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ABSTRACT

Stein variational gradient descent (SVGD) (Liu & Wang, 2016) performs approx-
imate Bayesian inference by representing the posterior with a set of particles.
However, SVGD suffers from variance collapse, i.e. poor predictions due to under-
estimating uncertainty (Ba et al., 2021), even for moderately-dimensional models
such as small Bayesian neural networks (BNNs). To address this issue, we gen-
eralize SVGD by letting each particle parameterize a component distribution in
a mixture model. Our method, Stein Mixture Inference (SMI), optimizes a lower
bound to the evidence (ELBO) and introduces user-specified guides parameterized
by particles. SMI extends the Nonlinear SVGD framework (Wang & Liu, 2019) to
the case of variational Bayes. SMI effectively avoids variance collapse, judging by
a previously described test developed for this purpose, and performs well on stan-
dard data sets. In addition, SMI requires considerably fewer particles than SVGD
to accurately estimate uncertainty for small BNNs. The synergistic combination of
NSVGD, ELBO optimization and user-specified guides establishes a promising
approach towards variational Bayesian inference in the case of tall and wide data.

1 INTRODUCTION

Accurate and safe machine learning necessitates adequate uncertainty estimation to ensure reliability
in critical applications such as autonomous vehicles and medical diagnosis. As current deep methods
are known to be overly confident in their predictions (Szegedy et al., 2014; Nguyen et al., 2015), a
more principled treatment of uncertainty is necessary. Bayesian probabilistic models are attractive
as they assess model uncertainty through a coherent framework of updating data-based beliefs.
However, Bayesian inference for complex models is often analytically and computationally intractable.
Therefore, variational Bayes methods approximate a Bayesian posterior with a tractable variational
distribution (Jordan et al., 1999; Blei et al., 2017).

Particle-based inference is an attractive approach to variational Bayes because it resides as an
intermediate between variational and sampled-based methods (Saeedi et al., 2017; Domke, 2017). As
a hybrid method, particle-based inference combines several desirable properties: sample efficiency,
deterministic updates and asymptotic unbiasedness. Primary among particle variational inference
algorithms is Stein variational gradient descent (SVGD) Liu & Wang (2016) due to its tractable
and straightforward particle update. However, SVGD suffers from underestimating variance, also
called variance collapse (Ba et al., 2021; Zhuo et al., 2018). Overcoming the collapse with SVGD
requires using more particles as the model size grows. We will demonstrate this quickly becomes
computationally infeasible with off-the-shelf hardware, even for moderately sized models such as
small BNNs.

To address the issue of variance collapse in SVGD, we introduce Stein mixture inference (SMI)1.
SMI lets each particle parameterize a component distribution, which we call a guide, resulting in a
mixture approximation of the posterior. In contrast, SVGD directly represents approximate samples
from the posterior using its particles. Figure 1 schematically distinguishes the two methods. The
mixture approximation allows SMI to represent neighborhoods of SVGD particles, thereby scaling
better with model size. We show that SMI is a novel variant of Nonlinear-SVGD (NSVGD) (Wang
et al., 2019) applied to the variational approximation of Bayesian posteriors. SMI combines ordinary

1This article extends our preliminary work presented in the (non-archival) workshop paper ANONYMIZED.
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(a) SVGD (b) SMI

Figure 1: Variational inference with SVGD-derived particles (Liu & Wang, 2016) versus with an
SMI-derived probability density, formulated as a mixture model (this work). Left: SVGD uses m
particles θθθℓ to approximate the posterior p(θθθ|D). Right: SMI uses a mixture model (with uniform
weights) of m guides q(θθθ|ψψψℓ), parameterized by particles ψψψℓ to approximate p(θθθ|D). As a result,
SMI approximates a Bayesian posterior with a richer model that alleviates variance collapse in higher
dimensional posteriors.

mean-field variational inference (OVI) (Jordan et al., 1999; Hoffman et al., 2013; Ranganath et al.,
2014) with SVGD through the NSVGD framework. Specifically, our article makes the following
three contributions:

1. We introduce SMI and show that it extends NSVGD to variational Bayes.

2. We empirically demonstrate that SMI is more particle efficient than SVGD.

3. We use synthetic and real-world data to show that SMI does not suffer from variance collapse
in small- to moderately-sized models such as small BNNs.

Next, in Section 2, we will motivate SMI by outlining the reasoning behind the method.

2 STEIN MIXTURE INFERENCE IN A NUTSHELL

We aim to construct a richer variational approximation q(θθθ) of the posterior p(θθθ|D) than the one
offered by SVGD, while ensuring we also have a means to optimize it. To achieve this, we express
q(θθθ) as a uniform mixture model of m (user-defined) guides, parameterized by m particles {ψψψi}mi=1
that make up the empirical measure ρm(·) = 1/

∑m
i=1δψψψi

(·),

q(θθθ|ρm) =
1

m

m∑
ℓ=1

q(θθθ|ψℓ). (1)

The goal is to optimize the corresponding mixture ELBO, which measures how well the mixture
model approximates the true posterior,

L(ρm) =
1

m

m∑
ℓ=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
≤ log p(D). (2)

Now, the mixture ELBO can be interpreted as a symmetric2 functional F [ρm], mapping the particles
of the empirical measure to a scalar,

F [ρm] = L(ρm).

2A function is symmetric if its evaluation is independent of the order of its parameters.
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This interpretation allows us to leverage the NSVGD framework to optimize F [ρm], along with an
additional weighted entropy term3 αH[ρm] to encourage particle diversity, to find

ρ∗m = argmax
ρm

F [ρm] + αH[ρm] = argmax
ρm

1

m

m∑
ℓ=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
+ αH[ρm], (3)

where H[f ] = −
∫
f log f denotes the differential entropy and α ≥ 0. As we will show, despite

the inclusion of the entropy term, we still obtain a proper ELBO, LSMI(ρm) = F [ρm] +H[ρm] ≤
log p(D), if we choose α = 1. This ensures the mixture model q(θθθ|ρm) provides a well-justified,
diversified posterior approximation.

3 BACKGROUND

After introducing OVI, we detail NSVGD in section 3.2. We state the variational objective that
NSVGD maximizes, restate the central result from Wang & Liu (2019) that allows us to move ρm in
theorem 3.1 and finally, in eq. (7), give the tractable iterative update that is the backbone of NSVGD
optimization.

Notation Let x ∼ p(x) denote a sample generated from an unknown distribution p(x). We
observe N independent and identically distributed (IID) draws from p(x) that constitute the dataset
D = {x1, . . . ,xN}. We denote the likelihood function p(D|θθθ) =

∏N
n=1 p(xn|θθθ) where θθθ ∈ Θ ⊂ Rd

is a latent variable. Let p(θθθ) denote the prior and p(θθθ|D) the posterior. We assume that the posterior is
not analytically available except up to a constant of proportionality, i.e., p(θθθ|D) ∝ p(D, θθθ). We denote
the differential operator as ∇ℓ when taking the gradient with respect to (wrt.) the ℓ’th (random)
variable. For example, ∇1f(a, b) is the gradient wrt. to a. However, if this notation becomes
ambiguous, we use the symbolic subscript notation, e.g. ∇bf(a, b) = ∇2f(a, b).

3.1 ORDINARY VARIATIONAL INFERENCE

We can approximate an intractable posterior p(θθθ|D) with a tractable variational distribution4 q(θθθ|D;ψψψ)
by optimizing a lower bound on the evidence p(D), the aforementioned ELBO (Jordan et al., 1999).
The ELBO is given by

log p(D) ≥ Eq(θθθ|D;ψψψ)[log p(D, θθθ)] +H[q(θθθ|D;ψψψ)] ≡ L(ψψψ). (4)

Maximizing L(ψψψ) is equivalent to minimizing the KL divergence between the approximate and
intractable posterior, but importantly requires computing the joint density p(D, θθθ) rather than the
intractable conditional density p(θθθ|D). ψψψ is obtained from maximizing the ELBO by gradient or
coordinate ascent.

3.2 NONLINEAR STEIN VARIATIONAL GRADIENT DESCENT

Like Markov chain Monte Carlo (MCMC) methods, particle variational methods (Frank et al.,
2009; Saeedi et al., 2017) approximate samples from the posterior rather than its density. However,
unlike MCMC methods, the number of posterior samples is fixed a priori for particle methods.
Particle methods are attractive due to their freedom from strong parametric assumptions and resulting
flexibility as an approximation. We will designate the samples as "particles" to emphasize that they
are not auto-correlated, as with MCMC methods. However, they retain some correlation in the
non-asymptotic case (Gallego & Insua, 2018).

Wang & Liu (2019) introduces the Nonlinear SVGD framework which allows functional optimiza-
tion under diversification constraints. Wang & Liu (2019) applies this general framework to the
(constrained) maximum likelihood estimation of diversified mixture models (DivMM), i.e., mixture
models consisting of spread-out mixture components. The NSGVD framework has previously only
been applied to SVGD and this type of maximum likelihood estimation.

3Although the differential entropy is formally undefined for an empirical measure, within the NSVGD
framework (Liu et al., 2017; Wang & Liu, 2019) ρ∗m converges weakly to ρ∗ for m → ∞. H[ρ∗] is well defined.

4We use the notation p(c|a) for conditioning on the random variable a and p(c; b) for a density with
parameters b.
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Table 1: NSVGD generalizes SVGD and includes DivMM and SMI (this work). Like SVGD, SMI
approximates general posteriors. But where SVGD represents the posterior directly with particles
θθθℓ, SMI addresses variance collapse by using a mixture model 1/m

∑m
ℓ=1 q(θθθ|ψψψℓ) parameterized by

particles ψψψℓ. On the other hand, DivMM specializes NSVGD to diversified maximum likelihood
estimation for mixture models and cannot approximate general posteriors; moreover, the number of
particles m in DivMM is a hyperparameter of the model, unlike in SVGD and SMI, where it relates
to the posterior approximation’s richness.

Method Posterior approximation Model

SVGD (Liu & Wang, 2016) 1
m

∑m
ℓ=1 δθθθℓ(θθθ) p(D|θθθ)π(θθθ)

DivMM (Wang & Liu, 2019) None
∑m
ℓ=1 p(D|θθθℓ)

SMI (This work) 1
m

∑m
ℓ=1 q(θθθ|ψψψℓ) p(D|θθθ)π(θθθ)

The variational objective NSVGD iteratively moves an initially simple distribution ρ, such as
a Gaussian, according to T (ρ) = ρ + ϵϕ[ρ] such that the transported distribution T (ρ) maximally
increases a variational objective. The variational objectives for NSVGD combine a functional, like
the likelihood (DivMM), the negative KL-divergence to a posterior (SVGD) or an ELBO (SMI and
OVI) with a diversification constraint on ρ. We need the constraint to avoid mode collapse.

In its most general form, NSVGD solves the maximization given by

ρ∗ = argmax
ρ

F [ρ] + αH[ρ], (5)

where F [ρ] is a nonlinear functional of ρ, H[ρ] is the differential entropy and α ≥ 0 scales the
contribution of the entropy. The entropy acts as a regularizer, forcing ρ to distribute uniformly,
promoting particle diversification and avoiding collapse to the closest mode.

Making the optimal perturbation ϕ∗ tractable Finding the steepest perturbation direction ϕ∗[ρ]
is challenging in the general setting. This is because ϕ∗[ρ] requires computing the first variation of F ,
a functional analog to the derivative of a function, which may not exist, let alone be computationally
tractable. We must weaken our optimization and add additional structure on ρ and F to progress
toward a tractable algorithm by guaranteeing the first variation is always tractable. Theorem 2 from
Wang & Liu (2019) provides this structure. First, use an empirical measure ρm on m particles
{θℓ}mℓ=1 instead of ρ because with the particles evaluating wrt. ρm is trivial. However, using ρm for
ρ means we only approximate the ρ∗ from eq. (5) with the guarantee that the optimum ρ∗m weakly
converges to ρ∗ when letting m→ ∞ (Wang & Liu, 2019; Liu et al., 2017). Second, choose F [ρm]
such that there exists a symmetric and differentiable map f : θθθ1, θθθ2, . . . , θθθm 7→ F [ρm]. Under these
two conditions, the first variation of F wrt. the ℓ’th particle reduces to ordinary differentiation of
f(θθθ1, θθθ2, . . . , θθθm) which is tractable to compute.

The optimal perturbation in RKHS With the additional structure on ρ and F , the last essential
component that gives ϕ∗ a closed form is restricting the candidate perturbations to functions in a
reproducing kernel Hilbert space Liu & Wang (2016). With these components, we can restate the
theorem that gives the closed form for optimal perturbation as:

Theorem 3.1. The Kernelized Steepest Perturbation (Wang & Liu, 2019) Let F [ρ] + αH[ρ] be
the variational objective for a transport T (ρ) = ρ + ϵϕ[ρ], with ϵ > 0 and distribution ρ with
supp ρ ⊆ dom f ⊆ Rd. Let ρm(·) = 1/m

∑m
i=1 δθθθi(·) be the empirical measure of m particles and

let f(θθθ1, . . . , θθθm) = F [ρm] be a differentiable and symmetric function. If we choose a reproducing
kernel k on Rd×Rd with reproducing kernel Hilbert space H (Berlinet & Thomas-Agnan, 2011) such
that ∇1k and ∇2k exist and are both continuous, then the optimal perturbation direction ϕ∗ ∈ H
such that ∥ ϕ∗ ∥H≤ 1 satisfies

ϕ∗(·) ∝ Eθθθi∼ρm [k(θθθ, ·)m∇if(θθθ1, . . . , θθθm) + α∇1k(θθθ, ·)]. (6)

Theorem 3.1 combines Theorem 1b and 2 from Wang & Liu (2019) and provides the closed form
for the optimal perturbation direction ϕ∗ used in SMI when replacing f with L(ρm). The first and
second terms that constitute ϕ∗(·) in theorem 3.1 are commonly referred to as the attractive and
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repulsive force. This is because the first term pulls particles towards the nearest maximum in F ,
whereas the second keeps particles from collapsing onto each other. Finally, notice we never need to
evaluate H(ρm); instead, ϕ∗ uses the kernel gradient in the repulsive force. This sidesteps the issue
of not having H(ρm) available.

The iterative optimization algorithm The NSVGD iterative optimization starts with particles
{θθθi ∼ ρ(0)}mi=1 drawn from the simple initial distribution ρ(0). At each iteration, every particle moves
according to

θθθℓ = θθθℓ + ϵ

m∑
i=1

k(θθθi, θθθℓ)∇if(θθθ1, θθθ2, . . . , θθθm) +
α

m
∇1k(θθθi, θθθℓ), (7)

which maximally increases the change in eq. (5) by theorem 3.1. We see that SVGD is an instance of
NSVGD by replacing f with the expected log joint density, f(θθθ1, θθθ2, . . . , θθθm) = Eθθθ∼ρm [log p(D, θθθ)].
In the case of SVGD, ∇if(θθθ1, . . . , θθθi, . . . , θθθm) reduces to the scaled score function ∇1f(θθθi) =
1/m∇1 log p(θθθi,D).

Diversified mixture models In the case of DivMM, Wang & Liu (2019) applies the NSVGD
framework to the functional F [ρ] = Exxx∼D[logEθθθ∼ρ[p(xxx;θθθ)]]. DivMM needs the nonlinear form of
theorem 3.1 as its functional is not linear in ρ. The optimization is a constrained maximum likelihood
estimation of the diversified mixture model,

∑m
ℓ=1 p(D|θθθℓ). Here, the number of particles m is a

hyperparameter of the model, whereas, for SVGD and SMI, the model is independent of m. In
table 1, we contrast SVGD, DivMM, and SMI, which are different applications of the same NSVGD
framework. In the following section, we introduce SMI and demonstrate that the NSVGD framework
can be adapted to infer approximate variational posteriors of general Bayesian models.

4 STEIN MIXTURE INFERENCE

The key to justifying SMI is showing we can optimize the SMI ELBO LSMI(ρm) given by eq. (3)
using NSVGD and that it is indeed an ELBO. To this end, we first show that the mixture ELBO
L(ρm) given by eq. (2) is a differential symmetric function. That means we can use theorem 3.1 to
find the ρ∗m that maximizes LSMI(ρm) by iterating eq. (7). Next, we show that when α = 1 in eq. (3),
the resulting quantity LSMI(ρm) is indeed an ELBO, despite the addition of an entropy term to the
mixture ELBO L(ρm) given by eq. (2).

The SMI function(al) and its gradient The mixture ELBO L(ρm) given by eq. (2) is a symmetric
function wrt. ρm due to the outer sum. If L(ρm) is also differentiable, we have the desired mapping
required to use parametric differentiation to optimize eq. (2) using NSVGD. To show L(ρm) is
differentiable wrt. the ℓ’th particle, we can compute the gradient as

m∇ψψψℓ
L(ρm) = Eq(θθθ|ψψψℓ)

ñ
log

p(θθθ,D)∑
j q(θθθ|ψψψj)

∇ψψψℓ
log q(θθθ|ψψψℓ)

ô
−

m∑
j=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
.

(8)

If we choose q(θθθ|ψψψℓ) to be differentiable wrt. ψψψℓ, we see that L(ρm) is also differentiable wrt. ψψψℓ.
The complete derivation is given in the appendix.

SMIs variational objective is an ELBO L(ρm) is an ELBO, but does SMI indeed maximize an
ELBO? For this to be the case, LSMI(ρm) = L(ρm)+H(ρm), which includes an entropic regulariser,
must also be an ELBO. We show this by generalizing ρm to the continuous case because, as noted
previously, H(ρm) is technically undefined for finite particles. First, consider the continuous version
of L(ρm) given by,

L[ρ] = lim
m→∞

1

m

m∑
i=1

Eq(θθθ|ψℓ)

ï
log

p(θθθ,D)

q(θθθ|ρm)

ò
= Eρ(ψψψ)

ï
Eq(θθθ|ψ)

ï
log

p(θθθ,D)∫
q(θθθ|ψψψ)ρ(ψψψ)dψψψ

òò
≤ log p(D).
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Note that L(ρm) weakly converges to L[ρ] for m→ ∞ when using NSVGD. Next, we construct an
upper bound L↑[ρ] of L[ρ],

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
≥ L[ρ],

as we show in the appendix. Now, applying SMI’s variational objective given by eq. (3) to L↑[ρ] with
α = 1 indeed results in an ELBO, as shown by

L↑[ρ] +H[ρ] = Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
+H[ρ] = Eρ(ψψψ)

ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)ρ(ψψψ)

òò
≤ logEρ(ψψψ)

ï
Eq(θθθ|ψψψ)

ï
p(θθθ,D)

q(θθθ|ψψψ)ρ(ψψψ)

òò
= log p(D).

Here, the inequality comes from repeatedly applying Jensen’s inequality. The final equality is simply
marginalizing. Note that the objective is not an ELBO for α ̸= 1. Finally, we can conclude that
LSMI[ρ] = L[ρ] +H[ρ] is also an ELBO, because

L[ρ] ≤ L↑[ρ] =⇒ L[ρ] +H[ρ] ≤ L↑[ρ] +H[ρ] ≤ log p(D)

Thus, the maximizing empirical measure obtained by NSVGD, ρ∗m weakly converges to a correspond-
ing ELBO LSMI(ρ

∗) when m→ ∞. Our experiments indicate that SMI is generally insensitive to α;
therefore, we recommend using α = 1 to tie the optimization to ELBO maximization.

The iterative optimization algorithm Optimization starts with the empirical measure ρ1m on
particles {ψψψℓ ∼ ρ0}mi=1 drawn from a simple initial distribution ρ0. We subsequently iterate the
following gradient ascent-like step on the particles, which by theorem 3.1 maximize eq. (3):

ψψψt+1
ℓ = ψψψtℓ + ϵ

m∑
i=1

k(ψψψti,ψψψ
t
ℓ)∇ψψψi

L(ρtm) +
α

m

m∑
i=1

∇1k(ψψψ
t
i,ψψψ

t
ℓ). (9)

We continue the optimization until we reach a fixed particle configuration. In eq. (9), ϵ > 0 is the step
size, k is a reproducing kernel, and α ∈ R+ is the hyper-parameter inherent to NSVGD. α controls
the spread of the particles (i.e., by scaling H[ρm]) and is, together with the kernel k and step size, the
hyper-parameters of SMI.

Connection to SVGD, OVI and maximum a posteriori SVGD, OVI and maximum a posteriori
(MAP) estimation are all instances of SMI. In particular, where SVGD reduces to MAP estimation
when only using one particle, SMI reduces to ordinary variational inference (as in eq. (4)) in the
single-particle case for an arbitrary guide q(θθθ|ψψψ). We can also connect SMI to SVGD, and by
extension MAP estimation, by choosing each guide q(θθθ|ψψψi) as the point mass, i.e., 1ψψψℓ

(θθθ). These
connections place SMI as a hybrid between a sample- and density-based method. We attribute SMI’s
ability to mitigate variance collapse to this hybrid nature. In appendix A, we detail how SMI can be
reduced to recover SVGD and OVI.

Library implementation We provide an open-source implementation (under an Apache version 2
license) of SMI, called SteinVI, in the deep probabilistic programming language ANONYMIZED.

5 RELATED WORK

There has been a flurry of work on SVGD, but much of it has concerns that are orthogonal to ours.
The SVGD algorithm itself has been extended to include second-order information (Detommaso
et al., 2018), operate on Riemannian manifolds (Liu & Zhu, 2018) and forgo analytic gradients
(Han & Liu, 2018). Furthermore, SVGD has been re-purposed to perform message passing (Wang
et al., 2018; Zhuo et al., 2018), importance sampling (Han & Liu, 2017), generative modeling (Feng
et al., 2017; Pu et al., 2017), and reinforcement learning (Liu et al., 2017). Theoretical work on
SVGD has analyzed its behavior in asymptotic (Liu, 2017; Lu et al., 2019; Duncan et al., 2023) and
non-asymptotic (Chen et al., 2018a; Liu & Wang, 2018; Shi & Mackey, 2022) regimes as well as in
high dimensions (Zhuo et al., 2018; Ba et al., 2021).
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Figure 2: Left and middle (zoom): Variance estimation of a standard multivariate Gaussian obtained
with 20-particle ASVGD, SMI and SVGD. Only SMI does not collapse and is robust to changing α.
Right: SMI with one particle and Gaussian guide exactly recovers the multivariate Gaussian.

A significant part of particle VI research explores understanding SVGD as a kernelized gradient
flow Liu et al. (2017); Chewi et al. (2020). This line of research investigates the kernel and the
properties of its associated function space in terms of the quality of the gradient flow approximation.
These include broadening the functional regularizer Dong et al. (2022), specializing the acceleration
schedule on the step size Liu et al. (2019), and alternatives to RBF kernel such as scalar kernels
(Gorham & Mackey, 2017; Wang et al., 2018) and matrix variate kernels Wang et al. (2019). Where
SMI focuses on the attractive force, these works focus on the repulsive force. As such, there is a
significant potential for adapting this body of work to SMI.

Annealing SVGD (ASVGD) D’Angelo & Fortuin (2021a) is the only alternative that directly addresses
variance collapse in SVGD with a viable method. The resampling method introduced by Ba et al.
(2021) is computationally impractical for large-scale problems, and we demonstrate its bias in the
appendix. Our experimental results in section 6 indicate that, unlike SMI, ASVGD follows the same
collapse pattern as SVGD.

This work can also be related to work on using hierarchical variational models (HVM) (Ranganath
et al., 2016) and mixture approximations (Jaakkola & Jordan, 1998; Bishop et al., 1998; Gershman
et al., 2012; Salimans & Knowles, 2013; Miller et al., 2017). Unlike prior work on HVMs, Stein
mixture inference does not require auxiliary models or bounds looser than an ELBO. Like SMI,
Morningstar et al. (2021) introduces SIWAE, a variational objective for mixture inference. While SMI
employs an entropic regularizer on particles, SIWAE uses importance weighting. As an ELBO-based
method, SIWAE can readily be incorporated as SMI’s attractive force, enabling kernel design within
the framework. We are unaware of any work that applies SVGD (Liu & Wang, 2016) or NSVGD
(Wang et al., 2019) to optimize HVMs. Pu et al. (2017) considers SVGD specialized for VAEs; their
method is similar to SMI in that it introduces an encoder. However, unlike SMI, their method only
applies to VAEs.

6 EXPERIMENTS

Because SVGD and ASVGD are prone to variance collapse (Ba et al., 2021), increasing the dimen-
sionality of the posterior requires more particles to represent uncertainty adequately. On the other
hand, SMI can adjust the distribution of the variational components, thus requiring fewer particles.
We demonstrate this for small and moderately sized models on synthetic and real-world data.

All experiments are carried out on an NVIDIA Quadro RTX 6000 GPU. For clarity, we only outline
the experimental settings in the following sections, leaving the details necessary for reproduction to
appendix C. All experiments use our publicly available SteinVI library, and we provide the source
code for the experiments5.

5ANONYMIZED URL
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(a) SMI (b) SVGD (c) ASVGD (d) OVI (e) NUTS

Figure 3: Top row: High-density interval (HDI) for the low-dimensional model inferred using SMI,
SVGD, ASVGD, OVI and NUTS on the 1D wave dataset (dotted line). SVGD, ASVGD, and SMI
use five particles. The posteriors are inferred with data drawn from the In region, highlighted with
vertical lines. NUTS serves as reference. Bottom row: HDI for the moderate-dimensional model.
ASVGD and SVGD display collapse by a significant narrowing in HDI between the In regions when
comparing the low to moderate dimensions. On the other hand, both OVI and SMI widen the HDI
with the richer model for the in-between region. In contrast to SMI, OVI overestimates the variance
in the In region, where data is available, for the mid-sized model.

6.1 GAUSSIAN VARIANCE ESTIMATION

Following Zhuo et al. (2018), we estimate the per-dimension variance, called the dimension marginal
variance, of a standard multivariate Gaussian of increasing dimension with a fixed number of particles.
Hereafter, variance refers to the dimension marginal variance. The estimated variance will tend
towards zero for a method prone to collapse. The right panel of fig. 2 demonstrates variance collapse
in SVGD and ASVGD with twenty particles. We see no benefit from annealing SVGD. In contrast,
for SMI, when we use a single particle with a mean-field multivariate Gaussian guide (i.e., the Stein
particle represents the mean and variance of the guide), the estimated variance stays close to one.
This is because, when using one particle, the Stein mixture contains the model.

What happens when the SMI posterior is richer than the model? When the posterior is richer
than the model, we risk overestimating the variance. The middle panel of fig. 2 illustrates that we can
choose α ≤ 1 to improve the overestimation of variance when using more particles than needed. The
model and guide are as before, but now SMI uses twenty particles instead of one. We can alleviate the
overestimation with α≪ 1 because it allows overlapping particle neighborhoods, i.e., the mixture
components can collapse onto each other, thereby mimicking a single particle. The result for SMI
implies that if α≪ 1 significantly reduces variance, we are likely using too many particles. In our
experiment, tuning α is only a viable strategy for SMI, as the right panel of fig. 2 shows. This is
because α acts on ρ for SMI, whereas choosing α ̸= 1 changes the target posterior for the other
methods.

6.2 1D REGRESSION WITH SYNTHETIC DATA

Previously, we demonstrated that SMI with a single particle and a Gaussian guide recovers a
multivariate Gaussian distribution regardless of dimension. To extend beyond this scenario, we use a
synthetic one-dimensional regression dataset (dotted line in fig. 3) to study the uncertainty estimation
of 1-layer BNNs in data-sparse regions. A well-calibrated model should assign high uncertainty in
data-sparse areas and low uncertainty in data-rich ones (Foong et al., 2019; Daxberger et al., 2021).
We compare a tiny BNN with 5 hidden units (41 random variables) to a small BNN with 100 hidden
units (10,100 random variables).

Does SMI capture uncertainty better? Figure 3 illustrates this using the high-density interval
(HDI) (Gelman et al., 1995), shown in gray, which represents the narrowest 90% Bayesian credible
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Table 2: Root mean squared error (RMSE) and negative log-likelihood (NLL) for the UCI regression
benchmark with standard and Gap10 splits. Lower is better for RMSE and NLL. Variational inference
methods that are less than or equal in distribution to the lowest mean VI method are underlined.
Similarly, the best, or equal in distribution, among all methods is highlighted in bold. We compare
methods using a Mann-Whitney U (MWU) test (Mann & Whitney, 1947) at a significance level
0.05. For VI methods, SMI and MAP perform comparably in RMSE, with SMI outperforming
alternatives on probabilistic calibration measured by NLL. Overall, NUTS outperformance SMI on
NLL. However, of the two, only NUTS suffer severe deterioration on Gap10.

Standard UCI
NLL (↓) RMSE (↓)

Dataset SMI SVGD ASVGD OVI MAP NUTS SMI SVGD ASVGD OVI MAP NUTS

Boston 2.6± 0.6 7.7± 3.5 2.8± 0.7 2.6± 0.1 3.0± 0.8 2.2± 0.2 2.9± 0.7 4.1± 1.0 3.1± 0.9 4.2± 0.7 3.0± 0.8 3.6± 0.7
Concrete 3.4± 0.8 3.4± 0.3 4.3± 0.7 3.2± 0.1 3.9± 0.7 2.7± 0.3 4.8± 0.5 5.1± 0.7 5.0± 0.5 6.8± 0.4 4.7± 0.6 4.7± 0.6
Energy 0.8± 0.7 0.8± 0.2 27.1± 6.7 2.0± 0.0 1.3± 0.6 0.5± 1.5 0.4± 0.1 0.5± 0.1 1.0± 0.1 2.1± 0.1 0.4± 0.1 0.3± 0.1
Kin8nm −1.3± 0.1 −1.2± 0.0 −0.1± 0.0 −1.1± 0.0 −0.5± 0.0 −1.4± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0
Naval −3.8± 0.4 −0.6± 0.0 −0.1± 0.0 −3.4± 0.0 −4.5± 0.1 −3.2± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Power 2.9± 0.0 2.9± 0.0 2.9± 0.0 3.0± 0.1 2.8± 0.0 2.6± 0.1 4.2± 0.1 4.2± 0.1 4.2± 0.1 5.3± 0.5 4.2± 0.1 3.6± 0.2
Protein 2.7± 0.0 2.8± 0.0 3.5± 0.0 2.9± 0.0 2.8± 0.0 2.7± 0.0 4.0± 0.1 4.2± 0.2 4.9± 0.0 4.4± 0.0 4.1± 0.1 3.8± 0.0
Wine 1.0± 0.1 1.0± 0.1 1.1± 0.1 1.0± 0.0 1.1± 0.2 27.0± 18.6 0.7± 0.1 0.6± 0.0 0.6± 0.0 0.7± 0.0 0.6± 0.0 1.0± 0.1
Yacht 0.7± 0.2 1.9± 1.2 0.9± 0.3 1.4± 0.1 2.2± 2.0 −0.4± 0.2 0.6± 0.2 0.7± 0.2 0.6± 0.2 1.2± 0.2 0.8± 0.4 0.7± 0.2

Gap10 UCI

Boston 5.6± 4.9 7.6± 5.1 4.1± 3.7 2.8± 0.6 5.2± 5.3 2.4± 0.2 4.9± 1.8 4.1± 1.8 4.1± 1.8 4.7± 1.7 4.1± 2.0 4.6± 1.4
Concrete 5.1± 2.7 8.4± 4.0 8.6± 3.7 3.5± 0.3 8.6± 5.4 3.2± 0.5 8.7± 3.3 8.2± 2.0 8.1± 1.9 8.1± 1.5 8.5± 3.0 8.7± 3.1
Energy 12.6± 19.1 13.2± 14.3 558.8± 803.8 2.4± 0.5 7.4± 10.5 2.1± 3.0 1.3± 1.0 1.5± 1.0 3.1± 2.6 2.9± 0.9 1.5± 1.3 0.9± 0.5
Kin8nm −0.5± 0.0 −1.2± 0.1 −0.1± 0.0 −1.1± 0.1 −1.1± 0.1 −1.4± 0.1 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0
Naval −3.9± 0.5 −0.6± 0.0 −0.1± 0.0 −3.4± 0.1 −4.5± 0.0 1, 094.6± 1, 690.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.7± 0.7
Power 2.8± 0.0 2.8± 0.0 2.8± 0.0 3.0± 0.0 3.0± 0.1 2.8± 0.2 4.1± 0.1 4.1± 0.1 4.1± 0.1 4.7± 0.2 4.0± 0.2 4.5± 1.3
Protein 2.9± 0.1 3.0± 0.1 3.1± 0.4 3.0± 0.0 2.9± 0.1 2.8± 0.1 4.4± 0.2 4.5± 0.3 4.8± 0.2 4.7± 0.2 4.5± 0.2 4.3± 0.3
Wine 1.0± 0.1 1.0± 0.1 1.1± 0.1 1.0± 0.0 1.2± 0.2 62.8± 53.5 0.7± 0.1 0.6± 0.0 0.7± 0.0 0.7± 0.0 0.7± 0.1 1.2± 0.2
Yacht 2.0± 1.0 194.0± 109.1 2.1± 1.2 1.5± 0.1 78.9± 46.5 0.3± 0.5 1.2± 0.6 1.2± 0.5 1.1± 0.5 1.4± 0.2 1.3± 0.6 1.4± 0.9

interval. With No-U-Turn Sampler6 (NUTS) (Hoffman et al., 2014) serving as a reference, a well-
calibrated model is expected to produce wide HDIs in data-sparse regions and narrow HDIs in
data-rich areas. Among the variational methods, only SMI demonstrates this desired behavior for
low- and moderate-dimensional models. Closing the SMI-SVGD gap in moderate-sized networks by
increasing SVGD particles is infeasible on our hardware (appendix B). Moreover, ASVGD shows no
improvement over SVGD, which is consistent with the variance experiment.

6.3 UCI REGRESSION BENCHMARK

To investigate the improvement in uncertainty quantification of SMI on moderately sized models
for real-world data, we consider the UCI regression benchmark with Standard and Gap10 splits on
1-layered BNNs. Standard UCI uses ordinary 10% test splits (Mukhoti et al., 2018). Gap10 sorts each
feature dimension to create splits (Foong et al., 2019): The middle 10% of data is used for testing,
while the tails are used for training. A well-calibrated method should perform well on standard and
not catastrophically deteriorate on Gap10. The BNN details, datasets and splits are summarized in
appendix C.4. For comparison, we use SVGD, ASVGD, MAP and OVI as baselines and NUTS as
the gold standard.

Table 2 summarizes the UCI results, evaluating their performance using root mean squared error
(RMSE) and negative log-likelihood (NLL). NLL is the primary metric of interest because we
evaluate uncertainty estimation. Here, SMI delivers the best performance on Standard and Gap10
UCI datasets. Notably, the RMSE is best for MAP and SMI, which means SMI has not sacrificed
prediction accuracy to improve the NLL.

6.4 MNIST CLASSIFICATION

Next, we examine multi-class classification by applying 1- and 2-layer Bayesian Neural Networks
(BNNs) to the MNIST dataset (LeCun et al., 2010). Details about the BNN configurations are
provided in appendix C.3. Our evaluation includes accuracy (Acc), confidence (Conf), NLL, and
several classification reliability metrics: the Brier score (Brier) (Brier, 1950), expected calibration
error (ECE) (Guo et al., 2017), and maximum calibration error (MCE) (Guo et al., 2017). Among the
reliability metrics, we highlight the Brier score, as ECE and MCE can be sensitive to the choice of
the bin count (100 bins were used in this study).

6While NUTS is asymptotically exact and serves as a reference, it is significantly slower to converge than
variational inference methods.
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Table 3: Evaluation of 1-layer and 2-layer BNNs for MNIST classification on several metrics:
confidence (Conf), negative log-likelihood (NLL), accuracy (Acc), Brier score (Brier), expected
calibration error (ECE), and maximum calibration error (MCE). Lower is better for NLL, Brier,
ECE and MCE. Higer is better for Conf and Acc. All methods less than or equal in distribution to
the lowest mean method are highlighted in bold. Methods are compared using an MWU test at a
significance level of 0.05. Overall, SMI stands out as the preferred method.

1-Layered BNN
Method Conf (↑) NLL (↓) Acc (↑) Brier (↓) ECE (↓) MCE (↓)

SMI 0.979± 0.001 0.039± 0.003 0.957± 0.003 0.065± 0.005 0.148± 0.012 0.631± 0.047
ASVGD 0.972± 0.002 0.053± 0.004 0.949± 0.003 0.074± 0.005 0.135± 0.007 0.634± 0.024
MAP 0.973± 0.001 0.050± 0.002 0.952± 0.001 0.068± 0.000 0.133± 0.000 0.574± 0.000
OVI 0.921± 0.006 0.158± 0.012 0.908± 0.006 0.106± 0.007 0.085± 0.010 0.630± 0.136
SVGD 0.972± 0.003 0.054± 0.006 0.949± 0.004 0.074± 0.007 0.139± 0.014 0.653± 0.048

2-Layered BNN

SMI 0.979± 0.002 0.042± 0.005 0.956± 0.002 0.067± 0.003 0.150± 0.014 0.653± 0.057
ASVGD 0.956± 0.004 0.104± 0.011 0.936± 0.004 0.083± 0.003 0.132± 0.011 0.651± 0.075
MAP 0.976± 0.001 0.044± 0.003 0.955± 0.001 0.066± 0.000 0.126± 0.000 0.614± 0.000
OVI 0.913± 0.005 0.182± 0.012 0.899± 0.005 0.116± 0.005 0.084± 0.009 0.652± 0.133
SVGD 0.960± 0.004 0.091± 0.011 0.940± 0.002 0.081± 0.004 0.135± 0.013 0.649± 0.044

Table 3 summarizes the results. For both BNNs, SMI generally outperforms other methods across all
metrics except for ECE and MCE. Judging by the Brier score, SMI is deemed the best-calibrated
method for 1-layer BNNs, while MAP and SMI exhibit comparable calibration performance in the
2-layer case. When considering all metrics collectively, SMI emerges as the preferred approach.

7 DISCUSSION

Limitations The main limitation of SMI is that the variational approximation could be misspecified
by using too many particles or a poor choice of the parametric family. We saw an example of this in
Section 6.1 when using twenty particles to estimate a Gaussian with SMI. Another major limitation
for practitioners is knowing how to choose the kernel. We present SMI using an RBF kernel, leaving
a study of kernel choice to future work.

Future directions SVGD and particle methods have seen considerable development, but the
theoretical guarantees, practices and diagnostics available for MCMC methods (Vehtari et al., 2021)
are largely lacking. Our experiments with MVNs and BNNs show that the initial distribution affects
the final particle configuration. While SMI is robust to initialization with MVNs, proper initialization
is key for BNN performance. Similarly, particle count, step size, and kernel choice may require
tuning. This highlights the need for systematic investigation and automation of hyperparameter
selection for models like BNNs and deep generative models.

We present SMI as an extension to nonlinear SVGD, anchored in the kernelized gradient flows theory
(Liu et al., 2017; Chewi et al., 2020). However, such flows are not necessarily the best choice of
transport for mixture approximations Chen et al. (2018b); Dong et al. (2022). Another open question
is identifying which properties make gradient flows well-suited for mixtures.

One of the issues with Bayesian modeling of neural networks is their inherent non-identifiability,
which can lead to degenerate posteriors (Yacoby et al., 2022; Roy et al., 2024). SMI provides
several opportunities for addressing this issue via the choice of its kernel. Promising directions are
reparameterization invariant kernels (Roy et al., 2024), probability product kernels (Jebara et al.,
2004) and harnessing the connection between SMI and repulsive deep ensembles (D’Angelo &
Fortuin, 2021b).

We have considered small- to moderate-sized models to demonstrate that SMI offers robustness to
variance collapse, an economic use of particles and a proper ELBO objective. Given these results,
evaluating and adapting SMI for high-dimensional models in the light of the open questions raised
above is an obvious next step.
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A STEIN MIXTURE INFERENCE DETAILS

This section provides the details missing from section 4. In particular, we show that the functional
L↑[ρ] is an upper bound to L[ρ] in appendix A.1, give the complete derivation of the gradient of
L(ρm) in appendix A.2 and finally, in appendix A.3, demonstrate how to reduce SMI to SVGD and
OVI.

A.1 BOUNDING THE SMI FUNCTIONAL

Our goal is to show that
L↑[ρ] ≥ L[ρ]

because it allows us to conclude that the SMI variational objective is an ELBO when the repulsion is
not scaled (i.e., α = 1). Recall that the above functionals are given by

L[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ρ)

òò
and

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
.

In both functionals, ρ is a continuous distribution, p(θθθ,D) is the joint distribution of latent variables
and data, and q(θθθ|ρ) = Eρ(ψψψ) [q(θθθ|ψψψ)] is SMI’s variational approximation.

We need the following inequality to show that we can bound L[ρ]. To shorten the notation, let
ρ = ρ(ψψψ) and q = q(θθθ|ψψψ). With this notation, it holds that

Eρ [Eq [logEρ [q]]] ≥ Eρ [Eq [log q]] (10)

as shown by

Eρ [Eq [logEρ [q]]] ≥ Eρ [Eq [Eρ [log q]]] = Eρ [Eρ [Eq [log q]]] = Eρ [Eq [log q]] .

With the inequality established, we can show that L↑[ρ] upper bounds L[ρ] as follows:

L↑[ρ] ≡ Eρ(ψψψ)
ï
Eq(θθθ|ψψψ)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

òò
(expand log)

= Eρ(ψψψ)
[
Eq(θθθ|ψψψ) [log p(θθθ,D)]

]
− Eρ(ψψψ)

[
Eq(θθθ|ψψψ) [log q(θθθ|ψψψ)]

]
(negation of eq. (10))

≥ Eρ(ψψψ)
[
Eq(θθθ|ψψψ) [log p(θθθ,D)]

]
− Eρ(ψψψ)

[
Eq(θθθ|ψψψ)

[
logEρ(ψψψ) [q(θθθ|ψψψ)]

]]
(combine logs)

= Eρ(ψψψ)

ñ
Eq(θθθ|ψψψ)

ñ
log

p(θθθ,D)

Eρ(ψψψ) [q(θθθ|ψψψ)]

ôô
≡ L[ρ],

which shows that L↑[ρ] ≥ L[ρ] as claimed.

A.2 SMI GRADIENT DERIVATION

With the bound on L[ρ] established, we now focus on showing that the mapping ψψψ1,ψψψ2, . . . ,ψψψm 7→
L(ρm) is differentiable wrt. the ℓ’th particle. For conciseness, we use L(ρm) to mean both the map
ψψψ1,ψψψ2, . . . ,ψψψm 7→ L(ρm) from particles {ψψψi}mi=1 and the functional L parameterized by ρm. We
can do this because {ψψψi}mi=1 completely characterises ρm(·) = 1/m

∑m
i=1 δψψψi

(·).

Demonstrating that L(ρm) is differentiable is an essential component for using theorem 3.1 to
optimize our variational objective. Specifically, theorem 3.1 requires us to have a differentiable
symmetric mapping L(ρm). We already established the symmetric nature of L(ρm) in the main
article. The closed form of the gradient shows that L(ρm) is differentiable wrt. ψψψℓ if q(θθθ|ψψψ) is
differentiable wrt. ψψψ. In practice, this restricts us to guides q(θθθ|ψψψ) that are differentiable. However,
this restriction is shared with OVI and easy to fulfill.
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Recall we claimed that the gradient of L(ρm) wrt. ψψψℓ particle is given by

∇ψψψℓ
L(ρm) = Eq(θθθ|ψψψℓ)

ñ
∇ψψψℓ

log q(θθθ|ψψψℓ) log
p(θθθ,D)∑m
j=1 q(θθθ|ψψψj)

ô
−

m∑
i=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
,

(11)

with the SMI functional given by

L(ρm) =
1

m

m∑
i=1

Eθθθ∼q(θθθ|ψψψi)

ñ
log

p(θθθ,D)
1
m

∑m
j=1 q(θθθ|ψψψj)

ô
To show that eq. (11) holds first notice that because L(ρm) is symmetric, the ordering of the particles
does not matter. For our derivation, we therefore simply pick one. With the ordering of the particles
now fixed, we can derive the gradient as follows:

m∇ψψψℓ
L(ρm) = ∇ψψψℓ

m∑
i=1

∫
q(θθθ|ψψψi) log

p(θθθ,D)
1
m

∑m
j=1 q(θθθ|ψψψj)

dθθθ (expand the log)

= ∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log p(θθθ,D)dθθθ

−∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

1

m
dθθθ

−∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

Now the second term is zero because

∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

1

m
dθθθ = ∇ψψψℓ

log
1

m

∫
q(θθθ|ψψψℓ)dθθθ = ∇ψψψℓ

log
1

m
= 0,

which gives us

m∇ψψψℓ
L(ρm) = ∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log p(θθθ,D)dθθθ −∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

Noting that when i ̸= ℓ we have ∇ψψψℓ
q(θθθ|ψψψi) = 0, we can eliminate the sum on the first term to have

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log p(θθθ,D)dθθθ −∇ψψψℓ

∑
i

∫
q(θθθ|ψψψi) log

∑
j

q(θθθ|ψψψj)dθθθ.

From here, if we use the product rule and combine like terms, we obtain

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log
p(θθθ,D)∑
j q(θθθ|ψψψj)

dθθθ −
∑
i

∫
q(θθθ|ψψψi)∇ψψψℓ

log
∑
j

q(θθθ|ψψψj)dθθθ.

Finally, because ∇ log f = 1
f∇f we have

m∇ψψψℓ
L(ρm) =

∫
∇ψψψℓ

q(θθθ|ψψψℓ) log
p(θθθ,D)∑
j q(θθθ|ψψψj)

dθθθ −
∑
i

∫
q(θθθ|ψψψi)

∇ψψψℓ
q(θθθ|ψψψℓ)∑

j q(θθθ|ψψψj)
dθθθ

= Eq(θθθ|ψψψℓ)

ñ
∇ψψψℓ

log q(θθθ|ψψψℓ) log
p(θθθ,D)∑m
j=1 q(θθθ|ψψψj)

ô
−

m∑
i=1

Eq(θθθ|ψψψi)

ñ
∇ψψψℓ

q(θθθ|ψψψℓ)∑m
j=1 q(θθθ|ψψψj)

ô
.

From the above, we have established that eq. (11) holds and L(ρm) is therefore differentiable and
symmetric as required for using theorem 3.1 to maximize SMI’s variational objective.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 REDUCING SMI TO OVI AND SVGD

In the following, we establish that both OVI and SVGD are instances of SMI for a particular choice
of hyper-parameters, namely a single particle and a point-mass guide, respectively.

A.3.1 SVGD AND MAP ARE SPECIAL CASES OF SMI

We can connect SMI to SVGD by choosing each guide component q(θθθ|ψψψi) as a point-mass, i.e.,
1ψψψi

(θθθ). Subsequently, the point-mass can be interpreted as a simple variable renaming. Using the
point-mass for each particle, we have that∫

1ψψψi
(θθθ) log

p(θθθ,D)
1
m1ψψψ(θθθ)

dθθθ = log
p(ψψψi,D)

1
m

.

Substituting this into L(ρm), the gradient wrt. the ℓ’th particle becomes

∇ψψψℓ
L(ρm) = ∇ψψψℓ

∑
i

log
p(ψψψi,D)

1
m

= ∇ψψψℓ
log p(ψψψℓ,D). (12)

Substituting eq. (12) for eq. (2) in eq. (9) recovers the SVGD update rule given to a constant factor 1/m.
From the connection to SVGD, we get the connection to MAP estimation for free as it corresponds to
SVGD with one particle (Liu & Wang, 2016). To be precise, MAP estimation corresponds to SMI
with a point-mass guide and one particle. Naturally, we can also recover MAP estimation by first
considering one particle and then introducing the point-mass guide. Next, we demonstrate that if we
choose an arbitrary (differential) guide and one particle, then SMI corresponds to OVI.

A.3.2 REDUCING SMI TO OVI

When SVGD reduces to MAP estimation when only using one particle, SMI reduces to ordinary
variational inference (as in eq. (4)) in the single-particle case. To see this, first note that with one
particle, the kernel k(ψψψ,ψψψ) is constant, regardless of ψψψ, and thus ∇1k(ψψψ,ψψψ) = 0. Starting from
eq. (9) and denoting the constant value of k(ψψψt,ψψψt) by c, we obtain

ψψψt+1 = ψψψt + ϵk(ψψψt,ψψψt)∇ψψψL(ρt1) + ϵα∇1k(ψψψ
t,ψψψt)

= ψψψt + ϵcEq(θθθ|ψψψt)

ï
∇1
ψψψ log q(θθθ|ψψψ) log p(θ

θθ,D)

q(θθθ|ψψψ)

ò
− ϵcEq(θθθ|ψψψt) [∇ψψψ log q(θθθ|ψψψ)]

= ψψψt + ϵc

∫
∇ψψψq(θθθ|ψψψ) log

p(θθθ,D)

q(θθθ|ψψψ)
dθθθ − ϵcEq(θθθ|ψψψt) [∇ψψψ log q(θθθ|ψψψ)]

= ψψψt + ϵc∇ψψψEq(θθθ|ψψψt)

ï
log

p(θθθ,D)

q(θθθ|ψψψ)

ò
= ψψψt + ϵc∇ψψψL(ψψψ),

where ϵ > 0 is the step size. This means that with one particle, we are doing gradient ascent on the
ELBO as defined in eq. (4). The connections to SVGD and ordinary VI are attractive because SMI
thus naturally bridges particle methods and OVI.

A.4 MINI-BATCHING

As with SVGD, computing the likelihood can become prohibitively expensive for large data sets
(N ≫ 0). To avoid the computational dependence on the size of the dataset, we approximate the
likelihood by data subsampling with the unbiased estimator

pI(D|θθθ) =
∏
i∈I

p(Di|θθθ)
N/|I|, (13)

where I ⊂ π(D) and π is a draw from the uniform distribution over index permutations. This follows
the standard mini-batching method in NumPyro (Phan et al., 2019).
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Table 4: The median recovery point R (> 5 favors SMI) for BNNs inferred with SMI and SVGD on
different regions of the wave dataset. SMI uses five particles. Due to reaching hardware limitations,
the moderate-dimensional results are lower bounds.

Model size In Between Entire

Low 1 8 8
Moderate 1 > 256 > 256

B RECOVERY POINT EXPERIMENT

To quantify the difference visualized in fig. 3, we use the log point-wise predictive density (LPPD), a
quantity used for model comparison and model fit in the presence of outliers (Vehtari et al., 2017).
The empirical LPPD is given by

LPPD =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|xi, θθθs)

)
,

where {(xi, yi)}i are data points from an evaluation region, θθθs ∼ q(θθθ|ψψψi,D) and ψψψi is drawn
uniformly from the converged particles. We repeat the experiment ten times to estimate the empirical
LPPD for each region.

A recovery-point experiment compares the LPPD from SMI using five particles to SVGD with an
increasing number of particles. We call the number of particles such that SVGD produces a better
LPPD the recovery point, R. Table 4 reports the median R over ten repeated trials over the three
regions from Table 5.

Can SVGD become on par with SMI by increasing the number of particles? Table 4 shows
that increasing the particle count can only compensate for the difference in LPPD between SMI and
SVGD for the tiny BNN. For the small BNN, SVGD reaches the GPU memory limit before reaching
the recovery point. The In region results show that a MAP estimate is enough only when the noise
level is low and there is enough data.

C EXPERIMENTAL DETAILS

This section provides extra results and the experimental setup needed for reproduction. Our experi-
mental code is available at ANONYMIZED and SMI is available under the Apache V2 license as
part of the probabilistic programming language ANONYMIZED

C.1 VARIANCE ESTIMATION

In this experiment, we aim to recover the per-dimension variance of a multivariate standard Gaussian
(MVG) across increasing dimensions. Specifically, we evaluate MVGs with dimensions 1, 2, 4, 8,
10, 20, 40, 60, 80, and 100. We compare the performance of SVGD and ASVGD, each utilizing 20
particles, against SMI with both 1 and 20 particles in estimating the variance.

For SMI, we employ a factorized Gaussian guide initialized with a scale of 0.1. SMI’s Gaussian
guide mean is uniformly initialized within each dimension’s [−2, 2]. In contrast, the particles for
ASVGD and SVGD are uniformly initialized within [−20, 20]. This wider initialization is crucial, as
ASVGD and SVGD fail to converge in lower dimensions without it.

Optimization is performed using the Adam optimizer for SVGD and ASVGD and Adagrad for SMI,
each with a learning rate of 0.05. We run the optimization for 60,000 steps, sufficient for all three
methods to achieve convergence.

Posterior shape To assess each method’s ability to recover the shape of the standard MVG, we
calculate the Frobenius norm between the estimated covariance matrix and the identity matrix,
representing the true covariance of the MVG. A perfect recovery corresponds to a zero distance
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Figure 4: Left: Frobenius distance between the estimated and the true covariance matrix in the
Gaussian variance estimation experiment, using 20 particles for all methods. Only SMI achieves
distances close to zero, indicating that it accurately captures the shape of the standard Gaussian,
unlike the other methods. Right: Frobenius distance when SMI uses a single particle. In this case,
SMI perfectly recovers the posterior.

Figure 5: Mean location estimates of a standard Gaussian distribution across different dimensionalities
and repulsion scaling (α) for SMI (with 1 and 20 particles), ASVGD, SVGD and RESVGD (with
20 particles). RESVGD repulsion is not scaled. The "Actual" line represents the true mean location
(zero). Only RESVGD exhibits significant bias, particularly in higher dimensions.

between the matrices. As illustrated in Figure 4, SMI is the only method among the three that
successfully captures the shape of the standard MVG.

Estimation of Mean Location Our Gaussian variance estimation experiment reveals that SVGD
and ASVGD suffer from variance collapse. However, providing unbiased estimates of the mean
location of a standard Gaussian distribution is an equally important requirement for these methods.
As shown in fig. 5, SMI, SVGD, and ASVGD successfully achieve this. In contrast, fig. 5 also
demonstrates that SVGD with resampling (RESVGD), implemented as Algorithm 1 in Ba et al.
(2021), produces a biased estimate of the mean. For this reason, we excluded it from our experiments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 5: Evaluation interval and data size (|D|) of wave datasets. All data points are drawn uniformly
from the evaluation interval. The Between and Entire regions contain points outside the clusters used
for inference.

Region Evaluation Interval |D|
In [−1.5,−0.5] ∪ [1.3, 1.7] 20
Between [−0.5, 1.3] 60
Entire [−2, 2] 120

C.2 SYNTHETIC 1D REGRESSION

The data-generating process combines a linear and sine-wave periodic trend given by

p(y|x) = N (y|µ = (1.5 sin [2π(x+ 2/3)] + 3x+ 1) , σ = 0.1) .

We estimate a tiny and a small BNN using twenty observations drawn uniformly from each of two
separate clusters at the intervals [−1.5,−0.5] and [1.3, 1.7]. The construction provides a data-sparse
interval [−0.5, 1.3] in between the two clusters. The idea of Foong et al. (2019) is to use this in-
between region to evaluate the inference methods’ ability to capture and assign high uncertainty to
data-sparse intervals.

We evaluate the BNNs on the In, Between, and Entire regions specified in table 5. The Between and
Entire regions contain points outside the data clusters as seen in fig. 6. The In region has separate
samples for inference and evaluation.

Bayesian networks The BNNs have one hidden layer with tanh activation for both models. The
moderate-dimensional case has a hidden dimension of 100, and the low-dimensional one has a hidden
dimension of 5, yielding 10,301 and 41 parameters, respectively. We use standard Gaussian priors
on weights and biases and a Gaussian likelihood with a mean determined by the network and the
standard deviation is fixed at the known data noise level of 0.10.1. The noise level is intentionally
kept small to ensure that any observed uncertainty arises primarily from the BNN.

Inference details We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001.
We run SVGD, ASVGD, and SMI with five particles for 15,000 steps and OVI for 50,000 steps,
sufficient for converging. We use 5,000 draws to estimate a performance metric for OVI and SMI.
For both SMI and OVI, we use factorized Gaussians as guides. We use a hundred draws to estimate
the Stein force for SMI (i.e., eq. (8)). All methods are initialized in [−0.1, 0.1] and measurements are
taken for ten different initialization.

C.2.1 RECOVERY POINT SETUP

The recovery point experiment uses the same hyper-parameter setup as above. Recall that the recovery
point is the number of particle SVGD required to get an LPPD below five particle SMI. To reach it,
we begin with one particle SVGD and subsequently double until we reach the recovery point. We
repeat the experiment ten times.

C.3 MNIST CLASSIFICATION

This section outlines the details required to reproduce our MNIST classification results.

Bayesian network We utilize both 1-layer and 2-layer Bayesian Neural Networks (BNNs), each
with a hidden layer of 100 units and ReLU activation functions. Input images are flattened before being
fed into the BNNs. The likelihood is modeled as a 10-class categorical distribution, parameterized by
the logits produced by the BNN.

Inference details We employ the Adam optimizer with a learning rate of 10−3 for both MAP and
OVI. For SVGD, SMI) and ASVGD, we use the Adagrad optimizer with a learning rate of 0.7 for the
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Figure 6: Top row: The samples were drawn from the data-generating process for evaluating Between,
In and Entire regions, respectively. The In region used for inferring the BNNs is highlighted in grey.
Bottom row: The samples drawn from the data-generating process to infer BNN posteriors.

one-layer BNN and 0.8 for the two-layer BNN, utilizing five particles in each case. Specifically, the
SMI method estimates the attractive force using 55 draws.

All approaches are trained for 100 epochs with a batch size of 128. Instead of random subsampling,
we implement mini-batching and appropriately scale the likelihood, as described in Equation eq. (13).

We use the Adam optimizer with a learning rate of 10−3 for MAP and OVI. For SVGD, SMI and
ASVGD, we use the five particles and Adagrad optimizer with a learning rate of 0.7 on the 1-layered
BNN and 0.8 on the 2-layered BNN. SMI uses 55 draws to estimate the attractive force. All methods
run for 100 epochs with a batch size of 128. We use mini-batching rather than random subsampling
but scale the likelihood as in eq. (13).

C.4 UCI REGRESSION BENCHMARK

In this section, we provide the details for reproducing our UCI regression results.

Time comparison for VI methods In table 6, we reproduce the per-step average inference time
[sec/step] on the UCI datasets for SMI, SVGD, ASVGD, OVI and MAP. On UCI datasets, SMI
exhibits slower inference compared to the VI-based baselines. A portion of this overhead arises from
JIT compilation, which we believe can be reduced by optimizations in future releases of SMI.

When considering the recovery point experiment table 4, SMI demonstrates significantly improved
runtime efficiency. On the mid-sized network, SMI achieves inference times 6x faster than SVGD.
This observation suggests that while VI methods excel in runtime on UCI datasets, SMI provides a
better trade-off when factoring in performance gains. Thus, in contexts where accuracy and robustness
are critical, SMI is preferable despite its higher initial runtime cost.

Bayesian network We use a single-layer Bayesian neural network with a hidden dimension of 50
and ReLU activation for all datasets. We use a Gaussian likelihood with the mean given by the BNN
and a Gamma(shape=1, rate=0.1) prior on the precision (i.e., reciprocal variance). For SMI and OVI,
we use the softplus (x 7→ log(exp(x) + 1)) transformation on the Gaussian approximation to account
for the difference in support of the likelihood precision. This is the transformation recommended in
Kucukelbir et al. (2017) for inference using automatic differentiation when transforming a random
variable from R to R+. The independent variable (x) is standardized, while the dependent variable
(y) is kept as is. We randomly initialize guides uniformly in the interval [−0.1, 0.1].

Inferring the networks We randomly initialize the tested methods uniformly in unconstraint space
within the interval [−0.1, 0.1]. This is lower than the NumPyro default of [−2, 2]. The initialization
strategy mimics the initialization from Liu & Wang (2016) for SVGD and substantially reduces the
steps needed for good performance.
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(a) Low-dimensional model (b) Moderate-dimensional model

Figure 7: Figure 7a: High-density interval (HDI) for the low-dimensional model inferred using SMI,
SVGD, ASVGD and OVI on the 1D wave dataset (dotted line). SVGD, ASVGD, and SMI use five
particles. The posteriors are inferred with data drawn from the In region, highlighted with vertical
lines. Figure 7b: HDI for the moderate-dimensional model. ASVGD and SVGD display collapse
by a significant narrowing in HDI between the In regions when comparing the low to moderate
dimensions. In low-dimensional models, initialization plays a role in narrowing or widening HDI for
all methods. In mid-sized models, SMI is robust to initialization.
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Dataset SMI SVGD ASVGD OVI MAP

Boston 0.0014 0.0003 0.0003 0.0002 0.0001
Concrete 0.0015 0.0004 0.0003 0.0002 0.0001
Energy 0.0017 0.0003 0.0003 0.0002 0.0001
Kin8nm 0.0192 0.0004 0.0004 0.0003 0.0002
Naval 0.0103 0.0004 0.0004 0.0004 0.0001
Power 0.0079 0.0004 0.0004 0.0002 0.0002
Protein 0.0468 0.0011 0.0008 0.0004 0.0003
Wine 0.0093 0.0003 0.0003 0.0002 0.0001
Yacht 0.0059 0.0003 0.0003 0.0003 0.0001

Table 6: The table shows the average time per step (in seconds per step) for datasets in the UCI
regression benchmark. Although SMI demonstrates slower inference times compared to alternative
methods, the recovery point experiment indicates that SMI offers a more favorable trade-off when
considering the associated performance improvements.

We choose the learning rate from [5 · 10−i]6i=1 with a grid search on the first split of each data set. We
select the learning rate with the best RMSE on a 10% validation split from the training data. Table 7
provides the chosen learning rate for each method and dataset.

We use the Adam optimizer for up to 60.000 steps, inferring the BNNs a random subsample of size
100 without replacement. The independent variable (x) is standardized, while the dependent variable
(y) is kept as is.

For the particle methods, we use a convergence criterion on the Euclidean norm of ϕ∗. We compare a
slow-moving norm average, calculated over the last 350 steps, against a fast-moving norm average,
computed over the previous 35 steps. If the fast-moving average exceeds the slow-moving average,
we conclude that the methods fluctuate around a minimum and stop iterating Equation (7). The
number of past steps was chosen using the first split of the Boston Housing dataset with a learning
rate of 0.5 using a 10% validation set from training to minimize RMSE.

Standard UCI
Dataset ASVGD MAP OVI SMI SVGD

Boston 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−6

Concrete 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−2

Energy 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−4

Kin8nm 5 · 10−5 5 · 10−5 5 · 10−4 5 · 10−3 5 · 10−4

Naval 5 · 10−5 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−5

Power 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−4

Protein 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−3 5 · 10−3

Wine 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−5

Yacht 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−5

Gap10 UCI

Boston 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−2

Concrete 5 · 10−4 5 · 10−4 5 · 10−3 5 · 10−4 5 · 10−3

Energy 5 · 10−4 5 · 10−2 5 · 10−2 5 · 10−4 5 · 10−4

Kin8nm 5 · 10−5 5 · 10−4 5 · 10−3 5 · 10−5 5 · 10−4

Naval 5 · 10−5 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−5

Power 5 · 10−4 5 · 10−5 5 · 10−2 5 · 10−4 5 · 10−4

Protein 5 · 10−4 5 · 10−3 5 · 10−3 5 · 10−4 5 · 10−3

Wine 5 · 10−5 5 · 10−5 5 · 10−4 5 · 10−2 5 · 10−5

Yacht 5 · 10−5 5 · 10−3 5 · 10−3 5 · 10−3 5 · 10−4

Table 7: Learning rate for the methods used on the standard and Gap10 splits of UCI.
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Table 8: Summary statistics for the standard UCI benchmark datasets with train-test splits from
Hernández-Lobato & Adams (2015) and Gap10 benchmark datasets adapted from Foong et al. (2019)
to use 10% for testing instead of 33%.

Dataset Train size Test size Features Std Splits Gap10 Splits

Boston 455 51 13 20 13
Concrete 927 103 8 20 8
Energy 691 77 8 20 8
Kin8nm 7373 819 8 20 8
Naval 10741 1193 17 20 17
Power 8611 957 4 20 4
Protein 41157 4573 9 5 9
Wine 1439 160 11 20 11
Yacht 277 31 6 20 6

(a) Location dimension of particles. (b) Variance dimension of particles.

Figure 8: Converged two-particle approximation of a two-dimensional Gaussian using SMI and
SVGD. Each SMI particle, denoted asψψψ, parameterizes a Gaussian guide withψψψ = (x, y, z, w), where
(x, y) represent the guide’s location and (z, w) represent its variances. In contrast, an SVGD particle,
denoted as θθθ, only represents location dimensions, i.e., θθθ = (x, y). Left: Location dimensions of SMI
and SVGD particles. Shades show the equiprobability contours of the Gaussian. Right: Variance
dimensions of the SMI particles. SVGD particles are absent here as they only represent location.
SMI effectively approximates the Gaussian by explicitly incorporating variance as part of its particle
dimensions. The SMI forces are scaled for better visibility in the location dimensions. No force
arrows are visible in the variance dimensions because the system has converged, making the forces
negligible.

The standard UCI split We use the train-test splits from Mukhoti et al. (2018) for our standard
UCI results. Table 8 gives summary statistics of the datasets. We treat features and responses (i.e.,
(x, y)) as real values.

The Gap10 UCI split We use the methodology suggested in Foong et al. (2019) to construct the
GAP dataset. We sort each feature dimension individually, taking the middle tenth as a test and
leaving the two tails as our training split. Using this procedure will result in as many splits as features.
However, where Foong et al. (2019) allocated the middle third for testing, we use a tenth to have the
same test allocation as standard UCI. Comparing Standard to Gap10 in table 8, the Gap10 generally
produces fewer splits than standard UCI.

D SMI VERSUS SVGD: INSIGHTS FROM A SIMPLE TOY MODEL

To address variance collapse, the key distinction between SVGD and SMI lies in the space the particles
occupy. SMI particles operate in a higher-dimensional space than SVGD particles. This allows the
repulsive term, ∇1k(x, y), in SMI to influence the distribution’s shape and its parameterized location.
In contrast, SVGD particles can only control location.
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In SVGD, each particle represents a latent parameter sample. Meanwhile, in SMI, each particle
parameterizes an entire distribution. For example, if the parameterized distribution is a factorized
Gaussian, each SMI particle would represent both the mean (location) and variance of the Gaussian.
While the location component of an SMI particle shares the same space as an SVGD particle, the
variance component has no equivalent in SVGD. As a result, the repulsive force in SMI operates in a
broader space, encompassing both location and variance.

This distinction becomes evident when comparing SVGD and SMI in a two-particle approximation
of a standard Gaussian distribution. The SMI approximation forms a Gaussian mixture. By breaking
SMI particles into their location and variance components, we can visualize the location component
within the same space as SVGD particles and the target Gaussian density. In fig. 8a, SMI particle
locations converge toward the center of the target Gaussian, while SVGD particles spread out,
maintaining equal distances from the Gaussian center.

At first glance, it might seem that SMI particles have collapsed when considering only their locations.
However, this interpretation is incomplete because it only tells half the story. When we examine the
variance component of the SMI particles in fig. 8b, we observe that a single SMI particle captures the
variance in one dimension of the target Gaussian distribution, and both particles cover the variance in
the other dimension.
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