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Abstract: To solve long-horizon tasks, robots must compose previously learned
motor skills using task and motion planning (TAMP). However, TAMP presumes
the existence of a symbolic task-level abstraction that is sound, complete, and re-
finable into motion plans. Designing this representation by hand is brittle, and
existing learning methods fail to guarantee the semantics required for TAMP. We
present the first approach for learning portable symbolic representations from pix-
els and poses that provably support TAMP. Our method learns (i) object-centric
visual predicates and (ii) generative relational spatial predicates from skill exe-
cutions. These predicates serve dually as binary classifiers over low-level states
and as samplers for motion-level refinement. We discuss preliminary experiments
on two real-world robot platforms, demonstrating how our approach can learn
reusable symbols. In ongoing experiments, we intend to show how these symbols
enable zero-shot synthesis of long-horizon plans across novel environments.

1 Introduction

Modern robot learning has produced general-purpose motor skills that manipulate objects via force-
ful contact [1, 2]. These reusable skills offer procedural abstraction, but combining them to solve
novel tasks remains difficult: the sequencing of skills requires long-horizon, discrete decisions, inter-
leaved with continuous reasoning over possible skill parameterizations (e.g., grasp pose selection).
Task and motion planning (TAMP) [3] addresses this challenge by synthesizing high-level symbolic
plans and refining them into collision-free motion trajectories. Yet, this relies on a symbolic task-
level representation whose semantics are rarely learned: most prior work either learns symbols not
designed for TAMP [4, 5, 6, 7] or bypasses symbolic reasoning altogether [8, 9].

We argue that the core missing element is a symbolic abstraction whose semantics match TAMP’s
assumptions. Task-level planning must be optimistic: it must model only logical dependencies
while assuming spatial details can be resolved later. Refinement then checks feasibility given the
exact scene. To make this possible, each learned symbol must act both as (1) a classifier for task-
relevant conditions and (2) a sampler over feasible relative poses. This dual semantics—absent in
prior work—is the linchpin enabling skill composition.

2 Background

We formalize a robot task as a set of objects O and a robot R, with universe U = O U R. The
low-level state space S is object-centric, with an individual state defined as:

s = (’I"b, Te, ‘{067 Oc, Op}i)

where 7, and 7. are the robot’s base pose and configuration, and each object o; has a base pose oy,
configuration o,, and perceptual state o, (e.g., pixels). Each grounded predicate & (u, v) defines a
binary classifier 75 : S — {0, 1}, imposing a high-level, abstract state § = {7 | 75(s) = 1}.
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Skills are modeled as composable interaction primitives (CIPs) [2] with policy 7, initiation set
I,,, and termination set 8,. Each skill induces one or more high-level operators (O, PRE, EFF). A
TAMP planner searches for a task-level plan and attempts to refine it into a collision-free trajectory.
Should refinement fail, the task-level plan is revised. TAMP assumes the symbolic model is sound
and complete at the task level, though not necessarily at the motion level [10].

3 Method

We aim to learn a symbolic abstraction o = (3, G, %, S, A) autonomously from raw skill exe-
cutions, where 3, are spatial predicates with samplers G, 3, are visual predicates, S are symbolic
states, and A are high-level operators. Given these learned symbolic abstractions, a traditional
TAMP planner can be used to solve new problems using the same skills [11].

3.1 Spatial Predicate Invention

Spatial predicates capture where a skill can be executed, ignoring local obstacles. We leverage
relational critical regions (RCRs) [12]: regions of high density in the relative pose space of object
pairs during successful skill executions. See Figure 1a for a visualization of two learned RCRs.

We collect trajectories for each skill in a fast kinematic simulator, extract relative trajectories be-
tween objects, cluster relative poses in those trajectories to identify RCRs, and convert each RCR
pij into a predicate o;;(s) = L[P;;(s) € pi;]. The support of p;; defines a generative sampler g;;
over the objects’ relative pose space, enabling refinement. Because they assume free space, these
predicates are optimistic and portable; local obstacles merely prune samples at planning time.

3.2 Visual Predicate Invention

Some skills depend on non-geometric properties (e.g., whether a jar is open or closed). To represent
these properties as visual predicates, we adapt the skills-to-symbols framework [13, 5]. First, we
partition observed skill transitions (®,w, ®’), where ® and @’ are perceptual observations before
and after a skill w, such that P(®’ | ®,w) = P(®’ | w). We then fit density estimators over each
partition to produce visual predicates o;,. These serve as precondition and effect symbols reusable
across environments sharing the same objects. Example visual symbols are shown in Figure 2.

3.3 Operator Induction

We abstract collected trajectories using the learned predicates into symbolic trajectories [31, . . ., 7],
then extract abstract state transitions (S;, 5;+1) and lift them over object types to induce parameter-
ized operators (©, PRE, EFF). We merge spatial and visual operators using the Cartesian product: if
as = (O, PRE,, EFFy) and @, = (0,, PRE,, EFF, ), we define:

a = (0, UBO,, PRE; A PRE,, EFF; U EFF,).

This yields a unified operator set A usable by standard TAMP planners [3].

4 Preliminary Experiments

We validate our approach in preliminary real-world experiments on two robot platforms: a mobile
manipulator quadruped and a bimanual manipulator. In this section, we present initial results from
these experiments and discuss our objectives for ongoing experiments.

4.1 Bimanual Manipulator

In our bimanual manipulation setting, the robot is tasked with opening a jar of peanut but-
ter and spreading peanut butter onto a slice of bread. The robot is provided with the motion-
planning-based skill Grasp (?graspable) and three skills based on relative trajectory playback:
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(a) A visualization of learned generative samplers (b) A visualization of the simulated robot with its
for object-relative end-effector poses for grasping end-effector at an example pre-grasp pose sampled
(left cluster) and preparing to grasp (right cluster). from a learned distribution.

Figure 1: Preliminary results on a simulated bimanual manipulator with learned pose samplers.

Spread (?bread, ?knife),Scoop(?jar, ?knife),andOpen (?jar). InFigurel, we
visualize samples from the learned spatial predicates for the Grasp skill. These results demonstrate
that our approach for learning spatial predicates can identify multiple critical regions for a single
skill, corresponding to boundaries between sub-trajectories during the skill. In ongoing experiments,
we are collecting egocentric image data between skill executions on the bimanual manipulator plat-
form. These data will be used to train visual predicates for this domain.

4.2 Mobile Manipulator

To demonstrate the generality of our proposed approach, we are also conducting real-world ex-
periments on a Boston Dynamics Spot mobile manipulator. The Spot is provided a diverse set of
object-centric skills implemented using motion planning (e.g., Pick or GoTo), trajectory playback
(e.g., OpenCabinet), force control (e.g., Erase), and off-the-shelf policies (e.g., OpenDoor).
In this setting, the Spot must erase a whiteboard in another room, but first has to retrieve the eraser
from a cabinet and open a closed door blocking the way. This experimental setup is particularly
challenging from an abstraction learning perspective due to the necessity of onboard data collection:
the robot must both execute the skills and then capture egocentric observations of affected objects.

s0 7x sl x

Figure 2: Renderings of four visual symbols corresponding to learned clusters of image observa-
tions. Presently, the data used to learn these symbols was manually collected within our intended
mobile manipulation environment. From left to right, these symbols correspond to states where a
door is closed, a cabinet is open, a cabinet is closed, or a door is open.

Consequently, as a temporary stopgap, we present visual predicates in Figure 2 that our approach
learned using manually collected data. Nonetheless, these symbols demonstrate that our method
can extract human-interpretable distinctions (e.g., “The door is open.” vs. “The door is closed.”)
from raw image observations and corresponding synthetic skill execution feasibility traces. We are
presently integrating the existing robot skills with interleaved photo-taking and state management,



95
96

97

98
99
100
101

102
103
104

105

106
107
108

109
110
111
112

113
114
115

116
17
118

119
120
121

122
123
124

125
126
127

128
129
130

131
132
133
134

136
137

which is intended to enable the real-world system to execute skills while seamlessly collecting the
necessary object-centric image observations.

5 Discussion and Conclusion

We have introduced the first method for learning symbolic representations from pixels and poses
that are provably compatible with typical TAMP systems. The key is to split symbols into visual and
spatial components, giving each the dual semantics of classifiers and samplers. This allows a robot
to plan at the symbolic level while retaining the ability to refine plans into concrete motions.

Our work bridges the gap between learned skills and generalizable planning. Limitations include
the need for known object poses during training and the assumption of discrete, known object types.
In future work, we aim to integrate pose estimation and type discovery to relax these assumptions.
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