 2019), which is a compromise between105

side-equality and overall satisfaction. It is defined by106

Bal(m; I)=max(P (m;A), P (m;B)). (2)
In the proposed evaluation protocol, we minimize either cost while maintaining stable one-to-one107

matching.108

Input and output data format for stable matching Learning-based approximation is realized by109

a trainable function F that outputs a matching m̂ 2 [0, 1]N⇥M , which is an N ⇥ M matrix. As110

for the input, the value range of the preference rank depends on the problem size, which causes a111

range shift of the input distribution. To avoid such shift, we linearly re-scale3 the rank of preference112

p
⇤
ij (⇤ 2 {A, B}) from [1, N ] to a normalized score s

⇤
ij ranged in (0, 1] to make it invariant to N ,113

where 1 for the highest rank. Then, we obtain the input as matrices S
A and S

B , where s
A
ij is the114

ij-element of S
A.115

4 Deep-learning-based fair stable matching with WeaveNet116

4.1 WeaveNet117

One of the required properties of F : (SA
, S

B) ! m̂ is to take all the agents’ preference into118

account when determining the presence of each edge in the output m̂. Li (2019) implemented this by119

3The details of this linear re-scaling are based on Li (2019) and described in A.1. Note that sections numbered
with capital letters appear in the supplementary material.
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Figure 2: WeaveNet architecture. L feature weaving layers are stacked with shortcut paths to be a
deep network. The encoded features are fed into Conv(1⇥1) layer to obtain logits (m̂0A, m̂

0B). The
output m̂ will be binarized in prediction phase to represent a matching.

MLPs, where S
A and S

B are destructured and concatenated into a single flat vector (with the length120

of 2NM ) and fed to the MLP. Its output (a flat vector with the length of NM ) is restructured into a121

matrix m̂. The MLP model, however, would face difficulties due to the following four problems.122

(a) Preference lists of multiple agents are encoded by independent parameters, though they share a123

format so that we could efficiently process them in the same manner.124

(b) MLP only supports a fixed-size input, so training different models for different cases of N125

becomes mandatory.126

(c) F should be permutation invariant, which means the matching result should be unchanged even if127

we shuffle the order of agents in S
A and S

B , but MLP does not satisfy.128

(d) A shallow MLP model may be insufficient to approximate an exact solver for the NP-hard problem129

when N is large.130

To address the above weaknesses of MLP, we propose the feature weaving network (WeaveNet) which131

has the properties of (a) shared encoder, (b) variable-size input, (c) permutation invariance, and132

(d) residual structure. The WeaveNet, as shown in Fig. 2, consists of L feature weaving (FW)133

layers. It has two streams of A and B. In a symmetric manner, each stream models the agent’s act of134

selecting the one on the opposite side while sharing weights to enhance the parameter efficiency. The135

shortcut paths at every two FW layers make them residual blocks, which allows the model to be as136

deep as possible. We explain its details as follows.137

!ℓ"

!ℓ#

cat(!ℓ" ,'"↔#(!ℓ#)) !ℓ$%"

!ℓ$%#

*ℓ
&!

cat(!ℓ# ,'"↔#(!ℓ"))
M

length: M

D

N

M

*ℓ
'"

N

D

se
t e

nc
od

er
 !
ℓ

cr
os

s-
co

nc
at

en
at

io
n

Figure 3: Feature weaving layer orthogonally
concatenates the weftwise and warpwize com-
ponents (ZA

` and Z
B
` ) in a symmetric way

(cross-concatenation). Then, the concatenated
tensors are separated into z

ai
` (or z

bj
` ), which

represents a set of outgoing edges from agent
ai (or bj), and independently fed to E`.
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Figure 4: Illustration of the process in set en-
coder E`, where z

ai
` (colored in white) is once

encoded to D
0 channel features (colored in pale

blue), then max-pooled to obtain statistics in the
feature set (colored in blue). The statistics in-
formation is concatenated to each input feature
and further encoded (color in a gradation).

Fig. 3 illustrates the detail of a single FW layer, which is the core architecture of the proposed network.138

FW layer is a two-stream layer whose inputs consist of a weftwise component Z
A
` and a warpwise139

component Z
B
` , which are the output of (l � 1)-th layer and Z

A
0 = S

A and Z
B
0 = S

B for the first140

layer. The two components are symmetrically concatenated in each stream (cross-concatenation).141

Then these concatenations are separated into agent-wise features, each of which is a set of outgoing-142

edge features of an agent (indicating the preference from that agent to every matching candidate).143

These features are processed by the encoder E` shared by every agent in both A and B. As for144

an encoder that can embed variable-size input in a permutation invariant manner, we adopted the145

structure inspired by DeepSet (Zaheer et al., 2017) and PointNet (Qi et al., 2017) (Fig. 4), which146
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consists of two convolutional layers with kernel size 1 and a set-wise max-pooling layer, followed by147

batch-normalization and PReLU activation. We refer to this structure as set encoder.148

Mathematical formulations Z
A
` in Fig. 3 is a third-order tensor whose dimensions, in sequence,149

corresponding to the agent, candidate, and feature dimension, with a size of (N, M,D). Similarly,150

Z
B
` has a size of (M, N, D). The cross-concatenation is defined as151

Z
0A
` = cat(ZA

` , PA$B(Z
B
` )), (3)

where PA$B swaps the first and second dimensions of the tensor, and cat({Z1, Z2, . . .}) concatenates152

the features of two tensors Z1, Z2. Z
0A
` is then sliced into agent-wise features z

ai
` and we obtain153

Z
A
`+1 = (E`(z

ai
` )|0 < i  N), which is also a third-order tensor (and fed to the next layer). We can154

calculate Z
B
`+1 in a symmetric manner (with the same encoder E`).155

After the process of L FW layers, Z
A
L and Z

B
L are further cross-concatenated and fed to the matching156

estimator (in Fig. 2). It outputs a non-deterministic edge assignment m̂. In the training phase, m̂157

is input to an objective function, and the loss is minimized. In the prediction phase, the matching158

is obtained by binarizing m̂. In this sense, matching estimation through a neural network can be159

considered as an approximation by relaxing the binary assignment space {0, 1}N⇥M into a continuous160

assignment space [0, 1]N⇥M .161

Asymmetric variant with split batch normalization WeaveNet is designed to be fully symmetric162

for S
A and S

B . Hence, it satisfies the equation F (SA
, S

B) = F (SB
, S

A)>. This condition ensures163

that the model architecture cannot distinguish the two sides A and B innately. This property is164

beneficial when mathematically fair treatment between A and B is desirable. However, when inputs165

from A and B are differently biased (e.g., the two sides have different trends of preference or the166

objective is asymmetric for A and B), this symmetric treatment degrades the performance. To167

eliminate the bias difference without losing the parameter-efficiency, we further propose to a) apply168

batch normalization independently for each stream (split batch normalization), and b) adding a169

side-identifiable code (e.g., 1 for A and 0 for B) to Z
A
0 and Z

B
0 as a (D+1)-th element of the feature.170

We call this variant “asymmetric”.171

4.2 Relaxed continuous optimization for fair stable matching172

Generally, a combinatorial optimization problem has discrete objective functions and conditions,173

which are not differentiable. To optimize the model in an end-to-end manner without inaccessible174

ground truth, we optimize the model by relaxing such discrete loss functions into continuous ones.175

Assume we target to obtain a fair stable matching that has the minimum SEq, for example. Then, we176

have the following three loss functions.177

Lm conditions the binarization of m̂ to represent a matching.178

Ls conditions the matching to be stable.179

Lf minimizing the fairness cost SEq of the matching180

The overall loss function is defined as181

Lfsm(m̂) = �mLm +
1

2

X

m2{m̂A,m̂B}

�
�sLs(m) + �fLf (m)

�
, (4)

where m̂
A = softmax(m̂) and m̂

B = softmax(m̂>).182

An important advantage of learning-based approximation is its flexibility. We can modify the above183

loss functions to easily obtain other variants. For example, removing Lf in Eq.(4) leads to standard184

stable matching, and replacing Lf with Lb (which minimizes Bal) leads to balanced stable matching,185

as follows:186

Lsm(m̂) = �mLm +
1

2

X

m2{m̂A,m̂B}

�sLs(m), (5)

Lbsm(m̂) = �mLm +
1

2

X

m2{m̂A,m̂B}

�
�sLs(m) + �bLb(m)

�
. (6)
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One-to-one matching constraint m̂ can be safely converted into a binarized matching by column-187

wise or row-wise argmax operation when it is a symmetric doubly stochastic matrix (Li, 2019). To188

satisfy this condition, we defined Lm with an average of the cosine distance as189

Lm(m̂A
, m̂

B) = 1 � 1

2
(C(m̂A

, m̂
B) + C(m̂B

, m̂
A)),

C(m̂A
, m̂

B) =
1

N

NX

i=0

m̂
A
i⇤ · m̂

B
⇤i

km̂A
i⇤k2km̂B

⇤ik2
,

(7)

where m̂
A
i⇤ means the i-th row of m̂

A. This formulation binds m̂ to be a symmetric4 doubly stochastic190

matrix when Lm(m̂A
, m̂

B) = 0. The advantage of this implementation against the original one in Li191

(2019) is described in B.1 with additional experimental results.192

Blocking pair suppression As for Ls, we used the function proposed in Li (2019), which is193

Ls(m̂; I) =
X

(v,w)2A⇥B

g(av; bw, m̂)g(bw; av, m̂)

g(ai; bw, m̂) =
X

bj 6=bw

m̂ij · max(SA
iw � S

A
ij , 0)

g(bj ; av, m̂) =
X

ai 6=av

m̂
>
ji · max(SB

jv � S
B
ji , 0),

(8)

where g(ai; bw, m̂) is a criterion known as ex-ante justified envy, which has a positive value when194

ai prefers bw more than any bj in {bj |j 6= w, m̂ij > 0}. This is the same for g(bj ; av, m̂). Hence,195

{av, bw} becomes a (soft) blocking pair when both g(av; bw, m̂) and g(bw; av, m̂) are positive.196

Fairness measurements Lf , Lb minimize SEq(m; I), Bal(m; I), respectively, and are defined as197

Lf (m̂; I) =
1

N
|S(m̂;A) � S(m̂;B)| Lb(m̂; I) = � 1

N
min(S(m̂;A), S(m̂;B)), (9)

where198

S(m̂;A) =
NX

i=1

MX

i=j

m̂ij · S
A
ij , S(m̂;B) =

MX

j=1

NX

i=1

m̂ij · S
B
ji . (10)

5 Experiments199

We evaluated WeaveNet with different sizes of N . First, with test samples of N < 10, we compared200

its performance with learning-based baselines and optimal solutions obtained by a brute-force search.201

Second, we compared WeaveNet with algorithmic baselines at N = 20, 30, where neither existing202

learning-based methods nor brute-force search work. We also demonstrated the generalization ability203

of WeaveNet under the mismatched training/test dataset distributions. Third, we demonstrated the204

performance of WeaveNet at N = 100. Note that we always assume M = N hereafter.205

Sample generation protocol In the experiments, we used the same method as Tziavelis et al.206

(2019) to generate synthetic datasets that draw preference lists from the following distributions.207

Uniform (U) Each agent’s preference towards any matching candidate is totally random, defined by208

a uniform distribution U(0, 1) (larger value means prior in the preference list).209

Discrete (D) Each agent has a preference of U(0.5, 1) towards a certain group of b0.4Nc popular210

candidates, while U(0, 0.5) towards the rest.211

Gauss (G) Each agent’s preference towards i-th candidate is defined by a Gaussian distribution212

N (i/N, 0.4).213

LibimSeTi (Lib) Simulate real rating activity on the online dating service LibimSeTi (Brozovsky214

and Petricek, 2007) based on the 2D distribution of frequency of each rating pair (pAij , p
B
ji).215

4Here a (possibly non-square) matrix m̂ (N � M ) is symmetric if and only if m̂i⇤ = m̂⇤i, (0 < i  M).
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Choosing the above preference distributions for group A and B respectively, we obtained five different216

dataset settings, namely UU, DD, GG, UD, and Lib. We randomly generated 1,000 test samples and217

1,000 validation samples for each of the five distribution settings.218

Training protocol We trained any learning-based models 200k total iterations at N  30 and 300k219

at N = 100, with a batch size of 8. We randomly generated training samples at each iteration based220

on the distribution of each dataset and used the Adam optimizer (Kingma and Ba, 2015). We set221

learning rate 0.0001 and loss weights �s = 0.7, �m = 1.0, �f = �b = 0.01 based on a preliminary222

experiment (see A.4).223

Pseudo fairness costs for comparing learning-based results with algorithmic results Note that224

for learning-based methods, there is a trade-off between fairness scores and stable matching rate.225

Hence they may violate the constraints of stable one-to-one matching and yield an SEq or Bal even226

lower than the ideal value. To compare the methods fairly with traditional algorithmic methods, we227

evaluate our methods using pseudo SEq (pSEq) and pseudo Bal (pBal) cost, in which the cost of228

violation cases is replaced by the worst result of the GS algorithm (prioritizing each side once and229

adopting the worse one).230

5.1 Comparison with learning-based methods (N = 3, 5, 7, 9)231

Baselines and ablations In this experiment, we show results obtained by following baselines and232

WeaveNet variants. MLP is the model proposed in Li (2019). GIN is the state-of-the-art GCN model233

proposed in Xu et al. (2019). We use each (normalized) preference list as a node feature and bipartite234

edges as the graph structure. After two graph-convolution calculations, as MLP, we destructed the235

node-wise embeddings and concatenated them into a single vector, which is fed to one Linear layer to236

output m̂. DBM is the model in Gibbons et al. (2019). SSWN is the single-stream WeaveNet, which237

is equivalent to a DBM adopting the set-encoder of WeaveNet. WN is the standard WeaveNet.238
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Fig. 5 shows the success rates of finding a stable matching, where we trained models to minimize239

Eq. (5), considering only the stable matching constraints. Since MLP and GIN have size-dependency,240

we trained the models independently for N = 3, 5, 7, 9. The other models were trained with241

N = 10 and tested on N = 3, 5, 7, 9. We maintained models with L = 6 layers (the model names242

are noted as XXX-6) to have a similar number of parameters with MLP for N = 5 (see A.5), while243

WN-18 is prepared to demonstrate the full performance (with the residual blocks).244

MLP and GIN can hardly find stable matchings when N � 5. Note that the number of total cases for245

size N instances is estimated by N !2(N�1). Hence, when N = 3, there are only 1,296 cases at most,246

and the test set will fully overlap with the training set. In contrast, when N = 5, we have 4.3 ⇥ 1016247

cases, and the overlap is negligible. Therefore, we can say that methods working only with N = 3,248

such as MLP and GIN, have little generalization ability.249

DBM performs better than MLP but obviously worse than SSWN and WN. The performance gain of250

SSWN-6 over DBM-6 represents the advantage of the set-encoder. Similarly, the improvement of251

WN-6 over SSWN-6 shows the benefit of the two-stream architecture. Finally, that of WN-18 over252

WN-6 demonstrates the impact of stacked layers on the performance. Fig. 15 of the appendix shows253
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some additional baselines, including a performance of our Lm against the original one proposed in Li254

(2019).255

Figs. 6 and 7 show pSEq and pBal (their difference from the ideal values5), respectively. XXX-18f/b256

are trained to minimize Eqs. (4) and (6), respectively6. We omitted MLP and GIN due to their poor257

performance in Fig. 5. In the results, both SSWN and WN largely outperformed DBM, which again258

proved the advantage of the set-encoder. WN performed better than SSWN for larger N , owing to the259

parameter efficiency of the two-stream architecture. Note that the performance gain of XXX-18f/b260

from XXX-18 proved the flexibility of general learning-based methods for customized objective261

functions.262

5.2 Comparison with algorithmic methods (N = 20, 30)263

As the algorithmic methods, we prepared four baselines. GS is the better result of applying the GS264

algorithm to prioritize each side once, which runs in O(N2). PolyMin minimizes some alternative265

fairness costs (the regret and egalitarian costs, which can be solved in O(N2) and O(N3), respectively266

(Gusfield, 1987; Irving et al., 1987; Feder, 1992)). DACC by Dworczak (2016) is an approximate267

algorithm that runs in O(N4). PowerBalance is the state-of-the-art method that runs in O(N2).268

WN-60f/b(20/30) is WeaveNet with L = 60 layers trained with samples of N = 20 and N = 30.269

Note that we used the asymmetric variant for UD and Lib. Moreover, we do not involve any traditional270

learning-based methods in this part since they scored clear performance drops with increasing N (see271

Fig. 5) and the problem size of N = 20, 30 is clearly beyond their capabilities, but an ablation with272

WeaveNet variants is reported in B.2.273

Table 1: Average SEq (#) and success rate of stable matching ("). Bold and underlined scores shows
the best and second best ones, respectively.

Agents (N ⇥ M ) 20⇥ 20 30⇥ 30
Datasets (Dist. Type) UU DD GG UD Lib UU DD GG UD Lib

GS 41.89 18.81 19.52 70.97 19.66 94.03 43.46 36.56 163.77 39.78
PolyMin 19.93 11.83 20.57 87.08 18.47 35.52 21.21 37.37 209.62 31.85
DACC 24.34 20.13 23.07 101.75 20.40 40.87 34.35 40.59 240.48 33.88
Power Balance 16.28 8.93 17.07 71.09 15.40 18.45 11.05 27.22 163.90 21.57
WN-60f(20) (pSEq) 12.23 6.37 15.50 71.31 14.59 25.21 11.38 29.36 172.63 23.53

Stably Matched (%) 98.90 99.50 99.40 99.60 99.30 94.60 97.30 95.70 91.30 97.70
WN-60f(30) (pSEq) 12.16 6.53 15.56 71.34 14.53 18.30 10.52 27.39 170.35 22.17

Stably Matched (%) 99.10 99.40 99.40 99.50 99.80 98.10 99.00 98.00 93.90 98.60

Table 2: Average Bal (#) and success rate of stable matching (").

Agents (N ⇥ M ) 20⇥ 20 30⇥ 30
Datasets (Dist. Type) UU DD GG UD Lib UU DD GG UD Lib

GS 89.14 146.16 108.36 140.53 68.62 184.05 322.05 225.49 312.12 137.59
PolyMin 74.19 140.99 108.04 145.28 66.94 144.48 306.28 224.13 324.54 130.79
DACC 78.49 146.71 110.06 151.34 68.75 150.71 316.18 227.52 337.43 133.59
Power Balance 73.28 140.12 106.92 140.55 65.89 138.04 302.30 220.26 312.12 126.96
WN-60b(20) (pBal) 71.89 138.79 106.20 140.84 65.85 141.49 302.73 221.92 317.60 130.58
Stably Matched (%) 98.50 98.80 99.50 99.70 98.80 96.10 96.70 95.00 88.90 93.80

WN-60b(30) (pBal) 72.33 138.75 106.65 140.79 65.84 140.40 301.59 223.02 313.59 127.93
Stably Matched (%) 98.00 99.10 98.60 99.80 99.10 97.00 98.60 93.70 98.80 98.00

We show the results in Tables 1 and 2. When N = 20, except for UD, the proposed method constantly274

performed better than any algorithmic methods for both SEq and Bal. When N = 30, they are275

comparative. For UD, GS performed even better than PowerBalance. That means that the ideal276

solution constantly prioritizes one side (a kind of the strongest bias). Since we designed the WeaveNet277

architecture to treat the sides evenly, this is the most challenging situation for WeaveNet. Nonetheless,278

51.362, 2.534, 3.746, 4.694 in SEq and 2.406, 6.478, 11.956, 18.706 in Bal for N = 3, 5, 7, 9.
6We early-stopped the training for DBM-18f/b at 80k due to a sudden overfit after the epoch.
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the proposed split batch normalization (with the side-identifiable code) achieved similar performance279

to GS and PowerBalance. We show the performance drop with the fully symmetric version in B.2280

of the appendix, which is also interesting from the ethical viewpoint. It is noteworthy that the281

model trained with N = 20 performs well even with N = 30, which indicates that the method has282

generalizability for size difference.283

Generalization ability for different distributions A learning-based method should have a certain284

generalizability for input distribution shifts. To test the ability, we evaluated the performance of285

models trained with UU, DD, and GG on test sets of different distributions.286

Table 3: The generalizability of WeaveNet (trained/tested
with N = 30).

WN-60f test
train UU DD GG Avg.

UU pSEq 18.30 25.81 29.09 21.10
Stably Matched (%) 98.10 94.90 93.60 95.53

DD pSEq 171.27 10.52 77.36 86.38
Stably Matched (%) 2.80 99.00 0.10 33.97

GG pSEq 21.38 12.85 27.39 20.54
Stably Matched (%) 97.30 98.10 98.00 97.80

Table 4: Average SEq (#) and Bal (#)
at N = 100.

100⇥ 100, UU SEq Bal

GS 1259.39 1709.53
PolyMin 153.35 952.85
DACC 194.65 988.02
Power Balance 49.41 909.73
WN-80f/b+Hungarian
pSEq/pBal 257.99 1145.36
SEq/Bal 68.36 919.75
Stably Matched (%) 89.4 80.8

Table 3 shows the results. Remarkably, there is a contrast between the model trained with DD and the287

others. The model with DD could hardly satisfy the one-to-one stable matching constraint when tested288

on UU/GG, and resulted in poor pSEq scores. In contrast, the model with GG achieved satisfying289

pSEq scores on UU/DD. Since GG generates preference lists based on a common preference score290

(i/N for i-th agent) with noise, agents in GG tend to have similar preference lists (i.e., hard to assign291

optimally). A model trained with such hard samples works well even for the test samples drawn from292

other distribution. UU has also performed well owing to its non-biased sampling strategy. On the293

other hand, DD worst performed due to its highly biased generation strategy. From these results, we294

confirmed that WeaveNet has certain robustness in the distribution shift as long as training samples295

are competitive enough.296

5.3 Demonstration with N = 100297

We further demonstrate the capability of WeaveNet under a larger size of problem instances, N = 100.298

In this case, we found that WN-80f and WN-80b failed to yield one-to-one matchings for 13.4%299

and 19.8%, respectively (see the Table 9 in B.2 for details). To compensate for this problem, we300

applied the Hungarian algorithm (Kuhn, 1955) to surely binarize m̂ into a one-to-one matching.301

Table 4 shows WeaveNet’s relatively good SEq and Bal scores. Even with the help of the Hungarian302

algorithm, they were strongly penalized in pSEq and pBal due to the poor stable matching rate. In303

other words, we can potentially fill the large gap by better constraining the output.304

Since this work is just a pilot study toward a practical differential assignment solver, there is still a lot305

of space for improvement. The proposed test protocol with stable matching will facilitate it since we306

can freely adjust the difficulty of the problem to develop and enhance the methods continuously.307

6 Conclusion308

This paper proposed a novel differential assignment solver, WeaveNet, and an evaluation protocol on309

two strongly NP-hard variants of stable matching. In the experiments, we demonstrated the advantage310

of set encoder and the two-stream architecture of Weavenet against the other learning-based methods.311

These techniques also achieved a better performance than the state-of-the-art algorithmic method312

when N = 20 and a comparative performance when N = 30. Furthermore, the asymmetric variants,313

split batch normalization with the side-identifiable code, enabled the method to work even with314

the strongly biased dataset of UD. We also confirmed that the proposed method does not work at315

N = 100, which will be an immediate task for this new field of differential assignment solver. We316

hope that this work becomes a starting point to open a new vista for real-world assignment problems.317
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