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Abstract

We address the problem of Schrodinger potential estimation, which plays a crucial
role in modern generative modelling approaches based on Schrodinger bridges and
stochastic optimal control for SDEs. Given a simple prior diffusion process, these
methods search for a path between two given distributions py and pr requiring min-
imal efforts. The optimal drift in this case can be expressed through a Schrédinger
potential. In the present paper, we study generalization ability of an empirical
Kullback-Leibler (KL) risk minimizer over a class of admissible log-potentials
aimed at fitting the marginal distribution at time 7". Under reasonable assumptions
on the target distribution pr and the prior process, we derive a non-asymptotic
high-probability upper bound on the KL-divergence between pr and the terminal
density corresponding to the estimated log-potential. In particular, we show that
the excess KL-risk may decrease as fast as O(logn/n) when the sample size n
tends to infinity even if both py and pr have unbounded supports.

1 Introduction

The Schrodinger Bridge problem (SBP) originates from a question posed by Erwin Schrédinger in
1932 [Schrodinger] [1932], seeking the most likely evolution of a probability distribution between
two given endpoint distributions while minimizing relative entropy with respect to a prior stochastic
process. This problem has deep connections with optimal transport [Leonard, |2014] and stochastic
control [Dai Pra, |[1991]. In its simplest continuous-time form, one aims to construct a so-called
Schrédinger Markov process whose joint begin-end distribution 7(dz, dz) has the representation

ﬂ(dx,dz) = Q(sz | I70) Vo(d$) VT(dZ)a (H

where Q(z,T' | x,0) is the transition kernel of a reference Markov process, and v, v are unknown
“boundary potentials” to be determined. The desired marginals 7(dz, R?) and w(R9, dz) are given,
and one seeks vy and v that reproduce these marginals. In the rest of the paper, we assume that
both 7(dx, R%) and 7(R?, dz) are absolutely continuous with respect to the Lebesgue measure and
denote the corresponding densities by pg and p7., respectively. Classical existence proofs for the SBP
date back to|Fortet [[1940] (in 1D) and Beurling [[1960], with a modern fixed-point approach in [Chen
et al.,2016]. Recent extensions to the case of noncompactly supported marginal distributions can be
found in [Conforti et al., [2024] and [Eckstein, [2025]]. Recently, the problem attracted attention of
machine learners in the context of generative modelling (see, for instance, [[Tzen and Raginsky, 2019}
De Bortoli et al., 2021, |Shi et al.,|2023, |[Korotin et al.| 2024} |Gushchin et al.| [2024al Rapakoulias
et al., 2024] to name a few). It follows from Theorem 3.2 in [Dai Pral [1991] that the optimal Markov
process X" solving the Schrodinger problem with marginals (po, p7-) can be constructed as a solution
of the following SDE:

dX; = (b(X[ 1)+ o(X7 ) (X[, 1) T Vieg h(X],t)) dt + o (X[, t) dWs,  Xo ~ po,

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



34

35

36
37

38
39
40
41
42
43

44
45
46

47

48

49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

where

hw.t) = [ Q. T w.t)vr(dy)
Rd
and Q is the transition density of the reference (or base) diffusion process

dXt = b(Xt,t) dt + O'(Xt,t) th, XO ~ Po-

The transition density Q* of the reciprocal process X; can be obtained from Q via the so-called
Doob’s h-transform:
h(y,T)

o) &

This is precisely the law of the base process conditioned by the function A (see [Jamison, (1974]). In
many presentations of the Schrodinger Bridge problem, one takes a very simple reference process (for
instance, a Brownian motion) so that its transition kernel is straightforward to write down (see, for
example, [Pooladian and Niles-Weed, |2024]] and [Baptista et al.,2024]). However, there are several
practical and theoretical advantages to considering more general (potentially higher-dimensional, or
with domain constraints, or with a non-trivial drift/diffusion) reference processes.

Q(y, T | z,1) = Qly, T | 1)

In the present paper, we are interested in estimation of the Schrodinger potential v from n i.i.d.
samples Yi,...,Y, ~ p7. Given a class of log-potentials ¥, we study generalization ability of an
empirical risk minimizer

hy(Yi, T)

) po(x)dx , 3)

—~ 1 &
1 € argmin ¢ —— log /Q Y, T|z0
e - ; ( | z,0)
Rd
where
holiet) = [ QT |2.0) 0 dy.
Let us note that, in view of (2),

P = [ QT 2,0) Mpomdx
Rd

is the marginal endpoint probability density of a diffusion process X;p corresponding to Doob’s
h.-transform:

ax; = (b(XF ) + o (XY )a(X) 1) Vieghy(X[',1)) dt + (X[, 6) Wi, Xo ~ po.

In other words, the estimate 1Z minimizes empirical Kullback-Leibler (KL) divergence between the

actual target p7- and the marginal densities p? over the class of admissible log-potentials ¥. That is,
we chose the log-potential ) that makes the transformed reference diffusion hit the observed terminal
law, and measure error only through KL of the marginals. Because h.; is used inside the Doob factor,
the learnt potential is compatible with a single Markov process; one never risks obtaining mutually
inconsistent forward/backward potentials. The method combines the full problem (the marginals,
transition densities, and the potential function) into one single optimization framework. By doing so,
it aims to directly minimize the objective of matching the marginals at time 7" without separating the
problem into smaller subproblems. In contrast, the Sinkhorn algorithm, commonly used for optimal
transport problems, approaches the problem by iteratively updating the potentials in a decoupled
manner. At each iteration, a simpler least squares problem appears, which is linear in one potential
function given that another one is fixed from the previous iteration. The Sinkhorn algorithm alternates
between updating the potential functions to match the marginals of the distributions and adjusting the
transport plan until convergence. We refer to [Pooladian and Niles-Weed|[2024], Chiarini et al.|[2024]]
for recent results. The primary advantage of the Sinkhorn approach is its computational efficiency.
By decoupling the optimization process into simpler, linear problems, the Sinkhorn method can
handle large-scale problems effectively. This iterative procedure allows for faster updates, and it has
become a popular method for many optimal transport applications, see Genevay et al. [2018], March
and Henry-Labordere| [2023] However, the approach presented in this paper differs in that it does
not separate the problem into independent steps. Instead, it aims at solving the Schrédinger system
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approximately by formulating it as a single optimization problem involving Doob h-transform of
the base process X parametrized by the Schrédinger potential. Unlike iterative proportional fitting
(Sinkhorn), everything is learnt in one go, avoiding slow or unstable fixed-point cycles. This results
in a more accurate and robust solution. The trade-off between the two methods lies in computational
efficiency versus the quality of the solution. The Sinkhorn approach provides a quick and efficient
solution by solving simpler problems at each iteration, but it may not achieve the best possible
solution for the full problem. On the other hand, the method presented in this paper offers a more
holistic approach, which could lead to a more accurate matching of the marginal distributions but
might require more computational resources.

The approach presented in this paper can also be compared to methods that rely on optimization over
transport maps, see |[Korotin et al.|[2024], Gushchin et al.|[2024a]. In transport map-based approaches,
the goal is to find a map 7 that transports one probability distribution to another. The optimization
typically focuses on minimizing a quadratic cost functional that penalizes the difference between the
target distribution and the transformed distribution under the transport map. These methods are often
framed as optimal transport problems, where the map 7 is determined by solving an optimization
problem that involves the marginal distributions. The advantage of optimization over transport maps
lies in its clear geometric interpretation, where the transport map provides a direct way to relate the
two distributions. This can lead to efficient algorithms, especially when the transport map can be
parametrized in a way that allows for fast computations, such as in the case of certain neural network
architectures or simple affine transformations, Rapakoulias et al. [2024].

However, transport map-based approaches are typically constrained to quadratic costs, which may
limit their applicability in some cases. Specifically, quadratic cost functionals, such as the 2-
Wasserstein distance, often assume a certain structure or symmetry that may not be ideal for more
general or complex problems.

In contrast, the approach discussed in this paper is not limited to quadratic costs. It allows for more
general cost structures and is based on minimizing the Kullback-Leibler divergence (KL-divergence),
which can accommodate a wider range of problem types. This flexibility is particularly valuable when
dealing with more complex distributions or when the underlying problem involves non-quadratic costs
that capture other aspects of the distribution, such as entropy regularization or non-linear interactions
between variables.

Contribution The main contribution of the present paper a sharper non-asymptotic high-probability
upper bound on generalization error of the empirical risk minimizer > defined in (3).

 Taking a multivariate Ornstein-Uhlenbeck process as the reference one, we show that (see
Theorem , with probability at least (1 — 24), the excess KL-risk of the marginal endpoint

density pr corresponding to v satisfies the inequality

KL(pipr) — int KL(pi ) S \/M ) inf KL(pj o) + X(n,0).

where )
T(n, ) < log® n + log(1/0) logn'
n

Here and further in the paper, the sign < stands for an inequality up to a multiplicative
constant. The derived upper bound has several advantages over the existing results. First,
in contrast to [Korotin et al. [2024], the excess risk may decrease as fast as (9(1og2 n/n)
provided that the class of log-potentials W is rich enough to approximate the target density
P Second, unlike theoretical guarantees for Sinkhorn-based approaches (see e.g. [Pooladian
and Niles-Weed|[2024])), we are able to relate the endpoint marginal densities p’. and pr.

* We impose very mild assumptions on the target density p7.. We only require p7;. to be
bounded and sub-Gaussian. On the other hand, the available convergence proofs for the
Sinkhorn algorithm rely on the stronger assumption that the marginals are log-concave,
see |Conforti et al. [2024]. We also avoid the so-called strong density assumptions like
boundedness from below often used in nonparametric statistics in the context of log-density
estimation.

» The assumptions on the class of log-potentials ¥ are also reasonable. We support our claim
with several examples.
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Paper structure The rest of the paper is organized as follows. Section|2]is devoted to a short review
of related work. In Section [3] we introduce necessary definitions and notations. After that, we present
our main result (Theoremin Section[d]and discuss main ideas of its proof in Section[5] Rigorous
derivations as well as auxiliary technical results are deferred to the supplementary material.

2 Related work

Here is a short review of methods used in the literature to compute Schrodinger potentials, including
the Sinkhorn algorithm. The Schrédinger potential, which arises in optimal transport problems, repre-
sents a key component in the solution of transport problems involving marginal distributions. Over
time, several methods have been proposed to compute these potentials efficiently, with applications
in areas ranging from statistical mechanics to machine learning. Here, we review some of the most
prominent methods used in the literature.

Sinkhorn algorithm The Sinkhorn algorithm [Sinkhorn [1967] is one of the most widely used
methods for computing Schrodinger potentials in the context of optimal transport. It is based on
iterative scaling and aims to solve the optimal transport problem by alternating between updating two
potentials vy and v to enforce marginal constraints. The key advantage of the Sinkhorn approach
is its computational efficiency, particularly when the transport problem is framed with a quadratic
cost (such as the 2-Wasserstein distance), see |Pavon et al. [2021], |Chen et al.|[2021], [Stromme
[2023] for reference. In each iteration, the algorithm solves a simpler problem that involves scaling
the potentials in a way that brings the marginals of the transformed distribution closer to the target.
Although Sinkhorn’s algorithm is efficient and widely applicable, it is often limited by its assumption
of quadratic costs. Additionally, the algorithm does not directly handle more complex cost structures,
such as non-quadratic costs or non-linear dynamics, which can be a limitation in some applications.

Sinkhorn bridge The Sinkhorn Bridge proposed by |[Pooladian and Niles-Weed [2024], provides
a way to estimate the Schrodinger bridge using Sinkhorn’s algorithm in an efficient manner. The
key insight of this method is that the potentials obtained from the static entropic optimal transport
problem can be modified to yield a natural plug-in estimator for the drift function that defines the
Schrodinger bridge. However, this work does not provide bounds on the distance between marginal
distributions at time 7' = 1 because there is an exploding term (1 — 7)**2 as 7 — 1 where k is the
dimension of the underlying manifold. This term leads to a “curse of dimensionality”” where the error
grows rapidly as 7 approaches 1, especially in high-dimensional settings. As a result, the estimation
error increases significantly when attempting to estimate the Schrédinger bridge at the terminal time,
making it difficult to obtain precise bounds for 7' = 1.

Dual Formulation of the Schriodinger Problem In the dual formulation of the Schrédinger
problem, the Schrodinger potential is computed by solving a convex optimization problem. This
approach reformulates the problem in terms of a dual objective that involves the Kullback-Leibler
(KL) divergence between the target and predicted distributions. The dual problem is then solved
using optimization techniques such as gradient descent or variational methods, seeZhang and Chen
[2022], Tzen and Raginsky|[2019] for reference. This formulation is more flexible than the Sinkhorn
algorithm, as it can accommodate more general cost functions and is not limited to quadratic losses.

While the dual approach is flexible, it is often computationally more demanding than Sinkhorn’s
method due to the need for iterative optimization over high-dimensional spaces. This makes the dual
formulation suitable for smaller or more specialized problems, but it can become computationally
expensive in large-scale applications.

Approximate Solutions Using Monte Carlo Methods Monte Carlo methods, particularly those re-
lying on reverse diffusion processes, have also been employed to approximate Schrodinger potentials.
In these methods, a reverse process is simulated, and the potential is iteratively refined to minimize
the discrepancy between the predicted and target marginals, see |Korotin et al. [2024] for reference.
These methods are often used when the problem involves complex dynamics that are difficult to
capture using direct optimization techniques.
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Monte Carlo methods are particularly useful when dealing with high-dimensional problems, as they
allow for the sampling of large spaces. However, they can be computationally expensive and may
require a significant number of samples to achieve an accurate solution.

In addition, there are approaches that rely heavily on Monte Carlo approximations of intermediate
values rather than the Schrodinger potentials themselves, among which the following should be noted
De Bortoli et al. [2021], [Vargas et al.| [2021]], Peluchetti| [2023].

Neural Network-Based Approaches Recent advancements in deep learning have led to the use of
neural networks to approximate Schrodinger potentials. These approaches treat the potential function
as a parameterized neural network and use gradient-based optimization techniques to learn the
potential that best matches the marginals. The use of neural networks offers a flexible and powerful
way to model complex non-linear potentials, making these methods well-suited for problems with
intricate dynamics or non-quadratic costs.While neural network-based approaches are highly flexible,
they require large amounts of data and computational resources to train the network, and they are
often prone to overfitting if not regularized appropriately. Despite these challenges, they represent a
promising direction for future research, especially when the problem at hand involves complex and
high-dimensional systems. We refer to|Liu et al.|[2023]], Wang et al.| [2021] for recent results.

Iterative Markovian Fitting The Iterative Markovian Fitting (IMF) method, introduced in the
recent work by Shi et al.|[2023], offers an approach to solving Schrédinger Bridge (SB) problems.
Unlike previous methods, such as Iterative Proportional Fitting (IPF), IMF guarantees the preservation
of both the initial and terminal distributions in each iteration, which is a key advantage over IPF
where these marginals are not always preserved. IMF alternates between two types of projections:
Markovian projections and reciprocal projections, ensuring that the resulting distribution remains
within the correct class (Markovian or reciprocal) while progressively approximating the Schrodinger
Bridge. We refer to Gushchin et al. [2024b]] for recent results.

In |Silveri et al.|[2024], the authors provide the convergence analysis for diffusion flow matching
(DFM), a method used to generate approximate samples from a target distribution by bridging it with a
base distribution through diffusion dynamics. Their theoretical work includes non-asymptotic bounds
on the Kullback-Leibler (KL) divergence between the true target distribution and the distribution
generated by the DFM model. A key insight from this paper is the incorporation of two sources
of error: drift-estimation and time-discretization errors. However, while the convergence analysis
offers theoretical guarantees, the statistical error is not explicitly addressed in this paper. The analysis
assumes that all expectations are exact, which might not hold in practical settings where samples are
finite, and statistical errors could arise due to the approximations involved in the generative process.
Thus, future work will need to extend this analysis to quantify the impact of statistical approximations
in finite-sample settings.

3 Preliminaries and notations

This section collects necessary definitions and notations. As we announced in the contribution
paragraph, we are going to consider a multivariate Ornstein-Uhlenbeck process as a reference one.
For this reason, we elaborate on its basic properties in this section.

Multivariate Ornstein-Uhlenbeck process To be more specific, we will consider the base process
X? solving the SDE

N

dXP =b(m—X7)dt +2Y2dW,, 0<t<T

)

where b > 0 controls the drift rate, m € R4 represents the mean-reversion level, ¥ € Ra%d g
positive definite symmetric matrix, and W; is a standard d-dimensional Wiener process. It is known
that the conditional distribution of X given X = x is Gaussian \/ (mt (z), Et) with

b b 1— €—2bt
mi(zr) =(1—e "ym+e Pz and ;= TZ. )
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This implies that the corresponding Doob’s h-transform can be expressed through the Ornstein-
Uhlenbeck operator

Tig()

1
T (2m) Y2 /det(zy)

Indeed, it holds that hy (x,t) = Tr_:e¥®) Then, introducing

/ exp{—;nztl”(y —mt(x»n?}g(y) dy.
J

1 1 -
a(019) = s exn { 51572y~ me@) I}
we note that o)
; Y
o) = [SUDE (o) as ©)

Rd

is the marginal density of X}/’ , the endpoint of a random process X;ﬁ governed by h.:
ax; = b (m = X}') dt + Viog (Tr_e?™*)) at + 212awi, - X ~ po.

If the Schrodinger potential v admits a density e?~ with respect to the Lebesgue measure, then the
optimally controlled process X solves the SDE

AX; =b(m— X})dt + Vlog (TT,teWXZ‘)) dt + 2V2dW,,  XE ~ po.

Finally, it is well known that the unique stationary (invariant) distribution of X to is Gaussian, that is,
X? converges to X2, in distribution as ¢ — oo with X, ~ N (m,X/(2b)). Since the parameters of
the limiting distribution do not depend on the starting point, 7o g(z) = Toog is a constant.

Other notations The notation f < g or g 2 f means that f = O(g). Besides, we often replace
max{a, b} and min{a, b} by shorter expressions a V b and a A b, respectively. For any s > 1, the
Orlicz 1 s-norm of a random variable £ is defined as

€]

Finally, given p > 1 and a probability density p, the weighted L,-norm of a function f is defined as
11z, = (Benpl FE)IP) "? _Given two probability densities py < p1 on RY, the Kullback-Leibler
divergence between them is defined as KL(po, p1) = E¢~p, log (p0(€)/p1(8)).

¢, = inf {U >0 Eelél/v" < 2} :

4 Main result

In the present section, we discuss statistical properties of the empirical risk minimizer ¢ defined
in (3). In particular, Theorem T provides a Bernstein-type upper bound on its excess KL-risk. We
impose the following assumptions. First, as we announced before, we use the Ornstein-Uhlenbeck
process X} as the reference one.

Assumption 1. The base process X° solves the following SDE
dXP =b(m—X{)dt + 22 dW;, 0<t<T.

where b > 0, m € R%, X is a positive definite symmetric matrix of size d x d, and W is a d-
dimensional Brownian motion.

Main properties of the Ornstein-Uhlenbeck process were discussed in the previous section. Second,
we suppose that the target density p7. meets the following requirements.

Assumption 2. The target distribution at time T admits a bounded density p7. with respect to the
Lebesgue measure such that
p7(x) € pmax  forall x € R,

Moreover; the target distribution p is sub-Gaussian with variance proxy v, that is,

T 2 2
Ey~pz€" Y <en U2 for any w € R (6)
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Assumption [2|is very mild. Despite the fact that we deal with logarithmic loss, we do not require p7,
to be bounded away from zero. We do not even require its support to be compact. This significantly
complicates the proof of the excess KL-bound and poses nontrivial technical challenges. Let us note
that the condition@ yields that Ey-,» Y = 0. However, it does not diminish generality of our setup.

The remaining assumptions concern properties of the class of log-potentials W. First, we assume that
admissible log-potentials v(z) are bounded from above and behave as O(||z||?) as x tends to infinity.

Assumption 3. There exist non-negative constants A and M such that
2
A Hz—lﬂ(x - m)H M <Y@) <M forallz € R andyp € .
Moreover, for any ¢ € U, it holds that Too1) = Eyp(X o) = 0.

The condition 75,1 = 0 appears because of the fact that the Schrodinger potentials vy and vp

(see (1)) are defined up to a multiplicative constant. The requirement 75,7) = 0 is nothing but a

normalization. Second, we assume that W is parametrized by a finite-dimensional parameter # € RP:
U ={1p:0€ 0},

where O is a subset of a D-dimensional cube [— R, R]? and each function 1)y maps R? onto R. We
suppose that the parametrization is sufficiently smooth in the following sense.

Assumption 4. There exists L > 0 such that
[o(z) — Yo (2)| < L(1+|[z]?) |0 — 0|l forall 0,0' € © and all x € R".

Assumptions [3|and [ are quite general. We provide two examples when they hold. First, in a recent
paper [Korotin et al., 2024], the authors model e¥(@) as a Gaussian mixture. Let Qai,...,0g be
non-negative numbers such that a; + ... + ax = 1 and consider

—-1/2
o= IZ5 2 (@—mi) |12 /2

(2m)4/72 det(Sy) /2~

Here C' is a normalizing constant which ensures that 7.,% = 0. In this situation, the parameter ¢
consists of all «v,’s and all components of my’s and X;’s, k € {1,..., K}. If the smallest eigenvalues
of 31, ..., Xk are bounded away from zero uniformly over k € {1, ..., K}, then e?(®) is bounded.
On the other hand, if K is fixed, there is a component with a weight at least 1/K. Without loss of
generality, we assume that it is the first one. Then

K
V) =€ Zakwmk,zk (z), where Py, T (z) =
k=1

)

1 _
Y(x) > —C +log (1pm, 5, (7)) = —C —log K — 2 HZ1

and we conclude that Assumption [3|is satisfied. Verification of the Assumption [4|is straightforward
once we assume that the weight of each component is bounded away from zero, and the norms ||rm||,
x|, and || =, !|| are bounded uniformly over k € {1,..., K} (which is the case in [Korotin et al.,
2024]). Second, Assumptions E and E will be fulfilled if one deals, for example, with a class of
truncated feedforward neural networks with bounded weights and ReLLU activations. It is known
that (see [Schmidt-Hieber, 2020, Lemma 5]) they are Lipschitz with respect to each weight, and the
Lipschitz constant grows linearly with ||«||. More generally, Conforti [2024] analyzed semiconvexity
properties of the Schrodinger potentials under rather mild assumptions on the marginals.

(Jc—ml)’

We are ready to formulate the main result of this section.

Theorem 1. Let pg be the density of the standard Gaussian distribution N'(0, I;). Grant Assumptions
and[d] Assume that T is sufficiently large in a sense that

bT > (5+logd) v log (160D (v v 1) [=7])) .

Let LE be defined in (3) and let pr be the corresponding density ()fX;E. Then, for any 6 € (0,1/2),
with probability at least 1 — 20, it holds that

KL(pir.pr) ~ inf KL(p, o) < \/nn, ) int KL(py. pf) + T(n.9).

where
RIn

)
The hidden constant behind < depends on ¥, m, b, and v only.

Dlogn

Y(n,8) = (Ad + M + d) <d+1og
n

+ (M Vlog A)\/gebT>
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In Theorem [I, we assume that py is the density of A'(0,1). Though it is a standard choice of
initial distribution in practice, we would like to emphasize that unbounded support of pg significantly
complicates the proof and makes the problem even more challenging.

The problem of Schrodinger potential estimation was also studied in [Korotin et al.| 2024] and
[Pooladian and Niles-Weed, [2024]]. In [Korotin et al., 2024, the authors suggest an algorithm called
Light Schrodinger Bridge, which is based on minimization of the empirical KL-divergence between
entropic optimal transport plans. This slightly differs from our setup, since we aim to minimize
empirical KL-divergence between marginal endpoint distributions. The reason is that Korotin,
Gushchin, and Burnaev| [2024] are motivated by the style transfer task, where the initial distribution
is also unknown. In contrast, we focus on generative modelling where the initial distribution pg
is available to learner. In [Korotin et al., {2024, Theorem A.1], the authors consider the case when
admissible potentials are Gaussian mixtures with K components. Assuming that both initial and
finite distibutions have a compact support, they prove a (’)(n_l/ 2) upper bound on the Rademacher
complexity of such class. On the other hand, we allow the support of pg and p7. to be unbounded.
Besides, the rate of convergence presented in Theorem Emay be much faster than O(n~1/2) if the
target distribution is close to {p? : ¢ € U}, In the realizable case (that is, p} € {p? cp € U}) the
right-hand side in Theorembecomes (9(10g2 n/n). Finally Theorem provides a high-probability
upper bound on the excess risk while the result of |[Korotin et al.|[2024] holds in expectation. In
[Pooladian and Niles-Weed, 2024 the authors study properties of a plug-in Sinkhorn-based estimator.
Similarly to Korotin et al.|[2024], they consider the case of compactly supported initial and target
measures. However, they assume that these measures are supported on smooth k-dimensional
submanifolds. They derive a O(n~'/2 + (T — 7)7%=2n~1) bound on the squared total variation
distance between path measures up to moment 7 < 7'. Unfortunately, the second term grows very
fast when 7 approaches 7', and there are no guarantees whether the marginal endpoint distributions
will be close to each other.

In Theorem I, we focus on the statistical error leaving study of the approximation out of the scope
of the present paper. The reason is that there are few results on properties of the true log-potential
¢*(z) = log (vr(dz)/dz). However, we would like to note that, according to our findings (see

Lemma[]zand (B, if ¢* fulfils Assumption then for any ) € ¥ and y € R?

log PTW) < e
gpq#(y) S v(y) —¢*(y)l

« _ _ e VT =1/2(y—m)||?
 (Too b — )/ 712y — ) [P/ 0L mml),

where 1 < K(T) < 1+ O(v/de™*T). In the proof of TheoremlI (see Step 4), we show that the
expectation

BT o s 2y —m) )

Ey~p |[B72( = m)|

is finite, provided that 6T > (5 + log d) V log (160b (v? v 1) || =~||). This allows us to relate the
KL-divergence between p7. and p? with the distances between the corresponding log-potentials:

KL (05, 04) S 18 = @ a gy + (T ltp =) /<.

5 Proof sketch of Theorem [1]

In this section, we discuss main ideas used in the proof of Theorem [I| Rigorous derivations are
deferred to Appendix [A. Since the proof is quite long, we split it into several steps.

Step 1: log-density properties.  Let us note that Assumptions |3 and 4 concern properties of

log-potentials ) € ¥ while empirical risks include marginal densities p#. For this reason, before we
consider the empirical process

1 & (Y
ngong )—KL(p*T,p?)7 e,
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we have to study the random variables log (p3(Y;)/ p?(Yi)), 1 < i < n. Using basic properties of
the Ornstein-Uhlenbeck operator, we show that

~log piy) < —l) + |22 —m)|

In view of Assumption |3} this means that — log péﬁ(y) grows as fast as a quadratic function. Since the
target distribution is sub-Gaussian and has a bounded density, this yields that the random variables
log (p4(Y3)/ p?(Yz)), 1 < i < n, are sub-exponential. More specifically, applying Lemma@we
obtain the following upper bound on their Orlicz norm:

pr(Yi)

(

SAd+M+d foralli € {1,...,n}.
pr(Yi)

1

Step 2: c-net argument and Bernstein’s inequality.  The result obtained on the first step allows us
to use concentration inequalities for sub-exponential random variables. Let us fix € € (0, R) and let
O, stand for the minimal e-net of © with respect to the /,-norm. We denote the set of corresponding
log-potentials by W.:

\IJEZ{'(/m:QE@g}.
Using Bernstein’s inequality for unbounded random variables (see, for instance, [Lecué¢ and Mitchell,
2012, Proposition 5.2]) and the union bound, we obtain that

1< (Y (Y log(2|W
QU ()~ 23 10g 2200 < v (logm o) 0g (2] V.|/9)

i=1 pr(Yi) P%(Yl) n
N (Ad+ M + d)lognlog(2|W.|/d)
n

with probability at least (1 — ¢) simultaneously for all ¢ € ..

Step 3: bounding the loss variance.  One of the key ingredients in the proof of Theorem [1,
which allows us to hope for faster rates of convergence than O(n~'/2), is analysis of the variance of
log ( pr(Y1)/ p?(Yl)), 1) € U, Despite the fact that the admissible log-potentials may be unbounded,
we are still able to show that the class W satisfies a Bernstein-type condition

Var [ log §(Ad+M+d)logn<KL Py pr )+ — .
< ﬁ(yﬂ) ( T T) n

Steps 4 and 5: from c-net to a uniform Bernstein-type bound.  The hardest and technically

involved part of the proof is to show that the losses log (p3(y)/p%(y)) and log (p3(y)/p%(y)) do
not differ too much, once the corresponding log-potentials 1) and ¢ are close to each other. This
follows from Lemma [B.2] which relies on properties of the Ornstein-Uhlenbeck operator established
in and Lemma [B.3] We would like to note that the unbounded support of the initial density pg
significantly complicates the proof of Lemma[B.2 Nevertheless, we prove that

log ”f(y) < () =)+ (Tooltp — ¢) /D D712 (y—m) |22/ D) O I 2 w=m)I®)
pr(y)

where 1 < K(T) < 1+ O(v/de~*T). Though the right-hand side depends exponentially on the

squared norm of ¥~1/2(y — m), the coefficient O(e~*T) is quite small, which is enough for our

purposes.

Steps 6 and 7: choice of ¢ and the final bound. The rest of the proof is quite standard. On Step 6,
we choose an appropriate € and obtain a uniform Berstein-type inequality

n

KL (pTva) - ;bg pé(m < \/T(WS) KL (pTva) + Y(n,d),

where

Rln +(MvV logA)\/&ebT> Dlogn logn7

n

Y(n,8) = (Ad + M + d) <d+1og

which holds simultaneously for all 1) € ¥ with probability at least (1 — 2§). After that, we transform
it into the desired excess risk bound and finish the proof.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main result Theorem [I| fully corresponds to that stated in the Abstract and
Introduction, confirming the specified Contribution of the article.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The assumptions we impose are discussed in Section ] of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For the main result and auxiliary results, the assumptions are explicitly stated
in Section 4. For Theorem [T} a sketch of the proof is given in Section 5, and references are
given to auxiliary results in the Appendix, which are also completely proved.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include numerical experiments and presents a theoretical
derivation of a statistical bound, therefore the question about reproducibility does not apply
to it.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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541 5. Open access to data and code

542 Question: Does the paper provide open access to the data and code, with sufficient instruc-
543 tions to faithfully reproduce the main experimental results, as described in supplemental
544 material?

545 Answer: [NA]

546 Justification: The paper does not include numerical experiments and presents a theoretical
547 derivation of a statistical bound.

548 Guidelines:

549 * The answer NA means that paper does not include experiments requiring code.

550 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
551 public/guides/CodeSubmissionPolicy) for more details.

552 * While we encourage the release of code and data, we understand that this might not be
553 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
554 including code, unless this is central to the contribution (e.g., for a new open-source
555 benchmark).

556 * The instructions should contain the exact command and environment needed to run to
557 reproduce the results. See the NeurIPS code and data submission guidelines (https:
558 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

559 * The authors should provide instructions on data access and preparation, including how
560 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
561 * The authors should provide scripts to reproduce all experimental results for the new
562 proposed method and baselines. If only a subset of experiments are reproducible, they
563 should state which ones are omitted from the script and why.

564 * At submission time, to preserve anonymity, the authors should release anonymized
565 versions (if applicable).

566 * Providing as much information as possible in supplemental material (appended to the
567 paper) is recommended, but including URLSs to data and code is permitted.

568 6. Experimental setting/details

569 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
570 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
571 results?

572 Answer: [NA]

573 Justification: The paper does not include numerical experiments and presents a theoretical
574 derivation of a statistical bound.

575 Guidelines:

576 * The answer NA means that the paper does not include experiments.

577 * The experimental setting should be presented in the core of the paper to a level of detail
578 that is necessary to appreciate the results and make sense of them.

579 * The full details can be provided either with the code, in appendix, or as supplemental
580 material.

581 7. Experiment statistical significance

582 Question: Does the paper report error bars suitably and correctly defined or other appropriate
583 information about the statistical significance of the experiments?

584 Answer: [NA]

585 Justification: The paper does not include numerical experiments and presents a theoretical
586 derivation of a statistical bound.

587 Guidelines:

588 * The answer NA means that the paper does not include experiments.

589 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
590 dence intervals, or statistical significance tests, at least for the experiments that support
591 the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include numerical experiments and presents a theoretical
derivation of a statistical bound.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper is of purely theoretical nature, and the proposed methods do not
deal with sensitive attributes that could induce unfairness or privacy issues.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This article does not have a direct social impact on society, as it is of theoretical
nature. We are not aware of any cases where high-probability upper bound on the KL-
divergence has a strong social impact on society.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This article does not contain anything that would require this kind of protection.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This article does not contain any existing assets that need to be referenced.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This article does not contain any new assets that would fit this question.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects,
as it is theoretical in nature.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects,
as it is of theoretical nature.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

17


paperswithcode.com/datasets

747 * Depending on the country in which research is conducted, IRB approval (or equivalent)

748 may be required for any human subjects research. If you obtained IRB approval, you
749 should clearly state this in the paper.

750 * We recognize that the procedures for this may vary significantly between institutions
751 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
752 guidelines for their institution.

753 * For initial submissions, do not include any information that would break anonymity (if
754 applicable), such as the institution conducting the review.

755 16. Declaration of LLLM usage

756 Question: Does the paper describe the usage of LLMs if it is an important, original, or
757 non-standard component of the core methods in this research? Note that if the LLM is used
758 only for writing, editing, or formatting purposes and does not impact the core methodology,
759 scientific rigorousness, or originality of the research, declaration is not required.

760 Answer: [NA]

761 Justification: LLMs were not used in core method development in this research. We used
762 LLM writing and editing purposes only.

763 Guidelines:

764 * The answer NA means that the core method development in this research does not
765 involve LLMs as any important, original, or non-standard components.

766 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
767 for what should or should not be described.
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