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ABSTRACT

Stein variational gradient descent (SVGD) (Liu & Wang, 2016) performs approx-
imate Bayesian inference by representing the posterior with a set of particles.
However, SVGD suffers from variance collapse, i.e. poor predictions due to under-
estimating uncertainty (Ba et al., 2021), even for moderately-dimensional models
such as small Bayesian neural networks (BNNs). To address this issue, we gen-
eralize SVGD by letting each particle parameterize a component distribution in
a mixture model. Our method, Stein Mixture Inference (SMI), optimizes a lower
bound to the evidence (ELBO) and introduces user-specified guides parameterized
by particles. SMI extends the Nonlinear SVGD framework (Wang & Liu, 2019) to
the case of variational Bayes. SMI effectively avoids variance collapse, judging by
a previously described test developed for this purpose, and performs well on stan-
dard data sets. In addition, SMI requires considerably fewer particles than SVGD
to accurately estimate uncertainty for small BNNs. The synergistic combination of
NSVGD, ELBO optimization and user-specified guides establishes a promising
approach towards variational Bayesian inference in the case of tall and wide data.

1 INTRODUCTION

Accurate and safe machine learning necessitates adequate uncertainty estimation to ensure reliability
in critical applications such as autonomous vehicles and medical diagnosis. Even in problems
considered solved, such as protein structure prediction, better handling of uncertainty – particularly
in cases of conformational heterogeneity (Gavalda-Garcia et al., 2025) – could lead to further
improvements. As current deep methods are known to be overly confident in their predictions
(Szegedy et al., 2014; Nguyen et al., 2015), a more principled treatment of uncertainty is necessary.
Bayesian probabilistic models are attractive as they assess model uncertainty through a coherent
framework of updating data-based beliefs. However, Bayesian inference for complex models is often
analytically and computationally intractable. Therefore, variational Bayes methods approximate a
Bayesian posterior with a tractable variational distribution (Jordan et al., 1999; Blei et al., 2017).

Particle-based inference is an attractive approach to variational Bayes because it resides as an
intermediate between variational and sampled-based methods (Saeedi et al., 2017; Domke, 2017). As
a hybrid method, particle-based inference combines several desirable properties: sample efficiency,
deterministic updates and asymptotic unbiasedness. Primary among particle variational inference
algorithms is Stein variational gradient descent (SVGD) Liu & Wang (2016) due to its tractable and
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(a) SVGD (b) SMI

Figure 1: Variational inference with SVGD-derived particles (Liu & Wang, 2016) versus with an
SMI-derived probability density, formulated as a mixture model (this work). Left: SVGD uses m
particles θθθℓ to approximate the posterior p(θθθ|D). Right: SMI uses a mixture model (with uniform
weights) of m guides q(θθθ|ψψψℓ), parameterized by particles ψψψℓ to approximate p(θθθ|D). As a result,
SMI approximates a Bayesian posterior with a richer model that alleviates variance collapse in higher
dimensional posteriors.

simple update rule. However, SVGD suffers from underestimating variance, also called variance
collapse (Ba et al., 2021; Zhuo et al., 2018). Overcoming the collapse with SVGD requires using more
particles as the model size grows. We will demonstrate that this quickly becomes computationally
infeasible with off-the-shelf hardware, even for moderately sized models such as small BNNs.

To address the issue of variance collapse in SVGD, we introduce Stein mixture inference (SMI)1.
SMI lets each particle parameterize a component distribution, which we call a guide, resulting in a
mixture approximation of the posterior. In contrast, SVGD directly represents approximate samples
from the posterior using its particles. Figure 1 schematically distinguishes the two methods. The
mixture approximation allows SMI to represent neighborhoods of SVGD particles, thereby scaling
better with model size. We show that SMI is a novel variant of Nonlinear-SVGD (NSVGD) (Wang
et al., 2019) applied to the variational approximation of Bayesian posteriors. SMI combines ordinary
mean-field variational inference (OVI) (Jordan et al., 1999; Hoffman et al., 2013; Ranganath et al.,
2014) with SVGD through the NSVGD framework. Specifically, our article makes the following
three contributions:

1. We introduce SMI and show that it extends NSVGD to variational Bayes.

2. We empirically demonstrate that SMI is more particle efficient than SVGD.

3. We use synthetic and real-world data to show that SMI does not suffer from variance collapse
in small- to moderately-sized models such as small BNNs.

Next, in Section 2, we will motivate SMI by outlining the reasoning behind the method.

2 STEIN MIXTURE INFERENCE IN A NUTSHELL

We aim to construct a richer variational approximation q(θθθ) of the posterior p(θθθ|D) than the one
offered by SVGD, while ensuring we also have a means to optimize it. To achieve this, we express
q(θθθ) as a uniform mixture model of m (user-defined) guides, parameterized by m particles {ψψψi}mi=1
that make up the empirical measure ρm(·) = 1/

∑m
i=1δψψψi

(·),

q(θθθ|ρm) =
1

m

m∑
ℓ=1

q(θθθ|ψℓ). (1)

1This article extends our preliminary work presented in the (non-archival) workshop paper Nalisnick &
Smyth (2017).
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The goal is to optimize the corresponding mixture ELBO, which measures how well the mixture
model approximates the true posterior,

L(ρm) =
1

m

m∑
ℓ=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
≤ log p(D). (2)

Now, the mixture ELBO can be interpreted as a symmetric2 functional F [ρm], mapping the particles
of the empirical measure to a scalar,

F [ρm] = L(ρm).

This interpretation allows us to leverage the NSVGD framework to optimize F [ρm], along with an
additional weighted entropy term3 αH[ρm] to encourage particle diversity, to find

ρ∗m = argmax
ρm

F [ρm] + αH[ρm] = argmax
ρm

1

m

m∑
ℓ=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
+ αH[ρm], (3)

where H[f ] = −
∫
f log f denotes the differential entropy and α ≥ 0. As we will show, despite

the inclusion of the entropy term, we still obtain a proper ELBO, LSMI(ρm) = F [ρm] +H[ρm] ≤
log p(D), if we choose α = 1. This ensures the mixture model q(θθθ|ρm) provides a well-justified,
diversified posterior approximation.

3 BACKGROUND

After introducing OVI, we detail NSVGD in section 3.2. We state the variational objective that
NSVGD maximizes, restate the central result from Wang & Liu (2019) that allows us to move ρm in
theorem 3.1 and finally, in eq. (7), give the tractable iterative update that is the backbone of NSVGD
optimization.

Notation Let x ∼ p(x) denote a sample generated from an unknown distribution p(x). We
observe N independent and identically distributed draws from p(x) that constitute the dataset
D = {x1, . . . ,xN}. We denote the likelihood function p(D|θθθ) =

∏N
n=1 p(xn|θθθ) where θθθ ∈ Θ ⊆ Rd

is a latent variable. Let p(θθθ) denote the prior and p(θθθ|D) the posterior. We assume that the posterior
is not analytically available except up to a constant of proportionality, i.e., p(θθθ|D) ∝ p(D, θθθ). We
denote the differential operator as ∇ℓ when differentiating with respect to (wrt.) the ℓ’th (random)
variable. For example, ∇1f(a, b) is the differential wrt. a. However, if this notation becomes
ambiguous, we use the symbolic subscript notation, e.g. ∇bf(a, b) = ∇2f(a, b).

3.1 ORDINARY VARIATIONAL INFERENCE

We can approximate an intractable posterior p(θθθ|D) with a tractable variational distribution4 q(θθθ|D;ψψψ)
by optimizing a lower bound on the evidence p(D), the aforementioned ELBO (Jordan et al., 1999).
The ELBO is given by

log p(D) ≥ Eq(θθθ|D;ψψψ)[log p(D, θθθ)] +H[q(θθθ|D;ψψψ)] ≡ L(ψψψ). (4)

Maximizing L(ψψψ) is equivalent to minimizing the Kullback-Leibler (KL) divergence between the
approximate and intractable posterior, but importantly requires computing the joint density p(D, θθθ)
instead of the intractable conditional p(θθθ|D). ψψψ is obtained from maximizing the ELBO by gradient
or coordinate ascent.

3.2 NONLINEAR STEIN VARIATIONAL GRADIENT DESCENT

Like Markov chain Monte Carlo (MCMC) methods, particle variational methods (Frank et al.,
2009; Saeedi et al., 2017) approximate samples from the posterior rather than its density. However,

2A function is symmetric if its evaluation is independent of the order of its parameters.
3Although the differential entropy is formally undefined for an empirical measure, within the NSVGD

framework (Liu et al., 2017; Wang & Liu, 2019) ρ∗m converges weakly to ρ∗ for m → ∞. H[ρ∗] is well defined.
4We use the notation p(c|a) for conditioning on the random variable a and p(c; b) for a density with

parameters b.
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Table 1: NSVGD generalizes SVGD and includes DivMM and SMI (this work). Like SVGD, SMI
approximates general posteriors. But where SVGD represents the posterior directly with particles
θθθℓ, SMI addresses variance collapse by using a mixture model 1/m

∑m
ℓ=1 q(θθθ|ψψψℓ) parameterized by

particles ψψψℓ. On the other hand, DivMM specializes NSVGD to diversified maximum likelihood
estimation for mixture models and cannot approximate general posteriors; moreover, the number of
particles m in DivMM is a hyperparameter of the model, unlike in SVGD and SMI, where it relates
to the posterior approximation’s richness.

Method Posterior approximation Model

SVGD (Liu & Wang, 2016) 1
m

∑m
ℓ=1 δθθθℓ(θθθ) p(D|θθθ)π(θθθ)

DivMM (Wang & Liu, 2019) None
∑m
ℓ=1 p(D|θθθℓ)

SMI (This work) 1
m

∑m
ℓ=1 q(θθθ|ψψψℓ) p(D|θθθ)π(θθθ)

unlike MCMC methods, the number of posterior samples is fixed a priori for particle methods.
Particle methods are attractive due to their freedom from strong parametric assumptions and resulting
flexibility as an approximation. We will designate the samples as "particles" to emphasize that they
are not auto-correlated, as with MCMC methods. However, they retain some correlation in the
non-asymptotic case (Gallego & Insua, 2018).

Wang & Liu (2019) introduces the Nonlinear SVGD framework which allows functional optimiza-
tion under diversification constraints. Wang & Liu (2019) applies this general framework to the
(constrained) maximum likelihood estimation of diversified mixture models (DivMM), i.e., mixture
models consisting of spread-out mixture components. The NSGVD framework has previously only
been applied to SVGD and this type of maximum likelihood estimation.

The variational objective NSVGD iteratively moves an initially simple distribution ρ, such as
a Gaussian, according to T (ρ) = ρ + ϵϕ[ρ] such that the transported distribution T (ρ) maximally
increases a variational objective. The variational objectives for NSVGD combine a functional, like
the likelihood (DivMM), the negative KL-divergence to a posterior (SVGD) or an ELBO (SMI and
OVI) with a diversification constraint on ρ. We need the constraint to avoid mode collapse.

In its most general form, NSVGD solves the maximization given by

ρ∗ = argmax
ρ

F [ρ] + αH[ρ], (5)

where F [ρ] is a nonlinear functional of ρ, H[ρ] is the differential entropy and α ≥ 0 scales the
contribution of the entropy. The entropy acts as a regularizer, forcing ρ to distribute uniformly,
promoting particle diversification and avoiding collapse to the closest mode.

Making the optimal perturbation ϕ∗ tractable Finding the steepest perturbation direction ϕ∗[ρ]
is challenging in the general setting. This is because ϕ∗[ρ] requires computing the first variation of F ,
a functional analog to the derivative of a function, which may not exist, let alone be computationally
tractable. We must weaken our optimization and add additional structure on ρ and F to progress
toward a tractable algorithm by guaranteeing the first variation is always tractable. Theorem 2 from
Wang & Liu (2019) provides this structure. First, use an empirical measure ρm on m particles
{θℓ}mℓ=1 instead of ρ because with the particles evaluating wrt. ρm is trivial. However, using ρm for
ρ means we only approximate the ρ∗ from eq. (5) with the guarantee that the optimum ρ∗m weakly
converges to ρ∗ when letting m→ ∞ (Wang & Liu, 2019; Liu et al., 2017). Second, choose F [ρm]
such that there exists a symmetric and differentiable map f : θθθ1, θθθ2, . . . , θθθm 7→ F [ρm]. Under these
two conditions, the first variation of F wrt. the ℓ’th particle reduces to ordinary differentiation of
f(θθθ1, θθθ2, . . . , θθθm) which is tractable to compute.

The optimal perturbation in RKHS With the additional structure on ρ and F , the last essential
component that gives ϕ∗ a closed form is restricting the candidate perturbations to functions in a
reproducing kernel Hilbert space Liu & Wang (2016). With these components, we can restate the
theorem that gives the closed form for optimal perturbation as:
Theorem 3.1. The Kernelized Steepest Perturbation (Wang & Liu, 2019) Let F [ρ] + αH[ρ] be
the variational objective for a transport T (ρ) = ρ + ϵϕ[ρ], with ϵ > 0 and distribution ρ with
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supp ρ ⊆ dom f ⊆ Rd. Let ρm(·) = 1/m
∑m
i=1 δθθθi(·) be the empirical measure of m particles and

let f : (θθθ1, . . . , θθθm) 7→ F [ρm] be a differentiable and symmetric function. If we choose a reproducing
kernel k on Rd×Rd with reproducing kernel Hilbert space H (Berlinet & Thomas-Agnan, 2011) such
that ∇1k and ∇2k exist and are both continuous, then the optimal perturbation direction ϕ∗ ∈ H
such that ∥ ϕ∗ ∥H≤ 1 satisfies

ϕ∗(·) ∝ Eθθθi∼ρm [k(θθθ, ·)m∇if(θθθ1, . . . , θθθm) + α∇1k(θθθ, ·)]. (6)

Theorem 3.1 combines Theorem 1b and 2 from Wang & Liu (2019) and provides the closed form
for the optimal perturbation direction ϕ∗ used in SMI when replacing f with L(ρm). The first and
second terms that constitute ϕ∗(·) in theorem 3.1 are commonly referred to as the attractive and
repulsive force. This is because the first term pulls particles towards the nearest maximum in F ,
whereas the second keeps particles from collapsing onto each other. Finally, notice we never need to
evaluate H(ρm); instead, ϕ∗ uses the kernel gradient in the repulsive force. This sidesteps the issue
of not having H(ρm) available.

The iterative optimization algorithm The NSVGD iterative optimization starts with particles
{θθθi ∼ ρ(0)}mi=1 drawn from the simple initial distribution ρ(0). At each iteration, every particle moves
according to

θθθℓ = θθθℓ + ϵ

m∑
i=1

k(θθθi, θθθℓ)∇if(θθθ1, θθθ2, . . . , θθθm) +
α

m
∇1k(θθθi, θθθℓ), (7)

which maximally increases the change in eq. (5) by theorem 3.1. We see that SVGD is an instance of
NSVGD by replacing f with the expected log joint density, f(θθθ1, θθθ2, . . . , θθθm) = Eθθθ∼ρm [log p(D, θθθ)].
In the case of SVGD, ∇if(θθθ1, . . . , θθθi, . . . , θθθm) reduces to the scaled score function ∇1f(θθθi) =
1/m∇1 log p(θθθi,D).

Diversified mixture models In the case of DivMM, Wang & Liu (2019) applies the NSVGD
framework to the functional F [ρ] = Exxx∼D[logEθθθ∼ρ[p(xxx;θθθ)]]. DivMM needs the nonlinear form of
theorem 3.1 as its functional is not linear in ρ. The optimization is a constrained maximum likelihood
estimation of the diversified mixture model,

∑m
ℓ=1 p(D|θθθℓ). Here, the number of particles m is a

hyperparameter of the model, whereas, for SVGD and SMI, the model is independent of m. In
table 1, we contrast SVGD, DivMM, and SMI, which are different applications of the same NSVGD
framework. In the following section, we introduce SMI and demonstrate that the NSVGD framework
can be adapted to infer approximate variational posteriors of general Bayesian models.

4 STEIN MIXTURE INFERENCE

The key to justifying SMI is showing we can optimize the SMI ELBO LSMI(ρm) given by eq. (3)
using NSVGD and that it is indeed an ELBO. To this end, we first show that the mixture ELBO
L(ρm) given by eq. (2) is a differential symmetric function. That means we can use theorem 3.1 to
find the ρ∗m that maximizes LSMI(ρm) by iterating eq. (7). Next, we show that when α = 1 in eq. (3),
the resulting quantity LSMI(ρm) is indeed an ELBO, despite the addition of an entropy term to the
mixture ELBO L(ρm) given by eq. (2).

The SMI function(al) and its gradient The mixture ELBO L(ρm) given by eq. (2) is a symmetric
function wrt. ρm due to the outer sum. If L(ρm) is also differentiable, we have the desired mapping
required to use parametric differentiation to optimize eq. (2) using NSVGD. To show L(ρm) is
differentiable wrt. the ℓ’th particle, we can compute the gradient as

m∇ψψψℓ
L(ρm) = Eq(θθθ|ψψψℓ)

ñ
log

p(θθθ,D)∑
j q(θθθ|ψψψj)

∇ψψψℓ
log q(θθθ|ψψψℓ)

ô
−

m∑
j=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
.

(8)

If we choose q(θθθ|ψψψℓ) to be differentiable wrt. ψψψℓ, we see that L(ρm) is also differentiable wrt. ψψψℓ.
The complete derivation is given in the appendix.
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SMIs variational objective is an ELBO L(ρm) is an ELBO, but does SMI indeed maximize an
ELBO? For this to be the case, LSMI(ρm) = L(ρm)+H(ρm), which includes an entropic regulariser,
must also be an ELBO. We show this by generalizing ρm to the continuous case because, as noted
previously, H(ρm) is technically undefined for finite particles. First, consider the continuous version
of L(ρm) given by,

L[ρ] = lim
m→∞

1

m

m∑
i=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
= Eρ(ψψψ)

ï
Eq(θθθ|ψ)

ï
log

p(θθθ,D)∫
q(θθθ|ψψψ)ρ(ψψψ)dψψψ

òò
≤ log p(D).

Note that L(ρm) weakly converges to L[ρ] for m→ ∞ when using NSVGD. Next, we construct an
upper bound L↑[ρ] of L[ρ],

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
≥ L[ρ],

as we show in the appendix. Now, applying SMI’s variational objective given by eq. (3) to L↑[ρ] with
α = 1 indeed results in an ELBO, as shown by

L↑[ρ] +H[ρ] = Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
+H[ρ] = Eρ(ψψψ)

ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)ρ(ψψψ)

òò
≤ logEρ(ψψψ)

ï
Eq(θθθ|ψψψ)

ï
p(θθθ,D)

q(θθθ|ψψψ)ρ(ψψψ)

òò
= log p(D).

Here, the inequality comes from repeatedly applying Jensen’s inequality. The final equality results
from simply marginalizing. Note that the objective is not an ELBO for α ̸= 1. Finally, we can
conclude that LSMI[ρ] = L[ρ] +H[ρ] is also an ELBO, because

L[ρ] ≤ L↑[ρ] =⇒ L[ρ] +H[ρ] ≤ L↑[ρ] +H[ρ] ≤ log p(D).

Thus, the maximizing empirical measure obtained by NSVGD, ρ∗m weakly converges to a correspond-
ing ELBO LSMI(ρ

∗) when m→ ∞. Our experiments indicate that SMI is generally insensitive to α;
therefore, we recommend using α = 1 to tie the optimization to ELBO maximization.

The iterative optimization algorithm Optimization starts with the empirical measure ρ1m on
particles {ψψψℓ ∼ ρ0}mi=1 drawn from a simple initial distribution ρ0. We subsequently iterate the
following gradient ascent-like step on the particles, which by theorem 3.1 maximize eq. (3):

ψψψt+1
ℓ = ψψψtℓ + ϵ

(
m∑
i=1

k(ψψψti,ψψψ
t
ℓ)∇ψψψi

L(ρtm) +
α

m

m∑
i=1

∇1k(ψψψ
t
i,ψψψ

t
ℓ)

)
. (9)

We continue the optimization until we reach a fixed particle configuration. In eq. (9), ϵ > 0 is the step
size, k is a reproducing kernel, and α ∈ R+ is the hyper-parameter inherent to NSVGD. α controls
the spread of the particles (i.e., by scaling H[ρm]) and is, together with the kernel k and step size, the
hyper-parameters of SMI.

Connection to SVGD, OVI and maximum a posteriori SVGD, OVI and maximum a posteriori
(MAP) estimation are all instances of SMI. In particular, where SVGD reduces to MAP estimation
when only using one particle, SMI reduces to ordinary variational inference (as in eq. (4)) in the
single-particle case for an arbitrary guide q(θθθ|ψψψ). We can also connect SMI to SVGD, and by
extension MAP estimation, by choosing each guide q(θθθ|ψψψi) as the point mass, i.e., 1ψψψℓ

(θθθ). These
connections place SMI as a hybrid between a sample- and a density-based method. We attribute
SMI’s ability to mitigate variance collapse to this hybrid nature. In appendix A, we detail how SMI
can be reduced to recover SVGD and OVI.

Library implementation We provide an open-source implementation (under an Apache version 2
license) of SMI, called SteinVI, in the deep probabilistic programming language NumPyro (Phan
et al., 2019).

6



Published as a conference paper at ICLR 2025

5 RELATED WORK

There has been a flurry of work on SVGD, but much of it has concerns that are orthogonal to ours.
The SVGD algorithm itself has been extended to include second-order information (Detommaso
et al., 2018), operate on Riemannian manifolds (Liu & Zhu, 2018) and forgo analytic gradients
(Han & Liu, 2018). Furthermore, SVGD has been re-purposed to perform message passing (Wang
et al., 2018; Zhuo et al., 2018), importance sampling (Han & Liu, 2017), generative modeling (Feng
et al., 2017; Pu et al., 2017), and reinforcement learning (Liu et al., 2017). Theoretical work on
SVGD has analyzed its behavior in asymptotic (Liu, 2017; Lu et al., 2019; Duncan et al., 2023) and
non-asymptotic (Chen et al., 2018a; Liu & Wang, 2018; Shi & Mackey, 2022) regimes as well as in
high dimensions (Zhuo et al., 2018; Ba et al., 2021).

A significant part of particle VI research explores understanding SVGD as a kernelized gradient
flow Liu et al. (2017); Chewi et al. (2020). This line of research investigates the kernel and the
properties of its associated function space in terms of the quality of the gradient flow approximation.
These include broadening the functional regularizer Dong et al. (2022), specializing the acceleration
schedule on the step size Liu et al. (2019), and alternatives to RBF kernel such as scalar kernels
(Gorham & Mackey, 2017; Wang et al., 2018) and matrix variate kernels Wang et al. (2019). Where
SMI focuses on the attractive force, these works focus on the repulsive force. As such, there is a
significant potential for adapting this body of work to SMI.

Annealing SVGD (ASVGD) D’Angelo & Fortuin (2021a) is the only alternative that directly addresses
variance collapse in SVGD with a viable method. The resampling method introduced by Ba et al.
(2021) is computationally impractical for large-scale problems, and we demonstrate its bias in the
appendix. Our experimental results in section 6 indicate that, unlike SMI, ASVGD follows the same
collapse pattern as SVGD.

This work can also be related to work on using hierarchical variational models (HVM) (Ranganath
et al., 2016) and mixture approximations (Jaakkola & Jordan, 1998; Bishop et al., 1998; Gershman
et al., 2012; Salimans & Knowles, 2013; Miller et al., 2017). Unlike prior work on HVMs, Stein
mixture inference does not require auxiliary models or bounds looser than an ELBO. Like SMI,
Morningstar et al. (2021) introduces SIWAE, a variational objective for mixture inference. While SMI
employs an entropic regularizer on particles, SIWAE uses importance weighting. As an ELBO-based
method, SIWAE can readily be incorporated as SMI’s attractive force, enabling kernel design within
the framework. We are unaware of any work that applies SVGD (Liu & Wang, 2016) or NSVGD
(Wang et al., 2019) to optimize HVMs. Pu et al. (2017) considers SVGD specialized for VAEs; their
method is similar to SMI in that it introduces an encoder. However, unlike SMI, their method only
applies to VAEs.

6 EXPERIMENTS

Because SVGD and ASVGD are prone to variance collapse (Ba et al., 2021), increasing the dimen-
sionality of the posterior requires more particles to represent uncertainty adequately. On the other
hand, SMI can adjust the distribution of the variational components, thus requiring fewer particles.
We demonstrate this for small and moderately sized models on synthetic and real-world data.

All experiments are carried out on an NVIDIA Quadro RTX 6000 GPU. For clarity, we only outline
the experimental settings in the following sections, leaving the details necessary for reproduction to
appendix C. All experiments use our publicly available SteinVI library, and we provide the source code
for the experiments at https://github.com/aleatory-science/smi_experiments.

6.1 GAUSSIAN VARIANCE ESTIMATION

Following Zhuo et al. (2018), we estimate the per-dimension variance, called the dimension marginal
variance, of a standard multivariate Gaussian of increasing dimension with a fixed number of particles.
Hereafter, variance refers to the dimension marginal variance. The estimated variance will tend
towards zero for a method prone to collapse. The right panel of fig. 2 demonstrates variance collapse
in SVGD and ASVGD with twenty particles. We see no benefit from annealing SVGD. In contrast,
for SMI, when we use a single particle with a mean-field multivariate Gaussian guide (i.e., the Stein
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Figure 2: Left and middle (zoom): Variance estimation of a standard multivariate Gaussian obtained
with 20-particle ASVGD, SMI and SVGD. Only SMI does not collapse and is robust to changing α.
Right: SMI with one particle and Gaussian guide exactly recovers the multivariate Gaussian.

(a) SMI (b) SVGD (c) ASVGD (d) OVI (e) NUTS

Figure 3: Top row: High-density interval (HDI) for the low-dimensional model inferred using SMI,
SVGD, ASVGD, OVI and NUTS on the 1D wave dataset (dotted line). SVGD, ASVGD, and SMI
use five particles. The posteriors are inferred with data drawn from the In region, highlighted with
vertical lines. NUTS serves as a reference. Bottom row: HDI for the moderate-dimensional model.
ASVGD and SVGD display collapse by a significant narrowing in HDI between the In regions when
comparing the low to moderate dimensions. On the other hand, both OVI and SMI widen the HDI
with the richer model for the in-between region. In contrast to SMI, OVI overestimates the variance
in the In region, where data is available, for the mid-sized model.

particle represents the mean and variance of the guide), the estimated variance stays close to one.
This is because, when using one particle, the Stein mixture contains the model.

What happens when the SMI posterior is richer than the model? When the posterior is richer
than the model, we risk overestimating the variance. The middle panel of fig. 2 illustrates that we can
choose α ≤ 1 to improve the overestimation of variance when using more particles than needed. The
model and guide are as before, but now SMI uses twenty particles instead of one. We can alleviate the
overestimation with α≪ 1 because it allows overlapping particle neighborhoods, i.e., the mixture
components can collapse onto each other, thereby mimicking a single particle. The result for SMI
implies that if α≪ 1 significantly reduces variance, we are likely using too many particles. In our
experiment, tuning α is only a viable strategy for SMI, as the right panel of fig. 2 shows. This is
because α acts on ρ for SMI, whereas choosing α ̸= 1 changes the target posterior for the other
methods.
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6.2 1D REGRESSION WITH SYNTHETIC DATA

Previously, we demonstrated that SMI with a single particle and a Gaussian guide recovers a
multivariate Gaussian distribution regardless of dimension. To extend beyond this scenario, we
use a synthetic one-dimensional regression dataset (dotted line in fig. 3) to study the uncertainty
estimation of 2 hidden-layer BNNs in data-sparse regions. A well-calibrated model should assign high
uncertainty in data-sparse areas and low uncertainty in data-rich ones (Foong et al., 2019; Daxberger
et al., 2021). We compare a tiny BNN with 5 hidden units (46 random variables) to a small BNN
with 100 hidden units (10,401 random variables).

Does SMI capture uncertainty better? Figure 3 illustrates this using the high-density interval
(HDI) (Gelman et al., 1995), shown in gray, which represents the narrowest 90% Bayesian credible
interval. With No-U-Turn Sampler5 (NUTS) (Hoffman et al., 2014) serving as a reference, a well-
calibrated model is expected to produce wide HDIs in data-sparse regions and narrow HDIs in
data-rich areas. Among the variational methods, only SMI demonstrates this desired behavior for
low- and moderate-dimensional models. Closing the SMI-SVGD gap in moderate-sized networks by
increasing SVGD particles is infeasible on our hardware (appendix B). Moreover, ASVGD shows no
improvement over SVGD, which is consistent with the variance experiment.

6.3 UCI REGRESSION BENCHMARK

To investigate the improvement in uncertainty quantification of SMI on moderately sized models for
real-world data, we consider the UCI regression benchmark with Standard and Gap10 splits on 2
hidden-layered BNNs. Standard UCI uses ordinary 10% test splits (Mukhoti et al., 2018). Gap10
sorts each feature dimension to create splits (Foong et al., 2019): The middle 10% of data is used
for testing, while the tails are used for training. A well-calibrated method should perform well on
standard and not catastrophically deteriorate on Gap10. The BNN details, datasets and splits are
summarized in appendix C.4. For comparison, we use SVGD, ASVGD, MAP and OVI as baselines
and NUTS as the gold standard.

Table 2 summarizes the UCI results, evaluating their performance using root mean squared error
(RMSE) and negative log-likelihood (NLL). NLL is the primary metric of interest because we
evaluate uncertainty estimation. Here, SMI delivers the best performance on Standard and Gap10
UCI datasets. Notably, the RMSE is best for MAP and SMI, which means SMI has not sacrificed
prediction accuracy to improve the NLL.

6.4 MNIST CLASSIFICATION

Next, we examine multi-class classification by applying 2 and 3 hidden-layer Bayesian Neural
Networks (BNNs) to the MNIST dataset (LeCun et al., 2010). Details about the BNN configurations
are provided in appendix C.3. Our evaluation includes accuracy (Acc), confidence (Conf), NLL, and
several classification reliability metrics: the Brier score (Brier) (Brier, 1950), expected calibration
error (ECE) (Guo et al., 2017), and maximum calibration error (MCE) (Guo et al., 2017). Among the
reliability metrics, we highlight the Brier score, as ECE and MCE can be sensitive to the choice of
the bin count (100 bins were used in this study).

Table 3 summarizes the results. For both BNNs, SMI generally outperforms other methods across all
metrics except for ECE and MCE. Judging by the Brier score, SMI is deemed the best-calibrated
method for 2 hidden-layer BNNs, while MAP and SMI exhibit comparable calibration performance in
the 3-layer case. When considering all metrics collectively, SMI emerges as the preferred approach.

7 DISCUSSION

Limitations The main limitation of SMI is that the variational approximation could be misspecified
by using too many particles or a poor choice of the parametric family. We saw an example of this in
Section 6.1 when using twenty particles to estimate a Gaussian with SMI. Another major limitation

5While NUTS is asymptotically exact and serves as a reference, it is significantly slower to converge than
variational inference methods.
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Table 2: Root mean squared error (RMSE) and negative log-likelihood (NLL) for the UCI regression
benchmark with standard and Gap10 splits. Lower is better for RMSE and NLL. Variational inference
methods that are less than or equal in distribution to the lowest mean VI method are underlined.
Similarly, the best, or equal in distribution, among all methods is highlighted in bold. We compare
methods using a Mann-Whitney U (MWU) test (Mann & Whitney, 1947) at a significance level
0.05. For VI methods, SMI and MAP perform comparably in RMSE, with SMI outperforming
alternatives on probabilistic calibration measured by NLL. Overall, NUTS outperformance SMI on
NLL. However, of the two, only NUTS suffer severe deterioration on Gap10.

Standard UCI
NLL (↓) RMSE (↓)

Dataset SMI SVGD ASVGD OVI MAP NUTS SMI SVGD ASVGD OVI MAP NUTS

Boston 2.6± 0.6 7.7± 3.5 2.8± 0.7 2.6± 0.1 3.0± 0.8 2.2± 0.2 2.9± 0.7 4.1± 1.0 3.1± 0.9 4.2± 0.7 3.0± 0.8 3.6± 0.7
Concrete 3.4± 0.8 3.4± 0.3 4.3± 0.7 3.2± 0.1 3.9± 0.7 2.7± 0.3 4.8± 0.5 5.1± 0.7 5.0± 0.5 6.8± 0.4 4.7± 0.6 4.7± 0.6
Energy 0.8± 0.7 0.8± 0.2 27.1± 6.7 2.0± 0.0 1.3± 0.6 0.5± 1.5 0.4± 0.1 0.5± 0.1 1.0± 0.1 2.1± 0.1 0.4± 0.1 0.3± 0.1
Kin8nm −1.3± 0.1 −1.2± 0.0 −0.1± 0.0 −1.1± 0.0 −0.5± 0.0 −1.4± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0
Naval −3.8± 0.4 −0.6± 0.0 −0.1± 0.0 −3.4± 0.0 −4.5± 0.1 −3.2± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Power 2.9± 0.0 2.9± 0.0 2.9± 0.0 3.0± 0.1 2.8± 0.0 2.6± 0.1 4.2± 0.1 4.2± 0.1 4.2± 0.1 5.3± 0.5 4.2± 0.1 3.6± 0.2
Protein 2.7± 0.0 2.8± 0.0 3.5± 0.0 2.9± 0.0 2.8± 0.0 2.7± 0.0 4.0± 0.1 4.2± 0.2 4.9± 0.0 4.4± 0.0 4.1± 0.1 3.8± 0.0
Wine 1.0± 0.1 1.0± 0.1 1.1± 0.1 1.0± 0.0 1.1± 0.2 27.0± 18.6 0.7± 0.1 0.6± 0.0 0.6± 0.0 0.7± 0.0 0.6± 0.0 1.0± 0.1
Yacht 0.7± 0.2 1.9± 1.2 0.9± 0.3 1.4± 0.1 2.2± 2.0 −0.4± 0.2 0.6± 0.2 0.7± 0.2 0.6± 0.2 1.2± 0.2 0.8± 0.4 0.7± 0.2

Gap10 UCI

Boston 5.6± 4.9 7.6± 5.1 4.1± 3.7 2.8± 0.6 5.2± 5.3 2.4± 0.2 4.9± 1.8 4.1± 1.8 4.1± 1.8 4.7± 1.7 4.1± 2.0 4.6± 1.4
Concrete 5.1± 2.7 8.4± 4.0 8.6± 3.7 3.5± 0.3 8.6± 5.4 3.2± 0.5 8.7± 3.3 8.2± 2.0 8.1± 1.9 8.1± 1.5 8.5± 3.0 8.7± 3.1
Energy 12.6± 19.1 13.2± 14.3 558.8± 803.8 2.4± 0.5 7.4± 10.5 2.1± 3.0 1.3± 1.0 1.5± 1.0 3.1± 2.6 2.9± 0.9 1.5± 1.3 0.9± 0.5
Kin8nm −0.5± 0.0 −1.2± 0.1 −0.1± 0.0 −1.1± 0.1 −1.1± 0.1 −1.4± 0.1 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0
Naval −3.9± 0.5 −0.6± 0.0 −0.1± 0.0 −3.4± 0.1 −4.5± 0.0 1, 094.6± 1, 690.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.7± 0.7
Power 2.8± 0.0 2.8± 0.0 2.8± 0.0 3.0± 0.0 3.0± 0.1 2.8± 0.2 4.1± 0.1 4.1± 0.1 4.1± 0.1 4.7± 0.2 4.0± 0.2 4.5± 1.3
Protein 2.9± 0.1 3.0± 0.1 3.1± 0.4 3.0± 0.0 2.9± 0.1 2.8± 0.1 4.4± 0.2 4.5± 0.3 4.8± 0.2 4.7± 0.2 4.5± 0.2 4.3± 0.3
Wine 1.0± 0.1 1.0± 0.1 1.1± 0.1 1.0± 0.0 1.2± 0.2 62.8± 53.5 0.7± 0.1 0.6± 0.0 0.7± 0.0 0.7± 0.0 0.7± 0.1 1.2± 0.2
Yacht 2.0± 1.0 194.0± 109.1 2.1± 1.2 1.5± 0.1 78.9± 46.5 0.3± 0.5 1.2± 0.6 1.2± 0.5 1.1± 0.5 1.4± 0.2 1.3± 0.6 1.4± 0.9

Table 3: Evaluation of 2 and 3 hidden-layer BNNs for MNIST classification on several metrics:
confidence (Conf), negative log-likelihood (NLL), accuracy (Acc), Brier score (Brier), expected
calibration error (ECE), and maximum calibration error (MCE). Lower is better for NLL, Brier, ECE
and MCE. Higher is better for Conf and Acc. All methods less than or equal in distribution to the
method with the best mean are highlighted in bold. Methods are compared using an MWU test at a
significance level of 0.05. Overall, SMI stands out as the preferred method.

2 Hidden-Layered BNN
Method Conf (↑) NLL (↓) Acc (↑) Brier (↓) ECE (↓) MCE (↓)

SMI 0.979± 0.001 0.039± 0.003 0.957± 0.003 0.065± 0.005 0.148± 0.012 0.631± 0.047
ASVGD 0.972± 0.002 0.053± 0.004 0.949± 0.003 0.074± 0.005 0.135± 0.007 0.634± 0.024
MAP 0.973± 0.001 0.050± 0.002 0.952± 0.001 0.068± 0.000 0.133± 0.000 0.574± 0.000
OVI 0.921± 0.006 0.158± 0.012 0.908± 0.006 0.106± 0.007 0.085± 0.010 0.630± 0.136
SVGD 0.972± 0.003 0.054± 0.006 0.949± 0.004 0.074± 0.007 0.139± 0.014 0.653± 0.048

3 Hidden-Layered BNN

SMI 0.979± 0.002 0.042± 0.005 0.956± 0.002 0.067± 0.003 0.150± 0.014 0.653± 0.057
ASVGD 0.956± 0.004 0.104± 0.011 0.936± 0.004 0.083± 0.003 0.132± 0.011 0.651± 0.075
MAP 0.976± 0.001 0.044± 0.003 0.955± 0.001 0.066± 0.000 0.126± 0.000 0.614± 0.000
OVI 0.913± 0.005 0.182± 0.012 0.899± 0.005 0.116± 0.005 0.084± 0.009 0.652± 0.133
SVGD 0.960± 0.004 0.091± 0.011 0.940± 0.002 0.081± 0.004 0.135± 0.013 0.649± 0.044

for practitioners is knowing how to choose the kernel. We present SMI using an RBF kernel, leaving
a study of kernel choice to future work.

Future directions We present SMI as an extension to nonlinear SVGD, anchored in the kernelized
gradient flows theory (Liu et al., 2017; Chewi et al., 2020). However, such flows are not necessarily
the best choice of transport for mixture approximations Chen et al. (2018b); Dong et al. (2022). An
open question is identifying which properties make gradient flows well-suited for mixtures.

One of the issues with Bayesian modeling of neural networks is their inherent non-identifiability,
which can lead to degenerate posteriors (Yacoby et al., 2022; Roy et al., 2024). SMI provides
several opportunities for addressing this issue via the choice of its kernel. Promising directions are
reparameterization invariant kernels (Roy et al., 2024), probability product kernels (Jebara et al.,
2004) and harnessing the connection between SMI and repulsive deep ensembles (D’Angelo &
Fortuin, 2021b).

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We acknowledge support from the Independent Research Fund Denmark | Technology and Produc-
tion Sciences (grant 9131-00025B) and the VILLUM Experiment Programme (grant 50240). We
thank Ahmad Salim Al-Sibahi, Martin Jankowiak and Du Phan for their discussions and help in
implementing the SMI inference engine in NumPyro.

REFERENCES

Jimmy Ba, Murat A Erdogdu, Marzyeh Ghassemi, Shengyang Sun, Taiji Suzuki, Denny Wu, and Tian-
zong Zhang. Understanding the Variance Collapse of SVGD in High Dimensions. In International
Conference on Learning Representations, 2021.

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Springer Science & Business Media, 2011.

Christopher M Bishop, Neil D Lawrence, Tommi Jaakkola, and Michael I Jordan. Approximating
Posterior Distributions in Belief Networks using Mixtures. In Advances in Neural Information
Processing Systems, pp. 416–422, 1998.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational Inference: A Review for Statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

Glenn W Brier. Verification of Forecasts Expressed in Terms of Probability. Monthly weather review,
78(1):1–3, 1950.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A Unified Particle-
Optimization Framework for Scalable Bayesian Sampling. In Conference on Uncertainty in
Artificial Intelligence, 2018a.

Yongxin Chen, Tryphon T Georgiou, and Allen Tannenbaum. Optimal Transport for Gaussian
Mixture Models. In IEEE Access, volume 7, pp. 6269–6278. IEEE, 2018b.

Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu, and Philippe Rigollet. SVGD as a Kernelized
Wasserstein Gradient Flow of the Chi-Squared Divergence. In Advances in Neural Information
Processing Systems, volume 33, pp. 2098–2109, 2020.

Francesco D’Angelo and Vincent Fortuin. Annealed Stein Variational Gradient Descent. arXiv
preprint arXiv:2101.09815, 2021a.

Francesco D’Angelo and Vincent Fortuin. Repulsive Deep Ensembles are Bayesian. In Advances in
Neural Information Processing Systems, volume 34, pp. 3451–3465, 2021b.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian Deep Learning via Subnetwork Inference. In International Conference on
Machine Learning, pp. 2510–2521. PMLR, 2021.

Gianluca Detommaso, Tiangang Cui, Youssef Marzouk, Alessio Spantini, and Robert Scheichl. A
Stein Variational Newton Method. In Advances in Neural Information Processing Systems, pp.
9169–9179, 2018.

Justin Domke. A Divergence Bound for Hybrids of MCMc and Variational Inference and an
Application to Langevin Dynamics and SGVI. In International Conference on Machine Learning,
pp. 1029–1038. PMLR, 2017.

Hanze Dong, Xi Wang, Yong Lin, and Tong Zhang. Particle-Based Variational Inference with
Preconditioned Functional Gradient Flow. arXiv preprint arXiv:2211.13954, 2022.

Andrew Duncan, Nikolas Nüsken, and Lukasz Szpruch. On the Geometry of Stein Variational
Gradient Descent. In Journal of Machine Learning Research, volume 24, pp. 1–39, 2023.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to Draw Samples with Amortized Stein Variational
Gradient Descent. In Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2017.

11



Published as a conference paper at ICLR 2025

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’In-
Between’Uncertainty in Bayesian Neural Networks. arXiv preprint arXiv:1906.11537, 2019.

Andrew Frank, Padhraic Smyth, and Alexander T Ihler. Particle-Based Variational Inference for
Continuous Systems. In Advances in Neural Information Processing Systems, pp. 826–834, 2009.

Victor Gallego and David Rios Insua. Stochastic Gradient MCMC with Repulsive Forces. In Stat,
volume 1050, pp. 30, 2018.

Jose Gavalda-Garcia, Bhawna Dixit, Adrián Díaz, An Ghysels, and Wim Vranken. Gradations in
Protein Dynamics Captured by Experimental NMR Are Not Well Represented by Alphafold2
Models and Other Computational Metrics. Journal of Molecular Biology, 437:168900, 2025.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian Data Analysis. Chapman
and Hall/CRC, 1995.

Samuel J Gershman, Matthew D Hoffman, and David M Blei. Nonparametric Variational Inference. In
Proceedings of the 29th International Conference on Machine Learning, pp. 235–242. Omnipress,
2012.

Jackson Gorham and Lester W. Mackey. Measuring Sample Quality with Kernels. International
Conference on Machine Learning, 70:1292–1301, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern Neural
Networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Jun Han and Qiang Liu. Stein Variational Adaptive Importance Sampling. In Proceedings of the 33rd
Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2017.

Jun Han and Qiang Liu. Stein Variational Gradient Descent Without Gradient. In Proceedings of the
35th International Conference on Machine Learning, volume 80, pp. 1900–1908, 2018.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks. In International Conference on Machine Learning, pp.
1861–1869. PMLR, 2015.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic Variational Inference.
In Journal of Machine Learning Research, 2013.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Tommi S Jaakkola and Michael I Jordan. Improving the Mean Field Approximation via the Use of
Mixture Distributions. In Learning in Graphical Models, pp. 163–173. Springer, 1998.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability Product Kernels. In Journal of Machine
Learning Research, volume 5, pp. 819–844, 2004.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An Introduction
to Variational Methods for Graphical Models. In Machine Learning, volume 37, pp. 183–233.
Springer, 1999.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

Donald Ervin Knuth. The Art of Computer Programming, volume 3. Pearson Education, 1997.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
Differentiation Variational Inference. In Journal of Machine Learning Research, volume 18, pp.
1–45, 2017.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST Handwritten Digit Database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

12



Published as a conference paper at ICLR 2025

Chang Liu and Jun Zhu. Riemannian Stein Variational Gradient Descent for Bayesian Inference. In
32nd AAAI Conference on Artificial Intelligence, 2018.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understanding and Accelerating
Particle-Based Variational Inference. In International Conference on Machine Learning, pp. 4082–
4092. PMLR, 2019.

Qiang Liu. Stein Variational Gradient Descent as Gradient Flow. In Advances in Neural Information
Processing Systems, pp. 3115–3123, 2017.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General Purpose Bayesian
Inference Algorithm. In Advances in Neural Information Processing Systems, volume 29, 2016.

Qiang Liu and Dilin Wang. Stein Variational Gradient Descent as Moment Matching. In Advances in
Neural Information Processing Systems, pp. 8868–8877, 2018.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein Variational Policy Gradient. In
Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2017.

Jianfeng Lu, Yulong Lu, and James Nolen. Scaling Limit of the Stein Variational Gradient Descent:
The Mean Field Regime. In SIAM Journal on Mathematical Analysis, volume 51, pp. 648–671,
2019.

Henry B Mann and Donald R Whitney. On a Test of Whether One of Two Random Variables is
Stochastically Larger Than the Other. In The Annals of Mathematical Statistics, pp. 50–60. JSTOR,
1947.

Andrew C Miller, Nicholas Foti, and Ryan P Adams. Variational Boosting: Iteratively Refining
Posterior Approximations. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

Warren Morningstar, Sharad Vikram, Cusuh Ham, Andrew Gallagher, and Joshua Dillon. Automatic
Differentiation Variational Inference with Mixtures. In International Conference on Artificial
Intelligence and Statistics, pp. 3250–3258. PMLR, 2021.

Jishnu Mukhoti, Pontus Stenetorp, and Yarin Gal. On the Importance of Strong Baselines in Bayesian
Deep Learning. In Bayesian Deep Learning, 2018.

Eric Nalisnick and Padhraic Smyth. Variational Inference With Stein Mixtures. In Advances in
Approximate Bayesian Inference, NeurIPS 2017 Workshop, 2017.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 427–436, 2015.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable Effects for Flexible and Accelerated
Probabilistic Programming in NumPyro. In Program Transformations for Machine Learning,
NeurIPS Workshop, 2019.

Yuchen Pu, Zhe Gan, Ricardo Henao, Chunyuan Li, Shaobo Han, and Lawrence Carin. VAE Learning
via Stein Variational Gradient Descent. In Advances in Neural Information Processing Systems, pp.
4236–4245, 2017.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference. In Conference on
Artificial Intelligence and Statistics, pp. 814–822, 2014.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical Variational Models. In International
Conference on Machine Learning, pp. 324–333, 2016.

Hrittik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig, Marvin Pförtner, Lukas Tatzel, and
Søren Hauberg. Reparameterization Invariance in Approximate Bayesian Inference. arXiv preprint
arXiv:2406.03334, 2024.

13



Published as a conference paper at ICLR 2025

Ardavan Saeedi, Tejas D. Kulkarni, Vikash K. Mansinghka, and Samuel J. Gershman. Variational
Particle Approximations. In Journal of Machine Learning Research, volume 18, pp. 1–29, 2017.

Tim Salimans and David A Knowles. Fixed-Form Variational Posterior Approximation through
Stochastic Linear Regression. In Bayesian Analysis, volume 8, pp. 837–882, 2013.

Jiaxin Shi and Lester Mackey. A Finite-Particle Convergence Rate for Stein Variational Gradient
Descent. arXiv preprint arXiv:2211.09721, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing Properties of Neural Networks. In International Conference on
Learning Representations, 2014.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian Model Evaluation using Leave-
One-Out Cross-Validation and WAIC. In Statistics and computing, volume 27, pp. 1413–1432.
Springer, 2017.

Dilin Wang and Qiang Liu. Nonlinear Stein Variational Gradient Descent for Learning Diversified
Mixture Models. In International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 6576–6585, Long Beach, California, USA, 09–15 Jun 2019.
PMLR.

Dilin Wang, Zhe Zeng, and Qiang Liu. Stein Variational Message Passing for Continuous Graphical
Models. In International Conference on Machine Learning, pp. 5219–5227. PMLR, 2018.

Dilin Wang, Ziyang Tang, Chandrajit Bajaj, and Qiang Liu. Stein Variational Gradient Descent with
Matrix-Valued Kernels. In Advances in Neural Information Processing Systems, volume 32, pp.
7834, 2019.

Yaniv Yacoby, Weiwei Pan, and Finale Doshi-Velez. Mitigating the Effects of Non-Identifiability
on Inference for Bayesian Neural Networks with Latent Variables. Journal of Machine Learning
Research, 23(244):1–54, 2022.

Jingwei Zhuo, Chang Liu, Jiaxin Shi, Jun Zhu, Ning Chen, and Bo Zhang. Message Passing Stein
Variational Gradient Descent. In International Conference on Machine Learning, pp. 6013–6022,
2018.

14



Published as a conference paper at ICLR 2025

A STEIN MIXTURE INFERENCE DETAILS

This section provides the details missing from section 4. In particular, we show that the functional
L↑[ρ] is an upper bound to L[ρ] in appendix A.1, give the complete derivation of the gradient of
L(ρm) in appendix A.2 and finally, in appendix A.3, demonstrate how to reduce SMI to SVGD and
OVI.

A.1 BOUNDING THE SMI FUNCTIONAL

Our goal is to show that
L↑[ρ] ≥ L[ρ]

because it allows us to conclude that the SMI variational objective is an ELBO when the repulsion is
not scaled (i.e., α = 1). Recall that the above functionals are given by

L[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ρ)

òò
and

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
.

In both functionals, ρ is a continuous distribution, p(θθθ,D) is the joint distribution of latent variables
and data, and q(θθθ|ρ) = Eρ(ψψψ) [q(θθθ|ψψψ)] is SMI’s variational approximation.

We need the following inequality to show that we can bound L[ρ]. To shorten the notation, let
ρ = ρ(ψψψ) and q = q(θθθ|ψψψ). With this notation, it holds that

Eρ [Eq [logEρ [q]]] ≥ Eρ [Eq [log q]] (10)

as shown by

Eρ [Eq [logEρ [q]]] ≥ Eρ [Eq [Eρ [log q]]] = Eρ [Eρ [Eq [log q]]] = Eρ [Eq [log q]] .

With the inequality established, we can show that L↑[ρ] upper bounds L[ρ] as follows:

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
(expand log)

= Eρ(ψψψ)
[
Eq(θθθ|ψψψ) [log p(θθθ,D)]

]
− Eρ(ψψψ)

[
Eq(θθθ|ψψψ) [log q(θθθ|ψψψ)]

]
(negation of eq. (10))

≥ Eρ(ψψψ)
[
Eq(θθθ|ψψψ) [log p(θθθ,D)]

]
− Eρ(ψψψ)

[
Eq(θθθ|ψψψ)

[
logEρ(ψψψ) [q(θθθ|ψψψ)]

]]
(combine logs)

= Eρ(ψψψ)

ñ
Eq(θθθ|ψψψ)

ñ
log

p(θθθ,D)

Eρ(ψψψ) [q(θθθ|ψψψ)]

ôô
≡ L[ρ],

which shows that L↑[ρ] ≥ L[ρ] as claimed.

A.2 SMI GRADIENT DERIVATION

With the bound on L[ρ] established, we now focus on showing that the mapping ψψψ1,ψψψ2, . . . ,ψψψm 7→
L(ρm) is differentiable wrt. the ℓ’th particle. For conciseness, we use L(ρm) to mean both the map
ψψψ1,ψψψ2, . . . ,ψψψm 7→ L(ρm) from particles {ψψψi}mi=1 and the functional L parameterized by ρm. We
can do this because {ψψψi}mi=1 completely characterises ρm(·) = 1/m

∑m
i=1 δψψψi

(·).

Demonstrating that L(ρm) is differentiable is an essential component for using theorem 3.1 to
optimize our variational objective. Specifically, theorem 3.1 requires us to have a differentiable
symmetric mapping L(ρm). We already established the symmetric nature of L(ρm) in the main
article. The closed form of the gradient shows that L(ρm) is differentiable wrt. ψψψℓ if q(θθθ|ψψψ) is
differentiable wrt. ψψψ. In practice, this restricts us to guides q(θθθ|ψψψ) that are differentiable. However,
this restriction is shared with OVI and easy to fulfill.
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Recall we claimed that the gradient of L(ρm) wrt. ψψψℓ particle is given by

∇ψψψℓ
L(ρm) = Eq(θθθ|ψψψℓ)

ñ
∇ψψψℓ

log q(θθθ|ψψψℓ) log
p(θθθ,D)∑m
j=1 q(θθθ|ψψψj)

ô
−

m∑
i=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
,

(11)

with the SMI functional given by

L(ρm) =
1

m

m∑
i=1

Eθθθ∼q(θθθ|ψψψi)

ñ
log

p(θθθ,D)
1
m

∑m
j=1 q(θθθ|ψψψj)

ô
To show that eq. (11) holds first, notice that because L(ρm) is symmetric, the ordering of the particles
does not matter. For our derivation, we, therefore, simply pick one. With the ordering of the particles
now fixed, we can derive the gradient as follows:

m∇ψψψℓ
L(ρm) = ∇ψψψℓ

m∑
i=1

∫
q(θθθ|ψψψi) log

p(θθθ,D)
1
m

∑m
j=1 q(θθθ|ψψψj)

dθθθ (expand the log)

= ∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log p(θθθ,D)dθθθ

−∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

1

m
dθθθ

−∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

Now, the second term is zero because

∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

1

m
dθθθ = ∇ψψψℓ

log
1

m

∫
q(θθθ|ψψψℓ)dθθθ = ∇ψψψℓ

log
1

m
= 0,

which gives us

m∇ψψψℓ
L(ρm) = ∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log p(θθθ,D)dθθθ −∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

Noting that when i ̸= ℓ we have ∇ψψψℓ
q(θθθ|ψψψi) = 0, we can eliminate the sum on the first term to have

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log p(θθθ,D)dθθθ −∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

From here, if we use the product rule and combine like terms, we obtain

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log
p(θθθ,D)∑
j q(θθθ|ψψψj)

dθθθ −
∑
i

∫
q(θθθ|ψψψi)∇ψψψℓ

log
∑
j

q(θθθ|ψψψj)dθθθ.

Finally, because ∇ log f = 1
f∇f we have

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log
p(θθθ,D)∑
j q(θθθ|ψψψj)

dθθθ −
∑
i

∫
q(θθθ|ψψψi)

∇ψψψℓ
q(θθθ|ψψψℓ)∑

j q(θθθ|ψψψj)
dθθθ

= Eq(θθθ|ψψψℓ)

ñ
∇ψψψℓ

log q(θθθ|ψψψℓ) log
p(θθθ,D)∑m
j=1 q(θθθ|ψψψj)

ô
−

m∑
i=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
.

From the above, we have established that eq. (11) holds and L(ρm) is therefore differentiable and
symmetric as required for using theorem 3.1 to maximize SMI’s variational objective.
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A.3 REDUCING SMI TO OVI AND SVGD

In the following, we establish that both OVI and SVGD are instances of SMI for a particular choice
of hyper-parameters, namely a single particle and a point-mass guide, respectively.

A.3.1 SVGD AND MAP ARE SPECIAL CASES OF SMI

We can connect SMI to SVGD by choosing each guide component q(θθθ|ψψψi) as a point-mass, i.e.,
1ψψψi

(θθθ). Subsequently, the point-mass can be interpreted as a simple variable renaming. Using the
point-mass for each particle, we have that∫

1ψψψi
(θθθ) log

p(θθθ,D)
1
m1ψψψ(θθθ)

dθθθ = log
p(ψψψi,D)

1
m

.

Substituting this into L(ρm), the gradient wrt. the ℓ’th particle becomes

∇ψψψℓ
L(ρm) = ∇ψψψℓ

∑
i

log
p(ψψψi,D)

1
m

= ∇ψψψℓ
log p(ψψψℓ,D). (12)

Substituting eq. (12) for eq. (2) in eq. (9) recovers the SVGD update rule given to a constant factor 1/m.
From the connection to SVGD, we get the connection to MAP estimation for free as it corresponds to
SVGD with one particle (Liu & Wang, 2016). To be precise, MAP estimation corresponds to SMI
with a point-mass guide and one particle. Naturally, we can also recover MAP estimation by first
considering one particle and then introducing the point-mass guide. Next, we demonstrate that if we
choose an arbitrary (differential) guide and one particle, then SMI corresponds to OVI.

A.3.2 REDUCING SMI TO OVI

Like SVGD reduces to MAP estimation when only using one particle, SMI reduces to ordinary
variational inference (as in eq. (4)) in the single-particle case. To see this, first note that with one
particle, the kernel k(ψψψ,ψψψ) is constant, regardless of ψψψ, and thus ∇1k(ψψψ,ψψψ) = 0. Starting from
eq. (9) and denoting the constant value of k(ψψψt,ψψψt) by c, we obtain

ψψψt+1 = ψψψt + ϵk(ψψψt,ψψψt)∇ψψψL(ρt1) + ϵα∇1k(ψψψ
t,ψψψt)

= ψψψt + ϵcEq(θθθ|ψψψt)

ï
∇1
ψψψ log q(θθθ|ψψψ) log p(θ

θθ,D)

q(θθθ|ψψψ)

ò
− ϵcEq(θθθ|ψψψt) [∇ψψψ log q(θθθ|ψψψ)]

= ψψψt + ϵc

∫
∇ψψψq(θθθ|ψψψ) log

p(θθθ,D)

q(θθθ|ψψψ)
dθθθ − ϵcEq(θθθ|ψψψt) [∇ψψψ log q(θθθ|ψψψ)]

= ψψψt + ϵc∇ψψψEq(θθθ|ψψψt)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

ò
= ψψψt + ϵc∇ψψψL(ψψψ),

where ϵ > 0 is the step size. This means that with one particle, we are doing gradient ascent on the
ELBO as defined in eq. (4). The connections to SVGD and ordinary VI are attractive because SMI
thus naturally bridges particle methods and OVI.

A.4 MINI-BATCHING

As with SVGD, computing the likelihood can become prohibitively expensive for large data sets
(N ≫ 1). To avoid the computational dependence on the size of the dataset, we approximate the
likelihood by data subsampling with the unbiased estimator

pI(D|θθθ) =
∏
i∈I

p(Di|θθθ)
N/|I|, (13)

where I ⊂ π(D) and π is a draw from the uniform distribution over index permutations. This follows
the standard mini-batching method in NumPyro (Phan et al., 2019).
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Table 4: The median recovery point R (> 5 favors SMI) for BNNs inferred with SMI and SVGD on
different regions of the wave dataset. SMI uses five particles. Due to reaching hardware limitations,
the moderate-dimensional results are lower bounds.

Model size In Between Entire

Low 1 8 8
Moderate 1 > 256 > 256

B RECOVERY POINT EXPERIMENT

To quantify the difference visualized in fig. 3, we use the log point-wise predictive density (LPPD), a
quantity used for model comparison and model fit in the presence of outliers (Vehtari et al., 2017).
The empirical LPPD is given by

LPPD =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|xi, θθθs)

)
,

where {(xi, yi)}i are data points from an evaluation region, θθθs ∼ q(θθθ|ψψψi,D) and ψψψi is drawn
uniformly from the converged particles. We repeat the experiment ten times to estimate the empirical
LPPD for each region.

A recovery-point experiment compares the LPPD from SMI using five particles to SVGD with an
increasing number of particles. We call the number of particles such that SVGD produces a better
LPPD the recovery point, R. Table 4 reports the median R over ten repeated trials over the three
regions from Table 5.

Can SVGD become on par with SMI by increasing the number of particles? Table 4 shows
that increasing the particle count can only compensate for the difference in LPPD between SMI and
SVGD for the tiny BNN, the low-dimensional model. For the moderately dimensional model, SVGD
reaches the GPU memory limit before reaching the recovery point. The In region results show that a
MAP estimate is enough only when the noise level is low and there is enough data.

C EXPERIMENTAL DETAILS

This section provides extra results and the experimental setup needed for reproduction. Our experimen-
tal code is available at https://github.com/aleatory-science/smi_experiments.
SMI is available as an inference engine under the Apache V2 license as part of the deep probabilistic
programming language NumPyro (Phan et al., 2019).

C.1 VARIANCE ESTIMATION

In this experiment, we aim to recover the per-dimension variance of a multivariate standard Gaussian
(MVG) across increasing dimensions. Specifically, we evaluate MVGs with dimensions 1, 2, 4, 8,
10, 20, 40, 60, 80, and 100. We compare the performance of SVGD and ASVGD, each utilizing 20
particles, against SMI with both 1 and 20 particles in estimating the variance.

For SMI, we employ a factorized Gaussian guide initialized with a scale of 0.1. SMI’s Gaussian
guide mean is uniformly initialized within each dimension’s [−2, 2]. In contrast, the particles for
ASVGD and SVGD are uniformly initialized within [−20, 20]. This wider initialization is crucial, as
ASVGD and SVGD fail to converge in lower dimensions without it.

Optimization is performed using the Adam optimizer for SVGD and ASVGD and Adagrad for SMI,
each with a learning rate of 0.05. We run the optimization for 60,000 steps, sufficient for all three
methods to achieve convergence.

Posterior shape To assess each method’s ability to recover the shape of the standard MVG, we
calculate the Frobenius norm between the estimated covariance matrix and the identity matrix,
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Figure 4: Left: Frobenius distance between the estimated and the true covariance matrix in the
Gaussian variance estimation experiment, using 20 particles for all methods. Only SMI achieves
distances close to zero, indicating that it accurately captures the shape of the standard Gaussian,
unlike the other methods. Right: Frobenius distance when SMI uses a single particle. In this case,
SMI perfectly recovers the posterior.

Figure 5: Mean location estimates of a standard Gaussian distribution across different dimensionalities
and repulsion scaling (α) for SMI (with 1 and 20 particles), ASVGD, SVGD and RESVGD (with
20 particles). RESVGD repulsion is not scaled. The "Actual" line represents the true mean location
(zero). Only RESVGD exhibits significant bias, particularly in higher dimensions.

representing the true covariance of the MVG. A perfect recovery corresponds to a zero distance
between the matrices. As illustrated in Figure 4, SMI is the only method among the three that
successfully captures the shape of the standard MVG.

Estimation of Mean Location Our Gaussian variance estimation experiment reveals that SVGD
and ASVGD suffer from variance collapse. However, providing unbiased estimates of the mean
location of a standard Gaussian distribution is an equally important requirement for these methods.
As shown in fig. 5, SMI, SVGD, and ASVGD successfully achieve this. In contrast, fig. 5 also
demonstrates that SVGD with resampling (RESVGD), implemented as Algorithm 1 in Ba et al.
(2021), produces a biased estimate of the mean. For this reason, we excluded it from our experiments.
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Table 5: Evaluation interval and data size (|D|) of wave datasets. All data points are drawn uniformly
from the evaluation interval. The Between and Entire regions contain points outside the clusters used
for inference.

Region Evaluation Interval |D|
In [−1.5,−0.5] ∪ [1.3, 1.7] 20
Between [−0.5, 1.3] 60
Entire [−2, 2] 120

C.2 SYNTHETIC 1D REGRESSION

The data-generating process combines a linear and sine-wave periodic trend given by

p(y|x) = N (y|µ = (1.5 sin [2π(x+ 2/3)] + 3x+ 1) , σ = 0.1) .

We estimate a tiny and a small BNN using twenty observations drawn uniformly from each of two
separate clusters at the intervals [−1.5,−0.5] and [1.3, 1.7]. The construction provides a data-sparse
interval [−0.5, 1.3] in between the two clusters. The idea of Foong et al. (2019) is to use this in-
between region to evaluate the inference methods’ ability to capture and assign high uncertainty to
data-sparse intervals.

We evaluate the BNNs on the In, Between, and Entire regions specified in table 5. The Between and
Entire regions contain points outside the data clusters as seen in fig. 6. The In region has separate
samples for inference and evaluation.

Bayesian networks The BNNs have two hidden layers with tanh activation for both models. The
moderate-dimensional case has a hidden dimension of 100, and the low-dimensional one has a hidden
dimension of 5, yielding 10,401 and 46 parameters, respectively. We use standard Gaussian priors on
weights and biases, and a Gaussian likelihood. The network determines the likelihood mean, while
the standard deviation of the likelihood is fixed at the known data noise level of 0.1. The noise level
is intentionally kept small to ensure that any observed uncertainty arises primarily from the BNN.

Inference details We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001.
We run SVGD, ASVGD, and SMI with five particles for 15,000 steps and OVI for 50,000 steps,
sufficient for converging. We use 5,000 draws to estimate a performance metric for OVI and SMI.
For both SMI and OVI, we use factorized Gaussians as guides. We use a hundred draws to estimate
the Stein force for SMI (i.e., eq. (8)). All methods are initialized in [−0.1, 0.1] and measurements are
taken for ten different initialization. We use 500 warmup steps and a chain of 3000 steps for NUTS
in NumPyro. All other parameters are default: max depth is 10, during warmup, the mass matrix is
adapted using the online Welford scheme (Knuth, 1997) and step size calibrated using dual averaging
(Nesterov, 2009).

C.2.1 RECOVERY POINT SETUP

The recovery point experiment uses the same hyper-parameter setup as above. Recall that the recovery
point is the number of particle SVGD required to get an LPPD below five particle SMI. To reach it,
we begin with one particle SVGD and subsequently double until we reach the recovery point. We
repeat the experiment ten times.

C.3 MNIST CLASSIFICATION

This section outlines the details required to reproduce our MNIST classification results.

Bayesian network We utilize both 2 and 3 hidden-layer BNNs of size 100 and tanh activation
functions. Input images are flattened before being fed into the BNNs. The likelihood is modeled as a
10-class categorical distribution, parameterized by the logits produced by the BNN.
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Figure 6: Top row: The samples were drawn from the data-generating process for evaluating Between,
In and Entire regions. The In region used for inferring the BNNs is highlighted in grey. Bottom row:
The samples drawn from the data-generating process to infer BNN posteriors.

Inference details We employ the Adam optimizer with a learning rate of 10−3 for both MAP and
OVI. For SVGD, SMI) and ASVGD, we use the Adagrad optimizer with a learning rate of 0.7 for
the 2 hidden-layer BNN and 0.8 for the 3 hidden-layer BNN, utilizing five particles in each case.
Specifically, the SMI method estimates the attractive force using 55 draws.

All approaches are trained for 100 epochs with a batch size of 128. The images are scaled to [0,1].
Instead of random subsampling, we implement mini-batching and appropriately scale the likelihood,
as described in Equation eq. (13).

C.4 UCI REGRESSION BENCHMARK

In this section, we provide the details for reproducing our UCI regression results.

Bayesian network We use a 2 hidden-layer Bayesian neural of size 50 and ReLU activation for
all datasets. We use a Gaussian likelihood with the mean given by the BNN and a Gamma(shape=1,
rate=0.1) prior on the precision (i.e., reciprocal variance). For SMI and OVI, we use the softplus
(x 7→ log(exp(x) + 1)) transformation on the Gaussian approximation to account for the difference
in support of the likelihood precision. This is the transformation recommended in Kucukelbir et al.
(2017) for inference using automatic differentiation when transforming a random variable from R to
R+. The independent variable (x) is standardized, while the dependent variable (y) is kept as is. We
randomly initialize guides uniformly in the interval [−0.1, 0.1].

Inferring the networks We randomly initialize the tested methods uniformly in unconstraint space
within the interval [−0.1, 0.1]. This is lower than the NumPyro default of [−2, 2]. The initialization
strategy mimics the initialization from Liu & Wang (2016) for SVGD and substantially reduces the
steps needed for good performance.

We choose the learning rate from [5 · 10−i]6i=1 with a grid search on the first split of each data set. We
select the learning rate with the best RMSE on a 10% validation split from the training data. Table 6
provides the chosen learning rate for each method and dataset.

We use the Adam optimizer for up to 60.000 steps, inferring the BNNs a random subsample of size
100 without replacement. The independent variable (x) is standardized, while the dependent variable
(y) is kept as is.

We use a convergence criterion on the Euclidean norm of ϕ∗ for the particle methods. We compare a
slow-moving norm average, calculated over the last 350 steps, against a fast-moving norm average,
computed over the previous 35 steps. If the fast-moving average exceeds the slow-moving average,
we conclude that the methods fluctuate around a minimum and stop iterating Equation (7). The
number of past steps was chosen using the first split of the Boston Housing dataset with a learning
rate of 0.5 using a 10% validation set from training to minimize RMSE.
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(a) Low-dimensional model (b) Moderate-dimensional model

Figure 7: Figure 7a: High-density interval (HDI) for the low-dimensional model inferred using SMI,
NUTS, SVGD, ASVGD and OVI on the 1D wave dataset (dotted line). SVGD, ASVGD, and SMI use
five particles. The posteriors are inferred with data drawn from the In region, highlighted with vertical
lines. Figure 7b: HDI for the moderate-dimensional model. ASVGD and SVGD display collapse
by a significant narrowing in HDI between the In regions when comparing the low to moderate
dimensions. In low-dimensional models, initialization plays a role in narrowing or widening HDI for
all methods. In mid-sized models, SMI is robust to initialization.
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Table 6: Learning rate for the methods used on the standard and Gap10 splits of UCI.

Standard UCI
Dataset ASVGD MAP OVI SMI SVGD

Boston 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−6

Concrete 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−2

Energy 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−4

Kin8nm 5 · 10−5 5 · 10−5 5 · 10−4 5 · 10−3 5 · 10−4

Naval 5 · 10−5 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−5

Power 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−4

Protein 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−3 5 · 10−3

Wine 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−5

Yacht 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−5

Gap10 UCI

Boston 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−2

Concrete 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−3

Energy 5 · 10−4 5 · 10−2 5 · 10−2 5 · 10−4 5 · 10−4

Kin8nm 5 · 10−5 5 · 10−4 5 · 10−3 5 · 10−5 5 · 10−4

Naval 5 · 10−5 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−5

Power 5 · 10−4 5 · 10−5 5 · 10−2 5 · 10−4 5 · 10−4

Protein 5 · 10−4 5 · 10−3 5 · 10−3 5 · 10−4 5 · 10−3

Wine 5 · 10−5 5 · 10−5 5 · 10−4 5 · 10−2 5 · 10−5

Yacht 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−3 5 · 10−4

Table 7: Summary statistics for the standard UCI benchmark datasets with train-test splits from
Hernández-Lobato & Adams (2015) and Gap10 benchmark datasets adapted from Foong et al. (2019)
to use 10% for testing instead of 33%.

Dataset Train size Test size Features Std Splits Gap10 Splits

Boston 455 51 13 20 13
Concrete 927 103 8 20 8
Energy 691 77 8 20 8
Kin8nm 7373 819 8 20 8
Naval 10741 1193 17 20 17
Power 8611 957 4 20 4
Protein 41157 4573 9 5 9
Wine 1439 160 11 20 11
Yacht 277 31 6 20 6

The standard UCI split We use the train-test splits from Mukhoti et al. (2018) for our standard
UCI results. Table 7 gives summary statistics of the datasets. We treat features and responses (i.e.,
(x, y)) as real values.

The Gap10 UCI split We use the methodology suggested in Foong et al. (2019) to construct the
GAP dataset. We sort each feature dimension individually, taking the middle tenth as a test and
leaving the two tails as our training split. Using this procedure will result in as many splits as features.
However, where Foong et al. (2019) allocated the middle third for testing, we use a tenth to have the
same test allocation as standard UCI. Comparing Standard to Gap10 in table 7, the Gap10 generally
produces fewer splits than standard UCI.

Time comparison for VI methods In table 8, we reproduce the per-step average inference time
[sec/step] on the UCI datasets for SMI, SVGD, ASVGD, OVI and MAP. On UCI datasets, SMI
exhibits slower inference compared to the VI-based baselines. A portion of this overhead arises from
JIT compilation, which we believe can be reduced by optimizations in future releases of SMI.
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Table 8: The table shows the average time per step (in seconds per step) for datasets in the UCI
regression benchmark. Although SMI demonstrates slower inference times than alternative methods,
the recovery point experiment indicates that SMI offers a more favorable trade-off when considering
the associated performance improvements.

Dataset SMI SVGD ASVGD OVI MAP

Boston 0.0014 0.0003 0.0003 0.0002 0.0001
Concrete 0.0015 0.0004 0.0003 0.0002 0.0001
Energy 0.0017 0.0003 0.0003 0.0002 0.0001
Kin8nm 0.0192 0.0004 0.0004 0.0003 0.0002
Naval 0.0103 0.0004 0.0004 0.0004 0.0001
Power 0.0079 0.0004 0.0004 0.0002 0.0002
Protein 0.0468 0.0011 0.0008 0.0004 0.0003
Wine 0.0093 0.0003 0.0003 0.0002 0.0001
Yacht 0.0059 0.0003 0.0003 0.0003 0.0001

(a) Location dimension of particles. (b) Variance dimension of particles.

Figure 8: Converged two-particle approximation of a two-dimensional Gaussian using SMI and
SVGD. Each SMI particle, denoted asψψψ, parameterizes a Gaussian guide withψψψ = (x, y, z, w), where
(x, y) represent the guide’s location and (z, w) represent its variances. In contrast, an SVGD particle,
denoted as θθθ, only represents location dimensions, i.e., θθθ = (x, y). Left: Location dimensions of SMI
and SVGD particles. Shades show the equiprobability contours of the Gaussian. Right: Variance
dimensions of the SMI particles. SVGD particles are absent here as they only represent location.
SMI effectively approximates the Gaussian by explicitly incorporating variance as part of its particle
dimensions. The SMI forces are scaled for better visibility in the location dimensions. No force
arrows are visible in the variance dimensions because the system has converged, making the forces
negligible.

When considering the recovery point experiment table 4, SMI demonstrates significantly improved
runtime efficiency. On the mid-sized network, SMI achieves inference times 6x faster than SVGD.
This observation suggests that while VI methods excel in runtime on UCI datasets, SMI provides a
better trade-off when factoring in performance gains. Thus, in contexts where accuracy and robustness
are critical, SMI is preferable despite its higher initial runtime cost.

D SMI VERSUS SVGD: INSIGHTS FROM A SIMPLE TOY MODEL

To address variance collapse, the key distinction between SVGD and SMI lies in the space the particles
occupy. SMI particles operate in a higher-dimensional space than SVGD particles. This allows the
repulsive term, ∇1k(x, y), in SMI to influence the distribution’s shape and its parameterized location.
In contrast, SVGD particles can only control location.

In SVGD, each particle represents a latent parameter sample. Meanwhile, in SMI, each particle
parameterizes an entire distribution. For example, if the parameterized distribution is a factorized
Gaussian, each SMI particle would represent both the mean (location) and variance of the Gaussian.
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While the location component of an SMI particle shares the same space as an SVGD particle, the
variance component has no equivalent in SVGD. As a result, the repulsive force in SMI operates in a
broader space, encompassing both location and variance.

This distinction becomes evident when comparing SVGD and SMI in a two-particle approximation
of a standard Gaussian distribution. The SMI approximation forms a Gaussian mixture. By breaking
SMI particles into their location and variance components, we can visualize the location component
within the same space as SVGD particles and the target Gaussian density. In fig. 8a, SMI particle
locations converge toward the center of the target Gaussian, while SVGD particles spread out,
maintaining equal distances from the Gaussian center.

At first glance, focusing solely on the location dimension of the SMI particles might suggest they
have collapsed. However, this interpretation is incomplete because it overlooks the role of variance.
In fig. 8b, we examine the variance component of the SMI particles. We see that the two-particle SMI
system together captures the variance of the target density because each dimension in fig. 8b sums to
one. Consequently, the SMI estimation has not collapsed. Instead, it captures the target with all four
dimensions of its particles (two for location and two for variance) rather than the two dimensions of
the SVGD particle.
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