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Abstract

Quantum computing has recently emerged as a
transformative technology. Yet, its promised ad-
vantages rely on efficiently translating quantum
operations into viable physical realizations. In
this work, we use generative machine learning
models, specifically denoising diffusion models
(DMs), to facilitate this transformation. Lever-
aging text-conditioning, we steer the model to
produce desired quantum operations within gate-
based quantum circuits. Notably, DMs allow to
sidestep during training the exponential overhead
inherent in the classical simulation of quantum dy-
namics—a consistent bottleneck in preceding ML
techniques. We demonstrate the model’s capabil-
ities across two tasks: entanglement generation
and unitary compilation. The model excels at
generating new circuits and supports typical DM
extensions such as masking and editing to, for
instance, align the circuit generation to the con-
straints of the targeted quantum device. Given
their flexibility and generalization abilities, we
envision DMs as pivotal in quantum circuit syn-
thesis, enhancing both practical applications but
also insights into theoretical quantum computa-
tion.

Quantum computing is considered as a groundbreaking
technology, holding promise across various domains, from
fundamental research in physics (Feynman et al., 2018)
or chemistry (McArdle et al., 2020), to machine learn-
ing (Cerezo et al., 2022) and optimization (Farhi et al.,
2014). While the technological realization of quantum pro-
cessors is advancing, the current noisy intermediate-scale
quantum (NISQ) era (Preskill, 2018) presents challenges
due to device limitations, making it essential to design effi-
cient quantum circuits tailored to the available resources and
gate sets, requiring further research and expertise in finding
optimal gate ansitze and methods for circuit construction.

This task, commonly known as quantum circuit synthe-
sis, involves the following: given a target quantum state
that the quantum processor aims to produce as output, one
must design a sequence of basic elements, called quantum

gates, that generate that quantum state from a fiducial / stan-
dard input state. Similarly, instead of producing a desired
quantum state, the target could be to implement a quan-
tum algorithm or more generally a unitary operation. In
particular, researchers have lately demonstrated significant
advancements in circuit synthesis by harnessing machine
learning techniques, ranging from reinforcement learning to
generative models, as for instance in quantum state prepara-
tion (Arrazola et al., 2019; Bolens & Heyl, 2021; Melnikov
et al., 2018), ansitze prediction (He et al., 2023; Shen, 2023;
Zhang et al., 2021), circuit optimization (Fosel et al., 2021;
Ostaszewski et al., 2021) or unitary compilation (Zhang
et al., 2020; Moro et al., 2021; Sarra et al., 2023; Preti et al.,
2023). In most of these applications, ML methods rely on
minimizing a cost function that compares the output of the
resulting quantum computation to the desired one. This
metric is generally classically hard to simulate (Khatri et al.,
2019), hindering the trainability of the models. Additionally,
these methods are typically trained on specific configura-
tions defined by their training data and struggle to adapt to
novel, uncharted scenarios.

To address these challenges, we use denoising diffusion
models (DM) (Sohl-Dickstein et al., 2015), the current state-
of-the-art machine learning generative method (Rombach
et al., 2022). Given a text prompt specifying a certain
task, the model generates the desired quantum architec-
ture. While we primarily focus on qubit-based quantum
circuits, the model is straightforwardly extendable to other
platforms such as measurement-based quantum comput-
ers (Raussendorf & Briegel, 2001) or fermionic proces-
sors (Gonzdlez-Cuadra et al., 2023). As any DM, the ar-
chitecture is trained to denoise corrupted samples from the
training set, conditioned to the given text prompt. Hence,
contrary to previous approaches, one avoids comparing the
output of the generated quantum circuits to the target result.
This ensures that no classical simulation of the circuit is
needed and thus prevents the computation of intractable cost
functions (Khatri et al., 2019). Once trained, the method
excels at generating correct, never seen circuits, allowing
for instance the discovery of novel circuits decompositions,
replacements, or compressions. The architecture is highly
flexible, allowing easy control of circuit characteristics such
as length and number of qubits but also to account for the
physical constraints of the target physical device, such as
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Figure 1. Quantum circuit generation pipeline summary. (a) Quantum circuits are encoded in a three dimensional tensor, where each
gate is encoded as a continuous vector of certain length (vertical direction), schematically represented here as a color (upper plane). (b)
Creation of the diffusion model’s conditioning. Text is transformed into a continuous representation by means of a pre-trained CLIP
encoder. In other cases, as for unitary compilation, an encoder is trained together with the DM to create the encoding of an input unitary.
(c-d) Schematic representation of the training of the diffusion model and the posterior inference from the trained model. See text for

details.

qubit connectivity. Additionally, in situations where gener-
ating training sets is costly, trained models can be updated
with a handful of samples to acquire new skills. We demon-
strate the versatility of the method in two applications: First,
we train the DM to generate circuits with varying degrees of
entanglement, and use this task to benchmark the model’s
capabilities; Second, we train the DM to perform unitary
compilation of unitaries with restricted sets of gates.

Circuit encoding, model and training pipeline

In this section we present a comprehensive description of
the proposed pipeline, namely, the encoding used to trans-
form circuits into trainable tensors, the architecture of the
denoising diffusion model (DM) and some key aspects of
the model’s training. All details necessary to reproduce
the results presented here are available in the appendices
and the accompanying code repository (Fiirrutter & Muioz-
Gil, 2023), which also includes a series of examples that
illustrate how diffusion models operate.

Circuit encoding To train the DM, we take inspiration
from (Fosel et al., 2021) and represent the circuits as three
dimensional tensors. The first dimension encodes the qubit
index, the second the time step of gate placement (constrain-
ing to one gate per time step) and the third represents each
gate (Figure 1a). We consider here a continuous gate repre-
sentation of arbitrary length, fixed before training. While in
this work we assign random orthogonal high-dimensional

representations to each gate, in more complex scenarios,
for example optical devices in photonic setups (Melnikov
et al., 2018), such representations could be learned prior to
the DM training. To decode circuits from the tensor rep-
resentation, we calculate the cosine similarity between the
described gate and our existing gate set, selecting then the
gate with the largest similarity. Further details are given in
Methods.

Diffusion model DMs are a class of generative models
aimed at learning a diffusion process that generates the
probability distribution of a given training dataset (Sohl-
Dickstein et al., 2015). Practically, such process involves
iteratively denoising an initially noisy sample to produce
a high-quality one. Led by the emergence of latent dif-
fusion (Rombach et al., 2022), and the ability to guide /
condition their generation at will (Ho & Salimans, 2022),
DMs have become the go-to method for generative appli-
cations in fields like image generation (Podell et al., 2023),
audio synthesis (Kong et al., 2020), video generation (Singer
et al., 2022), and protein structure prediction (Watson et al.,
2023). In this work, we construct a pipeline similar to that
of Ref. (Rombach et al., 2022). We first create the condi-
tion that will guide the generation of the DM (Figure 1b).
Text prompts are transformed into continuous representation
by means of a pre-trained CLIP encoder, a neural network
trained to associate visual content and textual descriptions,
whose acronym relates to its training procedure (Contrastive
Language-Image Pre-training) (Radford et al., 2021). More-
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over, depending on the task at hand, further conditioning
may be necessary. For instance, in unitary compilation,
an encoded representation of unitary is appended to the
encoded text representation. Here, the unitary encoder is
trained alongside the DM (see Methods).

To train the DM itself, we corrupt the samples in the training
set (i.e. the encoded circuits) with different levels of Gaus-
sian noise (Figure 1c). The model then learns to predict
the noise present in each sample which, subtracted from
the input samples, effectively denoises them. We adapt the
architecture from (Rombach et al., 2022) for the noise pre-
diction model. The architecture is a typical U-Net consisting
of an encoder-decoder layout with skip connections in be-
tween. We construct it by combining residual convolution
layers and cross-attention layers (Chen et al., 2021). The
latter implements the text conditioning naturally, as done by
transformers in natural language processing (Vaswani et al.,
2017). For our use-case, we propose some adjustments
to the model to: i) account for the non-locality of qubit-
connections. ii) allow us to feed circuits of any size both in
terms of the number of qubits and its length (see Methods).
After training, one feeds a completely noisy tensor into the
model which, guided by the chosen condition, iteratively de-
noises it, generating after some steps a high-quality sample
(Figure 1d).

Results

We now illustrate the capabilities of the method by applying
it to two distinct problems: entanglement generation and
unitary compilation. The former serves as a benchmark for
showcasing the method’s potential in different scenarios.
The latter is a critical problem in the field, and will allow
us to demonstrate the full capabilities of the method. Im-
portantly, in both cases, the model is trained using the same
denoising loss function, with different tasks achieved by
modifying the training samples and their conditioning.

Entanglement generation The automated design of ex-
periments to generate new types of entanglement has been
an exciting recent development in quantum physics (Krenn
et al., 2023; Melnikov et al., 2018; Krenn et al., 2016). Here,
our aim is to generate quantum circuits that produce states
with specific entanglement, as described by their Schmidt
rank vector (SRV), a numerical vector of dimension equal to
the number of qubits that contains the rank of the reduced-
density matrix for each subsystem (Huber & de Vicente,
2013). As we here deal with qubits, each element of the
SRV is either 1 (non-entangled qubit) or 2 (entangled qubit).
To construct the training set, we randomly generate circuits
made of H and CNOT gates with varying numbers of
qubits (from 3 to 8) and gates (from 2 to 52). We then cal-
culate their corresponding SRV, which can in this case take
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Figure 2. Entanglement generation. (a) Model accuracy vs. the
number of entangled qubits, for circuits of different qubits number.
(b) Confusion matrix comparing, in each row and column, the
input and generated SRVs for circuits of 5-qubits. For clarity,
SRVs are grouped by their respective number of entangled qubits.
(¢) Mean accuracy over all SRVs vs. the number of samples
used for fine-tuning the model in (a), for 9 and 10-qubit circuits.
”base” denotes the model’s predictions before fine-tuning. Inset:
minimum accuracy for the base (squares / rhombus) and fine-tuned
model (triangles) on 50 circuits per SRV. Solid line and shaded
area represent the mean and standard deviation over 10 fine-tune
runs for both plots, respectively. (d-e) Percentage of new (not in
training set) and distinct (not repeated in the generated sample)
generated circuits. (f) Model accuracy vs. the input tensor size
(which determines the maximum gate count), for 5-qubit circuits
and different numbers of entangled qubits. Details on the data used
in this figure given in Methods
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values € [1, 2], and use it as text conditioning (see Figure 1).
We found that balancing the dataset both in terms of SRV
but also w.r.t. to the circuit length greatly improved the train-
ing performance. Once the model is trained, we generate
new circuits for different SRV to assess its performance.

We first observe that almost all continuous tensors gener-
ated by the DM can be faithfully transformed into circuits
(99.6% conversion rate). This highlights the model’s ability
to learn gate encoding and proper gate placement within
the circuit, ensuring that only one gate is placed at each
time step. In Figure 2a, we present the accuracy of the DM,
defined as the percentage of circuits generated from a given
SRV-conditioning that indeed produce the desired SRV. To
enhance readability, we average across SRV with the same
number of entangled qubits, as the accuracy is usually con-
stant within these. Figure 2b provides a detailed accuracy
analysis for circuits of 5 qubits. The majority of the cir-
cuits produce the correct entanglement, with the accuracy
slightly dropping for larger numbers of entangled qubits.
This decrease arises because more entangled qubits demand
a larger number of gates, thus presenting a more challenging
problem. The variations in accuracy across different qubit
numbers mainly reflect their representation in the training
set. Nevertheless, as sampling from the DM is a cheap op-
eration, one strategy is to sample a few circuits with the
desired property and select successful ones. While this may
entail computationally costly operations, as one needs to
simulate the quantum circuit and measure its properties, it
needs to be computed only for the few circuits sampled.

In many cases, especially when increasing the number of
qubits, creating a sufficiently large dataset to train the model
becomes prohibitively expensive. In such scenarios, one
can first train a model with simpler examples and then fine-
tune the model with few expensive ones. We demonstrate
such feature by fine-tuning the model above to generate
circuits of 9 and 10 qubits. As depicted in Figure 2c, the
base model can already generate with a reasonable average
accuracy such larger circuits. However, a deeper examina-
tion shows that, while the method excels for certain SRVs, it
completely fails in others (see e.g. the minimum accuracy in
inset, square markers) . By fine-tuning the model with few
circuits of 9 and 10 qubits per SRV (compared to the tens
of thousands used for the original training), we greatly im-
prove its accuracy, and most importantly banish the number
of unattained target SRVs (inset, triangle markers).

Furthermore, the model exhibits an exceptional capability
to discover new circuits that achieve the target SRV. Fig-
ure 2d-e show that, across all SRVs and qubit sizes, the
generated circuits are both new (not contained in the train-
ing set) and unique (not repeated within the generated set).
The model is hence able to generalize beyond the circuits
given in the training set, providing a systematic and cost-

effective method for discovering novel solutions to the task
at hand. Lastly, the DM input tensor can be resized at will
to account for different qubit numbers (as done above) and
varying circuit lengths. Figure 2f shows that the accuracy
of the model is almost constant no matter what the input
tensor’s size is. The sudden drop for small sizes is due to the
impossibility of generating entanglement with few gates.

Masking and editing circuits In addition to resizing the
input tensor, one can also fix parts of it, as proposed in
Ref. (Lugmayr et al., 2022) for image editing. This en-
ables two operations: one prevents the model to place gates
somewhere in the circuit, the other imposes the presence of
certain gates. Importantly, one does not require to retrain the
model in any form, and the results presented in this section
use the same model as employed above.

The first operation, masking, offers a means to introduce
specific structural constraints into the circuits. For instance,
current quantum devices exhibit limited non-local qubit con-
nectivity. Performing operations between distant qubits,
such as a two-qubit gate, must be broken into sequences of
intermediate gates that swap the operation through the cir-
cuit (Baumer et al., 2023), ultimately reducing gate fidelity.
However, such a constraint is not naturally represented in
the circuit picture, where seemingly any qubit connectiv-
ity is feasible. As illustrated in Figure 3a, to enforce the
physical limitation of a known device onto the circuit, we
mask desired parts of the model’s input tensor preventing
any gate placement in the marked region. Then, this masked
tensor together with the desired text prompt, is input into the
model to generate the suitable circuit. This approach also
grants control over the number of qubits and circuit length
e.g., by masking entire qubit rows, although the accuracy
of the generated circuits generally falls short compared to
employing tensors of varying sizes, as done in the previous
sections.

The second operation, editing, allows us to fix specific gates
throughout the circuit prior to the diffusion process. From
a practical perspective, we consider here that a quantum
state of interest, in the form of a circuit, is given as an initial
state in which further computations need to be performed
(Figure 3b). For instance, starting with an input circuit of a
certain SRV;, we aim to transform it into a target SRV, (Fig-
ure 3c). We allow for this task circuits of maximum 20 gates,
where at most the first 6 generate the initial SRV;. Notably,
the model successfully handles tasks that involve increasing
entanglement (elements above the diagonal), but encoun-
ters challenges when tasked with reducing entanglement
(elements below the diagonal). This becomes particularly
evident when a fully entangled state is given (lowest row).
While on average the model produces accurate edits, for
some circuits where all or most of the entanglement had to
be destroyed, no correct editing was found. We note that the
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Figure 3. Masking and editing circuits. (a) Masking: the layout
of a quantum processor can be embedded as a mask that prevents
the model from placing gates at specific parts of the input tensor
(white area). (b) Editing: parts of the circuit can be fixed to given
gates prior to generation, for example to account for an initial input
quantum state on which a desired quantum computation is to be
performed. (¢) Accuracy when editing circuits from an input SRV
to a target SRV. Numbers highlight the fraction of initial circuits
(256) where at least one solution was found within a sample of
1024 generated circuits.
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Figure 4. Unitary compilation. (a) Number of exact and distinct
circuit compilations, over 1024 generated circuits, for 3100 input
unitaries. At least one exact circuit was found for 92.6% of the
unitaries. (b) Frobenius distance between the same 3100 target
unitaries and circuits generated randomly (blue) or by the diffusion
model (orange). (¢) Given an input circuit, its variations can be
produced by first calculating its unitary and then conditioning the
model with this unitary plus different gate sets.

latter is also the most challenging scenario, as disentangling
highly entangled states requires the largest number of gates.
Moreover, our experiments (see Methods) suggest that the
current model slightly correlates SRVs with circuit lengths,
favoring shorter circuits for low entanglement. As editing
towards such low entanglement is preceded by many gates
for initial highly entangled states, the model has difficulties
creating such target SRVs. Nonetheless, in the worst case
scenario the model is still capable of correctly editing 89.1%
of the input circuits.

Unitary compilation We now train the model in one of
the most crucial tasks in quantum circuit synthesis: compil-
ing given unitaries into circuits, constrained to a certain set
of gates. To do so, we generate a variety of circuits with
differing lengths and gates, subsequently calculating their
corresponding unitaries. In previous tasks, generation was
only conditioned to the information contained in the text
prompt. Here, we extend such conditioning by appending to
the CLIP encoded text prompt, which now encodes the set
of gates to be used, a learned encoding of the unitary (see
Figure 1). Just as before, the model is trained to denoise
noisy input tensors, avoiding the exponential cost of comput-
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ing distances between generated and target unitaries. After
training, new unitaries are fed into the model to evaluate its
generative compilation capabilities.

We restrict here to 3 qubit circuits and unitaries computed
from randomly generated circuits, ensuring that at least one
exact implementation exists under the given constraints. Fur-
ther, we only pick random unitaries that are not within the
training set and new to the model. For each input unitary, we
generate 1024 circuits. Remarkably, the model successfully
identifies the correct exact unitary for 92.6 % of the 3100
tested unitaries. In most instances the model finds multiple
valid circuits for the same unitary (Figure 4a), allowing the
prospective user to choose according to its needs. To gain
further insights into the model’s capabilities, we calculate
the Frobenius norm based distance 3 ||U; — Uy ||% between
the target (U;) and generated (U,) unitaries (Figure 4b). As
anticipated from the previous result, the majority of target
unitaries can be compiled with norm zero. When this is not
achieved, the norm attained is smaller than what would be
expected from a randomly generated circuit, suggesting that
the model, while not capable of succeeding in the task, is
heading in the right direction. For those few failed cases,
one can rely on further sampling or leverage the generated
circuit as a starting point for other methods (Weiden et al.,
2023). In that sense, the masking and editing operations
presented above can be performed in exactly equal manner
for this task.

Interestingly, one can explore the compilation of the same
unitary conditioned to multiple gate sets to uncover opti-
mized solutions or identify unknown gate decompositions
or compressions (Figure 4c).

Discussion

In this work, we have demonstrated the potential use of
diffusion models for quantum circuit synthesis. As the de-
velopment of quantum hardware progresses, there is an in-
creasing need for efficient and versatile methods that convert
desired quantum operations, as needed, e.g., in quantum al-
gorithms (Dalzell et al., 2023) or quantum simulation (Daley
et al., 2022), into practical physical implementations under
given hardware constraints. The approach introduced here
addresses several persistent challenges in circuit synthesis:
1) through the model’s denoising loss, the method avoids
the exponential overhead of classically computing cost func-
tions comparing generated and target quantum circuits; ii)
the model’s flexibility enables adjusting text prompts and
input tensors to produce circuits with specific lengths and
topologies. This is especially useful for addressing phys-
ical device constraints or other boundary conditions and
desiderata; iii) Fine-tuning the model with a small number
of samples from pre-trained models enables its training in
situations where obtaining a full training set is prohibitively

expensive. We demonstrated these capabilities in two tasks:
quantum state preparation, specifically entanglement gen-
eration, and exact unitary compilation. The model not only
tackles these tasks but also uncovers multiple novel solu-
tions, offering further insights into the problem at hand.

The current work offers multiple extensions. On the one
hand, science greatly benefits from and needs interpretable
machine learning solutions — models that not only provide
predictions but also offer insights into how these solutions
were found. We believe that certain features of our proposed
architecture can serve this interpretative purpose. For in-
stance, as done in the context of image generations (Niu
et al., 2021; Wiegreffe & Pinter, 2019; Hertz et al., 2022;
Li et al., 2023), the U-Net’s cross-attention maps can be
used to reveal which parts of the circuit are deemed im-
portant by the machine for different text prompts. On the
other hand, perhaps the most direct benefit is the extension
of the current method to continuous, parametrized gates,
which can seamlessly be integrated into the current circuit
encoding and training framework. Moreover, the model
can be extended to different platforms and applications, as
e.g., the transpilation of quantum-gate-based operations to
measurement-based quantum computations (Raussendorf
& Briegel, 2001; Raussendorf et al., 2003; Briegel et al.,
2009), discovering quantum experiments (Melnikov et al.,
2018; Krenn et al., 2021) or finding native compilations in
fermionic (Gonzdlez-Cuadra et al., 2023) or anyonic (Zhang
et al., 2020) processors. For each scenario, it is essential
for the user to establish a suitable tensor encoding for its
device’s computational units, such as optical elements in a
photonic processor or native gates in a fermionic processor.
With a specific encoding set defined, a similar or even the
same model presented here becomes readily adaptable to
fulfill distinct user needs.

A key factor for the widespread application of the presented
method is its scalability. From a ML perspective, the dif-
fusion model used here can be easily enlarged to reach the
current state-of-the-art industrial models, given necessary
computational power. Indeed, a model on the scale of Stable
Diffusion XL (Podell et al., 2023) could potentially generate
circuits of 1024 qubits and 1024 gates. However, as in any
circuit synthesis method, the main bottleneck arises from the
quantum nature of the problem. For instance, assembling a
suitable dataset for such a large-scale model poses a consid-
erable challenge, as it requires the classical computation of
the unitary corresponding to each circuit or the SRV of its
output. Fine-tuning smaller, more manageable models for
larger sizes, as demonstrated in Figure 2¢, may be practical
for systems with tens of qubits. Yet, alternative strategies
may be necessary for handling hundreds or thousands of
qubits. Moreover, performing unitary compilation involves
conditioning the model with a unitary matrix which grows
exponentially with the number of qubits. Future iterations of
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the model here presented should explore more efficient con-
ditionings, for example, based on Hamiltonians generating
the unitary evolution of the system.
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A. Quantum circuit encoding

In this section, we detail the procedure to encode quantum circuits into continuous tensors, which can then be fed into deep
neural networks. Inspired by methods from the natural-language-processing (NLP) community, we first transform quantum
gates into discrete tokens and then into continuous embeddings (see Extended Data Fig. 1). We will also refer to these
embeddings as colors, as done in Figure la.

The proposed encoding is constructed to account for:

1. any sequence length (e.g., number of gates);
2. any spatial size (e.g., number of qubits);
3. any number of local or non-local spatial connections, as for instance two-qubit gates with target and control nodes;

4. flexibility in the number of tokens, to possibly extend the number of gates at later stages of training or fine-tunings.

Points 1 and 2 are achieved by mapping the time (length) and space (qubits) dimensions each to one of the tensor’s
dimensions. Moreover, we require that only one gate can be present at each time step. Additional to these two axes, the
tensor has a dedicated ”gate dimension”, of arbitrary size, used to describe each of the various gates. To address point 3, we
describe the control and target nodes of a multi-qubit gate with the same numerical embedding but with opposite signs.
As continuous vectors are used to describe gates, point 4 is seemingly addressed by assigning a new vector to each new
gate. We note here that the proposed encoding is general and can be applied to any types of categorical time sequence. For
instance, such continuous tensors can be used to represent parametrized gates or, extending beyond quantum circuits, optical
devices in quantum optical experiments.

Encoding — The circuit encoding consists of two steps. First, we tokenize the circuit gates into an integer matrix
representation. With it, each gate corresponds to an integer number, and we use a sign to specify the target and control
nodes. While one could work with such circuit representation, machine learning models’ stability benefits from normalized
continuous inputs, preferably centered around 0 and in the range [-1,1]. Hence, we transform each of the N gates/tokens
into a vector v € R?, where the dimension d is arbitrary. Again, the two nodes of a multi-qubit gate share the same v but
with opposite signs. We usually consider d > N, and choose the vectors v to be mutually orthogonal, defining a linearly
independent set. The latter is not strictly necessary, but makes the decoding of model generated embeddings more robust to
numeric variances. In this work, we consider d = N + 2, where two tokens are used for padding and background. More on
the former is presented in the Training section below.

As mentioned in the main text, in principle all the previous embeddings can be generated by trained machines (as done in
NLP embeddings). Such training is usually performed prior to the diffusion model training. Importantly, if one trains it
together with the denoising model, the trained embedder would learn to set all tokens to zero such that the denoising model
can then extract the noise trivially.

Decoding — The first step of the decoding entails transforming the continuous tensors vge, generated by the model back to
tokens. For that, we choose the token k£ whose embedding v, has the highest absolute cosine similarity S¢ to Vgen:

k = argmax |Sc(Vi, Veen)|- (1)
k

To resolve the node type, we perform a second step:
k =k - sign Sc(Vi, Vgen) 2)

Such calculation is performed for every space-time position of the tensor encoding, returning a tokenized integer matrix,
which exactly describes a valid circuit. We refer to error circuits as those in which the model places two or more gates per
time step or does not properly place either the target and control nodes of multi-qubit gates. Interestingly, we notice that the
trained models matches the original embeddings with high precision (i.e.,v4en, =~ V) and assume one could “overload” the
vector space R? with N > d gates. This is further motivated by the results in visual image tasks (Rombach et al., 2022),
where diffusion generated images are highly color accurate.
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Extended Data Figure 1. Quantum circuit tensor encoding. (a) Schematic representation of the gate embeddings for a single and multi
qubit gate. (b) Quantum circuit encoding and decoding pipeline. For encoding (green arrows), an input quantum circuit (top left) is
first tokenized based on the proposed vocabulary. Then, the token matrix is transformed into a continuous tensor based on the chosen
embeddings v; (bottom right). In order to decode a continuous tensor into a circuit (blue arrows), we first use the cosine similarity
between input embeddings and the ones assigned to existing tokens to generate a tokenized matrix, which is then transformed back into a
circuit by means of the vocabulary. The transformation between circuits and tokens depends on such vocabulary, and can be changed at
will to cope with the desired computing framework or platform. Further details are given in text.

B. Dataset

In this section we detail the procedure used to generate the datasets, with which both models presented in this work were
trained (one for entanglement generation and one for unitary compilation). In both case we follow the same steps:

1. Generate random circuits. For each circuit, given the full set of gates considered for the current task, we first sample
a subset of it. Next, we sample the number of gates to be placed from a uniform distribution with given lower and upper
bounds. Then, we sample from the gate subset such a number of gates and place them in the circuit. Finally, we compute the
condition associated with the generated circuits. For the entanglement generation task, we calculate the SRVs and convert
them to prompts, e.g. ”Generate SRV: [1, 2, 2]”. For the unitary compilation task, we calculate the unitary and store it
together with a prompt specifying the gate set that was used to sample the circuit, e.g. "Compile using: [cX, h, x]”.

2. Optimize circuits. We use the optimization-stage of the Qiskit giskit.compiler.transpile function to
optimize all the random circuits (Qiskit contributors, 2023). This step mainly removes duplicated consecutive gates and
generally improves the quality of dataset. Training with such an optimized dataset indeed yields a significant increase of the
model’s accuracy. After optimizing, we delete all circuit duplicates.

3. Balance dataset. We balance the dataset in a two-step procedure. First, we balance the text prompts, i.e., the SRVs or
compilation gate sets, such that every prompt has the same number of circuits. In the second step, we balance the circuit
lengths within the previously balanced text prompt bins. For that, we limit the number of circuits to a maximum threshold
for each gate count. As the threshold we choose g-quantiles of the lengths within the text prompt bins. In particular, we
chose ¢ = 0.25 for both the entanglement generation and unitary compilation task, and ¢ = 0.05 for the fine-tuning to 9 and
10 qubits in the entanglement generation task. Our experiments show that such balancing increases the dataset quality and
improves the model performance.

Using these steps, we produce datasets with the parameters specified in Extended Data Table 1. For the entanglement
generation task, we use a multi-qubit dataset of 3 to 8 qubit circuits, with numbers of qubit and circuit length distribution
presented in Extended Data Fig. 2. We trained the compilation task on a dataset with 2.5 million distinct 3-qubit circuits,
created from 1.17 millions distinct unitaries.
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qubits — min gates — max gates | gate pool
SRV 3 2 16 H, CX
4 3 20
5 4 28
6 5 40
7 6 52
8 7 52
SRYV, fine-tune 9 8 36 H, CX
10 9 36
Compilation 3 2 12 H, CX, Z, X,
CCX, SWAP

Extended Data Table 1. Dataset sampling parameters. Parameters used for the generation of the various training datasets used throughout
the manuscript. SRV refers here to the entanglement generation task. We note that these parameters are chosen prior to the optimization
step (step 2 in the Methods Dataset section), which effectively reduces the final gate number for some circuits.

a) b)
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Extended Data Figure 2. Entanglement generation dataset distribution. Characteristics of the training dataset used for the entanglement
generation task, sampled according to Extended Data Table 1 and balanced as described in Methods, Training section. Depending on the
training step (max or bucket padding, see aforementioned section), we sample batches either from the whole dataset or buckets containing
circuits of fixed number of qubits. (a) Number of distinct circuits as a function of the number of qubits. For lower qubit counts, less
distinct circuits exist, resulting in an inevitable lower number in the training dataset. (b) Distribution of circuit lengths, which are in this
case multiples of the U-Net scaling factor 4, due to the length padding explained in Methods, Pipeline and Architectures section.

C. Pipeline and architectures

In this section we present the details of the machine learning models, namely the denoising U-Net, the text encoder CLIP
and the unitary encoder. Moreover, we explain how to combine conditions for the unitary compilation task.

U-Net — For the U-Net denoising model, we adjust the architecture of Stable Diffusion (Rombach et al., 2022). An overview
of the model is presented in Extended Data Fig. 3a. The structure of the self and cross-attention layers is inspired by the
Stable Diffusion model, which proposed a reordering of the normalization layers, compared to the original transformer
architecture (Vaswani et al., 2017), and introduced the use of a residual connection.

We design the architecture such that it accepts the circuit tensor encodings proposed in the Quantum circuit encoding section
above. As discussed in the main text, to be useful for the proposed tasks, the model needs to account for: i) non-locality of
qubit-connections. ii) circuits of any size both in terms of the number of qubits and its length.

To achieve this, all convolutions in the U-Net are performed only on the time dimension. From a technical perspective, this
entails having convolution kernels of size 1 x f, where f is the filter size in the time dimension, which varies throughout
the architecture (see Extended Data Fig. 3). Such feature ensures that there is no locality bias induced in the qubit space
dimension and, most importantly, that the perceptive field in this dimension is not restricted. This is crucial for instance
in bigger circuits, where connections between outermost qubits exist. Computations over the spatial dimension are only
performed in the self attention-layers which, most importantly, atfend simultaneously to the whole dimension, preventing
any locality assumptions or size restrictions. To simplify the up and down scaling procedures contained in the U-Net, we
restrict here to tensor encodings of lengths (time dimension) product of 4 (see Extended Data Fig. 2b). In practice we allow
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all circuit lengths and add padding tokens to the next higher multiple of 4.

Some conditions require an absolute position matching to the corresponding qubits (e.g. the elements of the SRVs
strictly define which qubit has which Schmidt rank). We account for this by adding an absolute 2D sinusoidal position
encoding (Vaswani et al., 2017) to the model input. To get a 2D position, we split the gate dimension in two chunks and
apply on each a distinct encoding for the corresponding x and y coordinate. Inspired by (Kazemnejad et al., 2023), we tried
different approaches: no positional encoding in either the spatial or time dimension, or introducing in both dimensions a
causal attention mask. We noticed a significant accuracy drop when not using a 2D position encoding. We suspect that the
application of the causal attention mask prevents the model seeing which gates it places in the subsequent time steps of the
circuit. As any gate withing the circuit is able to alter the output state significantly, not having access to such information
presents an insuperable challenge.

Text prompt encoding — As described in the main text, we use a CLIP model (Radford et al., 2021) with pre-trained weights
from (Ilharco et al., 2023) (version ViT-B-32 trained on laion2b_s34b_b79k) to encode the text prompts. We discard the last
layer and take the penultimate transformer output as encoding. The CLIP pipeline pads tokens to a sequence length of 77
elements. Since the last layer is discarded, the output-tensor has 512 channels i.e., a final shape of 77 x 512.

Unitary encoder — Given a unitary matrix, we create an input tensor by splitting the unitary’s real and imaginary parts into
two channels, which is fed into the unitary encoder. Extended Data Fig. 3b schematically represents the used architecture.
After an initial convolution layer, we introduce a 2D positional encoding layer, such as to encode the absolute position of the
unitary entries. Then, we use a transformer encoder with self-attention layers, taking advantage of their global attention
mechanism. Such global attention is key when inspecting a unitary matrix, as the information contained on it is highly
non-local. We introduce in between the two attention blocks a down-scaling layer with kernel-size 2x2. The output tensor
has size [ x [ x 512, where [ depends on the size of the input unitary.

Conditioning — A key feature of the proposed model is its ability to generate quantum circuits based on a given conditioning.
As usually done in this type of models, the input condition c is passed into the key and value inputs of the cross-attention
layers of the U-Net. In our case, ¢ can contain multiple information. In simple scenarios, as in entanglement generation, the
CLIP encoded text prompt is the only condition. When performing unitary compilation, we concatenate the output of the
CLIP encoder (size 77 x 512) with the flattened output of the unitary encoder (size [> x 512), meaning a final conditioning
of size 77 + 12 x 512. Last, the denoising time step ¢ (see below for details), encoded via a sinusoidal position encoding, is
added to the residual part of the residual convolutions blocks inside the U-Net.

D. Training

In this section we present the details needed to reproduce the training of the presented models. Our models were trained
using a single Nvidia RTX A6000 Ada graphical processing unit and an AMD Ryzen Threadripper Pro 5965wx processor.
The training times vary between 12 to 24 hours depending on the particular application.

We train the DM according to the denoising diffusion probabilistic models (DDPM) procedure (Ho et al., 2020). We choose
to parameterize the model as an e-predictor, i.e., at every time step ¢ the model learns to directly predict the noise €; of
a noisy tensor x; = /ay xo + /1 — @; €;, where €, ~ N(0,1I), xq is a sample of a training dataset with an arbitrary
distribution ¢(x) and &; is a variance schedule. Here we set &; = HZ:O o = szo(l — f3;). Considering a denoising
model with parameters 6, whose noise prediction €y is conditioned on c, its parameters are optimized to minimize the loss
function

2
L = Eius[0,7], xo~a(x0), ec~N(0.1) | [ €6 — €0(xt, 1, C)Hz} :

In order to sample according to the given condition, we use classifier-free-guidance (CFG) (Ho & Salimans, 2022). During
training, we set the condition c to an empty token & with a probability of 10%, to train the model both for conditional
and unconditional predictions. To reduce the exposure bias of the train-inference mismatch, we apply input perturbation
(Ning et al., 2023) with v = 0.1. As variance schedule, we use the cosine beta schedule from (Nichol & Dhariwal, 2021).
We train for 7" = 1000 diffusion steps and utilize the Adam optimizer (Kingma & Ba, 2014) with one-cycle learning rate
policy (Smith & Topin, 2019). All further training parameters are listed in Extended Data Table 2.

For the compilation task, we simultaneously train the unitary encoder with the U-Net, i.e., treating the corresponding part of
the condition as ¢4 (U), where U is a given unitary and ® are the parameters of the unitary encoder. The CLIP model for the
text prompt encoding is kept frozen. In our dataset, the majority of the unitaries have a single unique circuit implementation
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Extended Data Figure 3. Machine learning architectures. (a) Scheme of the denoising U-Net architecture predicting the noise
€9(x¢,t,c). First, we project the input tensor features into a higher space through a convolutional layer (red) and then apply a
2D positional sinusoidal encoding. Then, we apply a typical encoder-decoder structure, with skip connections scaled with 1/+/2. The time
step encoding ¢ is injected into residual convolution layers (turquoise). The condition embeddings c are input to the residual transformer
blocks (purple) as detailed in Appendix C. All the transformer blocks have a residual connection. (b) Scheme of the unitary encoder used
to transform input unitaries into conditionings (see Appendix C)

due to extensive random sampling in the unitary space. This results in over-fitting, as the model can just memorize a
one-to-one mapping of the unitary to a tensor encoding. We mitigate this by implementing dropout in the U-enc. Despite
some overfitting during training, the model performs well when compiling new unitaries, as we show in Figure 4. For the
entanglement generation task, training the model shows a steady decrease in the validation loss, resulting from many circuits
that correspond to the same “overloaded” SRV (see Method’s Dataset section).

A general quantum circuit synthesizer must be able to generate circuits with different sizes, i.e., different number of qubits
and max number of gates. Translating this to image generation essentially means producing images with different sizes and
aspect ratios. Tackling such problem is an ongoing research topic, which has recently been addressed by Stable Diffusion
XL (Podell et al., 2023). Image generation datasets consist of many images with different sizes. Conventionally, all images
are cropped, padded, resized or even discarded to one global size. Stable Diffusion XL introduces two procedures to mitigate
this issue: micro-conditioning, i.e., conditioning on the original size of the images, and multi-aspect (ratio) fine-tuning. In
the presented model, we implement the latter in a two step process, as proposed in Ref. (Podell et al., 2023):

1. Max padding — First, we train on a single tensor size. For this, we calculate the maximum tensor size of the whole
dataset (i.e., the most qubits and, separately, the highest number of gates). We then apply padding to all circuits smaller than
this maximum size. In order to pad, we use an additional “padding” token and apply the same embedding method as for
gates (as mentioned in the Quantum circuit encoding section and shown in Extended Data Fig. 1b).

2. Bucket padding — After that, we split the dataset into buckets, each containing circuits of a given qubit number. Then,
the model is fine-tuned with batches from such buckets, ensuring that all circuits within a batch have the same number of
qubits, but still allowing these to have varying lengths. Our experiments show a great improvement in the accuracy of the
model when this last step was implemented.

Importantly, for both training steps and for each training batch, we cut the circuits to the longest circuit in the time dimension
within the batch, removing unnecessary length padding and speeding up calculations. We believe that the model seeing the
padding token for circuits smaller than the longest one within the batch is beneficial, as it can learn that the number of actual
gates can be smaller than the tensor size.
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model step method Ir epochs
SRV 3 to 8 qubits 1 maxpad | 3-10~7 75

2 | bucketpad | 5-107° 50
Fine-tune to 9 or 10 qubit bucket pad | 5-107° 25
Compilation 3 qubits bucket pad | 3-10~% 150

Extended Data Table 2. Training parameters. For the multi-qubit entanglement generation task (referred here as SRV), we use two
training steps as explained in Methods, Training section. The fine-tuning and compilation trainings are done with circuits with fixed qubit
numbers (either 9 and 10 for entanglement generation or 3 for unitary compilation). Hence, no special padding is needed in the space

(qubit) dimension. Length padding is done per training batch. For all trainings we use a batch size of 256.

Task qubits  max gates  gate-pool samples denoise steps  tqart g | Notes

Figure 2a,d,e | 3to8 16 H, CX 8192 20 7.5 | samples per # entangled qubits

Figure 2b 5 16 H, CX 8192 20 7.5 | samples per SRV

Figure 2¢ 9to 10 16 H, CX 512 20 7.5 | samples per # entangled qubits, 10
fine-tune runs

Figure 2c inset | 9to 10 16 H, CX 16384 20 7.5 | samples per # entangled qubits, 10
fine-tune runs

Figure 2f 5 41052 H, CX 8192 20 7.5 | samples per # entangled qubits per
max gates

Figure 3a 7 16 H, CX 40 39 7.5 | noinitial gates

Figure 3b 5 16 H, CX 40 39 7.5 | one initial circuit with 6 gates

Figure 3c 5 20 H, CX 1024 40 38 7.5 | 256 initial circuits with 5 to 6 gates

Figure 4a, b 3 12 H, CX, Z, X, 1024 20 7.5 | samples per unitary; 3100 unitaries

CCX, SWAP with 2 to 12 gates

Extended Data Table 3. Sampling parameters. Parameters for all the results reported throughout this paper. Here g is the CFG guidance-
scale. For editing and masking ¢star¢ is the time step from which we start denoising (analogous to img2img (Meng et al., 2022)).

D.1. Fine tuning

In Figure 2c we showed that a trained model can be fine-tuned after training and learn to solve new tasks. In that case, we
showcased how it is possible to improve the accuracy of the model in bigger qubit counts: from the original 3 to 8 qubit
model to 9 and 10 qubits. To do so, we perform an extra step of the bucket padding step, with circuits of 9 and 10 qubits,
with parameters given in Extended Data Table 2. In this case, we consider each qubit count as a completely different training.
It is expected that, due to the fine-tuning, the accuracy of the model on the original task (e.g., 3 to 8 qubit circuits) may
decrease. Here, we focused only on improving the accuracy of the new tasks. If one wants to keep the performance of old
tasks, a mixed-qubit training can be used, where the new expensive circuits are combined with a dataset of already know
tasks, e.g., the latter can be automatically generated by the model beforehand, as proposed by DreamBooth (Ruiz et al.,
2023).

E. Inference and benchmark

Once trained, we sample (infer) new circuits from the model in a variety of scenarios. To sample a new circuit we provide
the model with condition ¢ and a noise input tensor X7 ~ A (0, I). The noise tensor imposes the size of the output circuits,
i.e., the number of qubits and the maximal number of gates the model is able to place. As the model has seen a variety of
padded circuits during training, it is able to place the padding token if needed. Hence, a good strategy is to input sufficiently
long tensors to the machine and allow the model to restrict the total number of gates by placing the padding token. We
believe such feature underlies the stability of the accuracy over increasing tensor sizes shown in Figure 2f.

As sampling method, we use the DDPM sampler (Ho et al., 2020), with lower denoising steps as proposed from the denoising
diffusion implicit model (DDIM) (Song et al., 2022). We use the re-scaled classifier-free-guidance formula (Sec. 3.4 of
Ref. (Lin et al., 2023) with ¢ = 0.7) to guide the model according to the condition. The number of denoising steps and the
guidance scales used to generate the datasets presented in the figures of this manuscript are listed in Extended Data Table 3.
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Extended Data Figure 4. Generated circuit lengths distributions. Distribution of circuit lengths w.r.t. to the number of entangled qubits

for: (a) the training (balanced) dataset of Figure 2 filtered for 5 qubit circuits; (b-c) generated circuits with an input tensor constraining a
maximum of 16 and 24 gates, respectively.

‘We note that the masking task presented in Figure 3a represents a bigger challenge than the rest of the tasks, due to hard
restrictions imposed on the generated circuits. Indeed, we see an increase of the number of error circuits, from below 1% in
the non-masked entanglement generation task to ~ 90% here. Moreover, the number of samples needed to find a proper
solution will vary depending on how restrictive the masking is. In contrast, the editing task presented in Figure 3b is not as
restrictive. Hence, the number of error circuits does not increase in the case and the model is able to find multiple distinct
solutions with less needed samples.

F. Circuit length vs. SRV

Machine learning models often tend to exploit features of the training data to improve their accuracy. In this case, our
experiments show that the model correlates the length of the generated circuits with the number of entangled qubits
(Extended Data Fig. 4). While we balance the circuit length in the training set (see Extended Data Fig. 4a and Dataset
section above), the generated circuits (Extended Data Fig. 4b and c) show peaked distributions, whose peak increases as the
number of entangled qubits increase. As shown in the figure, this feature appears for any tensor size. However, we see that
reducing the tensor size slightly improves this feature. Indeed, further investigations revealed that the peaks in the length
distribution correspond to lengths in which randomly generated circuits would have the best accuracy. We can then consider
that while training, the model found that producing such distribution is a shortcut to decreasing the loss function and hence
biased its prediction for this. Different dataset balancing approaches were tested, all yielding similar results. While such
preference biases the generation, the final length of the circuit can still be tailored by means of the input tensor size and the
model can still produce circuits of all lengths for each SRV (if possible).
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