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Abstract: To solve long-horizon tasks, robots must compose previously learned1

motor skills using task and motion planning (TAMP). However, TAMP presumes2

the existence of a symbolic task-level abstraction that is sound, complete, and re-3

finable into motion plans. Designing this representation by hand is brittle, and4

existing learning methods fail to guarantee the semantics required for TAMP. We5

present the first approach for learning portable symbolic representations from pix-6

els and poses that provably support TAMP. Our method learns (i) object-centric7

visual predicates and (ii) generative relational spatial predicates from skill exe-8

cutions. These predicates serve dually as binary classifiers over low-level states9

and as samplers for motion-level refinement. We discuss preliminary experiments10

on two real-world robot platforms, demonstrating how our approach can learn11

reusable symbols. In ongoing experiments, we intend to show how these symbols12

enable zero-shot synthesis of long-horizon plans across novel environments.13

1 Introduction14

Modern robot learning has produced general-purpose motor skills that manipulate objects via force-15

ful contact [1, 2]. These reusable skills offer procedural abstraction, but combining them to solve16

novel tasks remains difficult: the sequencing of skills requires long-horizon, discrete decisions, inter-17

leaved with continuous reasoning over possible skill parameterizations (e.g., grasp pose selection).18

Task and motion planning (TAMP) [3] addresses this challenge by synthesizing high-level symbolic19

plans and refining them into collision-free motion trajectories. Yet, this relies on a symbolic task-20

level representation whose semantics are rarely learned: most prior work either learns symbols not21

designed for TAMP [4, 5, 6, 7] or bypasses symbolic reasoning altogether [8, 9].22

We argue that the core missing element is a symbolic abstraction whose semantics match TAMP’s23

assumptions. Task-level planning must be optimistic: it must model only logical dependencies24

while assuming spatial details can be resolved later. Refinement then checks feasibility given the25

exact scene. To make this possible, each learned symbol must act both as (1) a classifier for task-26

relevant conditions and (2) a sampler over feasible relative poses. This dual semantics—absent in27

prior work—is the linchpin enabling skill composition.28

2 Background29

We formalize a robot task as a set of objects O and a robot R, with universe U = O ∪ R. The30

low-level state space S is object-centric, with an individual state defined as:31

s =
(
rb, rc, {ob, oc, op}i

)
where rb and rc are the robot’s base pose and configuration, and each object oi has a base pose ob,32

configuration oc, and perceptual state op (e.g., pixels). Each grounded predicate σ̄(u, v) defines a33

binary classifier γσ̄ : S → {0, 1}, imposing a high-level, abstract state s̄ = {σ̄ | γσ̄(s) = 1}.34
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Skills are modeled as composable interaction primitives (CIPs) [2] with policy πa, initiation set35

Ia, and termination set βa. Each skill induces one or more high-level operators ⟨Θ, PRE, EFF⟩. A36

TAMP planner searches for a task-level plan and attempts to refine it into a collision-free trajectory.37

Should refinement fail, the task-level plan is revised. TAMP assumes the symbolic model is sound38

and complete at the task level, though not necessarily at the motion level [10].39

3 Method40

We aim to learn a symbolic abstraction α = ⟨Σs, Gs,Σv, S,A⟩ autonomously from raw skill exe-41

cutions, where Σs are spatial predicates with samplers Gs, Σv are visual predicates, S are symbolic42

states, and A are high-level operators. Given these learned symbolic abstractions, a traditional43

TAMP planner can be used to solve new problems using the same skills [11].44

3.1 Spatial Predicate Invention45

Spatial predicates capture where a skill can be executed, ignoring local obstacles. We leverage46

relational critical regions (RCRs) [12]: regions of high density in the relative pose space of object47

pairs during successful skill executions. See Figure 1a for a visualization of two learned RCRs.48

We collect trajectories for each skill in a fast kinematic simulator, extract relative trajectories be-49

tween objects, cluster relative poses in those trajectories to identify RCRs, and convert each RCR50

ρij into a predicate σij(s) = 1[Pij(s) ∈ ρij ]. The support of ρij defines a generative sampler gij51

over the objects’ relative pose space, enabling refinement. Because they assume free space, these52

predicates are optimistic and portable; local obstacles merely prune samples at planning time.53

3.2 Visual Predicate Invention54

Some skills depend on non-geometric properties (e.g., whether a jar is open or closed). To represent55

these properties as visual predicates, we adapt the skills-to-symbols framework [13, 5]. First, we56

partition observed skill transitions (Φ, ω,Φ′), where Φ and Φ′ are perceptual observations before57

and after a skill ω, such that P (Φ′ | Φ, ω) = P (Φ′ | ω). We then fit density estimators over each58

partition to produce visual predicates σv
k . These serve as precondition and effect symbols reusable59

across environments sharing the same objects. Example visual symbols are shown in Figure 2.60

3.3 Operator Induction61

We abstract collected trajectories using the learned predicates into symbolic trajectories [s̄1, . . . , s̄T ],62

then extract abstract state transitions (s̄i, s̄i+1) and lift them over object types to induce parameter-63

ized operators ⟨Θ, PRE, EFF⟩. We merge spatial and visual operators using the Cartesian product: if64

ās = ⟨Θs, PREs, EFFs⟩ and āv = ⟨Θv, PREv, EFFv⟩, we define:65

ā = ⟨Θs ∪Θv, PREs ∧ PREv, EFFs ∪ EFFv⟩.

This yields a unified operator set A usable by standard TAMP planners [3].66

4 Preliminary Experiments67

We validate our approach in preliminary real-world experiments on two robot platforms: a mobile68

manipulator quadruped and a bimanual manipulator. In this section, we present initial results from69

these experiments and discuss our objectives for ongoing experiments.70

4.1 Bimanual Manipulator71

In our bimanual manipulation setting, the robot is tasked with opening a jar of peanut but-72

ter and spreading peanut butter onto a slice of bread. The robot is provided with the motion-73

planning-based skill Grasp(?graspable) and three skills based on relative trajectory playback:74
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(a) A visualization of learned generative samplers
for object-relative end-effector poses for grasping
(left cluster) and preparing to grasp (right cluster).

(b) A visualization of the simulated robot with its
end-effector at an example pre-grasp pose sampled
from a learned distribution.

Figure 1: Preliminary results on a simulated bimanual manipulator with learned pose samplers.

Spread(?bread, ?knife), Scoop(?jar, ?knife), and Open(?jar). In Figure 1, we75

visualize samples from the learned spatial predicates for the Grasp skill. These results demonstrate76

that our approach for learning spatial predicates can identify multiple critical regions for a single77

skill, corresponding to boundaries between sub-trajectories during the skill. In ongoing experiments,78

we are collecting egocentric image data between skill executions on the bimanual manipulator plat-79

form. These data will be used to train visual predicates for this domain.80

4.2 Mobile Manipulator81

To demonstrate the generality of our proposed approach, we are also conducting real-world ex-82

periments on a Boston Dynamics Spot mobile manipulator. The Spot is provided a diverse set of83

object-centric skills implemented using motion planning (e.g., Pick or GoTo), trajectory playback84

(e.g., OpenCabinet), force control (e.g., Erase), and off-the-shelf policies (e.g., OpenDoor).85

In this setting, the Spot must erase a whiteboard in another room, but first has to retrieve the eraser86

from a cabinet and open a closed door blocking the way. This experimental setup is particularly87

challenging from an abstraction learning perspective due to the necessity of onboard data collection:88

the robot must both execute the skills and then capture egocentric observations of affected objects.89

Figure 2: Renderings of four visual symbols corresponding to learned clusters of image observa-
tions. Presently, the data used to learn these symbols was manually collected within our intended
mobile manipulation environment. From left to right, these symbols correspond to states where a
door is closed, a cabinet is open, a cabinet is closed, or a door is open.

Consequently, as a temporary stopgap, we present visual predicates in Figure 2 that our approach90

learned using manually collected data. Nonetheless, these symbols demonstrate that our method91

can extract human-interpretable distinctions (e.g., “The door is open.” vs. “The door is closed.”)92

from raw image observations and corresponding synthetic skill execution feasibility traces. We are93

presently integrating the existing robot skills with interleaved photo-taking and state management,94
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which is intended to enable the real-world system to execute skills while seamlessly collecting the95

necessary object-centric image observations.96

5 Discussion and Conclusion97

We have introduced the first method for learning symbolic representations from pixels and poses98

that are provably compatible with typical TAMP systems. The key is to split symbols into visual and99

spatial components, giving each the dual semantics of classifiers and samplers. This allows a robot100

to plan at the symbolic level while retaining the ability to refine plans into concrete motions.101

Our work bridges the gap between learned skills and generalizable planning. Limitations include102

the need for known object poses during training and the assumption of discrete, known object types.103

In future work, we aim to integrate pose estimation and type discovery to relax these assumptions.104
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