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Abstract
The generalization performance of machine learn-
ing methods depends heavily on the quality of
data representation. However, existing researches
rarely consider representation learning from the
perspective of generalization error. In this paper,
we prove that generalization error of representa-
tion learning function can be estimated effectively
by solving two convex optimization problems.
Based on it, we propose a general representation
learning framework. And then, we apply the pro-
posed framework to two most commonly used
nonlinear mapping methods, i.e., kernel based
method and deep neural network (DNN), and
thus design a kernel selection method and a DNN
boosting framework, correspondingly. Finally, ex-
tensive experiments verify the effectiveness of the
proposed methods.

1. Introduction
Machine learning, especially supervised learning, has
achieved significant success in many fields, such as com-
puter vision (Russakovsky et al., 2015; He et al., 2016;
Carion et al., 2020; He et al., 2022), speech recognition
(Sainath et al., 2013; Gulati et al., 2020; Chiu et al., 2022),
and natural language processing (Brown et al., 2020; Qiu
et al., 2020; Cuadros et al., 2022), etc. The nature of ma-
chine learning is to learn the law from empirical data, which
is usually a function from input space X to output space Y ,
i.e., f : X → Y .

It is well known that the data representation has a huge
effect on the performance of machine learning methods
(Goodfellow et al., 2016). Better data representations can
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make learning tasks easier to solve. In most cases, the
function f is nonlinear, thus we need to apply a nonlinear
mapping φ to input space X . The process of learning φ
from data is called representation learning.

In machine learning, two most commonly used nonlinear
mapping methods are kernel based method and DNN.

Kernel based method utilizes kernel mapping φkernel to
map original data into a latent space X ′, and then completes
learning in latent space. In general, it is not necessary to
give explicit expression of kernel mapping φkernel, mak-
ing the kernel based method highly flexible and universal.
Benefiting from it, a large number of kernel based methods
have been proposed, such as kernelized principal component
analysis (Schölkopf et al., 1998), kernelized support vector
machine (Cortes & Vapnik, 1995), and kernelized k-means
(Zhang & Rudnicky, 2002), etc. Among them, the selection
of kernel directly determines the generalization performance
of kernel based method. So far, many kernels have been
proposed, such as Gaussian kernel, polynomial kernel, and
Laplacian kernel, etc. However, selecting a proper kernel for
a learning task is very challenging, because it is difficult to
estimate the generalization performance of the correspond-
ing latent data representation given a kernel.

DNN (LeCun et al., 2015) maps original data into a latent
space X ′ through a multi-layer neural network φDNN, and
then adds a liner mapping at the end of φDNN. In DNN, the
network architecture and loss are major impact factors of
the generalization performance.

For a learning task, designing a good network architec-
ture usually needs domain knowledge. For example, CNN
(LeCun et al., 1989; Krizhevsky et al., 2012; Simonyan &
Zisserman, 2015; He et al., 2016), ViT (Dosovitskiy et al.,
2021), and MAE (He et al., 2022) are designed for computer
vision tasks, while RNN (Rumelhart et al., 1986), LSTM
(Hochreiter & Schmidhuber, 1997), Seq2Seq (Sutskever
et al., 2014), BERT (Devlin et al., 2019), and GPT-3 (Brown
et al., 2020) are designed for natural language processing
tasks. How to design good network architectures for specific
tasks is beyond the scope of this paper.

So far, a lot of losses have been proposed to train DNN,
which can be roughly divided into two categories, super-
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vised loss and unsupervised regularization term loss.

Classical supervised losses includes cross entropy loss and
mean squared error, etc. These losses are calculated based
on labeled data and are surrogate functions of empirical
error. When labeled data is insufficient, their ability to
estimate generalization error will be limited.

p-norm family (Hanson & Pratt, 1988; Loshchilov & Hutter,
2019) is popular unsupervised regularization term loss. And
these losses are designed based on domain knowledge or
experience. Therefore, they are lack of universality. In
addition, it is difficult to give theoretical guarantee whether
these losses are beneficial to reduce generalization error of
DNN.

In summary, in order to learn a good nonlinear mapping φ
(select a proper kernel for kernel based method and design
an universal loss for DNN), it is indispensable to design a
criterion to estimate generalization error of data represen-
tation in latent space X ′ and guide representation learning.
This paper will achieve this goal. Specifically,

• A VC dimension based criterion is proposed to measure
generalization error of representation learning function.
It is proved that the criterion can be calculated effec-
tively by solving two convex optimization problems.
And then algorithms are designed to solve the corre-
sponding optimization problems efficiently.

• Based on the criterion, we propose a general represen-
tation learning framework, which aims to minimize
generalization error of representation learning func-
tion.

• Based on the framework, we design a kernel selec-
tion method for kernel based method and a boosting
framework for DNN.

• A toy example demonstrates the effectiveness of the
proposed criterion for measuring generalization error
of data representation. And systematic experiments
verify the effectiveness of the proposed framework for
kernel selection and DNN boosting.

2. Notations and Preliminaries
2.1. Problem Formalization

Let X ⊆ Rd, Y = {1, 2, · · · ,K}, K ≥ 2 and fc : X →
Y be input (feature) space, output (class label) space and
unknown target function, respectively. Let φ : X → X ′,
X ′ ⊆ Rd′

, be representation learning function.

For sake of discussion, this paper takes binary classification
problem as an example to build the theory and method.
By using “one-versus-one” or “one-versus-rest” strategy,
the multiple classification problem can be converted into

a series of binary ones, so that the proposed methods can
work directly. Moreover, recent study shows that arbitrary
classification problem can be equivalently converted into a
binary classification problem (Cui & Liang, 2022).

Given a binary classification problem, let X = X+

⋃
X−

and Y = {+1,−1} be input space and output space,
respectively. X+ ⊆ Rd and X− ⊆ Rd are positive
samples space and negative samples space, respectively.
Let X+ = {xi|xi ∈ X+, i = 1, 2, · · · , n+} and X− =
{xj |xj ∈ X−, j = n+ + 1, n+ + 2, · · · , n+ + n−} be the
positive and negative training samples, respectively. And
let X = X+

⋃
X− and n = n+ + n− be set of all training

samples and the number of all training samples, respectively.

At the same time, main notations used in this paper are listed
in Table 1.

Table 1. Definition of main notations.

NOTATION DEFINITION

φ (X+), φ (X−) {φ (X) |X ∈ X+}, {φ (X) |X ∈ X−}
φ (X ) φ (X+)

⋃
φ (X−)

φ (X+), φ (X−) {φ (X) |X ∈ X+}, {φ (X) |X ∈ X−}
φ (X) φ (X+)

⋃
φ (X−)

φ (X+)
(
φ (X1) , · · · , φ

(
Xn+

))
∈ Rd′×n+

φ (X−)
(
φ
(

Xn++1

)
, · · · , φ (Xn)

)
∈ Rd′×n−

φ (X) (φ (X+) , φ (X−)) ∈ Rd′×n

△m {V|V ∈ Rm, V ≥ 0,
∑m

i=1 vi = 1}

σ
σ : Rm → △m , ∀V ∈ Rm ,
σ(V) = 1

z
(exp(v1), · · · , exp(vm))T ,

z =
∑m

i=1 exp(vi)

2.2. Preliminaries of VC Dimension

Definition 2.1 (Chapter 3.6 of (Vapnik, 1999)). Let H
be a set of real functions. The VC dimension of H, de-
noted as dV C (H), is defined as the maximum m of vectors
x1, x2, · · · , xm that can be separated into two classes in all
2m possible ways using functions of the set I (H), where
I (H) = {g|g(x) = I (h(x) > b) , h ∈ H, b ∈ R} is the set
of indicator functions corresponding toH, and I (·) is 1, if ·
is true, and is 0, if · is false.

Definition 2.2 (Chapter 5.4.2 of (Vapnik, 1999)). Given a
hyperplane ph (ω, b), ∥ω∥2 = 1, b ∈ R. The ph (ω, b) is
called as M -margin separating hyperplane if it classifiers
vectors x as follows

y =

{
+1, if ωT x + b ≥M
−1, if ωT x + b ≤ −M .

Theorem 2.3 (Theorem 5.1 of (Vapnik, 1999)). Let vectors
x ∈ X ⊂ Rd belong to a sphere of radius R. Then the set of
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M -margin separating hyperplanes has VC dimension dV C

bounded by the inequality

dV C ≤ B1 (d,R,M) = min

([
R2

M2

]
, d

)
+ 1.

Theorem 2.4 (Corollary in Chapter 5.4 of (Vapnik, 1999)).
With probability 1 − η one can assert that the proba-
bility that a test sample will not be separated correctly
by the M -margin hyperplane has the bound Perr ≤
nerr

n +B2 (n, nerr, η, dV C), where B2 (n, nerr, η, dV C) =

E
2

(
1 +

√
1 + 4nerr

nE

)
, E = 4

dV C

(
ln 2n

dV C
+1

)
−ln η

4

n , n is the
number of training samples, nerr is the number of training
samples that are not separated correctly by this M -margin
hyperplane, and dV C is the VC dimension in Theorem 2.3.

3. VC Dimension based Representation
Learning Framework

3.1. Formalize Generalization Error of Representing
Learning

Given a learning task, the learning process is to obtain a
function f̂ : X → Y to approximate the unknown target
function fc by using training data. Generally, function f̂
can be written as the composition of two functions, i.e., f̂ =
h◦φ, where φ : X → X ′ is representation learning function
and h is classification function. The learning process can be
written as follows.

Representation learning can be formalized as follows

φ∗ = arg min
φ∈Ψ

Perr (H (φ (X ))) , (1)

where Ψ is the set of candidate representation
learning functions, Perr (H (φ (X ))) is general-
ization error of H (φ (X )), and H (φ (X )) =
{h|h is a hyperplne on space φ (X )} is hypothesis
space of classifiers. Given X , Perr (H (φ (X ))) is uniquely
determined by representation learning function φ(·), so it is
actually generalization error of representation learning.

Classifier learning can be formalized as follows

h∗ = arg min
h∈H(φ∗(X ))

L (h, φ∗ (X)) + γRR (h) , (2)

where L is the loss function that measures how well the h
fits the training samples X , R is the regularization term,
and γR > 0 is the trade-off parameter.

The above two components can be executed sequentially (an
example is given in Section 4). They also can be integrated
into an unified model for end-to-end learning (an example
is given in Section 5).

3.2. A Upper Bound of Perr (H (φ (X )))

According to Theorem 2.4, we can reduce generalization
error Perr in formula (1) by minimizing its upper bound
nerr

n +B2 (n, nerr, η, dV C), so formula (1) can be rewritten
as follows

min
φ∈Ψ

B2 (n, nerr, η, dV C (H (φ (X ))))

s.t. nerr

n ≤ ε
, (3)

where nerr

n is the empirical error on training set, ε > 0,
ε ≈ 0, and nerr

n ≤ ε is a constraint easy to satisfy (see
Remark A.5 for details). And dV C(·) is VC dimension of
set of functions ·.

By removing variables unrelated to φ, formula (3) can be
written as follows

min
φ∈Ψ

dV C (H (φ (X ))) s.t. nerr

n ≤ ε . (4)

It’s hard to directly minimize the VC dimension (see Defi-
nition 2.1). According to Theorem 2.3, we can indirectly
control the VC dimension by minimizing its upper bound,
so formula (4) can be rewritten as follows

min
φ∈Ψ

min
([

R2(φ(X ))
M2(φ(X+),φ(X−))

]
, d (φ (X ))

)
+ 1

s.t.


nerr

n ≤ ε

M (φ (X+) , φ (X−)) = sup
h∈H(φ(X ))

gm (h)

, (5)

where R (φ (X )) and d (φ (X )) are radius and dimension
of latent space φ (X ), respectively. gm (h) is the supre-
mum of margin of h on φ (X ) given target function fc (see
Definition 2.2).

In general, d (φ (X )) >
[

R2(φ(X ))
M2(φ(X+),φ(X−))

]
, so formula (5)

can be rewritten as follows

min
φ∈Ψ

R2(φ(X ))
M2(φ(X+),φ(X+))

s.t.


nerr

n ≤ ε

M (φ (X+) , φ (X+)) = sup
h∈H(φ(X ))

gm (h)

. (6)

Formula (6) is not executable, because the distribution of
input space X is unknown. Fortunately, training set X =
X+

⋃
X− that is sampled from X is available. Therefore,

we can use X to estimate the distribution ofX , which results
in the following optimization problem

min
φ∈Ψ

R2(φ(X))
M2(φ(X+),φ(X−))

s.t.


nerr

n ≤ ε

M (φ (X+) , φ (X−)) = sup
h∈H(φ(X))

gm (h)

. (7)

Formula (7) is still not executable, because margin
M (φ (X+) , φ (X−)) and radius R (φ (X)) are both in-
tractable. The next section will address these two problems.

3



A General Representation Learning Framework with Generalization Performance Guarantees

3.3. Making Margin and Radius Executable

For sake of discussion, this section takes input space X as
an example to solve the margin and radius problems. The
results can be directly applied to latent space φ(X ).

3.3.1. MARGIN

In formula (7), constraint

M (X+, X−) = sup
h∈H(X)

gm (h) (8)

is intractable. In order to solve it effectively, a lower bound
of M (X+, X−) is constructed by the following theorem.

Theorem 3.1. The optimization problem (8) can be bounded
by the following convex optimization problem. See Ap-
pendix A.1 for proof.

M2 (X+, X−) ≥
1

4
min

α∈△n+ , β∈△n−
∥X+α− X−β∥22

3.3.2. RADIUS

In formula (7), R (X) is radius of set X . To calculate it
effectively, we first formalize R (X) by Definition A.7 in
Appendix A.2 and then prove that R (X) can be calculated
by solving a convex optimization.

Theorem 3.2. Given a set X ⊂ Rd, the squared radius of
X can be computed by the following convex optimization
problem. See Appendix A.2 for proof.

R2(X) = inf
θ∈△|X|

sup
x∈X

∥x− Xθ∥22

3.4. Final Model and Solving

By substituting the conclusions of Theorems 3.1 and 3.2
into optimization problem (7), we have

min
φ∈Ψ

f(φ) = 4 g1(φ)
g2(φ)

s.t.


g1 (φ) =min

θ
max
xi∈X

∥φ (xi)− φ (X)θ∥22
s.t. θ ∈ △n

g2 (φ) =min
α, β

∥φ (X+)α− φ (X−)β∥22
s.t. α ∈ △n+ , β ∈ △n−

. (9)

The geometric meaning of formula (9) is clear. g1 (φ) is
radius of training samples in latent space (Definition A.7
in Appendix A.2) and g2 (φ) is the distance between the
convex hull of positive training samples and the convex hull
of negative training samples in latent space (Definition A.2
in Appendix A.1).

In formula (9), g1 (φ) and g2 (φ) are both convex quadratic
optimization problems and there are many conventional
solving methods (Boyd & Vandenberghe, 2004). To solve

them more efficiently, the constraint △m is expanded by
softmax activation function σ, i.e.,

min
φ∈Ψ

f(φ) = 4 g1(φ)
g2(φ)

s.t.

g1 (φ) = min
u

max
xi∈X

∥φ (xi)− φ (X)σ (u)∥22
g2 (φ) = min

v,w
∥φ (X+)σ (v)− φ (X−)σ (w) ∥22

,

(10)
where u ∈ Rn, v ∈ Rn+ , w ∈ Rn− . The optimization
problems g1 (φ) and g2 (φ) can be solved effectively and
efficiently by using the accelerated first-order algorithm,
e.g., Adam (Kingma & Ba, 2015) and high-performance
computing hardware, e.g., GPU. See Appendix B.1 for
details.

4. VC Dimension based Kernel Selection
In this section, the set of candidate representation learning
functions Ψ is modeled as a set of kernel functions Ψkernel.
Based on Section 3, a general VC dimension based kernel
selection method is designed. For sake of discussion, we
illustrate the method on binary classification problem.

4.1. Optimization Model

By substituting Ψkernel into formula (10), we obtain the fol-
lowing optimization problem (see Appendix A.3 for proof).

min
φ∈Ψkernel

f(φ) = 4 g1(φ)
g2(φ)

s.t.


g1 (φ) = min

u
max
xi∈X

σ (u)T Kφσ (u)− 2Kφ
[i,:]σ (u) + kφii

g2 (φ) = min
v,w

(
σ (v)
σ (w)

)T

K̂
φ
(
σ (v)
σ (w)

) , (11)

where Kφ and K̂
φ

are given in formula (29) in Appendix
A.3, Kφ

[i,:] is the i-th row of matrix Kφ, and u, v, w and σ
are same as formula (10).

4.2. Model Solving

In formula (11), the feasible domain Ψkernel is a finite set.
∀φ ∈ Ψkernel, the objective function f(φ) can be calculated
efficiently by the method given in Section 3.4. So it can be
solved efficiently. See Appendix B.2 for details.

5. VC Dimension base DNN Boosting
Framework

For a multiple classification problem, let Y =
{1, 2, · · · ,K}, K > 2 be output space. Let X be matrix
composed of all training samples. ∀p ∈ Y , let Xp be matrix
composed of training samples that come from class p.

In this section, the representation learning function is mod-
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eled as a DNN φ : X → X ′, X ′ ⊆ Rd′
with learnable

parameters Θ. Based on Section 3, a general DNN boost-
ing framework is proposed. An overall flowchart of the
framework is shown in Figure 1.
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Figure 1. The flowchart of the VC dimension based DNN boosting
framework. The proposed module is marked with a solid red box.

5.1. Optimization Model

∀x ∈ X , let φ (x; Θ) be latent representation of sample x.
By substituting φ (·; Θ) into formula (10), we have

min
Θ

f(Θ) =
∑

p,q∈Y,p<q 4
g1(Θ)

g
(p,q)
2 (Θ)

s.t.



g1 (Θ) = min
u

max
xi∈X

∥φ (xi; Θ)− φ (X; Θ)σ (u)∥22

∀p, q ∈ Y, p < q, g
(p,q)
2 (Θ) = min

v,w
∥φ (Xp; Θ)σ (v)− φ (Xq; Θ)σ (w) ∥22

. (12)

To make formula (12) easier to solve, we introduce 2-norm
standardization network, i.e., ∀h ∈ Rd′

, λ (h) = h
∥h∥2

.
∀x ∈ X , ∥λ (φ (x; Θ)) ∥2 = 1, so the radius of latent space
λ(φ(X ; Θ)) (see Definition A.7 in Appendix A.2) is not
greater than 1. By substituting λ(·) into formula (12), we
have

min
Θ
−
∑

p,q∈Y,p<q g
(p,q) (Θ)

s.t.

{
∀p, q ∈ Y, p < q, g(p,q) (Θ) = min

v,w
∥λ (φ (Xp; Θ))σ (v)− λ (φ (Xq; Θ))σ (w) ∥22

.

(13)
In order to achieve end-to-end learning, we add a linear clas-
sification network at the end of λ (φ (·; Θ)) and introduce
empirical loss L into formula (13). The final optimization

problem can be written as follows

min
Θ,W,b

L(Θ,W,b) + γVCLVC(Θ)

s.t.



L(Θ,W,b) =
1
n

∑n
i=1 ℓCE (σ (Wλ (φ (xi; Θ)) + b) , yi)

LVC(Θ) = − 2
|Y|(|Y|−1)

∑
p,q∈Y,p<q g

(p,q) (Θ)

∀p, q ∈ Y, p < q, g(p,q) (Θ) = min
v,w

∥λ (φ (Xp; Θ))σ (v)− λ (φ (Xq; Θ))σ (w) ∥22

,

(14)
where W ∈ R|Y|×d′

and b ∈ R|Y| are learnable parameters
of linear classification network, ℓCE is cross entropy loss,
LVC is VC dimension based loss, γVC > 0 is trade-off
parameter, and v, w are vectors with adaptive length.

5.2. Model Solving

Given a batch of training samples, the optimization problem
g(p,q) (Θ) in formula (14) can be solved efficiently by the
method given in Section 3.4. So the total loss L(Θ,W,b)+
γVCLVC(Θ) in formula (14) can be optimized efficiently
by stochastic gradient descent with mini-batch even if the
size of the training samples is large. See Appendix B.3 for
details.

5.3. Related Work

In DeepLAD (Dorfer et al., 2016), a loss is designed based
on the criteria of maximizing inter-class scatter and mini-
mizing intra-class scatter to train DNNs. Although the loss
is simple and intuitive, there is no theoretical analysis in the
literature on whether it is conducive to reduce generaliza-
tion error. In Section 6.3, we validate the advantage of the
proposed method by comparison experiment.

6. Experiments
6.1. Verifying Theoretical Results

This section demonstrates the effectiveness of the represen-
tation learning framework proposed in Section 3.4.

6.1.1. EXPERIMENTAL SETTINGS

Data set A 2-dimension data set Taichi is designed. The
ground truth distribution of Taichi data set is shown in Fig-
ure 2a. The training data set consists of 628 positive samples
and 629 negative samples, as shown in Figure 2b. The test
data set consists of 251, 312 positive samples and 251, 313
negative samples.

Candidate functions Gaussian kernel φ (xi; δ)
T
φ (xj ; δ)

= exp
(
δ ∥xi − xj∥22

)
, δ < 0 is used. And there are 2000

kernel parameters, i.e., δk = δmin + (k − 1) δmax−δmin

2000 ,
k = 1, 2, · · · , 2000, where δmin = −200, δmax = −10−5.
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Figure 2. The experiments on Taichi data set. (a) The ground truth distribution. (b) The training data set. (c) The classification hyperplane
of SVM@φ (·; δ∗). (d) The error rate of SVM@φ (·; δ) and the objective function value f(φ (·; δ)) in formula (10) with δ ∈ [−200,−4].
(e) It’s the same as (d), except for δ ∈ (−4,−10−5]. (f) The values of g1(φ (·; δ∗)) and g2(φ (·; δ∗)) in formula (10) after each iteration.

Basic learner The SVM (Cortes & Vapnik, 1995) with
Gaussian kernel is selected as the basic learner. Let
SVM@φ(·; δ) denote the SVM classifier trained on the
training data set with kernel function φ(·; δ).

See Appendix C.1 for more experimental details.

6.1.2. EXPERIMENTAL RESULT AND ANALYSIS

We show the experimental results in Figure 2. We have

(a) Figure 2d and 2e show that the objective function value
(red curve) f(φ(·; δ)) in formula (10) on training set and
error rate (blue curve) on test set under different kernel
parameters. It is observed that their change tendency is
consistent, which demonstrates that the proposed method
can be used for effectively estimating the generalization
error of representation learning function φ (·; δ).

(b) Figure 2c shows the classification hyperplane of
SVM@φ (·; δ∗), where δ∗ is parameter corresponding to
the lowest point of the red curve in Figure 2d. We can
observe that the classification hyperplane with parameter δ∗

is close to the ground truth distribution.

(c) Figure 2f shows the convergence of the objective func-
tions g1(·) (blue curve) and g2(·) (red curve) in formula (10).
The result shows the both objective functions can converge
after a few iterations.

Therefore, the criterion in formula (10) can be used for effec-
tively estimating the generalization error of representation

learning function φ (·; δ) and the corresponding optimiza-
tion problems can be solved effectively and efficiently by
the proposed Algorithm 1 and 2 in Appendix B.1.

6.2. Kernel Selection Experiment

This section demonstrates the effectiveness of the kernel
selection method proposed in Section 4.

6.2.1. EXPERIMENTAL SETTINGS

Data sets There are 15 binary classification data sets (see
Table 5 in Appendix C.2 for details). For each data set, 80%
samples are selected randomly as training data set and the
remaining samples are selected as test data set. The ratio
between positive samples and negative samples in training
data set (and test data set) is equal to the whole data set.

Candidate kernel functions In this section, Gaussian ker-
nel φ (xi; δ)

T
φ (xj ; δ) = exp

(
δ ∥xi − xj∥22

)
, δ < 0 is

used. And there are 25 kernel parameters, i.e., δk = −29−k,
k = 1, 2, · · · , 25, are used on each data set.

Basic learner The SVM (Cortes & Vapnik, 1995) with
Gaussian kernel is selected as the basic learner. Let
SVM@φ(·; δ) denote the SVM classifier trained on the
training data set with kernel function φ(·; δ).

Comparison method Cross validation (Bengio & Grand-
valet, 2004; Rodrı́guez et al., 2010; Jiang & Wang, 2017) is
a commonly used method for kernel selection. 5-fold cross

6
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validation is used to estimate the generalization performance
of each candidate kernel function. To reduce randomness,
5 different 5-fold cross validations (denoted as T1, T2, · · · ,
T5) are conducted. Let δ∗CV be the selected parameter.

Proposed method For each data set, the training data set
and the set of candidate kernel functions are fed to the Algo-
rithm 3 in Appendix B. Let δopt be the selected parameter.

Oracle and evaluation criteria Given a learning task (a
data set), the goal of learning is to minimize generalization
error, i.e., error rate on test set. In this experiment, the error
rate of SVM@φ(·; δk), k = 1, 2, · · · , 25 on test set are used
as oracle to estimate the generalization performance of each
candidate parameter. So the oracle-rank of every candidate
parameter rank (δk) ∈ {1, 2, · · · , 25} can be calculated.
Then, rank (δ∗CV) and rank (δopt) are used to compare the
performance of the corresponding methods.

See Appendix C.2 for more experimental details.

Table 2. The oracle-ranks of different methods.

ID 5-FOLD CROSS VALIDATION OUR
T1 T2 T5 T4 T5 MEAN

D1 2 2 2 2 2 2.00 1
D2 1 1 1 2 2 1.40 1
D3 3 3 2 3 3 2.80 1
D4 3 2 3 3 2 2.60 1
D5 2 2 2 2 2 2.00 1
D6 1 3 3 3 1 2.20 1
D7 3 3 3 3 3 3.00 2
D8 5 5 5 6 4 5.00 2
D9 1 1 3 1 1 1.40 1
D10 1 4 4 1 1 2.20 1
D11 3 4 2 4 2 3.00 1
D12 3 3 1 1 3 2.20 1
D13 1 2 1 3 1 1.60 1
D14 1 2 2 2 2 1.80 1
D15 1 2 2 2 2 1.80 1

6.2.2. EXPERIMENTAL RESULT AND ANALYSIS

We conduct two groups of experiments from the perspective
of generalization performance and time efficiency.

First, the oracle-rank of different methods is used for eval-
uating the generalization performance. The experimental
results on 15 data sets are presented in Table 2. It can be ob-
served that the oracle-rank of the proposed kernel selection
method is superior to the means of 5-fold cross validation on
the all data sets. Therefore, the generalization performance
of the proposed method is superior to 5-fold cross validation.
In addition, cross validation is inherently of randomness,
while the proposed method is of no randomness.

Second, we report the running times of 5-fold cross val-
idation and the proposed method for evaluating a kernel

function in Table 3. The results show that with the increase
of the number of training samples, the time efficiency of the
proposed method is significantly higher than of the 5-fold
cross validation. See Appendix B.2.1 for detailed analysis.

Therefore, the proposed method can effectively and effi-
ciently select kernel with good generalization performance
for kernel based method.

Table 3. The running times of different methods (ms).

ID TRAINING
SAMPLES

5-FOLD
CROSS

VALIDATION
OUR RATIO

D1 8 1.78 5.96 0.30
D2 64 2.97 4.37 0.68
D3 86 3.95 4.54 0.87
D4 136 5.94 4.39 1.35
D5 146 7.41 6.14 1.21
D6 157 8.67 5.71 1.52
D7 236 15.43 6.28 2.46
D8 245 10.92 5.97 1.83
D9 456 58.78 5.90 9.96
D10 467 41.87 5.16 8.12
D11 486 71.53 5.82 12.29
D12 553 74.16 18.33 4.05
D13 560 32.22 5.68 5.67
D14 5,921 8,406.90 52.56 159.96
D15 15,217 33,147.24 22.08 1,501.23

6.3. DNN Boosting Experiment

This section demonstrates the effectiveness of the DNN
boosting framework proposed in Section 5.

6.3.1. EXPERIMENTAL SETTINGS

Data sets The MNIST and CIFAR10 are used in this section.
In this section, 10, 20, · · · , 60 samples are randomly selected
from each class in the training set to train the models and
the 10,000 test samples are used to evaluate the models.

Basic DNNs There are 5 DNNs used in this section, i.e.,
FCNet3, LeNet (LeCun et al., 1989), ResNet18 (He et al.,
2016), ResNet50 (He et al., 2016) and ViT-Base (Dosovit-
skiy et al., 2021). Among them, FCNet3 hardly uses domain
knowledge, LeNet uses less domain knowledge, ResNet18,
ResNet50, and ViT-Base use more domain knowledge.

Comparison framework The DeepLAD (Dorfer et al.,
2016) is selected as the comparison framework.

∀Net ∈ { FCNet3, LeNet, ResNet18, ResNet50, ViT-
Base}, let Net, Net+LDA, and Net+Our be the basic DNN,
the DNN embedded into DeepLDA, and the DNN embedded
into the proposed framework, respectively.

See Appendix C.3 for more experimental details.
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Table 4. The accuracy of different methods on test data set (%).

DATA SET METHOD
THE NUMBER OF TRAINING SAMPLES IN EACH CLASS

10 20 30 40 50 60

MNIST

FCNET3 75.91 83.49 85.76 87.21 87.93 88.87
FCNET3+LDA 35.26 41.70 45.07 43.91 42.65 44.57
FCNET3+OUR 78.74 85.14 87.27 88.44 89.60 90.25
LENET 67.34 71.66 82.14 83.67 84.13 84.53
LENET+LDA 34.96 34.73 35.46 33.32 35.19 36.61
LENET+OUR 71.36 74.73 83.99 94.04 94.23 94.78
RESNET18 76.70 84.57 89.42 90.55 91.46 91.74
RESNET18+LDA 41.51 43.13 46.68 44.00 47.10 49.19
RESNET18+OUR 85.35 90.22 92.81 93.38 94.16 94.28
RESNET50 72.43 81.53 87.43 89.36 88.94 89.41
RESNET50+LDA 22.51 38.12 38.55 39.60 39.87 40.66
RESNET50+OUR 78.09 85.74 88.13 89.83 90.84 91.15
VIT-BASE 71.16 78.00 82.91 84.22 85.69 87.23
VIT-BASE+LDA 53.98 56.83 58.07 58.83 59.01 59.88
VIT-BASE+OUR 72.47 80.50 86.14 87.68 88.96 89.56

CIFAR10

FCNET3 21.53 24.81 26.41 29.01 29.72 29.54
FCNET3+LDA 17.63 19.54 21.43 21.06 21.06 20.55
FCNET3+OUR 24.54 27.48 30.11 31.34 32.62 32.25
LENET 13.39 16.99 18.51 18.66 20.31 22.31
LENET+LDA 14.78 14.20 15.40 15.73 15.30 15.39
LENET+OUR 22.51 23.13 26.89 29.19 29.60 30.47
RESNET18 24.63 27.87 32.53 33.83 34.21 35.06
RESNET18+LDA 16.26 15.40 16.63 18.26 18.81 19.29
RESNET18+OUR 26.60 30.77 33.98 35.78 36.64 36.87
RESNET50 22.99 26.32 29.74 30.77 30.45 30.51
RESNET50+LDA 15.27 18.01 17.92 15.64 18.14 20.60
RESNET50+OUR 23.68 27.68 30.64 32.03 32.21 32.31
VIT-BASE 21.28 22.65 23.96 25.14 25.20 25.95
VIT-BASE+LDA 19.30 19.09 20.41 20.30 21.05 20.33
VIT-BASE+OUR 22.81 24.17 26.52 29.10 27.34 27.98

6.3.2. EXPERIMENTAL RESULT AND ANALYSIS

We report the test accuracy of all methods with different
number of the training samples in Table 4. We have

(a) In all cases, ∀Net ∈ { FCNet3, LeNet, ResNet18,
ResNet50, ViT-Base}, the performances of Net+Our is
superior to Net. These results demonstrate the universality
and effectiveness of the proposed framework.

(b) When the number of the training samples is small, the
proposed framework can boost the performance of basic
DNNs. Therefore, the proposed framework can alleviate the
dependence of DNN on a large number labeled samples to
a certain extent.

(c) On MNIST data set, we have (c1) The performance of
ResNet18 is superior to FCNet3 and LeNet in all cases be-
cause it is a well-designed network architecture that uses
more domain knowledge. (c2) The performance of FC-
Net3+Our is superior to LeNet with 10, 20, ..., 60 training
samples. (c3) The performance of LeNet+Our is superior

to ResNet18 with 40, 50, and 60 training samples. Simi-
lar results can also be seen on the CIFAR10 data set, e.g,
FCNet3+Our is superior to LeNet 10, 20, ..., 60 training sam-
ples. These results show that the proposed framework can
achieve better performance with less or no domain knowl-
edge.

(d) On both two data sets, ResNet18 gets the highest perfor-
mance among 5 basic DNNs. The network architecture of
ResNet18 is more complex than FCNet3 and LeNet, but sim-
pler than ResNet50 and ViT-Base. These results show that
the complexity of the network architecture needs to match
the task in order to achieve good performance. The pro-
posed framework can improve their performance regardless
of whether the network architecture matches the task.

(e) In all cases, ∀Net ∈ { FCNet3, LeNet, ResNet18,
ResNet50, ViT-Base} the performances of Net+Our is su-
perior to Net+LDA. These results show that the proposed
method is superior to DeepLDA as a boosting framework.
This is because DeepLDA needs to estimate the covariance
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matrix of the latent representations. When the number of
the training samples is small, it is difficult to obtain accurate
results. On the contrary, the radius and convex hull of the
samples can better depict the characteristics of the latent
representations, thus estimating these variables can better
approximate the generalization error.

In summary, the proposed boosting framework is universal
and effective, and can alleviate some problems of DNN.

7. Conclusion
In this paper, a VC dimension based criterion is designed.
The criterion has clear geometric meaning and can estimate
generalization error of representation learning function ef-
fectively and efficiently. Based on the criterion, we propose
a general representation learning framework which aims to
reduce generalization error of representation learning. And
the framework has been successfully applied to kernel se-
lection and DNN boosting. As a general framework, it is
promising to combine with other machine learning methods
and improve their generalization performance.
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A. Proofs
A.1. Proof of Theorem 3.1

Step 1: Some useful definitions and lemmas are given as follows.

Definition A.1 (Page 34 of (Boyd & Vandenberghe, 2004)). Given a set X ⊂ Rd, the convex hull of X is defined as

ch (X) =


|X|∑
i=1

αixi
∣∣∣α ∈ △|X|

 .

Obviously, X ⊆ ch (X), and ch (X) is a convex set.

Definition A.2. Given two sets X+ =
{

xi|xi ∈ Rd
}n+

i=1
and X− =

{
xj |xj ∈ Rd

}n++n−

j=n++1
, n = n+ + n−. The distance in

∥ · ∥2 between the convex hulls ch (X+) and ch (X−), denoted as dis (ch (X+) , ch (X−)), is defined as follows

dis2 (ch (X+) , ch (X−)) = min
a, b
∥a− b∥22

s.t. a ∈ ch (X+)
b ∈ ch (X−)

. (15)

Lemma A.3. The optimization problem (15) is a convex optimization problem.

Proof.
dis2 (ch (X+) , ch (X−)) = min

a∈ch(X+), b∈ch(X−)
∥a− b∥22

= min
α∈△n+ , β∈△n−

∥X+α− X−β∥22 // see Definition A.1

= min
α∈△n+ , β∈△n−

(
αT ,βT

)
K
(
α
β

) , (16)

where K =
(
X+,−X−

)T (X+,−X−
)
∈ Rn×n.

Obviously, K is a symmetric positive semidefinite matrix. So (a1)
(
αT ,βT

)
K
(
α
β

)
is convex function w.r.t.

(
α
β

)
.

At the same time, (a2) both△n+ and△n− involve only linear constraints.

Combining (a1) and (a2), the above formula is a convex optimization problem.

Step 2: The margin of hyperplane described in Definition 2.2 is bounded by the distance between two convex hulls described
in Definition A.2, see the following lemma.

Lemma A.4. Given two sets X+ =
{

xi|xi ∈ Rd
}n+

i=1
and X− =

{
xj |xj ∈ Rd

}n++n−

j=n++1
, n = n+ +

n−. Let dis (ch (X+) , ch (X−)) be the distance between ch(X+) and ch(X−) given in Definition A.2. If
dis (ch (X+) , ch (X−)) > 0, then ∃ω ∈ Rd, ∥ω∥2 = 1, ∃b ∈ R, such that
(i) ∀p̂ ∈ ch(X+), ωT p̂ + b ≥M ,
(ii) ∀n̂ ∈ ch(X−), ωT n̂ + b ≤ −M ,
where M = dis(ch(X+),ch(X−))

2 .

Proof. Let

(p,n) = arg min
a∈ch(X+),b∈ch(X−)

∥a− b∥22, (17a)

ω =
p− n
∥p− n∥2

, (17b)

b =− ωT p + n
2

. (17c)
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Obviously, ∥ω∥2 = 1. According to Definition A.2, we have dis (ch (X+) , ch (X−)) = ∥p − n∥2. So M =
1
2dis (ch (X+) , ch (X−)) =

1
2∥p− n∥2

(A) Proof of (i).

∀p̂ ∈ ch(X+), if p̂ = p, then
ωT p̂ + b = ωT p + b

= ωT p− ωT p+n
2

= ωT
(
p− p+n

2

)
= ωT

( p−n
2

)
=
(

p−n
∥p−n∥2

)T ( p−n
2

)
= 1

2∥p− n∥2 = M

. (18)

∀p̂ ∈ ch(X+), if p̂ ̸= p, then
ωT p̂ + b = ωT p̂− ωT p+n

2

= ωT
(
p̂− p+n

2

)
= ωT

((
p̂− p+n

2 −
p−n
2

)
+ p−n

2

)
= ωT

(
p̂− p + p−n

2

)
=
(

p−n
∥p−n∥2

)T (
p̂− p + p−n

2

)
=
(

p−n
∥p−n∥2

)T
(p̂− p) + ∥p−n∥2

2

=
(

p−n
∥p−n∥2

)T
(p̂− p) +M

. (19)

According to formula (19), in order to proof that ωT p̂ + b ≥ M , we need to proof that (p− n)T (p̂− p) ≥ 0. Next, we
will proof (p− n)T (p̂− p) ≥ 0 by reduction to absurdity.

Assume that (p− n)T (p̂− p) < 0.

Let q = (1− θ)p + θp̂, where θ ∈ (0, 1). ∵ p̂ ∈ ch(X+), p ∈ ch(X+), and ch(X+) is a convex set, ∴ q ∈ ch(X+). And
then, we have

∥n− q∥22 = ∥n− (1− θ)p− θp̂∥22
= ∥(n− p) + θ (p− p̂)∥22
= ∥n− p∥22 + θ2 ∥p− p̂∥22 + 2θ (n− p)T (p− p̂)

= ∥p− n∥22 + θ2 ∥p̂− p∥22 + 2θ (p− n)T (p̂− p)

. (20)

Given formula (20), let g(θ) = θ2 ∥p̂− p∥22 + 2θ (p− n)T (p̂− p) be the quadratic function w.r.t θ. And then we have
(a1) ∵ p̂ ̸= p, ∴ ∥p̂− p∥22 > 0,
(a2) g(0) = 0,
(a3) g

(
− 2(p−n)T (p̂−p)

∥p̂−p∥2
2

)
= 0,

(a4) ∵ (p− n)T (p̂− p) < 0, ∴ − 2(p−n)T (p̂−p)
∥p̂−p∥2

2

> 0.

Combining (a1)-(a4), we have ∀θ′ ∈ (0, 1)
⋂(

0,− 2(p−n)T (p̂−p)
∥p̂−p∥2

2

)
, g(θ′) < 0. And let q′ = (1 − θ′)p + θ′p̂ ∈ ch(X+),

then ∥n− q′∥22 = ∥p− n∥22 + g(θ′) < ∥p− n∥22. That is to say, ∃q′ ∈ ch(X+), such that ∥n− q′∥22 < ∥p− n∥22, which
conflicts with formula (17a). So the assumption is false, and we have (a5) (p− n)T (p̂− p) ≥ 0.

According to (a5) and formula (19), we have (a6) ωT p̂ + b ≥M .

Combining formula (18) and (a6), (i) is proofed.

(B) Proof of (ii).
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∀n̂ ∈ ch(X+), if n̂ = n, then
ωT n̂ + b = ωT n + b

= ωT n− ωT p+n
2

= ωT
(
n− p+n

2

)
= −ωT

( p−n
2

)
= −

(
p−n

∥p−n∥2

)T ( p−n
2

)
= − 1

2∥p− n∥2 = −M

. (21)

∀n̂ ∈ ch(X+), if n̂ ̸= n, then
ωT n̂ + b = ωT n̂− ωT p+n

2

= ωT
(
n̂− p+n

2

)
= ωT

((
n̂− p+n

2 −
n−p
2

)
+ n−p

2

)
= ωT

(
n̂− n + n−p

2

)
=
(

p−n
∥p−n∥2

)T (
n̂− n + n−p

2

)
=
(

p−n
∥p−n∥2

)T
(n̂− n)− ∥p−n∥2

2

=
(

p−n
∥p−n∥2

)T
(n̂− n)−M

. (22)

According to formula (22), in order to proof that ωT n̂ + b ≤ −M , we need to proof that (p− n)T (n̂− n) ≤ 0. Next, we
will proof (p− n)T (n̂− n) ≤ 0 by reduction to absurdity.

Assume that (p− n)T (n̂− n) > 0.

Let o = (1− θ)n + θn̂, where θ ∈ (0, 1). ∵ n̂ ∈ ch(X−), n ∈ ch(X−), and ch(X−) is a convex set, ∴ o ∈ ch(X−). And
then, we have

∥p− o∥22 = ∥p− (1− θ)n− θn̂∥22
= ∥(p− n) + θ (n− n̂)∥22
= ∥p− n∥22 + θ2 ∥n− n̂∥22 + 2θ (p− n)T (n− n̂)

. (23)

Given formula (23), let g(θ) = θ2 ∥n− n̂∥22 + 2θ (p− n)T (n− n̂) be the quadratic function w.r.t θ. And then we have
(b1) ∵ n̂ ̸= n, ∴ ∥n− n̂∥22 > 0,
(b2) g(0) = 0,
(b3) g

(
− 2(p−n)T (n−n̂)

∥n−n̂∥2
2

)
= 0,

(b4) ∵ (p− n)T (n̂− n) < 0, ∴ − 2(p−n)T (n−n̂)
∥n−n̂∥2

2

> 0.

Combining (b1)-(b4), we have ∀θ′ ∈ (0, 1)
⋂(

0,− 2(p−n)T (n−n̂)
∥n−n̂∥2

2

)
, g(θ′) < 0. And let o′ = (1 − θ′)n + θ′n̂ ∈ ch(X−),

then ∥p− o′∥22 = ∥p− n∥22 + g(θ′) < ∥p− n∥22. That is to say, ∃o′ ∈ ch(X−), such that ∥p− o′∥22 < ∥p− n∥22, which
conflicts with formula (17a). So the assumption is false, and we have (b5) (p− n)T (n̂− n) ≤ 0.

According to (b5) and formula (22), we have (b6) ωT n̂ + b ≤ −M .

Combining formula (21) and (b6), (ii) is proofed.

Combining (A) and (B), the lemma is proofed.

Remark A.5. According to Lemma A.4, if dis (ch (φ (X+)) , ch (φ (X+))) > 0, then ∃h ∈ H (φ (X+) , φ (X−)), such
that ∀xi ∈ X+, h (φ (xi)) > 0, and ∀xj ∈ X−, h (φ (xj)) < 0, i.e., nerr

n = 0. That is to say, constraint nerr

n ≤ ε in
formula (7) can be satisfied naturally.

Step 3: Based on the above conclusions, the proof of Theorem 3.1 is given as follows.

13
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Proof. (a1)

M2 (X+, X−) = sup
h∈H(X+,X−)

g2m (h)

≥ sup
h=ph(ω,b)

g2m (h) // ω, b are defined in formula (17)

≥ 1
4dis

2 (ch (X+) , ch (X+)) // according to Lemma A.4

= 1
4 min
α∈△n+ , β∈△n−

∥X+α− X−β∥22. // according to Lemma A.3

(a2) According to Lemma A.3, the min
α∈△n+ , β∈△n−

∥X+α− X−β∥22 is a convex optimization problem.

Combining (a1) and (a2), the theorem is proofed.

A.2. Proof of Theorem 3.2

Step 1: A useful definition is given as follows.

Definition A.6 (Page 30 of (Boyd & Vandenberghe, 2004)). Given c ∈ Rd and r > 0, the ball in norm ∥ · ∥2 is defined
as ball(c, r) =

{
v|v ∈ Rd, ∥v− c∥2 ≤ r

}
, where c is called the center of the ball and r is called the radius of the ball.

Obviously, ball(c, r) is a convex set.

Step 2: Based on Definition A.6, the radius R (X) can be defined as follows.

Definition A.7. Given a set X ⊂ Rd, the center and radius of X , denoted as C(X) and R(X), are defined as the center and
radius of the minimum ball that can include X , respectively, i.e.,

(C(X), R(X)) = arg inf
c∈Rd, r∈R

r s.t. X ⊆ ball(c, r). (24)

The formula (24) is a non-trivial optimization problem, because constraints c ∈ Rd and X ⊆ ball(c, r) are intractable for
numerical optimization.

Step 3: To solve this problem, the properties of the optimal solution of formula (24) need to be revealed, see the following
lemma.

Lemma A.8. Given a set X ⊂ Rd, the center of X belongs to the convex hull of X , i.e., if

(c∗, r∗) = arg inf
ci∈Rd, r∈R

r s.t. X ⊆ ball(c, r), (25)

then c∗ ∈ ch(X).

Proof. Reduction to absurdity. Assume that c∗ /∈ ch(X).

Let

x∗ = arg inf
x∈X

∥x− c∗∥2, (26a)

c =
x∗ + c∗

2
, (26b)

ω =
x∗ − c∗

∥x∗ − c∗∥2
, (26c)

b1 = −ωT c, (26d)

b2 = −ωT c∗. (26e)

∵ c∗ /∈ ch(X), ∴ c∗ /∈ X , ∴ x∗ ̸= c∗, ∴ ∥x∗ − c∗∥2 > 0. Then, we have
(a1) ∥ω∥2 = 1,

14
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(a2)

b2 − b1 = −ωT c∗ + ωT c

= ωT (c− c∗)

= ωT
(

x∗+c∗
2 − c

)
=
(

x∗−c
∥x∗−c∗∥2

)T (
x∗−c∗

2

)
= ∥x∗−c∗∥2

2

.

∀x ∈ X , ∵ X ⊆ ch(X), ∴ x ∈ ch(X). At the same time, according to formula (25), x ∈ ball (c∗, r∗). And then we have:
(a3) the distance between x and hyperplane hp (ω, b1) is

dis (x, ph (ω, b1)) =
|ωT x+b1|

∥ω∥2

= ωT x+b1
∥ω∥2

// according to Lemma A.4

= ωT x + b1, // ∵ (a1)

(a4) the distance between x to hyperplane hp (ω, b2) is

dis (x, ph (ω, b2)) =
|ωT x+bb|

∥ω∥2

= ωT x+b2
∥ω∥2

// according to Lemma A.4

= ωT x + b2 // ∵ (a1)

= ωT x + b1 +
∥x∗−c∗∥2

2 // ∵ (a2)

= dis (x, ph (ω, b1)) +
∥x∗−c∗∥2

2 , // ∵ (a3)

(a5) the projection of x on hyperplane hp (ω, b1) is

pro (x, hp (ω, b1)) = x− dis (x, ph (ω, b1))
ω

∥ω∥2

= x− dis (x, ph (ω, b1))ω, // ∵ (a1)

(a6) the projection of x on hyperplane hp (ω, b2) is

pro (x, hp (ω, b2)) = x− dis (x, ph (ω, b2))
ω

∥ω∥2

= x− dis (x, ph (ω, b2))ω // ∵ (a1)

= x− dis (x, ph (ω, b1))ω − ∥x∗−c∗∥2

2 ω, // ∵ (a5)

(a7)

(pro (x, hp (ω, b1))− c)− (pro (x, hp (ω, b2))− c∗)

= (x− dis (x, ph (ω, b1))ω − c)−
(

x− dis (x, ph (ω, b1))ω − ∥x∗−c∗∥2

2 ω − c∗
)

// ∵ (a5) and (a6)

= ∥x∗−c∗∥2

2 ω − c + c∗

= ∥x∗−c∗∥2

2
x∗−c∗

∥x∗−c∗∥2
− x∗+c∗

2 + c∗

= x∗−c∗
2 − x∗+c∗

2 + c∗

= 0,

15
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(a8)

∥x− c∥22 = ∥x− pro (x, ph (ω, b1)) ∥22 + ∥pro (x, ph (ω, b1))− c∥22
= dis2 (x, ph (ω, b1)) + ∥pro (x, ph (ω, b1))− c∥22 // ∵ (a5)

<
(
dis (x, ph (ω, b1)) +

∥x∗−c∗∥2

2

)2
+ ∥pro (x, ph (ω, b2))− c∗∥22 // ∵ ∥x∗ − c∗∥2 > 0 and (a7)

= dis2 (x, ph (ω, b2)) + ∥pro (x, ph (ω, b2))− c∗∥22 // ∵ (a4)

= ∥x− pro (x, ph (ω, b2)) ∥22 + ∥pro (x, ph (ω, b2))− c∗∥22
= ∥x− c∗∥22
≤ (r∗)

2
. // see Definition A.6

That is to say, ∃c ̸= c∗, such that ∀x ∈ X ⊆ ch(X), ∥x− c∥2 < r∗, which conflicts with formula (25). So the assumption
is false, and then we have c∗ ∈ ch(X).

Step 4: Based on the above conclusion, the proof of Theorem 3.2 is given as follows.

Proof. Given a set X ⊂ Rd,

(C(X), R(X)) = arg inf
c∈Rd, r∈R

r2 s.t. ∀x ∈ X, x ∈ ball(c, r) // see DefinitionA.7

= arg inf
c∈Rd, r∈R

r2 s.t. ∀x ∈ X, ∥x− c∥22 ≤ r2 // see Definition A.6

= arg inf
c∈ch(X), r∈R

r2 s.t. ∀x ∈ X, ∥x− c∥22 ≤ r2 // according to Lemma A.8.

(27)

Based on formula (27) and Definition A.1, let

θ∗ = arg inf
θ∈△|X|

g(θ) s.t. g(θ) = sup
x∈X
∥x− Xθ∥22, (28)

then, C(X) = Xθ∗ and R2(X) = g(θ∗) = sup
x∈X
∥x− Xθ∗∥22. That is to say,

(a1) optimization problem (27) can be solved equivalently by solving optimization problem (28).

(a2) ∀xi ∈ X ,
gi(θ) = ∥xi − Xθ∥22 = θT XT Xθ − 2xTi Xθ + xT

i xi

is a quadratic function w.r.t θ. In gi(θ), ∵ XT X is a symmetric positive semidefinite matrix, ∴ gi(θ) is a convex function
w.r.t θ.

Because point-wise supremum over an infinite set is a operation that preserve convexity (a formal description can been
found in Page 81 of (Boyd & Vandenberghe, 2004)), combining (a2), we have
(a3) given X ,

g(θ) = sup
xi∈X

gi (θ) = sup
x∈X
∥x− Xθ∥22

is also a convex function w.r.t θ.

At the same time, (a4)△|X| only involves linear constraints.

Combining (a3) and (a4), we have (a5) formula (28) is a convex optimization problem.

Combining (a1) and (a5), the theorem is proofed.

A.3. Proof of Formula (11)

Proof. Given a set of positive samples X+ =
{

xi|xi ∈ Rd, i = 1, 2, · · · , n+

}
, a set of negative samples X− ={

xj |xj ∈ Rd, j = n+ + 1, n+ + 2, · · · , n+ + n−
}

, n = n− + n+, and a kernel function φ : Rd → Rd′
.

16
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Let

φ (X+) =
(
φ (x1) , φ (x2) , · · ·φ

(
xn+

))
∈ Rd′×n+ , (29a)

φ (X−) =
(
φ
(
xn++1

)
, φ
(
xn++2

)
, · · ·φ

(
xn++n−

))
∈ Rd′×n− , (29b)

φ (X) =
(
φ (X+) , φ (X−)

)
∈ Rd′×n, (29c)

Kφ = φ (X)
T
φ (X) ∈ Rn×n, (29d)

K̂
φ
=

(
φ (X+)

T
φ (X+) , −φ (X+)

T
φ (X−)

−φ (X−)
T
φ (X+) , φ (X−)

T
φ (X−)

)
∈ Rn×n. (29e)

Obviously, matrices defined in formula (29d) and (29e) are both symmetric positive semidefinite.

(a1) For radius problem,

g1 (φ) = min
u

max
xi∈X

∥φ (xi)− φ (X)σ (u)∥22 //see formula (10)

= min
u

max
xi∈X

σ (u)T φ (X)
T
φ (X)σ (u)− 2φ (xi)

T
φ (X)σ (u)

+φ (xi)
T
φ (xi)

= min
u

max
xi∈X

σ (u)T Kφσ (u)− 2Kφ
[i,:]σ (u) + kφii. // see formula (29d)

(30)

where Kφ
[i,:] is the i-th row of matrix Kφ.

(a2) For margin problem,

g2 (φ) = min
v,w

∥φ (X+)σ (v)− φ (X−)σ (w) ∥22 //see formula (10)

= min
v,w

σ (v)T φ (X+)
T
φ (X+)σ (v)− 2σ (v)T φ (X+)

T
φ (X−)σ (w)

+σ (w)
T
φ (X−)

T
φ (X−)σ (w)

= min
v,w

(
σ (v)
σ (w)

)T
(

φ (X+)
T
φ (X+) , −φ (X+)

T
φ (X−)

−φ (X−)
T
φ (X+) , φ (X−)

T
φ (X−)

)(
σ (v)
σ (w)

)
= min

v,w

(
σ (v)
σ (w)

)T

K̂
φ
(
σ (v)
σ (w)

)
. // see formula (29e)

(31)

Combining (a1) and (a2), the formula (11) is proofed.

B. Algorithms
B.1. Algorithms for Solving Formula (10)

To solve the optimization problems g1(φ) and g2(φ) in formula (10), the Algorithm 1 and 2 are given as follows.

B.1.1. CONVERGENCE ANALYSIS

In Algorithm 1 and 2, the initial solution and solutions obtained at each iteration are both feasible solutions, because the
output of the softmax activation function σ(·) is the convex combination coefficients. So Algorithm 1 and 2 are both interior
point methods and the convergence of them can be guaranteed (Boyd & Vandenberghe, 2004).

B.1.2. EFFICIENCY ANALYSIS

The efficiency of Algorithm 1 and 2 can be analyzed from the following three aspects. First, the constant vector
σ((1, 1, · · · , 1)T ) with adaptive length is used as the initial point, which is a strictly feasible solution. The computa-
tional complexity of calculating the initial point is of constant order. Second, the accelerated first-order algorithm, e.g.,
Adam (Kingma & Ba, 2015) can be used to update the optimization variables. Third, these algorithms can easily leverage
high-performance computing hardware, e.g., GPU for acceleration. In this paper, we utilize the NVIDIA GeForce RTX
3090 for acceleration.
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Algorithm 1 Solving g1(φ) in Formula (10)
Input: The set of training samples X = {xi}ni=1, the representation learning function φ, the maximum number of iterations

T , the error tolerance parameter ϵ.
Output: The optimal value g∗ and optimal solution u∗.

1: Initialize u← (1, 1, · · · , 1)T ∈ Rn, t← 0, err ← +∞.
2: if φ is kernel function then
3: Compute kernel matrix Kφ by formula (29d).
4: else
5: Compute latent representation matrix φ (X)← (φ (x1) , φ (x2) , · · · , φ (xn)).
6: end if
7: if φ is kernel function then
8: gnew ← max

xi∈X
σ (u)T Kφσ (u)− 2Kφ

[i,:]σ (u) + kφii.

9: else
10: gnew ← max

xi∈X
∥φ (xi)− φ (X)σ (u)∥22.

11: end if
12: while t < T and err > ϵ do
13: gold ← gnew.
14: Update u by Adam (Kingma & Ba, 2015) with loss gold.
15: if φ is kernel function then
16: gnew ← max

xi∈X
σ (u)T Kφσ (u)− 2Kφ

[i,:]σ (u) + kφii

17: else
18: gnew ← max

xi∈X
∥φ (xi)− φ (X)σ (u)∥22.

19: end if
20: t← t+ 1.
21: err ← |gold − gnew|.
22: end while
23: return gnew and u.
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Algorithm 2 Solving g2(φ) in Formula (10)

Input: The set of positive training samples X+ = {xi}n+

i=1, the set of negative training samples X− = {xj}n++n−
j=n++1, the

representation learning function φ, the maximum number of iterations T , the error tolerance parameter ϵ.
Output: The optimal value g∗ and optimal solution (v∗,w∗).

1: Initialize v← (1, 1, · · · , 1)T ∈ Rn+ , w← (1, 1, · · · , 1)T ∈ Rn− , t← 0, err ← +∞.
2: if φ is kernel function then
3: Compute kernel matrix K̂

φ
by formula (29e).

4: else
5: φ (X+)←

(
φ (x1) , φ (x2) , · · · , φ

(
xn+

))
, φ (X−)←

(
φ
(
xn++1

)
, φ
(
xn++2

)
, · · · , φ

(
xn++n−

))
.

6: end if
7: if φ is kernel function then

8: gnew ←
(
σ (v)
σ (w)

)T

K̂
φ
(
σ (v)
σ (w)

)
9: else

10: gnew ← ∥φ (X+)σ (v)− φ (X−)σ (w) ∥22.
11: end if
12: while t < T and err > ϵ do
13: gold ← gnew.
14: Update v and w by Adam (Kingma & Ba, 2015) with loss gold.
15: if φ is kernel function then

16: gnew ←
(
σ (v)
σ (w)

)T

K̂
φ
(
σ (v)
σ (w)

)
17: else
18: gnew ← ∥φ (X+)σ (v)− φ (X−)σ (w) ∥22.
19: end if
20: t← t+ 1.
21: err ← |gold − gnew|.
22: end while
23: return gnew and (v,w).
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B.2. Kernel Selection Algorithm

The detailed description of VC dimension based kernel selection method is given in Algorithm 3.

Algorithm 3 VC Dimension based Kernel Selection

Input: The set of positive training samples X+ = {xi}n+

i=1, the set of negative training samples X− = {xj}n++n−
j=n++1, the set

of candidate kernel functions {φk}mk=1.
Output: The optimal kernel function φopt.

1: Initialize fmin ← +∞, φopt ← None.
2: for k = 1 to m do
3: φ← φk.
4: Solve optimization problem g1 (φ) in formula (11) on X+

⋃
X− by Algorithm 1.

5: Solve optimization problem g2 (φ) in formula (11) on X+ and X− by Algorithm 2.
6: f (φ)← 4 g1(φ)

g2(φ) .
7: if f (φ) < fmin then
8: fmin ← f (φ).
9: φopt ← φ.

10: end if
11: end for
12: return φopt.

B.2.1. EFFICIENCY ANALYSIS

Cross validation is one of the most popular methods for kernel selection. We use SVM-based k-fold cross verification as the
benchmark to analyze the efficiency of the proposed kernel selection method.

Given n training samples and a kernel function φ.

To evaluate the quality of φ, the proposed method needs to solve two constrained convex quadratic programming problems,
i.e., g1(φ), g2(φ) in formula (9). In each optimization problem, the scale of the optimization variable is O(n) and the scale
of the constraint condition is O(n). Let O(T ) denote the computational cost of solving the optimization problem g1(φ) (or
g2(φ)), and then the computational complexity of the proposed method is O(2T ) = O(T ).

To evaluate the quality of φ, SVM-based k-fold cross verification method needs to solve k convex quadratic programming
problems corresponding to SVM, denoted as gSVM (φ) 1. In each gSVM (φ), the scale of the optimization variable is
O(k−1

k n) = O(n) and the scale of the constraint condition is O(k−1
k n) = O(n). Therefore, the computational cost of

solving gSVM (φ) is O(T ), which is same as g1(φ). In summary, the computational complexity of k-fold cross-verification
is O(kT ).

In general, we have k > 2, so the computational complexity of the proposed method has certain advantages compared with
SVM-based k-fold cross verification method.

Thanks to the good property of optimization problem (9), the constraint conditions in formula (9) can be converted into a
softmax activation function layer. This allows some acceleration methods to be directly used. Specifically, (a) the accelerated
first-order algorithm, e.g., Adam (Kingma & Ba, 2015) is used for solving, (b) the mature deep learning architecture, e.g.,
Pytorch 2 is used for programming, (c) the high-performance computing hardware, e.g., GPU is used for acceleration. As a
result, the running time of the proposed method has great advantages compared with the SVM-based k-fold cross verification
method.

B.3. DNN Boosting Framework Algorithm

The detailed description of VC dimension based DNN boosting framework is given in Algorithm 4.

1The computational complexity of the test process is ignored.
2https://pytorch.org/
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Algorithm 4 VC Dimension based DNN Boosting Framework
Input: The training data set D = {(xi, yi)}ni=1, output space Y , the representation learning network φ(·; Θ), the 2-norm

standardization network λ(·), the classification network h (·;W,b), the weight of VC dimension based loss γVC, the
number of iterations T , the size of batch s.

Output: The final model.
1: Initialize Θ, W and b randomly.
2: for t = 1 to T do
3: D′ ← select s samples from training data set D randomly, Y ′ ← {yi|(xi, yi) ∈ D′}, such that |Y ′| ≥ 2.
4: LV C ← 0, k ← 0.
5: for p, q ∈ Y ′, p < q do
6: Compute set of positive samples X+ ← {xi| (xi, yi) ∈ D′, yi = p}.
7: Compute set of negative samples X− ← {xi| (xi, yi) ∈ D′, yi = q}.
8: Compute lpq ← −g(p,q)(λ ◦ φ) in formula (14) on X+ and X− by Algorithm 2.
9: LVC ← LVC + lpq , k ← k + 1.

10: end for
11: Compute empirical loss L in formula (14) on data set D′.
12: Update Θ, W, and b by Adam (Kingma & Ba, 2015) with loss L+ γVC

k LVC.
13: end for
14: return h (λ (φ (·; Θ)) ;W,b).

B.3.1. EFFICIENCY ANALYSIS

Stochastic gradient descent with mini-batch is a popular optimizing strategy in deep learning. There are many accelerated
first-order algorithms, e.g., Adam (Kingma & Ba, 2015) for training DNN effectively and efficiently. Meanwhile, with the
help of mature deep learning frameworks e.g., Pytorch, the high-performance computing hardware e.g., GPU can be used
for acceleration. These strategies can be directly applied to the proposed framework to achieve efficient training.

When the number of the training samples n is large, we can randomly sample a min-batch of training samples D′ such that
|D′| ≪ n. When the number of classes |Y| is large, we can randomly sample a min-batch of training samples D′ such
that 2 ≤ | {yi|(xi, yi) ∈ D′} | ≪ |Y|. And then the VC dimension based loss LVC (lines 4-10 of Algorithm B.3) and the
empirical loss L (line 11 of Algorithm B.3) can be calculated efficiently. Based on the loss, the parameters of the model can
be updated efficiently (line 12 of Algorithm B.3).

C. Experimental Details
C.1. Details of Verifying Theoretical Results

Data set For Taichi date set, input space is X =
{
(x1, x2)

T |x2
1 + x2

2 ≤ 42
}

and samples obey the uniform distribution on
X . Output space is Y = {+1,−1}. Target function fc is nonlinear and is defined as follows

∀ (x1, x2)
T ∈ X , fc

(
(x1, x2)

T
)
=


+1, x2

1 + (x2 − 2)
2
< 12

−1, x2
1 + (x2 + 2)

2
< 12

gc

(
(x1, x2)

T
)
, otherwise

,
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2
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+1, x1 < 0, x2 < 0, x2
1 + (x2 + 2)

2 ≤ 22

+1, x1 ≥ 0, x2 < 0

.
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Code implementations and parameter settings The basic learner SVM is implemented by Scikit-learn 3. All parameters
adopt the default settings except for kernel function. For the proposed method, Algorithm 1 and 2 are called to calculate the
objective function f (φ(·; δ)) in formula (10). In the whole experiment, T = 300, ϵ = 10−10 are adopted for Algorithm 1
and 2. The Adam (Kingma & Ba, 2015) used in Algorithm 1 and 2 is implemented by Pytorch, and all parameters adopt the
default settings.

C.2. Details of Kernel Selection Experiment

Data sets There are 15 UCI 4 binary classification data sets and their basic information is given in Table 5.

Table 5. Basic information of 15 binary classification data sets.

ID DATA SET SAMPLES FEATURES CLASS RATIO

D1 TRAINS 10 29 1.00
D2 SPECT 79 22 2.04
D3 MOLEC-BIOL-PROMOTER 106 57 1.00
D4 MONKS-2 169 6 1.64
D5 PLANNING 182 12 2.50
D6 PARKINSONS 195 22 3.06
D7 HEART-HUNGARIAN 294 12 1.77
D8 HABERMAN-SURVIVAL 306 3 2.78
D9 BREAST-CANCER-WISC-DIAG 569 30 1.68
D10 ILPD-INDIAN-LIVER 583 9 2.49
D11 HILL-VALLEY 606 100 1.03
D12 CREDIT-APPROVAL 690 15 1.25
D13 BREAST-CANCER-WISC 699 9 1.90
D14 RINGNORM 7,400 20 1.02
D15 MAGIC 19,020 10 1.84

Code implementations and parameter settings The settings of basic learner SVM and the proposed method are the same
as that in Appendix C.1. The experiments of 5-fold cross validation based on the SVM implemented by Scikit-learn are
conducted on Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz. The experiments of the proposed method implemented based
on Pytorch are conducted on NVIDIA GeForce RTX 3090.

C.3. Details of DNN Boosting Experiment

Data sets The basic information of two image classification data sets is given as follows.

MNIST 5 is a handwritten digits classification data set, which consists of 10 classes, i.e., {0, 1, · · · , 9}. It has 60,000 training
samples and 10,000 test samples. And each sample is an image with 28 × 28 pixels.

CIFAR10 6 is a visual objects classification data set, which consists of 10 classes, i.e., {airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck}. It has 50,000 training samples and 10,000 test samples. And each sample is an image with 3
× 32 × 32 pixels.

Basic DNNs The brief introductions of 5 basic DNNs are given as follows.

FCNet3: A 3-layers fully connected network. The representation learning network is

Linear(d, 1024)−ReLU()− Linear(1024, 512)−RelU()− Linear(512, d′),

and classification network is

Linear(d′, |Y|),
3https://scikit-learn.org/stable/
4https://archive.ics.uci.edu/ml/index.php
5http://yann.lecun.com/exdb/mnist/
6http://www.cs.toronto.edu/˜kriz/cifar.html
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where for MNIST data set, d = 28 × 28 = 784, for CIFAR10 data set d = 3 × 32 × 32 = 3072, and for MNIST and
CIFAR10 data sets d′ = 256, |Y| = 10.

LeNet (LeCun et al., 1989): A classical CNN for image classification.

ResNet18 and ResNet50 (He et al., 2016): Two commonly used CNNs with residual connections for image classification.

ViT-Base (Dosovitskiy et al., 2021): A recently proposed DNN that has achieved state-of-the-art performance in many visual
tasks.

Code implementations and parameter settings The Adam (Kingma & Ba, 2015) implemented by Pytorch is used to train
basic models (FCNet3, LeNet, ResNet18, ResNet50, ViT-Base), the models embedded into DeepLDA (Dorfer et al., 2016)
(FCNet3+LDA, LeNet+LDA, ResNet18+LDA, ResNet50+LDA, and ViT-Base+LDA), and the models embedded into the
proposed framework (FCNet3+Our, LeNet+Our, ResNet18+Our, ResNet50+Our, and ViT-Base+Our).

In the whole experiment, the set of candidate learning rate of Adam is {5× 10−4, 10−3, 5× 10−3}, and the rest parameters
adopt the default settings. At the same time, the number of epoch is 500.

For the proposed method, the set of candidate trade-off parameter γVC is {10−2, 10−1, 1}. At the same time, Algorithm 2
is called to calculate the VC dimension based loss in formula (14). For Algorithm 2, T = 100 and ϵ = 10−10 are adopted.

D. Code Release
The codes of the proposed methods are available at https://github.com/JunbiaoCui/GRLF_GPG.
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