
DGraph: A Large-Scale Financial Dataset for Graph
Anomaly Detection

Xuanwen Huang†, Yang Yang† , Yang Wang‡, Chunping Wang‡,
Zhisheng Zhang†, Jiarong Xu§, Lei Chen‡, Michalis Vazirgiannis††

†Zhejiang University, ‡Finvolution Group
§Fudan University, ††École Polytechnique

{xwhuang, yangya, zhangzhsh6}@zju.edu.cn
{wangyang09, wangchunping02, chenlei04}@xinye.com
jiarongxu@fudan.edu.cn, mvazirg@lix.polytechnique.fr

Abstract

Graph Anomaly Detection (GAD) has recently become a hot research spot due
to its practicability and theoretical value. Since GAD emphasizes the application
and the rarity of anomalous samples, enriching the varieties of its datasets is
fundamental. Thus, this paper present DGraph, a real-world dynamic graph in the
finance domain. DGraph overcomes many limitations of current GAD datasets. It
contains about 3M nodes, 4M dynamic edges, and 1M ground-truth nodes. We
provide a comprehensive observation of DGraph, revealing that anomalous nodes
and normal nodes generally have different structures, neighbor distribution, and
temporal dynamics. Moreover, it suggests that 2M background nodes are also
essential for detecting fraudsters. Furthermore, we conduct extensive experiments
on DGraph. Observation and experiments demonstrate that DGraph is propulsive
to advance GAD research and enable in-depth exploration of anomalous nodes.

1 Introduction

Graph data widely presents in various domains and conveys abundant information [41]. Dozens of
efforts have been devoted to graph-related research, including node classification [2], link prediction
[37], and graph property prediction [49], etc. Among them, Graph Anomaly Detection (GAD) has
currently become a hot spot due to its practicability and theoretical value [23; 1]. Anomalies are
a number of nodes, edges and graphs that are distinct from the majority [1]. In real-world
scenarios, anomalies are widespread, damaging, but difficult to detect. For example, wire fraudsters
are typical anomalies in social networks. As the Federal Bureau of Investigation (FBI) reported
in 20201, wire fraudsters racked up a whopping $1.8 trillion in losses across 2020. The average
victim lost nearly $100,000 last year. These fraudsters involving various of scenarios, such as real
estate, investment, etc. However, only about 12% to 15% of all cases get reported and only 29% of
victims see their funds fully recovered 2. GAD aims to detect these anomalies by utilizing network
structure information and classic anomaly detection approaches [8; 48]. Thus, investigating GAD is
beneficial and applicable in the real world. This paper focuses on anomalous node detection for its
representativeness in GAD.

Since “anomaly” is a scenarios-related concept, narrowing the gap between academia and industry
is the primary requirement of GAD datasets. However, due to the rarity of anomalies in real world,

Corresponding author
1https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
2https://money.com/real-estate-wire-fraud-scam-covid-tips/

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://money.com/real-estate-wire-fraud-scam-covid-tips/

... ...

Time

 Finvolution
User

Emergency
Contact

Fraud

Node TypesDynamic GraphNode / Edge
Old Edge New Edge

Normal

Borrowing
Behaviour No Borrowing

BACKGROUND

TARGET

Figure 1: The overview of DGraph.

only a small number of public datasets with both graph structure and anomaly ground-truth can be
used in GAD research [23], such as Amazon [9], YelpChi [9], and Elliptic [39]. Thus, enriching the
variety of GAD datasets is a fundamental work of current GAD research. Collecting dataset
from some domains that are representative but not covered by current works can greatly speed up
this process. Specifically, the financial fraudster detection [40] is such a typical domain. Meanwhile,
current GAD datasets have different limitations, which may gap the current GAD research
and practical applications. Firstly, temporal dynamics of graphs are ignored by most of the current
GAD datasets, despite they are being common in the real world [4]. Secondly, scales of current
GAD datasets have a gap with industrial scenarios (with more than 1 million nodes) [14]. For
example, current GAD datasets which are commonly-used only have 11,944 to 203,769 nodes. Last
but not least, in most real-world scenarios, not all the nodes in a graph are actually required to be
classified/predicted. But removing these nodes can lose their abundant information and damage the
connectivity of network structures, which is somehow like removing background knowledge from a
complete story. Therefore, we term these nodes as background nodes and the opposite of them as
target nodes. However, most of the current GAD datasets ignore background nodes.

To enrich the variety of current GAD datasets and overcome their limitations, we propose
DGraph, a real-world and large-scale dynamic graph consisting of over 3M nodes and 4M edges.
DGraph is provided by Finvolution Group. It represents a real-world social network in the financial
industry. A node represents a Finvolution user, and an edge from one user to another means that the
user regards the other one as the emergency contact. Besides, the anomalous node in DGraph has
a practical meaning: the user who has fraudulent behaviors. DGraph provides over 1M extremely
unbalanced ground-truth nodes, offering a great benefit to evaluation and promotion of previous GAD
studies. In addition, DGraph preserves more than 2M background nodes, referring to users who are not
detection targets in lack of borrow behavior. These nodes are real-world instances and can effectively
promote understanding of background nodes in social networks. Meanwhile, DGraph contains
abundant dynamic information which can be utilized for accurate fraudster identification and further
exploration of GAD research. An illustrative overview of the dataset is shown in Fig. 1.

We carefully observe DGraph and conduct extensive experiments. The results demonstrate that
DGraph possesses a variety of novel and promising properties. Firstly, observations suggest that
anomalous and normal users in DGraph have various characteristics in terms of network structure,
the distribution of neighbors’ features, and temporal dynamics. Comprehensively modeling the
abundant information of DGraph is still a challenge for GAD research. Besides, observations
also demonstrate that background nodes in DGraph are vital for detecting fraudsters. DGraph can
support and promote the exploration of background nodes in depth. Last but not least, experiment
results of 9 popular supervised and 7 unsupervised methods on DGraph reveal that the generalization
of current GAD methods is limited. DGraph can offer exciting opportunities to advance previous
GAD methods.
In summary, our contributions are as follows:
• We propose DGraph, a real-world and large-scale dynamic graph from financial scenarios.
• We provide a comprehensive observation of DGraph, which thoroughly explores the novel and

promising properties of DGraph.
• We conduct extensive experiments on DGraph. The results demonstrate that DGraph offers exciting

opportunities to advance previous GAD methods.
Our dataset can be found at: https://dgraph.xinye.com/.

2

https://dgraph.xinye.com/

2 Related datasets

Since graph data is widespread, many works have been devoted to graph research[41; 43]. With the
development of graph research, various benchmark datasets are proposed to support and promote the
research. These benchmark datasets link to many graph-related tasks, such as node classification [46],
link prediction [3] and graph property prediction [12]. Graph anomaly detection (GAD) has currently
become a hot research direction due to its practicability and theoretical value. Many efforts go to
this topic, aiming to extend GAD to a range of application scenarios [8; 48; 9; 15]. For example,
detecting fraudsters on financial platforms [21; 28], anti-money laundering in Bitcoin [22], fake
news filtering on social media [9], etc. However, ground-truth anomalies are hard to be collected
because of their rarity. Therefore, only Enron [30], Twitter Sybil [10], Disney [32], Amazon [9],
Elliptic [39] and YelpChi [9] have both anomaly ground truth and graph structures to date [23].
However, more than half of them are not suited for node-level GAD due to their small-scale network
structure. For example, Enron is an email communications dataset, but it has about only 150 users
[30]. Therefore, most of the anomalous node detection methods use Amazon, YelpChi, and Elliptic,
to evaluate performance. Amazon is constructed from a review dataset provided by Amazon.com [24].
Its anomalies are reviews with low ratings. YelphChi is constructed from a review dataset provided
by Yelp.com [29]. It is worth noting that the label of YelpChi is not the real ground truth since it is
constructed by a Yelp Review Filter with about 90% accuracy [26]. Besides, Elliptic is a Bitcoin
transaction network provided by Elliptic.com, consisting of 203,769 nodes. We provide a detailed
summary of these datasets in Table 1.

3 Proposed Dataset: DGraph

DGraph is a dynamic graph that is derived from a real-world finance scenario and linked to a practical
application: fraudsters detection. This section introduces the background of raw data in DGraph first.
Next, we detail the DGraph construction process based on raw data. Last but not least, we present
the online leaderboard of DGraph that is used to track current advancements.

3.1 Raw data

The raw data of DGraph is provided by Finvolution Group
3, a pioneer in China’s online consumer

finance industry which has more than 140 million registered consumers. DGraph focuses on the
fintech platform of Finvolution, which connects underserved borrowers with financial institutions.
According to the financial report of Finvolution, more than 14 million consumers borrowed money
by this platform during fiscal year 2021, with a total transaction volume of 137.3 billion RMB. The
individual borrower must offer a phone number and register an account on Finvolution in order to
utilize this platform. Users also need to voluntarily complete a basic personal profile, including age,
gender, a description of their financial background, etc., which will be used to determine their loan
limit. Meanwhile, the emergency contact information is a compulsory requirement. The emergency
contact is the person of readily available contact information for those in users’ life which should be
contacted in the event of an emergency. Before commencing each new loan application, users are
required to offer at least one contact’s name and phone number, which must be kept current. The
platform will evaluate loan requests and determine whether or not to give loans to users. In addition,
the platform monitors all loans to determine whether users have payed on time and to record the
actual repayment date.

The raw data is compiled from the aforementioned information. It is especially emphasized that all
raw data are processed through data masking and strictly respects and protects the privacy of
users (see more in Appendix). Summarily, the raw data for a specific user includes five components:
(1) User id. (2) Basic personal profile information, such as age, gender, etc. (2) Telephone number;
note that each account is matched with a specific telephone number. (4) Borrowing behavior, which
includes the repayment due date and the actual repayment date. (5) Emergency contacts, which
includes the name, telephone number, and last updating time for each contact.

3https://ir.finvgroup.com/

3

https://ir.finvgroup.com/

3.2 Graph construction

Finvolution has several fraudulent users who cause a significant financial loss for the platform.
These fraudsters borrowed money but did not pay it back (far past due), ignoring the platform’s
repeated reminders. According to common sense and literature [9; 45], fraudsters have some common
characteristics which are different from the majority. Therefore, these fraudsters are typical anomalies
in Finvolution users, to use the common term [1]. And detecting these fraudsters (anomalies) is a
typical abnormal detection task as well as an industrial challenge. Financial fraudsters frequently
offer false personal information, some of them may also have strange social networks (compared to
regular users), and some of them behave abnormally as platform operators. Users’ basic profiles are
an important component of personal information in raw data that can be used to detect fraudsters.
Besides, the emergency contact, which can be treated as a special connection of users, also has some
correlation with fraudsters. For one thing, an emergency contact is an important part of a personal
profile required by the platform, which can reflect the authenticity of the information provided by
users. For another, if users fill true emergency contacts, then this network can be treated as a subgraph
of the real-world social network, which can reflect a part of users’ social structure. In addition, the
filling time of the emergency contact may reveal something about a user’s behaviour. Due to these, we
construct a GAD dataset called DGraph that is built on users’ basic profiles and emergency contact
links. We also provided a detailed analysis of DGraph to verify the correlation of node characteristics
and network structure with fraudulent users (see more in Sec. 4).

DGraph are constructed in three steps. In the first step, we create DGraph’s network structure. We
extract users’ personal profiles in the second step to build node features. Finally, we label nodes
based on their borrowing behaviors. After that, we detail each step of the construction process.

Step 1. Building the network. First, we gathered all Finvolution users and their corresponding raw
data. Next, we select a period of emergency contact records and obtain the user id by matching the
telephone number. Then, depending on the user id of the contact, we construct the directed dynamic
edge between users, which indicates who is his emergency contact at a given time. In consideration
of privacy, we filter some of the emergency contacts, as they are not Finvolution users. Then, we
construct a graph including all users and edges. From this graph, we take one weakly connected
components, which contains 3,700,550 nodes and 4,300,999 directed edges, and utilize it as the
network structure of DGraph. The goal of this operation is to maintain the integrity of the network
structure. To safeguard users’ privacy, we record the time mark of the edge with a timestamp that can
only reflect the time gap between each edge.

Step 2. Building nodes features. The node feature derived from the basic personal profile is a vector
with 17 dimensions. Each dimension of the node attribute corresponds to a distinct element of the
personal profile, such as age and gender. To safeguard the privacy of our users, we do not disclose
the significance of any dimension. Since each element of the user’s profile is optional (see Sec. 3.1),
numerous node attributes miss values. These values are preserved and consistently recorded as “-1”,
namely, missing values.

Step 3. Labeling nodes. 32.2% of the nodes (# 1,225,601) in DGraph have related borrowing
records. These nodes are labeled based on their borrowing behavior. We define users who exhibit at
least one fraud activity, which means they do not repay the loans a long time after the due date and
ignore the platform’s repeated reminders, as anomalies/fraudsters. Another part of borrowed users are
normal users. According to this rule, 15,509 nodes are classified as fraudsters and 1,210,092 nodes
as normal users. Except for fraudsters and normal users, DGraph comprises 2,474,949 nodes/users
(66.8 %) who are registered users but have no borrowing behavior from the platform. These nodes
are background nodes (BN). Due to the lack of borrowing behavior, these nodes are not targets for
anomaly detection. Nonetheless, these nodes play a crucial role in DGraph’s connectivity and it can
assist us better identify anomalous nodes (See details in Sec. 4.3). Therefore, they are preserved and
labeled as background nodes.

3.3 Leaderboard

We provide an online leaderboard for DGraph
4, with the goal of assisting researchers in keeping track

of current methods and evaluating the efficacy of newly proposed methods. Furthermore, in June

4https://dgraph.xinye.com/leaderboards/dgraphfin

4

https://dgraph.xinye.com/leaderboards/dgraphfin

Table 1: Summary of existing datasets for GAD. In which, “AN” means “Anomalous Nodes”, “MV” means
“Missing Values”, “BN” means “Background Nodes”, and “-” means not be reported by the literature. Note,
YelpChi and Amazon⇤ are re-constructed datasets by [9] based on two reviews dataset: [29] and [24].

Dataset # nodes # edges # labeled nodes AN % MV % # BN
YelpChi[9] 45,954 3,846,979 45,954 14.5% - 0
Amazon⇤ [9] 11,944 4,398,392 11,944 9.5% - 0
Elliptic[39] 203,769 234,355 46,564 9.8% - 157,205
DGraph 3,700,550 4,300,999 1,225,601 1.3% 49.9% 2,474,949

2022, Finvolution will host a deep learning competition5 based on a dataset that is nearly identical
to DGraph except for the time involved. DGraph and its leaderboard will be used as a competition
guide, which will benefit DGraph’s promotion. More researchers will be invited to contribute to this
exciting new resource.

4 Observation on DGraph

DGraph has a small number of anomalous nodes. Due to the fact that the characteristics of nodes vary
in terms of structure, neighbors, and something else, recognizing and interpreting these anomalous
nodes is challenging and difficult. In construction, DGraph preserves two unique properties: missing
values and background nodes. In this section, we make a preliminary observation of this graph, which
can help us better comprehend the proposed graph and provide guidance to the question of how to
design and interpret models. In addition, we further explain the results in this section. See more
in Appendix.

4.1 Overall

Firstly, we compare DGraph with commonly-used graphs in GAD. Table 1 displays a summary of
the findings. DGraph is the largest public dataset in GAD to date. Specifically, the number of nodes
in DGraph is 17.1 times greater than that of Elliptic, with over one million ground-truth and the
lowest proportion of anomalies. Therefore, DGraph is a challenging GAD dataset, requiring a
model to process a large number of labeled samples and detect anomalous nodes on samples with the
extreme imbalanced classes. It is worth mentioning that DGraph is very sparse due to the property of
emergency contact. Users will not fill in too many emergency contacts, since the platform do not
force users fill as more emergency contact as possible. Therefore, this relationship is naturally sparse.
Meanwhile, in construction, we only preserve those users who are Finvolution users to protect users’
privacy. Thus, many users’ emergency contacts who are not Finvolution users are filtered, which
also leads emergency contact relation become more rare. Besides, Table 1 also show two unique
characteristics of DGraph . Due to the platform setting (see details in Sec. 3.1), DGraph naturally
contains 49.9 % missing values. In addition, DGraph contains over 2M background nodes, indicating
a valuable resource for observing and understanding the function of background nodes in networks.

4.2 Anomalous vs. normal

Fraudsters and normal users generally have distinct graph structures and neighbor characteristics. As
shown in Fig. 2 (a), fraudsters and normal users have similar average in-degrees, but their average
out-degrees differ significantly. The average out-degree of normal users (1.73) is 2.33 times of the
fraudsters’ (0.75). This result indicates that the graph structure plays a vital role in the detection
of fraudsters. Next,we define a neighbor similarity metric in neighbors’ features to reveal the
similarity between a user’s features and its neighbors’ feature. The formulation of this metric is
si = Avg(xi·xj

|xi||xj | |(i, j) 2 E), where xi represents the features of node i and E represents a specific
edge set. After that, we group nodes according to their labels and calculate the average neighbor
similarity on in- and out-edges for each group. The result is shown in Fig. 2 (b). On average,
fraudsters have a lower neighbor similarity than normal users on out-edges, with values of 0.242 and
0.324, respectively. This result suggests that neighbor features also possess an important trait for
detecting fraudsters.

5https://ai.ppdai.com/mirror/goToMirrorDetailSix?mirrorId=28

5

https://ai.ppdai.com/mirror/goToMirrorDetailSix?mirrorId=28

(a) network structure (b) Similarity of
neighbors’ features

(c) missing values
on node features

(d) temporal frequency

1.72

0.75

1.21 1.16

0.190

0.652

0.351
0.418

0.242
0.324

0.391

0.372

Figure 2: Observation of fraudsters and normal users. (a) shows their difference in degrees. (b) shows their
difference in neighbors’ features. (c) shows their difference in the distribution of missing values. (d) shows their
different temporal frequency of edges, and “Average time interval” means the average time interval of node’s
out-edges.

(a) T-SNE of nodes’ features (b) connectivity (c) BN ratio of 1-hop neighbors (d) homophily

Ogbn-Arxiv

Actor
Only 1 component

≈ 8.9%

380,490

0.460

0.311
0.499

0.356 0.222
0.146 0.129

0.416

0.011

Figure 3: Observation of background nodes. (a) shows that background nodes are hardly separable by
node features. (b) illustrates that background nodes are critical for maintaining DGraph ’s connectivity. (c)
shows the average ratio of background nodes in neighbors around nodes. (d) shows homophily ratios of different
connective relationships, where “⇥B⇥” means two node are connected by a background node, “⇥T⇥” means
two nodes are connected by a target node, and “⇥⇥” means two nodes are connected directly.

DGraph possesses distinctive characteristics that are also worth investigating in fraudsters identifi-
cation but usually ignored by many GAD datasets. The existence of missing values and dynamic
edge are two particularities of DGraph, and they are also helpful in detecting fraudsters. Fig. 2 (c)
depicts the proportion of fraudsters and normal users with varying numbers of missing values. As
a result of the design of node features, the majority of users have 0 or 14 missing values. Among
them, 41.8% of normal users have no missing values, while only 19.0% of fraudsters have no missing
values. Consequently, the absence of a value is also a factor that aids in classifying node labels.
Meanwhile, DGraph provides the last updating date of each edge, allowing us to investigate users’
various temporal characteristics. We observe the average time interval of node’s out-edges. We
group users by their out-degree and count their average interval of out-edges. Fig. 2 (d) demonstrates
the result. Overall, higher out-degree nodes have a lower average time interval of out-edges. But
fraudsters have a lower average time interval of out-edges than normal users with the same out-degree.
This result suggests that fraudsters are more likely to fill their emergency contact information in a
short amount of time.

Therefore, in DGraph, fraudsters and normal users have differences in aspects of graph structure,
neighbor feature distribution, missing values, and temporal dynamics characteristics. In other words,
it can comprehensively be used to evaluate the representational capacity of graph models.

4.3 Background node

The real-world graph is usually massive, redundant, and contains background nodes. For example,
in MAG240M [13], only 2 million Arxiv papers are concerned with classification among the 121
million papers. The remaining 119 million papers are not required for the task, but they are useful for
node classification due to their significance in maintaining network connectivity and abundance of
semantic information. These nodes that are required for classification and prediction are referred to as
target nodes, while others are referred to as background nodes. DGraph has a lot of background nodes
that represent Finvolution users who haven’t borrowed any money yet, which are ignored by previous
GAD datasets. These nodes can assist us in investigating the inherent properties of background nodes.

6

Although background nodes do not exhibit any borrowing behaviors, there is little distinction between
the majority of their features and those of other nodes. We sampled 10,000 target and background
nodes and illustrated their characteristics using T-SNE [36]. As shown in Fig. 3 (a), about 92%
of background nodes are inseparable from other nodes. Next, nodes are divided into training-set,
validation-set, and test-set with a 6/2/2 split setting. Then, we judge whether nodes are background
nodes based on their node features using XGBoost[6]. The test-set f1-score for the model is only
0.826, which is only a 3.1% improvement over the random guessing with priors (f1-score is 0.801),
which means predict all node as background nodes. These results indicate that background nodes
are difficult to differentiate based on their features. However, these hardly separable nodes play a
crucial role in maintaining the graph’s connectivity. Fig. 3 (b) illustrates that the number of weakly
connective graph components increases to 605,194, of which 380,490 have a single node after
removing background nodes from the DGraph. It specifies a vast quantity of target nodes linked by
background nodes.

Meanwhile, the background node contains an abundance of semantic information. As shown in
Fig. 3 (c), about 46.0% of the in-neighbors of anomalous nodes are background nodes, whereas only
31.1% of the out-neighbors are background nodes. In contrast, the in-neighbors of normal users have
a low ratio of background nodes while the out-neighbors have a high ratio of BN. In addition, we
observe the role played by the background node in the two-hop relationship. As shown in Fig. 3 (d)
We compare the homophily ratio of various connection relationships. we find that 2-hop connection
relationship with a background node as intermediate nodes have a higher homophily ratio than others.
Moreover, homophily ratios of 2-hop connection relationships are greater than that of two directly
connected nodes. Note the reported ratio are measured by the class insensitive edge homophily
ratio[19], as well as two popular graphs for comparison: Ogbn-Arxiv[14] and Actor[34]. Therefore,
it is worthwhile to investigate how to use background nodes in DGraph to enhance performance.

In general, background nodes are essential for maintaining the network’s connectivity and contain
abundant semantic information for detecting fraudsters. Due to the fact that BN cannot be easily
seperated by node characteristics, end2end models rarely use these nodes automatically (see details
in Sec. 5). Therefore, the utilization of the background node merits investigation.

5 Experiments on DGraph

DGraph is a newly-proposed graph for GAD with an extremely low percentage of anomalous nodes.
It possesses a variety of general characteristics. According to the observation, normal users and
fraudsters differ in a variety of aspects, such as network structure, temporal dynamics, missing values,
and background nodes. In this section, we delve deeper into DGraph via extensive experiments,
beginning with three questions:

Q1: How powerful are current GAD models on DGraph?
Q2: How to process missing values of DGraph?
Q3: How important are DGraph’s background nodes?

5.1 Performance of current models (Q1)

Setup. We select 9 advanced supervised methods, including 1 baseline methods: MLPs, 4 general
graph methods: Node2Vec [11], GCN [17], SAGE [42], and TGAT [42], and 4 anomaly detection
methods: DevNet [27], CARE-GNN [9], PC-GNN [21] and AMNet [5]. These methods can
capture various graph properties, which are summarized in Appendix. Meanwhile, we select 7
advanced unsupervised methods from PyGOD6, including: SCAN[44], MLPAE[31], GCNAE[16; 20],
Radar[18], DOMINANT[7], GUIDE[47], and OCGNN[38]. We randomly divide the nodes of
DGraph into training/validation/test sets with a split setting of 70/15/15, respectively. Consider none
of the GAD methods we selected can handle directed graph, we convert DGraph into an undirected
one for comparison. Due to the extreme imbalance of the label distribution, we evaluate models’
performance by AUC (ROC-AUC) and AP (Average Precision). See more in Appendix.

Discussion of supervised methods. The results of supervised methods are shown in Table 2. First,
we observe that MLPs and DevNet that do not utilize any graph information are significantly outper-

6https://pygod.org/

7

https://pygod.org/

Table 2: Comparison of AUC and AP achieved by 9 supervised methods based on DGraph.

Method Validation Test
AUC AP AUC AP

MLPs 0.717 ±0.002 0.026±0.000 0.723±0.002 0.027±0.000

Node2Vec 0.626±0.002 0.019±0.000 0.629±0.002 0.020±0.000
GCN 0.746±0.001 0.035±0.000 0.751±0.002 0.037±0.000
SAGE 0.770±0.001 0.039±0.001 0.778±0.001 0.043±0.001
TGAT 0.783±0.001 0.041±0.000 0.792±0.001 0.044±0.001

DevNet 0.707±0.001 0.025±0.000 0.715±0.001 0.026±0.000
CARE-GNN 0.734±0.004 0.032±0.002 0.741±0.006 0.033±0.002

PC-GNN 0.725±0.006 0.029±0.002 0.734±0.006 0.030±0.002
AMNet 0.746±0.003 0.032±0.001 0.752±0.003 0.032±0.001

Table 3: Comparison of AUC and AP achieved by 7 unsupervised methods based on DGraph.
“OOM!” means out-of-memory and “TLE!” means time limit of 24 hours exceeded.

Method Validation Test
AUC AP AUC AP

SCAN TLE! TLE! TLE! TLE!
MLPAE 0.625±0.010 0.017±0.001 0.625±0.011 0.018±0.001
GCNAE 0.497±0.003 0.012±0.000 0.507±0.003 0.013±0.000

Radar OOM! OOM! OOM! OOM!
DOMINANT OOM! OOM! OOM! OOM!

GUIDE TLE! TLE! TLE! TLE!
OCGNN 0.616±0.004 0.019±0.000 0.618±0.004 0.019±0.000

formed by other baselines that utilize both graph information and node features. But Node2Vec, which
only utilizes graph structure, is surpassed by all others. This suggests that both graph information
and node features are key factors in detecting fraudsters. It is worth noting that most GAD methods
can not outperform the general GNNs. This result is in contrast to the previous result on Amazon
and YelpChi, suggesting that previous methods may overfit on current GAD datasets. Therefore,
DGraph can motivate future works to propose more general models. Among all compared methods,
TGAT achieves the state-of-art performance since it can capture the most range of information,
including dynamic information, node features and graph information. These results indicates that
future GAD methods can take account of more graph properties to make progress.

Discussion of unsupervised methods. The results of unspervised methods are shown in Table 3.
Overall, DGraph is compatible with the unsupervised methods (if they can run). The MLPAE
and OCGNN achieve best performance in terms of AUC and AP (0.625 and 0.019, respectively).
However, the performance of unsupervised methods still has to be improved in comparison to
supervised approaches. It is important to note that many unsupervised GAD methods cannot handle
DGraph due to memory or time constraints, meaning that some of current unsupervised methods
disregard these crucial aspects of industrial application—the time complexity and memory cost.

In general, DGraph have rich and novel properties, which offers exciting opportunities for the
improvement of previous GAD methods and benefits future works.

5.2 Missing values in DGraph (Q2)

According to the observation made in Sec. 4, missing values play a crucial role in detecting anomalous
nodes. The next problem is how to handle these missing values. Since the treatment of missing values
in graphs has not yet been broadly discussed by current graph models, and most GAD methods are
GNNs based methods, we evaluate whether some commonly used tricks are applicable to GNNs.

Setup. We choose 4 settings to handle missing values, namely, Default, it is the default setting; it
replaces missing values with "-1". Trick A: it involves adding flags and replacing missing values with
"-1", where the flag is set as "1" or "0" to indicate whether a dimension’s value is missing. In other
words, if a node’s feature is [null, 3], after adding flag, the node’s feature will be [�1, 3, 1, 0], where
the last two numbers are flags. Trick B: it involves adding flags and replacing missing values with "0".
Trick C: it involves adding flags and imputing missing values by a prediction method: IterativeImputer

8

(a) Handling missing values (b) Removing background nodes

Figure 4: Experiments results. (a) reports results of various tricks of handling missing values. GCNs + Trick

B, for example, means that we first use Trick B to process node features, and then feed the processed features
along with the graph structure into GCNs for training and detecting anomalous nodes. (b) reports the decrease of
GCNs after we removing different proportion of background nodes. Note that "removing" includes removing
both the nodes and their connected edges, and that the percentage range for "removing" is [0, 25, 50, 75, 100] .

[35]. We conduct experiments using MLPs and GCNs whose input node characteristics are processed
by these three techniques. See more detailed experiment setup in Appendix.

Discussion. The experiment result is shown in Fig. 4 (a). Tricks of handling missing values bring
more notable improvements on GCNs than those on MLPs. The average improvement on GCNs is
0.39% of AUC, and that on MLPs is 0.11% of AUC. It suggests that handling missing values for
GNNs is indeed necessary. Meanwhile, compared to other tricks on GCNs, Tricks B achieves the best
improvements. This result indicates that carefully choosing a suitable value for GNNs is also required.
However, generally determining a suitable value is complex because the optimal missing value is
task-specific. Therefore, how to generally handle missing values on graphs is worth investigating.
DGraph provides an opportunity to explore missing values on the graph.

5.3 Background nodes in DGraph (Q3)

Background nodes are another distinguishing characteristic of DGraph. Observation reveals that
background nodes are difficult to differentiate from other nodes but are necessary for maintaining
DGraph’s connectivity and offering sufficient semantic information for detecting fraudsters. Next,
we further investigate how can we utilize background node.

Removing background nodes. We remove a variable proportion of background nodes from
DGraph and feed the remaining graph to GCNs for training and prediction. The experiment setting are
identical to those described previously. Fig. 4 (b) shows the result. As the proportion of background
nodes being removed increases, the average AUC of GCNs in the test-set decreases from 0.76 to 0.72.
These results once again demonstrate the significance of background nodes. It is also worth noting
that the time cost of GCNs decreases from 20 to 12 as the proportion of background nodes being
removed increases, which indicates a potential direction, which is how to strike a balance between
compressing the background nodes to accelerate the model and maintaining the performance.

Processing background nodes. According to the observation, background nodes of DGraph have
abundant semantic information. However, since these nodes and target nodes have tiny differences in
the node features, automatically identifying background nodes and utilizing their semantic information
is a great challenge for end2end models. Therefore, we conduct an experiment to investigate how can
GNNs utilize background nodes. We first add a label indicating whether or not nodes are background
nodes into the node features, which is denoted as GCN + Label. In addition, we regard the graph
as a heterogeneous graph with two types of nodes, the target nodes and the background nodes, and
use RGCN [33], a heterogeneous GNNs, to learn the node representation. We restrict the number of
RGCN parameters to that of GCN. As shown in Table 4, GCN + Label achieves a 2.26% improvement
over GCN. Meanwhile, it is surprising that RGCN has a 4.39% improvement over GCN. This result
suggests background nodes indeed contains a wealth of semantic information that is ignored by
current end2end methods. Therefore, investigating the background nodes is also a promising direction
to advance current GAD methods.

Discussion. These two experiment results indicate the value of background nodes. DGraph can be
used to explore a general problem: How to process background nodes in any graphs?

9

Table 4: Comparison of different methods for processing with background nodes.

Method AUC AP
GCN 0.751±0.002 0.037±0.000

GCN+Label 0.768±0.001 0.037±0.000
RGCN 0.784±0.002 0.047±0.000

6 Conclusion

This paper presents DGraph, a real-world dynamic graph in finance domain, with the aim of enriching
the variety of GAD datasets and overcoming the limitations of current datasets. In the construction of
DGraph, we preserve missing values on node features, and those no-borrowing behaviors nodes are
referred to as background nodes. We make a comprehensive observation on DGraph. It reveals that
anomalous nodes and normal nodes generally have differences on various graph-related characteristic.
Meanwhile, the importance of missing values and background nodes is covered by observation.
Furthermore, we conduct abundant experiments on DGraph, and gain many thought-provoking
discoveries. Compared with general GNNs, most current GAD methods present worse performance.
It indicates that these GAD methods may overfit on several datasets. Meanwhile, results show that
handling missing values and processing background nodes is indeed crucial in DGraph. It is expected
that these discoveries can be extended to more general fields. In general, DGraph overcomes the
limitations of current GAD datasets and enriches their varieties. We believe DGraph will become an
essential resource for a broad range of GAD research.

7 Acknowledgments

This work was partially supported by Zhejiang NSF (LR22F020005), the National Key Research and
Development Project of China (2018AAA0101900), and the Fundamental Research Funds for the
Central Universities.

References
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and

description: a survey. In Data Mining and Knowledge Discovery, volume 29, pages 626–688,
2015.

[2] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.
In Social Network Data Analytics, pages 115–148, 2011.

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In SIGMOD’08, pages
1247–1250, 2008.

[4] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. In International Journal of Parallel, Emergent and Distributed

Systems, volume 27, pages 387–408, 2012.

[5] Ziwei Chai, Siqi You, Yang Yang, Shiliang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang.
Can abnormality be detected by graph neural networks? In IJCAI’22, 2022.

[6] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD’16, pages
785–794, 2016.

[7] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages
594–602, 2019.

[8] Kaize Ding, Qinghai Zhou, Hanghang Tong, and Huan Liu. Few-shot network anomaly
detection via cross-network meta-learning. In WWW’21, pages 2448–2456, 2021.

10

[9] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing
graph neural network-based fraud detectors against camouflaged fraudsters. In CIKM’20, pages
315–324, 2020.

[10] Neil Zhenqiang Gong and Wenchang Xu. Reciprocal versus parasocial relationships in online
social networks. In Social Network Analysis and Mining, volume 4, pages 1–14, 2014.

[11] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In
KDD’16, pages 855–864, 2016.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. In arXiv, 2017.

[13] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. In NeurIPS’22 Datasets and

Benchmarks Track, 2021.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS’20, volume 33, pages 22118–22133, 2020.

[15] Mengda Huang, Yang Liu, Xiang Ao, Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. Auc-oriented graph neural network for fraud detection. In WWW’22, pages 1311–1321,
2022.

[16] Thomas N Kipf and Max Welling. Variational graph auto-encoders. In arXiv, 2016.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR’17, 2017.

[18] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection
in attributed networks. In IJCAI’17, pages 2152–2158, 2017.

[19] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In NeurIPS’21, volume 34, pages 20887–20902, 2021.

[20] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding,
Canyu Chen, Hao Peng, Kai Shu, et al. Pygod: A python library for graph outlier detection. In
arXiv, 2022.

[21] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: A gnn-based imbalanced learning approach for fraud detection. In WWW’21, pages
3168–3177, 2021.

[22] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue.
Comga: Community-aware attributed graph anomaly detection. In WSDM’22, pages 657–665,
2022.

[23] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and
Leman Akoglu. A comprehensive survey on graph anomaly detection with deep learning. In
TKDE’21, pages 1–1, 2021.

[24] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the
evolution of user expertise through online reviews. In WWW’13, pages 897–908, 2013.

[25] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. In Annual Review of Sociology, pages 415–444, 2001.

[26] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie Glance. What yelp fake review
filter might be doing? In AAAI’13, volume 7, 2013.

[27] Guansong Pang, Chunhua Shen, and Anton van den Hengel. Deep anomaly detection with
deviation networks. In KDD’19, pages 353–362, 2019.

11

[28] Ronald DR Pereira and Fabrício Murai. How effective are graph neural networks in fraud
detection for network data? In arXiv, 2021.

[29] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review
networks and metadata. In KDD’15, pages 985–994, 2015.

[30] Shebuti Rayana and Leman Akoglu. Less is more: Building selective anomaly ensembles. In
TKDD’16, volume 10, pages 1–33, 2016.

[31] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear
dimensionality reduction. In MLSDA’14 2nd Workshop on Machine Learning for Sensory Data

Analysis, pages 4–11, 2014.

[32] Patricia Iglesias Sánchez, Emmanuel Müller, Fabian Laforet, Fabian Keller, and Klemens Böhm.
Statistical selection of congruent subspaces for mining attributed graphs. In ICDM’13, pages
647–656, 2013.

[33] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional network. In The Semantic Web,
pages 593–607, 2018.

[34] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In KDD’09, pages 807–816, 2009.

[35] Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. In Journal of Statistical Software, volume 45, pages 1–67, 2011.

[36] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. In JMLR’08,
volume 9, 2008.

[37] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link prediction in social networks:
The state-of-the-art. In Science China Information Sciences, volume 58, pages 1–38, 2015.

[38] Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, Yingshui Tan, and Yupu Yang. One-class
graph neural networks for anomaly detection in attributed networks. In Neural Computing and

Applications, volume 33, pages 12073–12085, 2021.

[39] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom
Robinson, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with
graph convolutional networks for financial forensics. In arXiv, 2019.

[40] Jarrod West and Maumita Bhattacharya. Intelligent financial fraud detection: a comprehensive
review. In Computers & Security, volume 57, pages 47–66, 2016.

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. In IEEE Transactions on Neural Networks

and Learning Systems, volume 32, pages 4–24, 2020.

[42] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. In ICLR’20, 2020.

[43] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR’19, 2019.

[44] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. Scan: A structural
clustering algorithm for networks. In KDD’07, pages 824–833, 2007.

[45] Yang Yang, Yuhong Xu, Yizhou Sun, Yuxiao Dong, Fei Wu, and Yueting Zhuang. Mining fraud-
sters and fraudulent strategies in large-scale mobile social networks. In TKDE’19, volume 33,
pages 169–179, 2019.

[46] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In ICML’16, pages 40–48, 2016.

12

[47] Xu Yuan, Na Zhou, Shuo Yu, Huafei Huang, Zhikui Chen, and Feng Xia. Higher-order structure
based anomaly detection on attributed networks. In 2021 IEEE International Conference on

Big Data (Big Data), pages 2691–2700, 2021.

[48] Ge Zhang, Jia Wu, Jian Yang, Amin Beheshti, Shan Xue, Chuan Zhou, and Quan Z Sheng.
Fraudre: Fraud detection dual-resistant to graph inconsistency and imbalance. In ICDM’21,
pages 867–876, 2021.

[49] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI’18, volume 32, pages 4438–4445, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 1

(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 5
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Section 5
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5
(b) Did you mention the license of the assets? [Yes] See Section 5
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 5
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Section 3 and Appendix
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related datasets
	Proposed Dataset: DGraph
	Raw data
	Graph construction
	Leaderboard

	Observation on DGraph
	Overall
	Anomalous vs. normal
	Background node

	Experiments on DGraph
	Performance of current models (Q1)
	Missing values in DGraph (Q2)
	Background nodes in DGraph (Q3)

	Conclusion
	Acknowledgments
	Appendix
	About DGraph
	Explanations of the observation
	Experiment details
	Data splitting
	Methods
	Setup

	Ablation Studies

