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Fig. 1. Overview of the Quark Model: Quark takes a set of multi-view images or video streams and reconstructs a compact layered depth map (LDM)
representation that is used to perform image-based rendering. Network inference is fast; scene reconstruction and rendering combined run at 30fps on a single
NVIDIA A100 GPU at 1080p (1920x1080) resolution, enabling Quark to perform high quality novel view synthesis on-demand for a dynamic viewpoint even for
scenes with moving content. During each time step the network creates a pyramid of downsampled and encoded input images using scalar downsampling
factors k and then infers an LDM in the frustum of the novel viewpoint through a series of n Update & Fuse steps that use across-view attention to fuse
information from multiple input views. This iterative, multi-scale approach also saves compute by gradually increasing spatial resolution while decreasing

layer count. A final bilinear upsample by a scalar factor of s followed by non-li
See Section 3 for more details on the notation and implementation.

We present a novel neural algorithm for performing high-quality, high-
resolution, real-time novel view synthesis. From a sparse set of input RGB
images or videos streams, our network both reconstructs the 3D scene and
renders novel views at 1080p resolution at 30fps on an NVIDIA A100. Our
feed-forward network generalizes across a wide variety of datasets and
scenes and produces state-of-the-art quality for a real-time method. Our
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near feature activation is used to produce an LDM at the final output resolution.

quality approaches, and in some cases surpasses, the quality of some of
the top offline methods. In order to achieve these results we use a novel
combination of several key concepts, and tie them together into a cohesive
and effective algorithm. We build on previous works that represent the
scene using semi-transparent layers and use an iterative learned render-
and-refine approach to improve those layers. Instead of flat layers, our
method reconstructs layered depth maps (LDMs) that efficiently represent
scenes with complex depth and occlusions. The iterative update steps are
embedded in a multi-scale, UNet-style architecture to perform as much
compute as possible at reduced resolution. Within each update step, to better
aggregate the information from multiple input views, we use a specialized
Transformer-based network component. This allows the majority of the
per-input image processing to be performed in the input image space, as
opposed to layer space, further increasing efficiency. Finally, due to the
real-time nature of our reconstruction and rendering, we dynamically create
and discard the internal 3D geometry for each frame, generating the LDM
for each view. Taken together, this produces a novel and effective algorithm
for view synthesis. Through extensive evaluation, we demonstrate that we
achieve state-of-the-art quality at real-time rates.

CCS Concepts: « Computing methodologies — Rendering; Reconstruc-
tion; Neural networks.
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1 INTRODUCTION

In recent years, approaches to view synthesis have achieved im-
pressive photorealistic results [Kerbl et al. 2023; Mildenhall et al.
2020; Muller et al. 2022]. These algorithms generally require two
steps to generate novel views of a scene. First, they perform an
optimization procedure to reconstruct a 3D physical representation.
Second, the 3D representation is rendered from a novel view. While
some approaches are capable of performing the rendering step in
real-time, the reconstruction step remains stubbornly slow.

We present a neural algorithm that achieves real-time rates for
reconstruction and rendering combined. As depicted in Fig. 1, our
algorithm takes as input an array of wide baseline high-resolution
images or video streams and produces high-quality novel view ren-
derings. In our experiments (see Sec. 4), we use 8 input images per
frame that are as far as 30cm apart, and we demonstrate that our
model can produce novel views at 30fps at 1080p (1920x1080) res-
olution on an NVIDIA A100 GPU. Through thorough qualitative
and quantitative analysis, we demonstrate state-of-the-art quality at
real-time rates. More impressively, our quality approaches some of
the top offline methods, and in some cases surpasses them. Through
extensive ablations we validate our design choices and show that
our network is highly tuneable, and can achieve even higher quality
if slower (e.g. 10fps) rendering is acceptable.

Our approach combines several key concepts that are described
below and highlighted in Fig. 1.

Layered depth map (LDM) scene representation. As depicted in
the top-right of Fig. 1, we make use of a layered depth map (LDM)
3D scene representation. The output LDM uses a small number
(6 for our fastest model) of layers, each with an associated depth
map, density map, and blend weights. The depth map geometry
conforms to objects in the scene, the density map models occlusions
and anti-aliased edges, and the blend weights blend over the input
image pixels to produce high-resolution output images. Note that
the LDM is closely related to a layered mesh (LM) from previous
works [Broxton et al. 2020; Khakhulin et al. 2022; Solovev et al. 2023],
but, as described in Sec. 3, we never need to instantiate a mesh from
our depth maps.

Moreover, our method reconstructs, renders, and discards the
LDM for every frame. Hence we can optimize the LDM to each
specific novel view in a video sequence, aligning it with the view;
generating depth, density, and blend weights that are optimized for
that view; and rendering with a simple pixel-aligned over opera-
tion. As demonstrated in our results (Sec. 4), this especially helps
for scenes with reflective and refractive materials which our LDM
representation doesn’t model explicitly.
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Multi-scale learned render-and-refine network core. In order to
create an efficient network to solve the LDM for each frame, we
use a multi-scale learned render-and-refine network structure as
highlighted in the bottom of Fig. 1. The learned render-and-refine
approach was first introduced by [Flynn et al. 2019] and is sim-
ilar to an unrolled gradient descent but with dramatically faster
convergence properties (e.g. 5 iterations instead of thousands). As
described in Sec. 3, in each Update & Fuse step in Fig. 1 the network
renders the current LDM estimate to each of the input views, and
uses the result to refine the LDM. Still, previous implementations
of learned render-and-refine [Broxton et al. 2020; Flynn et al. 2019;
Solovev et al. 2023] are far too slow for real-time.

Our work is the first to make this learned render-and-refine ap-
proach real-time, which we achieve by embedding the Update &
Fuse steps into a UNet [Ronneberger et al. 2015] structure. As shown
in Fig. 1, the encoded image features are first projected into a multi-
scale pyramid. Then the first Update & Fuse step starts at the lowest,
aggressively down-scaled resolution. Each successive step improves
the LDM solution, while some increase the spatial resolution (the
second, fourth, and fifth in Fig. 1), and some decrease the number
of LDM layers (the last two in Fig. 1). The number of layers pro-
gresses from high to low because the depth dimension for most
scenes is best represented by a small number of impulses (surfaces).
The denser depth sampling at early iterations locates those surfaces,
and the fewer layers at later iterations more closely follow them.
As shown in our ablations (Sec. 4.2), reducing the layers slightly re-
duces quality, but the benefit in significantly reduced runtime makes
it well worth it. This network architecture efficiently balances the
compute between the spatial and depth dimensions.

To further optimize the network, the final Update & Fuse generates
an LDM at a reduced resolution (scaling factor s in Fig. 1, which is
~2X-4X in our experiments), and we upscale the unactivated LDM
attributes (depth, density, and blend weights) with a simple bilinear
upsample followed by an activation (Upsample & Activate in Fig. 1).
This approach has been demonstrated to be effective for piecewise
smooth functions, like our LDM attributes, as it cleanly interpolates
the smooth regions while maintaining sharp edges [Karnewar et al.
2022].

Transformer-based input view fusion. A central problem in view
synthesis is how to aggregate information from multiple views in an
efficient and order-independent manner. As described in Sec. 3.3, our
method solves this by incorporating a Transformer [Vaswani et al.
2017]-based network component within each Update & Fuse step.
Similar approaches have proven effective in previous work [Reizen-
stein et al. 2021; Yang et al. 2019] but can be expensive. We introduce
a novel, optimized variant of cross-attention, One-to-many attention,
that dramatically lowers computational requirements.

We additionally show how to replace a Transformer’s traditional
positional encoding with a directional encoding based on the pose
of the input images.

Results. When taken together, these, along with many other smaller
design choices fully described in Sec. 3 and justified with extensive
ablations in Sec. 4.2, produce a novel algorithm that produces high-
quality synthesized images at real-time rates as demonstrated by
our results in Sec 4.
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2 RELATED WORK

Our approach aims to solve the problem of novel view synthesis,
where, given a set of input images from different views of a scene,
we generate a novel view that reproduces complex 3D parallax
effects and occlusions. Most classical solutions to this problem can
be classified as image-based rendering (IBR) [Chen and Williams 1993;
McMillan and Bishop 1995]. More recent solutions that use neural
networks are considered neural rendering algorithms [Tewari et al.
2022]. Ours is a neural rendering approach that uses IBR in order
to efficiently produce high-quality, high-resolution results. Here
we focus on the more recent neural rendering efforts; the classical
methods are well covered by surveys [Wu et al. 2017; Zhang and
Chen 2004].

The main aspects of our approach that most clearly distinguish it
from others are its (1) LDM physical representation (Sec 2.1) and (2)
novel generalizable and efficient neural algorithm (Sec. 2.2).

2.1 Physical Representations for View Synthesis

The quality of view synthesis algorithms is highly dependent on
the accuracy of their physical representation [Chai et al. 2000; Lin
and Shum 2004]. Recent view synthesis approaches use a wide
variety of representations, including implicit surfaces [Kellnhofer
et al. 2021; Niemeyer et al. 2020; Oechsle et al. 2021; Sitzmann et al.
2019b; Wang et al. 2021a], point clouds [Aliev et al. 2020; Lassner
and Zollhofer 2021; Riickert et al. 2022; Wiles et al. 2020; Yifan et al.
2019], voxels [Fridovich-Keil et al. 2022; Hedman et al. 2021; Liu et al.
2020; Sitzmann et al. 2019a; Yu et al. 2021a], 3D Gaussians [Kerbl
et al. 2023], triangle surface meshes [Burov et al. 2021; Hu et al.
2021; Thies et al. 2019], multi-plane images (MPIs) [Flynn et al. 2019;
Mildenhall et al. 2019; Tucker and Snavely 2020; Wizadwongsa et al.
2021], multi-sphere images (MSIs) [Attal et al. 2020; Broxton et al.
2020]), layered meshes (LMs) [Broxton et al. 2020; Khakhulin et al.
2022; Solovev et al. 2023] and volumetric ray marches of neural
fields [Barron et al. 2021; Mildenhall et al. 2020; Miiller et al. 2022].

The highest quality algorithms tend to use fully volumetric rep-
resentations, many with a volumetric ray march [Mildenhall et al.
2020], whereas the surface based representations, like implicit sur-
faces and surface meshes, are tailored for efficient rendering. Volu-
metric representations better capture complex geometry with many
interocclusions, like leaves. Unfortunately, these methods can be
slow, especially for scene reconstruction. There are many recent
approaches to speed up the ray march [Attal et al. 2023; Barron et al.
2023; Chen et al. 2022; Fridovich-Keil et al. 2023; Garbin et al. 2021;
Lin et al. 2023, 2022; Miiller et al. 2022; Reiser et al. 2021; Wan et al.
2023; Wang et al. 2023; Yariv et al. 2021], but we’re only aware of
one (eNeRF [Lin et al. 2022], discussed in more detail below) that can
achieve interactive rates for combined reconstruction and rendering
while also producing competitive quality for some scenes.

In our work, we use an LDM representation which is similar to
an LM. Previous work that use LMs also internally solve an LDM
and then map to an LM in order to reproject to other views, but
as described in Sec. 3 we render the LDM directly without a mesh.
LDMs (and LMs) aim to combine the quality of fully volumetric
representations and the efficiency of surfaces. The layers can be
considered steps of a volumetric ray march, while the depth map
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within each layer follows the smooth surfaces that make up the
largest portion of real-world scenes. While Gaussian splats [Kerbl
et al. 2023] have emerged as a promising new representation en-
abling fast rendering, their computation, like that of NeRF, requires
a slow, offline, per-scene process. The 2D surfaces of the LDM allow
us to use efficient 2D network components to solve the scene. One
of the historical downsides of LDMs and LMs is that they can’t be
viewed from all directions, but, as demonstrated in Sec. 4, this is
less of a limitation for our method because we regenerate the LDM
for every novel view.

2.2 Generalizable Neural Algorithms for View Synthesis

While the physical representation determines the asymptotic quality
limit for novel view synthesis, the algorithm determines both how
closely it approaches that limit and the overall speed. As described
in Sec. 3, we use a novel architecture that is designed for efficiency,
specifically during scene reconstruction, and generalizability, to
reconstruct a broad range of scenes using a small number of input
images.

Many recent approaches use a non-generalizable offline opti-
mization, usually gradient descent, in order to fit the scene to their
physical representation [Barron et al. 2021; Kerbl et al. 2023; Milden-
hall et al. 2020]. These methods produce high-quality results, but
they must be separately trained for every scene, which, while an
active area of research, is still a slow, iterative process. Moreover,
they require a large and dense set of input images in order to achieve
high quality.

Our approach is generalizable, which means both that it doesn’t
have to be trained per scene and also that we can produce high
quality even with a small number of wide-baseline images. There are
several other recent generalizable neural rendering methods [Cao
et al. 2022; Chen et al. 2021; Jain et al. 2021; Suhail et al. 2022; Wang
et al. 2021c; Yu et al. 2021b]. We directly compare to three state-
of-the-art methods in our results (Sec. 4), and we describe them in
more detail later in this section.

A central problem for generalizable view synthesis networks is
how to aggregate information from multiple views. Earlier meth-
ods [Flynn et al. 2016; Mildenhall et al. 2019] used simple concatena-
tion of across-view features, but they are not invariant to the input
camera ordering, and they must be trained for a specific number
of input images. Recurrent networks [Choy et al. 2016; Kar et al.
2017] allow for variable numbers of input images but are also not
order-invariant. Statistical measures such as mean [Yu et al. 2021b]
and variance [Wang et al. 2021c] are simple and order-invariant,
but have limited representational power. [Flynn et al. 2019], on the
other hand, uses repeated max-pooling, which has been shown [Qi
et al. 2017] to be a powerful set aggregator.

With the increasing popularity of Transformers [Vaswani et al.
2017], attention has emerged as a natural alternative [Lee et al.
2018]. Earlier work, the AggTransformer [Yang et al. 2019] uses a
simpler form of attention where each feature is projected to an
attention weight, and these weights are aggregated with a softmax,
but it does not repeat this operation, which limits its power. In
contrast, the NerFormer [Reizenstein et al. 2021] repeatedly applies
self-attention across the M views, alternating with attention along
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the ray. This method retains a Transformer’s full expressive power,
but is expensive due to self-attention’s well-known O(M?) complex-
ity. Our proposed method, One-to-many attention, aims to combine
the efficiency of the AggTransformer while largely retaining its
expressiveness.

In our results (Sec. 4), we directly compare to the following three
recent generalizable neural view synthesis algorithms. Out of the
most recent state-of-the-art methods, these three had the most sim-
ilarities to ours.

GPNR [Suhail et al. 2022] also aims to produce state-of-the art
quality with a generalizable neural network. GPNR extracts patches
from neighboring images along the novel view rays’ epipolar lines
and feeds them into a Transformer architecture to solve the color
for each ray. We also use a Transformer-inspired component in our
network. However, as described in Sec. 3.3, we use a novel optimized
form of One-to-many attention, and as shown in Sec. 4, our quality
is competitive with and often surpasses GPNR, even though our
method is over 700X faster.

As of the time of this paper, eNeRF [Lin et al. 2022] is the fastest
generalizable neural rendering approach that also achieves com-
petitive quality for some scenes. They speed up ray marching by
sampling only around a single surface, represented by a depth map
with varying thickness. eNeRF runs at interactive rates at lower
resolutions and achieves competitive quality for simpler scenes with
limited depth complexity. As shown in our results, we achieve higher
quality for more complex scenes while being at least 6x faster.

We also compare to SIMPLI [Solovev et al. 2023] because their
algorithm has commonalities with ours. They also use a render-
and-refine structure and an LDM geometry. However, as shown
in Sec. 3, our network differs in critical ways, most significantly
our multi-scale LDM architecture and our Transformer-inspired
One-to-many attention module for view fusion. Our results show
that our quality surpasses SIMPLI while running over 100x faster.

2.3 Single-view Methods

There is a growing class of view synthesis approaches that can
render 3D scenes from very restricted views, a monocular video
stream, or even a single image. These include approaches that use
generative algorithms with a learned prior [Chan et al. 2022; Du et al.
2023; Liu et al. 2023; Trevithick et al. 2023; Tseng et al. 2023; Xu et al.
2022]; approaches that use a more explicit prior, usually a human
head [Chu et al. 2020; Lombardi et al. 2021; Ma et al. 2021; Meshry
et al. 2021; Peng et al. 2021b; Wang et al. 2021b] or full body [Peng
et al. 2021a; Remelli et al. 2022]; and approaches that use multiple
views over time [Li et al. 2021; Park et al. 2021a,b; Pumarola et al.
2021; Tretschk et al. 2021; Xian et al. 2021]. This is an exciting space
that can enable simpler image capture hardware and processes.

However, the multi-view approaches discussed in Secs. 2.1 and 2.2
currently provide significantly higher quality and generalize to a
broader range of scenes. Thus we consider these single-view meth-
ods a separate class of algorithm and do not compare directly to
them in this paper.
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3 METHOD

In this section, we describe the key components of the Quark algo-
rithm shown in Fig. 1. In order to achieve high quality at real-time
rates, we structure our network to perform a multi-scale iterative
render-and-refine process that allows most processing to be per-
formed at low resolution. First, the input pixel colors and ray direc-
tions in the Input Views are encoded (Encode Input Images) into a
feature pyramid [Lin et al. 2017]. Next, these multi-scale features
are fed into Iterative Updates, which are a series of Update & Fuse
steps that refine the LDM. These steps save compute by balanc-
ing the increase in the LDM’s resolution with a decrease in the
number of layers. To guide the refinement within each Update &
Fuse step (shown in expanded detail in Fig. 3), the LDM is rendered
to the input views (Render to Input Views). We aggregate features
from the different views using an efficient One-to-many attention
mechanism.

When the process of Iterative Updates described above concludes,
a final LDM is produced with dimensions that are a scale factor s
smaller than the desired output resolution. The final LDM can then
be rendered to a full resolution novel view via the following light-
weight process. First, Upsample & Activate bilinearly interpolates
the LDM attributes (depth, density, and blend weights) to the output
resolution and activates them. Next, the original input views are pro-
jected onto the depth layers, these are combined into a single image
per layer with blend weights, and then layers are over-composited
back to front to produce the rendered novel view. If needed, a depth
map can optionally be produced by over-compositing the decoded
depth instead of the blended input views.

The following subsections describe these stages in more detail. We
begin with the LDM output representation and rendering equation in
Sec. 3.1, followed by an end-to-end description of the algorithm that
generates the LDM in Section 3.2. We expand upon our Transformer-
based fusion mechanism in Sec. 3.3, and we detail our training
procedure in Sec. 3.4.

3.1 The Layered Depth Map (LDM)

In this section we will describe the LDM produced at the output
of the Quark network and show how it can be used to render the
final RGB image. The LDM consists of a series of L layers with
spatial dimensions [H, W] that are situated within the frustum of
the novel viewpoint being rendered, which we henceforth refer to
as the target viewpoint. LDM layers have three associated attributes:
depths d, densities o, and blend weights f (see Figure 1). The depth
and density contain the [L, H, W, 1] depth and transparency (i.e.
alpha) values respectively. The blend weights f contain [L, H, W, M|
coefficients for blending M input images on each layer.

To render the target image from an LDM, we first back-project
the input images onto the depth layers. We define the operator
Q"GT( I, d) for this purpose (the transpose here denoting that this
is the adjoint of the normal forward projection operator & that
will be introduced shortly). Here Iis an [M, H, W, C] tensor of input
images, and 6 are the camera parameters. The back-projected input
images are blended using the per-image blend weights S, to create
per-layer RGB. This RGB, along with the density o, is then over-
composited to produce the final image. Let O : (c,0) +— I be the
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Fig. 2. Encode Input Images from Fig. 1. Quark encodes and downsamples
input images using a series of residual networks and strided mean-pooling
layers.

standard over composite operator, which renders an image by alpha
compositing the appearance c at each layer from back to front. The
resulting render is:

M
Ctarget = O Z Bm - e.O/jg(I, d),of. (1)
m=1

While training leverages standard differentiable rendering compo-
nents, during inference we use a CUDA-optimized renderer, enabling
1080p resolution at approximately 1.3 ms per frame.

3.2 The Quark Algorithm

In this subsection, we describe the algorithm’s three major sub-
components, with a particular focus on the iterative multi-scale
render-and-refine approach. To aid in understanding, we encour-
age the reader to refer to Fig. 1, which shows the overall network
structure, and Fig. 3, which shows the Update & Fuse step in detail.

As motivation for our approach, we note that solving the LDM
directly at the final output resolution [H, W] would be computa-
tionally expensive. Instead, our method solves for the final high
resolution LDM by first aggressively downsampling and encod-
ing M input images, and then iteratively refining the LDM over N
render-and-refine update steps that progressively increase spatial
resolution while decreasing the number of layers (see bottom row of
Figure 1). This multi-scale approach is fundamental to the speed of
the Quark network; in early iterations, computation with more lay-
ers is performed at very low spatial resolution, and in later iterations,
the cost of high spatial resolution is offset by layer reduction.

3.2.1 Encode Input Images. The M input images are first converted
to low resolution feature map pyramids (each with K levels) using
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Fig. 3. Update & Fuse Step from Fig. 1. During each iteration the Update
& Fuse step uses a render-and-refine approach to generate a refined feature
volume. (a) First, the feature volume is decoded into an LDM and rendered
M times into each of the input viewpoints (see bottom inset). (b) Next, the
rendered features are combined with input features I and encoded ray dirs
Yk via a residual Feed-forward CNN to generate update features from each
view. During iterations where the feature volume is upscaled, the rendered
intermediate LDM is upsampled by a factor of two in the spatial dimension
and combined with image features at the next level of detail. (c) Updated
features are Backprojected into the feature volumes using the same depths
d decoded in (a). (d) Finally, updates from all views are combined into a
single set of update features A and fed into the Fusion block, which uses
across-view attention (top inset) to reason about visibility and update the
feature volume. Note that Fusion Block is repeated a variable number of
times during each iteration, as is the residual CNN within it. Layer collapse,
which reduces the number of layers by a factor of 2 via a residual CNN, is
also applied during the final two iterations. See Tabs. 8 and 9 for these and
other per-iteration implementation details.
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a standard convolutional encoder (see Fig. 2). This encoding step
allows the model to operate at reduced resolutions, rather than on
the input images directly. At each update step n in the solver, we
choose the appropriate resolution feature map from these K feature
maps.

For each image feature map Iy, we additionally encode the direc-
tion of image rays relative to the target camera using a ray direc-
tional encoding yx. The encoded ray directions allow the network to
bias towards input views that are closer to the target view, leading
to improved results for reflections and non-Lambertian surfaces (as
can be seen in Sec. 4 and Sec. 4.2). Several methods to encode the
ray direction have been proposed. [Mildenhall et al. 2020] uses a
sinusoidal positional encoding [Tancik et al. 2020; Vaswani et al.
2017], while [Verbin et al. 2022] use spherical harmonics. While
these methods work well for general scenes, the geometry of the
LDM allows for a simpler ray directional encoding. Specifically, we
encode a ray by first computing the difference vector between the
ray’s intersections with the near and far planes of the LDM frustum
in projective space. After applying a tanh non-linearity to this 2D
difference vector, we encode it with a sinusoidal positional encoding.
The resulting ray encoding method has several desirable properties.
Firstly, it evaluates to zero when an input ray exactly aligns with an
LDM (and target view) ray. Secondly, the precision is concentrated
on ray directions of interest, namely those intersecting the near and
far planes within or close to the LDM frustum bounds. Finally, the
tanh non-linearity ensures that rays falling outside the frustum are
still represented, albeit with less precision.

For efficiency, the ray directional encoding is computed once at
low resolution and bilinearly upsampled to match the dimensions
within the feature map pyramid. We use 8 octaves of sinusoidal
encoding and project the result using a linear layer to C channels. A
separate projection matrix is applied for each required resolution.

3.22 lterative Updates. The network increases from coarse to fine
resolution over a series of five Update & Fuse steps. During the solve,
the LDM is processed in an encoded form V(") that we refer to
as the feature volume (see Fig. 1). Note that both the number of
layers L and spatial resolution of the feature volume change across
the update steps; we increase the resolution while simultaneously
decreasing the number of output layers, reminiscent of a UNet [Ron-
neberger et al. 2015]. The number of channels is held constant across
iterations.

During each iteration, the solver calls an Update & Fuse network
block, shown in expanded detail in Fig. 3. Each Update & Fuse block
decodes V(™ to produce an intermediate LDM by extracting depth,
density, and appearance features. Next, we bilinearly splat the per-
layer density and appearance into each input view. Splatting avoids
expensive ray tracing or rasterization. Finally, we over-composite
these projected layers to create the rendered image at each input
view. This entire process appears as Render to Input Views in Fig. 3.

The rendered LDM T is then combined in the Update Block with the
corresponding input image features Iy and encoded ray directions
Pk selected from the k-level image feature pyramid. Note that the
Update Block may include an upsampling of T if there is a transition
between resolutions for this step. The Update Block then produces
update features using a small CNN, and back-projects these into the
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feature volume. This per-view array of update features A encodes
both extracted image features (hence it bears some similarity to a
plane sweep volume) as well as visibility information derived from
comparing I to I. The per-view update features are aggregated by
a series of Fusion Blocks. Each fusion block applies One-to-many
attention to fuse the back-projected image features A followed by
one or more residual CNNs to update the encoded LDM V.

The remainder of this section describes the Update & Fuse network
in more detail. The attention mechanism in the Fusion Block is
described in Section 3.3.

Decoding and rendering the intermediate LDM:. To render the in-
termediate LDM (in Render to Input Views in Fig. 3), we first decode
the feature volume V(™) to instantiate the intermediate LDM. We
decode density and depth in a similar way as for the final LDM,
which we describe below in Sec. 3.2.3. However, for efficiency, we ac-
tivate before projecting to the views. Additionally, rather than using
blend weights we instantiate the intermediate LDM’s appearance
directly via ¢ = sigmoid(V W,). When rendering, we project the
intermediate LDM layers through the depth map d into each of the
input views using the projection operator %y : (V,d) — {L...},
and over-composite the result to yield:

1= 0(2y(a,d), Py(0,d)) )
for that input view.

Layer Collapse: Prior to each of the final two Update & Fuse steps,
we reduce the number of layers by a factor of two using a sim-
ple residual MLP, where the straight through path is the mean of
adjacent layers, and the residual path is their concatenation. This
reduction in layers, for a small reduction in quality (see ablations in
Sec. 4.2), dramatically reduces computation at these higher resolu-
tion iterations.

Initialization: Initialization of the LDM (Learned Initialization in
Fig. 1) uses a special case of the Update & Fuse step. Since there is
no existing LDM at the first iteration, we instead start with a single
learned C-channel feature broadcasted to initial spatial dimensions
HO) W), Additionally, we assume the depth layers are flat (set to
predefined depth anchor values, explained below in Sec. 3.2.3) and
omit the rendered imagei leading to a simplified Update Block that
focuses on combining image features and ray directions.

3.2.3 Upsampling & Activation. After the Update & Fuse steps, the
feature volume contains the final scene representation, albeit in an
encoded form and still at relatively low resolution. The final LDM is
decoded from V() using linear projections followed by non-linear
activation functions (Upsample & Activate in Fig. 1). Specifically,
density is decoded using o = sigmoid(V W), where W;; are linear
weights learned by the network. When we decode depths d, we
constrain the resulting LDM layers to equally spaced disparity bands
within the near and far plane (r and f respectively) of the target
view frustum. To do this, we compute depth relative to depth anchors
6 which are just the center point of each band. Thus for each layer,
t=1,...,L:

®)



and the final depth d is:

0.5 1o1) 1!
= N R P
(5+ T tanh(VWd)) (’7 f)+f] 4)

We compute the blend weights f using the same One-to-many
attention mechanism used within the Fusion Blocks. However, we
delay applying the softmax until after upsampling to the target
resolution. This step is incorporated into the final fusion block and
uses that block’s image update features A.

All activations are applied after bilinear upsampling to the final
target resolution. For real scenes, depth and density are typically
piece-wise smooth, and post-sampling activation [Karnewar et al.
2022; Sun et al. 2022] can produce crisp occlusion boundaries, while
blending over the full resolution input images produces high reso-
lution RGB output.

d; =

3.3 One-to-Many Attention in the Fusion Block

In this subsection, we describe the across-view attention mechanism
that fuses the update features A to produce an updated feature
volume V("*1) in the Fusion Block in Fig. 3.

We use a novel One-to-many attention block that aggregates per-
view update features A by repeatedly cross-attending from a single
aggregated feature to our M per-view update features. Intuitively,
this attention mechanism (softly) selects the most relevant informa-
tion from the per-view update features A, implicitly incorporating
both image matching cues and occlusion. Echoing a Transformer’s
[Vaswani et al. 2017] positional encoding, the ray directional en-
coding included within the update feature allows the network to
bias toward rays closer to the target view. Our method inherits
cross-attention’s O(M) complexity, but by exploiting specific redun-
dancies in the Transformer’s formulation, the constant factor can be
greatly reduced for our typical input sizes, leading to an algorithm
that is closer to O(1) (see Appendix A for a complexity analysis).

Preliminaries. Given a set of queries Q, keys K and values Val,
the standard attention operation computes the output according to

T

K
Attention(Q, K, Val) := softmax (Q

= ) Val, ()

where C is the number of channels.

The full Transformer uses multi-headed attention where the
query, keys, and values are each projected to h heads, each with
C/h channels, before performing h attention queries. The resulting
values are then concatenated and projected to the final output. This
operation is performed multiple times, interleaved with MLP blocks.

We adapt the Transformer to aggregate across view features.
Specifically, the current V cross-attends over the M update features
(A). In standard cross-attention the queries and keys for the different
attention heads are derived by linear projection from both of these
values. That is,

MultiHead(V, A) = concat(heady, .. ., headh)WO )
with
head; = Attention (VWl.q, Awik, AWiual ) @

and WO the output projection.
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Optimized Attention. The standard multi-headed attention op-
eration requires h X M matrix multiplies, each of size C X C/h, to
multiply the As with Wl.k and Wi"“lA However, as noted in [Turner
2024] (side-note 13), and described in detail in the appendix, there is
a redundancy in the standard attention formulation; under certain
conditions it is mathematically equivalent, but much more efficient,
to omit the matrix multiplies on A and instead fold them into Wl.q
and WO, leading to the following formulation:

head; = Attention (VWiq, A, A) 8)

This removes all of the matrix multiplies to produce the M keys
and values, leaving only the dot products and sums. As shown
in the analysis in Appendix A, this is considerably more efficient
for the number of inputs and heads used in our attention blocks.
Additionally, we gain a further efficiency by reducing expensive
layer-space computation. Standard cross attention would require
repeated (for multiple attention rounds) matrix multiplies over the M
per-view update features on each of the L X H X W LDM elements,
requiring O(LM) matrix multiplies per element. In contrast, our
optimized One-to-many attention method eliminates the need for
any matrix multiplications on the update features within layer-space
(i.e O(LM) matrix multiplies); instead, the majority of per-view
computation occurs in image space and is lifted to 3D.

Fusion Block. A pre-LayerNorm Transformer [Xiong et al. 2020]
consists of residual self attention blocks followed by residual MLP
blocks. Following that formulation, we define the full One-to-many
attention block, including normalization [Zhang and Sennrich 2019],
N, as

V' =V + MultiHead (. (V), A). 9)

Mirroring a Transformer’s MLP block, the One-to-many attention

module is interleaved with 2D 3X3 residual convolutional blocks:

V’ =V + Conv(gelu(Conv(/ (V))). (10)

The full Fusion Block, consisting of One-to-many attention and
convolution blocks, is repeated several times within each Update
& Fusion block and learns to both aggregate across views and to
constrain the LDM to the manifold of real scenes.

3.4 Training

Similar to other generalizable view synthesis methods [Flynn et al.
2019; Lin et al. 2022; Solovev et al. 2023; Suhail et al. 2022], we train
on a collection of calibrated multi-view images across a variety
of scenes. Specifically, the network is trained with 8 input views
rendered to a held out target image. The 8 input views are randomly
selected from the sixteen views closest to the target. We train our
model using a combined 10 * L1 + LPIPS [Zhang et al. 2018] loss
function, with batch size 16 across a single 16 A100 machine. We
train our models for 250K iterations on half resolution input images,
with a similarly half resolution encoded LDM, before increasing to
full resolution for 350K steps, for a total of 600K steps. To reduce
RAM consumption and training time we randomly crop the target
and rendered image to size 256x256 during initial low resolution
training and 512x512 pixels during high res training. The learning
rate is warmed up to 1.5X 10~* over 20k iterations, held constant for
520K iterations and then cosine-decayed to zero over the final 680K
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Table 1. Comparison to generalizable view synthesis methods. We evaluate all methods at 102 4x768 resolution and outperform the other baselines with faster

runtime. Our Quark+ model offers a consistent quality boost over Quark. Our model and ENeRF are also capable of generating at 2048x1536 resolution; we can

outperform ENerf with real-time frame rates. Note that the TIME column includes both reconstruction and rendering time.

Dataset Real Forward Facing (RFF) NeX-Shiny Dataset Neural 3D Video

Resolution Method | PSNRT  ssiMT  LpIpst | PSNRT ssimT  Lpips! | PSNRT  ssiM'  LpIps' | TIME!
SIMPLI 23.35 0.812 0.191 25.42 0.844 0.132 28.79 0.919 0.169 4.4s
GPNR 25.42 0.816 0.218 25.98 0.840 0.160 29.80 0.916 0.215 25s

1024x768 ENeRF 23.71 0.780 0.224 25.75 0.836 0.143 29.86 0.922 0.172 205ms
Quark 26.03 0.850 0.137 26.51 0.866 0.108 31.57 0.942 0.127 32.2ms
Quark+ 26.53 0.861 0.127 26.67 0.869 0.104 31.95 0.945 0.122 91.9ms
ENerf 23.62 0.775 0.308 24.21 0.780 0.218 29.62 0.925 0.246 811ms

2048x1536  Quark 25.42 0.809 0.233 24.66 0.799 0.174 31.46 0.940 0.187 33.0ms
Quark+ 25.91 0.820 0.223 24.83 0.804 0.169 31.86 0.941 0.185 92.6ms

iterations. We use residual scaling [Radford et al. 2019] throughout
our model to improve stability.

We trained our models on a weighted combination of the Spaces
[Flynn et al. 2019], RFF [Mildenhall et al. 2020], Nex-Shiny [Wizad-
wongsa et al. 2021] and SWORD [Solovev et al. 2023] datasets. All
datasets had equal weighting apart from the much smaller Nex-Shiny
dataset which was weighted at 0.25. These datasets have different
image resolutions, so for each example we adjust the aspect ratio of
the internal LDM dimensions within our model accordingly, retain-
ing the same total area per layer and thus the same computational
requirements as our 1080p model. Similarly, we chose a different
near and far plane adaptively for each example, based on the dis-
tribution of depths from the available reconstructed SFM points
[Schonberger and Frahm 2016].

We trained two variants of our model:

e Quark starts from an initial LDM resolution of 64 X 36 and
24 layers, and reduces the layers while increasing the spatial
resolution to produce an output LDM of resolution 512 x 288
with 6 layers.

e Quark+, in contrast, starts from an initial LDM resolution
of 96 X 54 and 32 layers and produces an output LDM of
resolution 768 X 438 with 8 layers.

Both are targeted to a 1080p (1920 X 1080) image size, requiring
a final upsampling factor (during Upsample & Activate) of 3.75x
and 2.4x for Quark and Quark+, respectively. See Tabs. 8 and 9 in
Appendix A for more details.

4 RESULTS

We provide qualitative and quantitative evaluations that demon-
strate the capability of our method on a wide variety of static and
dynamic scenes. We further perform a series of ablations to investi-
gate the design choices involved in our model.

4.1 Comparisons

Below we compare our model to both generalizable (Tab. 1) and
non-generalizable (Tabs. 2 and 3) view-synthesis approaches. Unless
otherwise stated, we follow the standard evaluation procedure of
using every eighth view as the target view, excluding all target views
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Table 2. Comparison to non-generalizable methods on the DL3DV-10K
benchmark. Baseline results are directly obtained from Ling et al. [2023].
Our model attains the best quality without any per-scene optimization.

Dataset DL3DV-10K
Method PSNR! ssim!  LpIpst
Instant-NGP 2501  0.834  0.228
Nerfacto 24.61 0.848 0.211
Mip-NeRF 360 | 30.98 0911  0.132
3DGS 29.82 0919  0.120
Zip-NeRF 3122 0921  0.112
Quark 3131 0932  0.103
Quark+ 3153 0935  0.101

from the set of possible input views. We average first within a scene
and then across scenes.

Our model targets 1080p resolution, but the benchmarks below
include various resolutions. To ensure a fair comparison we adjust
the aspect ratio of the internal LDM dimensions within our model
accordingly, retaining the same total area per layer and thus the
same computational requirements as our 1080p model. Note that
regardless of the required output resolution, Quark (and Quark+)
produce an LDM with approximately the same number of pixels per
layer, and rely on upsampling to produce the final output resolution.

Generalizable Methods. In Tab. 1 we compare to SIMPLI [Solovev
et al. 2023], eNeRF [Lin et al. 2022], and GPNR [Suhail et al. 2022],
which predict the image at the target viewpoint by processing
nearby input images with generalizable networks (described in more
detail in Sec. 2). We retrain all baseline models with the same camera
selection strategy as ours on the RFF and IBRNet datasets.

In the top of Tab. 1, we compare all models at resolution on the
standard static datasets, Real Forward Facing (RFF) [Mildenhall et al.
2020] and Shiny [Wizadwongsa et al. 2021], and the dynamic video
dataset, Neural 3D Video [Li et al. 2022]. For the video dataset, we
follow the protocol in Li et al. [2022] to first trim all videos to the
same length (300 frames), and then evaluate every tenth frame using
the zero-th camera as the target.

Our results consistently outperform the other generalizable meth-
ods on all three datasets and is the only method that is capable of
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Table 3. Comparison to non-generalizable methods on the Gaussian Splatting datasets. Baseline results are directly obtained from Kerbl et al. [2023]. Our
method is competitive on Mip-NeRF360 and Tanks&Temples. However, Quark is more greatly affected by the selection strategy for the limited number of
input views (especially for Deep Blending) as opposed to the remaining methods which optimize each scene over all views.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending (Playroom)
Method PSNR! ssiM' LpIps! | PSNR! ssiM!  LpIps! | PSNR!  ssim!  LPIPS!
Plenoxels 23.08 0.626 0.463 21.08 0.719 0.379 23.02 0.802 0.418
INGP-Base 25.30 0.671 0.371 21.72 0.723 0.330 19.48 0.754 0.465
INGP-Big 25.59 0.699 0.331 21.92 0.745 0.305 21.67 0.780 0.428
M-NeRF360 | 27.69 0.792 0.237 22.22 0.759 0.257 29.66 0.900 0.252
GS-7K 25.60 0.770 0.279 21.20 0.767 0.280 29.24 0.896 0.291
GS-30K 27.21 0.815 0.214 23.14 0.841 0.183 30.04 0.906 0.242
Quark 26.60 0.774 0.214 23.60 0.852 0.138 23.61 0.837 0.289
Quark+ 26.91 0.784 0.207 23.83 0.857 0.133 23.58 0.837 0.287

running in real-time, more than 6X faster than the nearest competi-
tor, eNeRF. Our Quark+ model offers improved reconstruction over
Quark, owing to the increased resolution of the LDM, and is still
fast enough to be interactive. eNeRF is the only other method that
is capable of reconstruction and rendering at 2048x1536 resolution
on the same hardware, which our Quark model also outperforms
with over 20X faster runtime.

Non-generalizable methods. Next we compare our model to vari-
ous non-generalizable methods, for which there are multiple stan-
dard benchmarks with published results across many methods. First,
in Tab. 2, we compare using the DL3DV [Ling et al. 2023] benchmark.
This benchmark contains diverse scenes captured from handheld
mobile cameras and drone videos, with more complex camera tra-
jectories than datasets captured using camera rigs or forward facing
datasets, like those in Tab. 1.

Remarkably, we find that our method is also competitive with
methods that are optimized independently for each scene. Despite
not being trained on this dataset, our method surpasses the quality
of the top performing methods, Zip-NeRF [Barron et al. 2023] and
Gaussian Splatting (Tab. 2).

In Tab. 3, we also evaluate on twelve scenes from MipNerf360 [Bar-
ron et al. 2021], Tanks and Temples [Knapitsch et al. 2017], and
Playroom from Deep Blending [Hedman et al. 2018] used in [Kerbl
et al. 2023]. Our method ranks third on Mip-NeRF360 and first on
Tanks and Temples, while outperforming Instant-NGP [Miiller et al.
2022] and Plenoxels [Fridovich-Keil et al. 2023] on Deep Blending
(ranking third on LPIPS). We note that a key difference between
optimization-based approaches and ours is that our model renders
the target view from only the nearest eight input cameras, rather
than optimizing for the entire scene over all input cameras. For
many of the benchmarks, we find that the target views are well
covered by the eight nearest cameras measured by L2 distance of
the camera centers, but for Deep Blending this assumption does
not hold. Thus, we found that a modified camera selection heuristic
which also incorporates the difference between camera viewing
angles improves the results over using L2 distance alone, due to
the variation in viewing angles of nearby cameras. Even with this
modified heuristic, our method produces significant artifacts when
there is insufficient coverage (e.g. when part of the target view is

only visible from one or two distant cameras outside of the eight
nearest). We do note however, that per-scene optimization methods
also produce artifacts in these low coverage areas, but their failures
tend to be more graceful, producing blurrier outputs, whereas the
blending weights in our method can produce inaccurate hard edges.
We also note that some of our method’s failures could be reduced
using more sophisticated, perhaps learned, view selection method.

Qualitative results. We show several examples of our rendered
outputs in Figs. 4, 5, and 6 that demonstrate examples of high qual-
ity reconstruction across a broad range of scenes. As differences
between methods are more apparent in video than still images, es-
pecially when comparing Quark and Quark+, please also see our
accompanying video.

We first compare to the generalizable algorithms in Fig. 4. eN-
eRF struggles with scenes with significant depth complexity. This
is likely due to the fact that their algorithm uses a single-layer
depthmap (albeit with varying thickness). Quark and Quark+ both
appear to produce sharper edges around complex geometry than any
of eNeRF, SIMPLL or GPNR. Relative to SIMPLL, Quark’s sharper re-
sults are likely aided by its use of IBR with blend weights. Relative to
GPNR, it’s possible that Quark’s LDM layers track the surfaces and
edges better than GPNR’s Transformer-based approach for aligning
patches along viewing rays.

In Fig. 5, we compare to several offline non-generalizable methods
using the DL3DV benchmark. All results are quite high quality, but
there are some noticeable differences. The most noticeable are in
reflective and refractive objects in the first 4 rows. We suspect that
Quark benefits from using view selection to pick a small number of
input views near to the novel view and being able to optimize the
LDM for that view, whereas the other methods create one global
geometry in a preprocess with an imperfect physical representation
of these difficult view-dependant materials. Close inspection of
the bottom two rows of the results for the NeRF-based methods
(InstantNGP, MultiNeRF360, Nerfactor, and ZipNeRF) reveals some
speckling artifacts which are a common side-effect of ray march
rendering. The results for all of Quark, Quark+, and 3DGS look
comparably sharp, but Quark reconstructs and renders in real-time
while 3DGS requires an expensive offline optimization process to
reconstruct the scene.
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Table 4. Ablations of our method across several key design decisions. Dif-
ference in runtime speed are expressed as a percentage. We show quality
differences using PSNR, SSIM and LPIPS.

Ablation Runtime  ponRt  ssim?  LpIPS!
change %
No layer collapse +115.18  30.5635  0.9184 0.1531
Baseline 0 304071 0.9165 0.1543
Fewer iterations -17.49  30.3227 0.9153 0.1554
No ray directional encoding -1.28  30.3179  0.9157 0.1555
No render-and-refine -5.22 29.7106  0.9111 0.1599
No cross attention -3.09  29.7289  0.9097 0.1621
RGB Output -4.56  29.1779 0.8926 0.1788

Finally, in Fig. 6, we compare to a different set of offline non-
generalizable methods using the MipNeRF-360 and Tanks and Tem-
ples datasets. Plenoxels produces blurrier results than the other
methods, likely due to its sparse 3D grid representation. Quark,
Quark+, INGP-Big, M-NeRF360, and 3DGS-30k are all quite close
in visual quality (with 3DGS-30k being perhaps slightly sharper
than the rest). Quark both reconstructs and renders these scenes in
real-time (and Quark+ at interactive rates), while all of the other
methods require minutes to hours for scene reconstruction.

We note that none of the metrics above measure temporal flicker,
and as can be seen in the accompanying videos, the offline, full scene
methods such as NeRF and 3DGS outperform Quark in this regard.
Quark switches between input images as the target cameras moves
within the scene. This can cause noticeable flickering in the rendered
image, particularly when there are large exposure differences in the
input images.

4.2 Ablations

We performed several ablations to evaluate our model design choices.
We used the Quark+ network as our baseline for ablations, how-
ever for expediency, we trained on half resolution training data
and for only 250k training steps. We performed the evaluation of
the ablations on the DL3DV dataset, at 1080p resolution. Note that
this resolution differs from our previous DL3DV benchmark (where
scores for competing methods were only available at a lower resolu-
tion). However, we found that the distinctions between the various
ablations were more apparent at this increased resolution.

We note that the differences in scores below are small. Many of the
scenes in DL3DV are relatively simple and the simplified approaches
can produce adequate results. Even within more complex scenes
the differences are often confined to a small set of pixels, often
near object boundaries, leading to relatively small changes in the
metrics. However, when viewed side-by-side the differences are
quite apparent, and we encourage the interested reader to view the
ablation results in the supplemental material.

In table 4 we show the % increase or decrease in runtime vs the
baseline. These numbers are approximate as the ablated methods
have not been optimized. For example, No cross attention was imple-
mented by simply zero-ing out the attention keys.

We performed the following ablations. No layer collapse: We re-
move the layer collapse modules. This leads to a much (over 2x)
slower algorithm but does have improved quality vs the baseline.
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Table 5. Ablation on camera baseline distance, evaluated on the Spaces
dataset [Flynn et al. 2019]. Our results show consistent performance across
camera baseline distances.

Spaces Dataset

Baseline (cm) PSNRT ssim!  LpIpst
Small (~10) 29.03 09215 0.1586
Medium (~20) 2957 0.9258  0.1541
Large (~30) 2943 09241  0.1541

Baseline: The Quark+ model, trained at lower resolution. Fewer It-
erations: We tested the effect of reducing the number of iterations
by removing the first and second Update & Fuse iterations. To pre-
serve the output resolution of the LDM, we doubled the resolution
of the initial LDM. No ray directional encoding: To simulate the ef-
fect of removing the ray directional encoding, we replaced the ray
directional encoding with zeroes. No cross attention: To simulate
the effect of removing attention, we replaced all keys within the
attention stages of the network with zeroes. This corresponds to a
simple mean across the image update feature maps. Note that we
only zero-ed out the keys within the core solver, we retained the
full keys when computing the blend weights. No render-and-refine:
To simulate the effect of removing the render and refine stage of our
network, we replaced the rendered image with zeroes. RGB Output:
Instead of computing RGB through blending the input images, we
output RGB directly from the network. Specifically, we use the first
three channels of the appearance feature used inside the network
as the output RGB.

Overall, the ablations demonstrate the importance of each of
our contributions, ray directional encoding, cross attention, render-
and-refine, and our blend weight strategy. Intriguingly, the fewer
iterations ablation performs almost as well as the baseline, with a
17% runtime reduction, pointing to other trade-offs. More generally,
our network has many hyper parameters and a full exploration of all
of the design space was not possible. It’s likely that there are other
configurations that perform equally well as ours with equivalent or
lower runtime. An automated search through the parameter sweep
would be interesting future work.

We also evaluate the performance of our model with different
camera baseline distances on the spaces dataset, similar to [Flynn
et al. 2019]. Tab. 5 shows the results of our method on the Spaces
dataset while varying the camera baseline distance. Following the
analysis in [Flynn et al. 2019], we evaluate on three different baseline
sizes: small, medium, and large. For this experiment, we train a
model that takes an arbitrary number of input images from 4-16.
Our model is robust to varying camera baselines, achieving similar
performance across the three baseline settings. This is in contrast
to DeepView, which has highest performance on the small baseline
dataset. Note that our SSIM metrics are not directly comparable
because of slight differences in input preprocessing.

4.3 Limitations

Our method produces state-of-the-art quality at real-time rates
across a broad range of scenes. However, there are several notable
limitations that present opportunities for future work.



We do not enforce any temporal consistency between frames
for video reconstructions; each frame is reconstructed indepen-
dently from its neighbors. This produces some flickering artifacts in
video reconstructions (see the accompanying video) and presents
an opportunity to explore the temporal domain in order to produce
smoother results.

We use blend weights and IBR for efficient and high-resolution
rendering, but this also results in a few side-effects. Blend weights
alone cannot accurately represent view dependent materials, as the
per-pixel color produced from our model is a convex combination
of the colors from the input images. Fortunately, our ability to
optimize the blend weights for each frame, in particular using the
ray direction encoding described in Sec. 3.2.1, makes it possible to
convincingly reproduce some reflective and refractive surfaces, as
can be seen in our results on the Shiny dataset in Tab. 1, in Fig. 5
and in our accompanying video. Nonetheless, others have shown
benefits by giving the network the representational power to more
accurately model view dependent appearance [Verbin et al. 2022;
Wizadwongsa et al. 2021], and it would be worth trying this within
our algorithm as future work.

Blend weights also struggle in situations where images are taken
with different exposures or focal lengths. As can be seen in the
accompanying video, this can lead to visible edge artifacts and flick-
ering. Moreover, when there are errors in input camera calibration,
our method may produce incorrect edges rather than the more
pleasing blurring produced by other methods that don’t use IBR.

Finally, in order to achieve real-time rates, our method must
use a small number of input images (e.g. 8-16). As demonstrated in
Tab. 2, this is effective when those input images consistently provide
enough coverage to synthesize the novel view. However, this is not
the case for some datasets (e.g. Mip-NeRF360 and Deep Blending in
Tab. 3). This problem is also visible in some of our accompanying
video results, and tend to show up as artifacts near the edges of the
novel view. In these situations, a better view-selection algorithm
or a method that optimizes a single geometry over all images may
produce better results.

5 CONCLUSION

We introduce a novel neural algorithm (Quark) for fast, high-resolution,

and high-quality novel view synthesis. Our algorithm employs sev-
eral optimizations to achieve real-time rates for combined scene
reconstruction and rendering. Key to our approach is performing
intermediate computations at low resolution — we use an encoded
LDM representation, which is iteratively rendered to the input views
and refined via update and view fusion modules. Additional effi-
ciency improvements come from an optimized One-to-many at-
tention operation to incorporate information from multiple input
views during view fusion, and layer collapse which reduces the
number of layers as the spatial resolution of the intermediate LDM
increases. We demonstrate state-of-the-art quality across a wide
variety of test scenes. We outperform other generalizable view syn-
thesis approaches on standard static and dynamic datasets, and
either outperform or are competitive with even non-generalizable
approaches that perform per-scene optimization. Altogether, our
Quark model enables fully feed-forward novel view synthesis from
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a set of input cameras at up to 2K resolution, performing both scene
reconstruction and rendering at real-time rates.
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Fig. 4. Comparison of Quark to current methods for generalizable neural view synthesis (for numerical results, see Table 1). Quark preserves image details and
preserves thin structures without blurring or image doubling.
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Fig. 5. Comparisons of Quark to methods included in the DL3DV-10K NVS Benchmark (for numerical results, see Table 2). Quark preserves crisp image detail
and thin structures while faithfully rendering view-dependent effects like specular highlights and reflective surfaces.
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Fig. 6. Comparisons of methods on scenes from the MipNeRF-360 and Tanks & Temples datasets (for numerical results, see Table 3). Quark closely matches
the resolution of the target image and preserves thin structures as well as or better than other methods.
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A ONE-TO-MANY ATTENTION

This section elaborates on the computational complexity of One-
to-many attention. We follow the exposition from [Vaswani et al.
2017], the notation used here should be considered independent
from the rest of the paper.

Dot product attention computes a weighted sum over values V'
by computing the softmax of the dot product between query vectors
Q against key vectors K.

T
\4 (11)

K

Attention(Q, K, V) = softmax (Q -

k

In multi-head attention, the query, keys and values are all pro-
jected to h heads before computing attention. That is,

MultiHead(Q, K, V) = concat(head;, ..., headh)WO (12)
with the i-th head defined as

head; = Attention (QW2, KW, v}
QV\/;Q(I/VIK)TK (13)
Vdh

Here we note the redundancy: instead of applying both WiQ and

i

= softmax (

WiV when computing head; we could instead fold WiQ (WIK )T intoa
single matrix and apply it to Q alone. This typically does not provide
a reduction in total operations since the number of channels, d”,
is also reduced for each head (typically to di/h), hence it is more
efficient to project the queries and keys to a reduced number of

Table 6. Theoretical number of FLOPS vs the number of heads h for both
standard cross attention and our optimized One-to-many attention. Assumes
N = 8 inputs. The last column shows One-to-many attention’s relative
speed-up vs standard cross attention.

Number Standard Cross One-to-Many Relative
of heads (h)  Attention (flops)  Attention (flops)  Speed up
1 18688 2304 8.1x
2 18688 4608 4.1x
4 18688 9216 2.0x
8 18688 18432 1.0x

Table 7. Theoretical number of FLOPS vs the number of inputs N for both
standard cross attention and our optimized One-to-many attention when
using h = 4 attention heads. The last column shows One-to-many attention’s
relative speed-up vs standard cross attention.

Number of  Standard Cross  Relative =~ One-To-Many  Relative
inputs (N) Attention Slow Attention Slow
(flops) Down (flops) Down
4 10368 1.0 8704 1.0x
8 18688 1.8x 9216 1.1x
16 35328 3.4x 10240 1.2x
32 68608 6.6x 12288 1.4x
64 135168 13.0x 16384 1.9x
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Quark runtime when varying the number of input views
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Fig. 7. Quark inference time for different numbers of input views. Inference
time scales linearly in the number of views and the Quark model achieves
interactive (> 10 frames per second) frame rates up to 32 input views.

channels before computing their dot product. Additionally, for self
attention the number of queries matches the number of keys so the
savings from performing the matrix multiply only on the queries is
a factor of two.

However for our cross-attention use case, we have a single query
and a relatively small number of heads, a significant speed up can
be achieved by folding the matrix into the query.

Specifically, in standard cross-attention with a single query at-
tending against N heads. This require (N + 1) X h matrix multiplies,
each of size dj X df to extract the query and reference keys, and an
additional N X h matrix multiplies of the same size to extract the
values, leading to a total of (2N + 1) X h X di. X df =(2N+1)x di
floating point operations. To compute the N X h dot products we
require N X h X d—}f = N X d}. operations. Finally to compute the out-
put we concatenate h X di and then perform a single dy. X dj. matrix

multiply requiring dﬁ operation. The total number of operations for
standard 1-to-N cross attention is thus:

(2N +1) x d} + N x di +d (14)

In contrast, for the proposed one-to-many attention, we again
have a single key attending against N heads, but now require h
matrix multiplies, each of size d X d. to extract the h query keys
for a total of h X d]% floating point operations. To compute the N X h
dot products we require N X h X dj. operations. Finally to compute
the output we concatenate h X dj. arrays and then perform a single
di. X (h X dy.) matrix multiply requiring h X d12< operations. The total
number of operations for one-to-many attention is thus:

hxdi+NXhxdg+hxd; (15)

Using the values from the method, d. =32, N = 8and h € {1, 2,4}
we show the relative speed up in terms of flops below:

ACM Trans. Graph., Vol. 43, No. 6, Article 194. Publication date: December 2024.
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Fig. 8. Timing diagram for the Quark algorithm running on an NVidia A100 GPU. Most of the inference time is spent performing iterative Update & Fuse
steps that iteratively refine the layered depth map. The final upsample & activation as well as rendering is not a significant portion of the network run-time.

We include 8 heads here for completeness, but our algorithm
never uses more than 4 heads, and at high resolutions it uses just 1
or 2 heads, leading to large savings, as shown in Table 6.

We can also examine the effect of varying the number of input
keys, N, as h is held constant, here at a value of 4. We show the
relative slow down as we increase the number of inputs in Table 7.
As can be seen, for standard cross attention, the number of float-
ing point operations is approximately O(N) but for one-to-many
attention it is close to O(1).

Note that this analysis is only for the fusion block within our
network, rendering to the input images and computing the image
residuals is still an O(numberofimages) operation, and hence the
runtime increases with the number of input images as discussed
below.

B PERFORMANCE

The run-time of our method is approximately Ty + M * Timage,
i.e. there’s a fixed base cost Ty, associated with operations on the

ACM Trans. Graph., Vol. 43, No. 6, Article 194. Publication date: December 2024.

encoded feature volume and rendering, and an additional a per-
image cost. The base cost is dominated by the O(1) One-to-many
complexity plus the cost of the CNN applied to V within the Fusion
blocks. The per image cost is dominated by image feature encoding
and image update computation, which are both O(M) operations. A
detailed timing breakdown is shown in Fig. 8, which shows the time
for Quark to render a single frame, broken down by the sub-stages of
the network shown in Fig. 1. The change in run-time versus number
of input image is shown in Fig. 7.

C NETWORK DETAILS

Tables 8 and 9 show the full details for the network components for
Quark and Quark+ respectively. The increased dimensions of the
Update & Fuse steps for Quark+ helps Quark+ better capture fine
details. This is demonstrated in Fig. 9, which compares Quark against
Quark+ using the SWORD dataset. The differences are easiest to see
in the depth map close-ups on the right.



Input layer dimensions

Encoded image
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Output layer dimensions

St feat di i Block

P (#num layers, h, w, C) eature map dimensions 0cks (#num layers, h, w, C)

(h, w, C)

- 1,1,1,32

Initialize . 36, 60, 32 Bp, A4,C,C,A4,C,C,A4,C,C 24, 36, 64, 32
(single broadcast feature)
Update & Fuse 0 | 24, 36, 64, 32 36, 60, 32 U,A4,C,C,A4,C,C,A4,C,C 24, 36, 64, 32
Update & Fuse 1 | 24, 36, 64, 32 72,120, 32 U,A4,C,C,A4,C,C,A4,C,C 24,172,128, 32
Update & Fuse 2 | 24, 72,128, 32 72,120, 32 U, A4,C, A4,C 24,72, 128, 32
Update & Fuse 3 | 24,72, 128, 32 144, 240, 32 Lc, U, A2, C, A2, C 12, 144, 256, 32
Update & Fuse 4 | 12, 144, 256, 32 288, 480, 32 Lc, U, A1, C, AL C 6, 288, 512, 32
Upsample,

Output 6, 288, 512, 32 1080, 1920, 3 Decode density, depth and blend weights, | 8,1080, 1920, 4 (RGB + o)

Resample images and blend

Table 8. Model description for Quark. The Initialize step starts with back-projecting the encoded images onto flat LDM layers, indicated by Bp and initializes
the encoded LDM V to a single 32-channel broadcasted feature. Each Update & Fuse step starts with rendering and computing image update features and
back-projecting them to the LDM, indicated by U. Within both the Initialize and Update & Fuse steps we have several fusion blocks, shown here expanded into
their constituent One-to-many attention and residual CNN blocks. Each Fusion Block contains a single One-to-many Attention block with h heads, indicated by
Ah, followed by one or more residual CNN blocks, indicated by C. The final two Update & Fuse steps start with a (Lc) Layer Collapse block that reduce the
number of layers by 2x. This layer collapse occurs prior to any other blocks.

Input layer dimensions

Encoded image

Output layer dimensions

P . .
Step (#num layers, h, w, C) eature map dimensions | Blocks (#num layers, h, w, C)
(h, w, C)
. 1,1,1,32
Initialize . 54, 90, 32 Bp, A4,C,C,A4,C,C,A4,C,C 32, 54, 96, 32
(single broadcast feature)
Update & Fuse 0 | 32, 54, 96, 32 54, 90, 32 U,A4,C,C,A4,C,C,A4,C,C 32, 54, 96, 32
Update & Fuse 1 | 32, 54, 96, 32 108, 180, 32 U, A4,C,C,A4,C,C,A4,C, C 32,108, 192, 32
Update & Fuse 2 | 32, 108, 192, 32 108, 180, 32 U, A4,C, A4,C 32,108, 192, 32
Update & Fuse 3 | 32, 108, 192, 32 216, 360, 32 Lc, U, A2,C, A2, C 16, 216, 384, 32
Update & Fuse 4 | 16, 216, 384, 32 432,720, 32 Lc, U, A1, C, A1, C 8,432,768, 32
Upsample,
Output 8,432, 768, 32 1080, 1920, 3 Decode density, depth and blend weights, | 8,1080, 1920, 4 (RGB + o)

Resample images and blend

Table 9. Model description for Quark+. See caption of Tab. 8 for notation shorthand.
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Fig. 9. Quark and Quark+ renders and depth maps on scenes from the SWORD dataset.
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