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Abstract

We address the problem of Schrödinger potential estimation, which plays a crucial1

role in modern generative modelling approaches based on Schrodinger bridges and2

stochastic optimal control for SDEs. Given a simple prior diffusion process, these3

methods search for a path between two given distributions ⇢0 and ⇢T requiring min-4

imal efforts. The optimal drift in this case can be expressed through a Schrödinger5

potential. In the present paper, we study generalization ability of an empirical6

Kullback-Leibler (KL) risk minimizer over a class of admissible log-potentials7

aimed at fitting the marginal distribution at time T . Under reasonable assumptions8

on the target distribution ⇢T and the prior process, we derive a non-asymptotic9

high-probability upper bound on the KL-divergence between ⇢T and the terminal10

density corresponding to the estimated log-potential. In particular, we show that11

the excess KL-risk may decrease as fast as O(log n/n) when the sample size n12

tends to infinity even if both ⇢0 and ⇢T have unbounded supports.13

1 Introduction14

The Schrödinger Bridge problem (SBP) originates from a question posed by Erwin Schrödinger in15

1932 [Schrödinger, 1932], seeking the most likely evolution of a probability distribution between16

two given endpoint distributions while minimizing relative entropy with respect to a prior stochastic17

process. This problem has deep connections with optimal transport [Leonard, 2014] and stochastic18

control [Dai Pra, 1991]. In its simplest continuous-time form, one aims to construct a so-called19

Schrödinger Markov process whose joint begin-end distribution ⇡(dx, dz) has the representation20

⇡(dx, dz) = Q(z, T | x, 0) ⌫0(dx) ⌫T (dz), (1)

where Q(z, T | x, 0) is the transition kernel of a reference Markov process, and ⌫0, ⌫T are unknown21

“boundary potentials” to be determined. The desired marginals ⇡(dx,Rd) and ⇡(Rd, dz) are given,22

and one seeks ⌫0 and ⌫T that reproduce these marginals. In the rest of the paper, we assume that23

both ⇡(dx,Rd) and ⇡(Rd, dz) are absolutely continuous with respect to the Lebesgue measure and24

denote the corresponding densities by ⇢0 and ⇢⇤T , respectively. Classical existence proofs for the SBP25

date back to Fortet [1940] (in 1D) and Beurling [1960], with a modern fixed-point approach in [Chen26

et al., 2016]. Recent extensions to the case of noncompactly supported marginal distributions can be27

found in [Conforti et al., 2024] and [Eckstein, 2025]. Recently, the problem attracted attention of28

machine learners in the context of generative modelling (see, for instance, [Tzen and Raginsky, 2019,29

De Bortoli et al., 2021, Shi et al., 2023, Korotin et al., 2024, Gushchin et al., 2024a, Rapakoulias30

et al., 2024] to name a few). It follows from Theorem 3.2 in [Dai Pra, 1991] that the optimal Markov31

process X⇤
t solving the Schrödinger problem with marginals (⇢0, ⇢⇤T ) can be constructed as a solution32

of the following SDE:33

dX⇤

t =
�
b(X⇤

t , t) + �(X⇤

t , t)�(X
⇤

t , t)
>r log h(X⇤

t , t)
�
dt+ �(X⇤

t , t) dWt, X0 ⇠ ⇢0,
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where34

h(w, t) =

Z

Rd

Q(y, T | w, t) ⌫T (dy)

and Q is the transition density of the reference (or base) diffusion process35

dXt = b(Xt, t) dt+ �(Xt, t) dWt, X0 ⇠ ⇢0.

The transition density Q⇤ of the reciprocal process X⇤
t can be obtained from Q via the so-called36

Doob’s h–transform:37

Q⇤(y, T | x, t) = Q(y, T | x, t) h(y, T )

h(x, t)
. (2)

This is precisely the law of the base process conditioned by the function h (see [Jamison, 1974]). In38

many presentations of the Schrödinger Bridge problem, one takes a very simple reference process (for39

instance, a Brownian motion) so that its transition kernel is straightforward to write down (see, for40

example, [Pooladian and Niles-Weed, 2024] and [Baptista et al., 2024]). However, there are several41

practical and theoretical advantages to considering more general (potentially higher-dimensional, or42

with domain constraints, or with a non-trivial drift/diffusion) reference processes.43

In the present paper, we are interested in estimation of the Schrödinger potential ⌫T from n i.i.d.44

samples Y1, . . . , Yn ⇠ ⇢⇤T . Given a class of log-potentials  , we study generalization ability of an45

empirical risk minimizer46

b 2 argmin
 2 

8
<

:� 1

n

nX

i=1

log

0

@
Z

Rd

Q(Yi, T | x, 0) h (Yi, T )

h (x, 0)
⇢0(x)dx

1

A

9
=

; , (3)

where47

h (x, t) =

Z
Q(y, T | x, t) e (y) dy.

Let us note that, in view of (2),48

⇢ T (y) =

Z

Rd

Q(y, T | x, 0) h (y, T )

h (x, 0)
⇢0(x)dx

is the marginal endpoint probability density of a diffusion process X 
t corresponding to Doob’s49

h -transform:50

dX 
t =

⇣
b(X 

t , t) + �(X 
t , t)�(X

 
t , t)

>r log h (X
 
t , t)

⌘
dt+ �(X 

t , t) dWt, X0 ⇠ ⇢0.

In other words, the estimate b minimizes empirical Kullback-Leibler (KL) divergence between the51

actual target ⇢⇤T and the marginal densities ⇢ T over the class of admissible log-potentials  . That is,52

we chose the log-potential  that makes the transformed reference diffusion hit the observed terminal53

law, and measure error only through KL of the marginals. Because h is used inside the Doob factor,54

the learnt potential is compatible with a single Markov process; one never risks obtaining mutually55

inconsistent forward/backward potentials. The method combines the full problem (the marginals,56

transition densities, and the potential function) into one single optimization framework. By doing so,57

it aims to directly minimize the objective of matching the marginals at time T without separating the58

problem into smaller subproblems. In contrast, the Sinkhorn algorithm, commonly used for optimal59

transport problems, approaches the problem by iteratively updating the potentials in a decoupled60

manner. At each iteration, a simpler least squares problem appears, which is linear in one potential61

function given that another one is fixed from the previous iteration. The Sinkhorn algorithm alternates62

between updating the potential functions to match the marginals of the distributions and adjusting the63

transport plan until convergence. We refer to Pooladian and Niles-Weed [2024], Chiarini et al. [2024]64

for recent results. The primary advantage of the Sinkhorn approach is its computational efficiency.65

By decoupling the optimization process into simpler, linear problems, the Sinkhorn method can66

handle large-scale problems effectively. This iterative procedure allows for faster updates, and it has67

become a popular method for many optimal transport applications, see Genevay et al. [2018], March68

and Henry-Labordere [2023] However, the approach presented in this paper differs in that it does69

not separate the problem into independent steps. Instead, it aims at solving the Schrödinger system70
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approximately by formulating it as a single optimization problem involving Doob h-transform of71

the base process X parametrized by the Schrödinger potential. Unlike iterative proportional fitting72

(Sinkhorn), everything is learnt in one go, avoiding slow or unstable fixed-point cycles. This results73

in a more accurate and robust solution. The trade-off between the two methods lies in computational74

efficiency versus the quality of the solution. The Sinkhorn approach provides a quick and efficient75

solution by solving simpler problems at each iteration, but it may not achieve the best possible76

solution for the full problem. On the other hand, the method presented in this paper offers a more77

holistic approach, which could lead to a more accurate matching of the marginal distributions but78

might require more computational resources.79

The approach presented in this paper can also be compared to methods that rely on optimization over80

transport maps, see Korotin et al. [2024], Gushchin et al. [2024a]. In transport map-based approaches,81

the goal is to find a map T that transports one probability distribution to another. The optimization82

typically focuses on minimizing a quadratic cost functional that penalizes the difference between the83

target distribution and the transformed distribution under the transport map. These methods are often84

framed as optimal transport problems, where the map T is determined by solving an optimization85

problem that involves the marginal distributions. The advantage of optimization over transport maps86

lies in its clear geometric interpretation, where the transport map provides a direct way to relate the87

two distributions. This can lead to efficient algorithms, especially when the transport map can be88

parametrized in a way that allows for fast computations, such as in the case of certain neural network89

architectures or simple affine transformations, Rapakoulias et al. [2024].90

However, transport map-based approaches are typically constrained to quadratic costs, which may91

limit their applicability in some cases. Specifically, quadratic cost functionals, such as the 2-92

Wasserstein distance, often assume a certain structure or symmetry that may not be ideal for more93

general or complex problems.94

In contrast, the approach discussed in this paper is not limited to quadratic costs. It allows for more95

general cost structures and is based on minimizing the Kullback-Leibler divergence (KL-divergence),96

which can accommodate a wider range of problem types. This flexibility is particularly valuable when97

dealing with more complex distributions or when the underlying problem involves non-quadratic costs98

that capture other aspects of the distribution, such as entropy regularization or non-linear interactions99

between variables.100

Contribution The main contribution of the present paper a sharper non-asymptotic high-probability101

upper bound on generalization error of the empirical risk minimizer b defined in (3).102

• Taking a multivariate Ornstein-Uhlenbeck process as the reference one, we show that (see103

Theorem 1), with probability at least (1� 2�), the excess KL-risk of the marginal endpoint104

density b⇢T corresponding to b satisfies the inequality105

KL(⇢⇤T , b⇢T )� inf
 2 

KL(⇢⇤T , ⇢
 
T ) .

r
⌥(n, �) inf

 2 
KL(⇢⇤T , ⇢

 
T ) +⌥(n, �),

where106

⌥(n, �) . log2 n+ log(1/�) log n

n
.

Here and further in the paper, the sign . stands for an inequality up to a multiplicative107

constant. The derived upper bound has several advantages over the existing results. First,108

in contrast to Korotin et al. [2024], the excess risk may decrease as fast as O(log2 n/n)109

provided that the class of log-potentials  is rich enough to approximate the target density110

⇢⇤T . Second, unlike theoretical guarantees for Sinkhorn-based approaches (see e.g. Pooladian111

and Niles-Weed [2024]), we are able to relate the endpoint marginal densities ⇢⇤T and b⇢T .112

• We impose very mild assumptions on the target density ⇢⇤T . We only require ⇢⇤T to be113

bounded and sub-Gaussian. On the other hand, the available convergence proofs for the114

Sinkhorn algorithm rely on the stronger assumption that the marginals are log-concave,115

see Conforti et al. [2024]. We also avoid the so-called strong density assumptions like116

boundedness from below often used in nonparametric statistics in the context of log-density117

estimation.118

• The assumptions on the class of log-potentials  are also reasonable. We support our claim119

with several examples.120
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Paper structure The rest of the paper is organized as follows. Section 2 is devoted to a short review121

of related work. In Section 3, we introduce necessary definitions and notations. After that, we present122

our main result (Theorem 1) in Section 4 and discuss main ideas of its proof in Section 5. Rigorous123

derivations as well as auxiliary technical results are deferred to the supplementary material.124

2 Related work125

Here is a short review of methods used in the literature to compute Schrödinger potentials, including126

the Sinkhorn algorithm. The Schrödinger potential, which arises in optimal transport problems, repre-127

sents a key component in the solution of transport problems involving marginal distributions. Over128

time, several methods have been proposed to compute these potentials efficiently, with applications129

in areas ranging from statistical mechanics to machine learning. Here, we review some of the most130

prominent methods used in the literature.131

Sinkhorn algorithm The Sinkhorn algorithm Sinkhorn [1967] is one of the most widely used132

methods for computing Schrödinger potentials in the context of optimal transport. It is based on133

iterative scaling and aims to solve the optimal transport problem by alternating between updating two134

potentials ⌫0 and ⌫T to enforce marginal constraints. The key advantage of the Sinkhorn approach135

is its computational efficiency, particularly when the transport problem is framed with a quadratic136

cost (such as the 2-Wasserstein distance), see Pavon et al. [2021], Chen et al. [2021], Stromme137

[2023] for reference. In each iteration, the algorithm solves a simpler problem that involves scaling138

the potentials in a way that brings the marginals of the transformed distribution closer to the target.139

Although Sinkhorn’s algorithm is efficient and widely applicable, it is often limited by its assumption140

of quadratic costs. Additionally, the algorithm does not directly handle more complex cost structures,141

such as non-quadratic costs or non-linear dynamics, which can be a limitation in some applications.142

Sinkhorn bridge The Sinkhorn Bridge proposed by Pooladian and Niles-Weed [2024], provides143

a way to estimate the Schrödinger bridge using Sinkhorn’s algorithm in an efficient manner. The144

key insight of this method is that the potentials obtained from the static entropic optimal transport145

problem can be modified to yield a natural plug-in estimator for the drift function that defines the146

Schrödinger bridge. However, this work does not provide bounds on the distance between marginal147

distributions at time T = 1 because there is an exploding term (1� ⌧)k+2 as ⌧ ! 1 where k is the148

dimension of the underlying manifold. This term leads to a “curse of dimensionality” where the error149

grows rapidly as ⌧ approaches 1, especially in high-dimensional settings. As a result, the estimation150

error increases significantly when attempting to estimate the Schrödinger bridge at the terminal time,151

making it difficult to obtain precise bounds for T = 1.152

Dual Formulation of the Schrödinger Problem In the dual formulation of the Schrödinger153

problem, the Schrödinger potential is computed by solving a convex optimization problem. This154

approach reformulates the problem in terms of a dual objective that involves the Kullback-Leibler155

(KL) divergence between the target and predicted distributions. The dual problem is then solved156

using optimization techniques such as gradient descent or variational methods, see Zhang and Chen157

[2022], Tzen and Raginsky [2019] for reference. This formulation is more flexible than the Sinkhorn158

algorithm, as it can accommodate more general cost functions and is not limited to quadratic losses.159

While the dual approach is flexible, it is often computationally more demanding than Sinkhorn’s160

method due to the need for iterative optimization over high-dimensional spaces. This makes the dual161

formulation suitable for smaller or more specialized problems, but it can become computationally162

expensive in large-scale applications.163

Approximate Solutions Using Monte Carlo Methods Monte Carlo methods, particularly those re-164

lying on reverse diffusion processes, have also been employed to approximate Schrödinger potentials.165

In these methods, a reverse process is simulated, and the potential is iteratively refined to minimize166

the discrepancy between the predicted and target marginals, see Korotin et al. [2024] for reference.167

These methods are often used when the problem involves complex dynamics that are difficult to168

capture using direct optimization techniques.169
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Monte Carlo methods are particularly useful when dealing with high-dimensional problems, as they170

allow for the sampling of large spaces. However, they can be computationally expensive and may171

require a significant number of samples to achieve an accurate solution.172

In addition, there are approaches that rely heavily on Monte Carlo approximations of intermediate173

values rather than the Schrödinger potentials themselves, among which the following should be noted174

De Bortoli et al. [2021], Vargas et al. [2021], Peluchetti [2023].175

Neural Network-Based Approaches Recent advancements in deep learning have led to the use of176

neural networks to approximate Schrödinger potentials. These approaches treat the potential function177

as a parameterized neural network and use gradient-based optimization techniques to learn the178

potential that best matches the marginals. The use of neural networks offers a flexible and powerful179

way to model complex non-linear potentials, making these methods well-suited for problems with180

intricate dynamics or non-quadratic costs.While neural network-based approaches are highly flexible,181

they require large amounts of data and computational resources to train the network, and they are182

often prone to overfitting if not regularized appropriately. Despite these challenges, they represent a183

promising direction for future research, especially when the problem at hand involves complex and184

high-dimensional systems. We refer to Liu et al. [2023], Wang et al. [2021] for recent results.185

Iterative Markovian Fitting The Iterative Markovian Fitting (IMF) method, introduced in the186

recent work by Shi et al. [2023], offers an approach to solving Schrödinger Bridge (SB) problems.187

Unlike previous methods, such as Iterative Proportional Fitting (IPF), IMF guarantees the preservation188

of both the initial and terminal distributions in each iteration, which is a key advantage over IPF189

where these marginals are not always preserved. IMF alternates between two types of projections:190

Markovian projections and reciprocal projections, ensuring that the resulting distribution remains191

within the correct class (Markovian or reciprocal) while progressively approximating the Schrödinger192

Bridge. We refer to Gushchin et al. [2024b] for recent results.193

In Silveri et al. [2024], the authors provide the convergence analysis for diffusion flow matching194

(DFM), a method used to generate approximate samples from a target distribution by bridging it with a195

base distribution through diffusion dynamics. Their theoretical work includes non-asymptotic bounds196

on the Kullback-Leibler (KL) divergence between the true target distribution and the distribution197

generated by the DFM model. A key insight from this paper is the incorporation of two sources198

of error: drift-estimation and time-discretization errors. However, while the convergence analysis199

offers theoretical guarantees, the statistical error is not explicitly addressed in this paper. The analysis200

assumes that all expectations are exact, which might not hold in practical settings where samples are201

finite, and statistical errors could arise due to the approximations involved in the generative process.202

Thus, future work will need to extend this analysis to quantify the impact of statistical approximations203

in finite-sample settings.204

3 Preliminaries and notations205

This section collects necessary definitions and notations. As we announced in the contribution206

paragraph, we are going to consider a multivariate Ornstein-Uhlenbeck process as a reference one.207

For this reason, we elaborate on its basic properties in this section.208

Multivariate Ornstein-Uhlenbeck process To be more specific, we will consider the base process209

X0
t solving the SDE210

dX0
t = b

�
m�X0

t

�
dt+ ⌃1/2dWt, 0 6 t 6 T,

where b > 0 controls the drift rate, m 2 Rd represents the mean-reversion level, ⌃ 2 Rd⇥d is a211

positive definite symmetric matrix, and Wt is a standard d-dimensional Wiener process. It is known212

that the conditional distribution of X0
t given X0

0 = x is Gaussian N
�
mt(x),⌃t

�
with213

mt(x) = (1� e�bt)m+ e�btx and ⌃t =
1� e�2bt

2b
⌃. (4)
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This implies that the corresponding Doob’s h-transform can be expressed through the Ornstein-214

Uhlenbeck operator215

Ttg(x) =
1

(2⇡)d/2
p
det(⌃t)

Z

Rd

exp

⇢
�1

2
k⌃�1/2

t (y �mt(x))k2
�
g(y) dy.

Indeed, it holds that h (x, t) = TT�te (x). Then, introducing216

q(y |x) = 1

(2⇡)d/2
p

det(⌃T )
exp

⇢
�1

2
k⌃�1/2

T (y �mT (x))k2
�
,

we note that217

⇢ T (y) =

Z

Rd

q(y |x)e (y)

TT e (x)
⇢0(x) dx (5)

is the marginal density of X 
T , the endpoint of a random process X 

t governed by h :218

dX 
t = b

⇣
m�X 

t

⌘
dt+r log

⇣
TT�te

 (X 
t )
⌘
dt+ ⌃1/2dWt, X 

0 ⇠ ⇢0.

If the Schrödinger potential ⌫T admits a density e 
⇤

with respect to the Lebesgue measure, then the219

optimally controlled process X⇤
t solves the SDE220

dX⇤

t = b (m�X⇤

t ) dt+r log
⇣
TT�te

 ⇤(X⇤
t )
⌘
dt+ ⌃1/2dWt, X⇤

0 ⇠ ⇢0.

Finally, it is well known that the unique stationary (invariant) distribution of X0
t is Gaussian, that is,221

X0
t converges to X0

1
in distribution as t ! 1 with X1 ⇠ N (m,⌃/(2b)). Since the parameters of222

the limiting distribution do not depend on the starting point, T1g(x) ⌘ T1g is a constant.223

Other notations The notation f . g or g & f means that f = O(g). Besides, we often replace224

max{a, b} and min{a, b} by shorter expressions a _ b and a ^ b, respectively. For any s > 1, the225

Orlicz  s-norm of a random variable ⇠ is defined as226

k⇠k s = inf
n
u > 0 : Ee|⇠|

s/us 6 2
o
.

Finally, given p > 1 and a probability density ⇢, the weighted Lp-norm of a function f is defined as227

kfkLp(⇢) =
�
E⇠⇠⇢|f(⇠)|p

�1/p. Given two probability densities ⇢0 ⌧ ⇢1 on Rd, the Kullback-Leibler228

divergence between them is defined as KL(⇢0, ⇢1) = E⇠⇠⇢0 log
�
⇢0(⇠)/⇢1(⇠)

�
.229

4 Main result230

In the present section, we discuss statistical properties of the empirical risk minimizer b defined231

in (3). In particular, Theorem 1 provides a Bernstein-type upper bound on its excess KL-risk. We232

impose the following assumptions. First, as we announced before, we use the Ornstein-Uhlenbeck233

process X0
t as the reference one.234

Assumption 1. The base process X0 solves the following SDE235

dX0
t = b

�
m�X0

t

�
dt+ ⌃1/2 dWt, 0 6 t 6 T.

where b > 0, m 2 Rd, ⌃ is a positive definite symmetric matrix of size d ⇥ d, and W is a d-236

dimensional Brownian motion.237

Main properties of the Ornstein-Uhlenbeck process were discussed in the previous section. Second,238

we suppose that the target density ⇢⇤T meets the following requirements.239

Assumption 2. The target distribution at time T admits a bounded density ⇢⇤T with respect to the240

Lebesgue measure such that241

⇢⇤T (x) 6 ⇢max for all x 2 Rd.
Moreover, the target distribution ⇢⇤T is sub-Gaussian with variance proxy v2, that is,242

EY⇠⇢⇤T
eu

>Y 6 ev
2
kuk2/2 for any u 2 Rd. (6)
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Assumption 2 is very mild. Despite the fact that we deal with logarithmic loss, we do not require ⇢⇤T243

to be bounded away from zero. We do not even require its support to be compact. This significantly244

complicates the proof of the excess KL-bound and poses nontrivial technical challenges. Let us note245

that the condition 6 yields that EY⇠⇢⇤T
Y = 0. However, it does not diminish generality of our setup.246

The remaining assumptions concern properties of the class of log-potentials  . First, we assume that247

admissible log-potentials  (x) are bounded from above and behave as O(kxk2) as x tends to infinity.248

Assumption 3. There exist non-negative constants ⇤ and M such that249

�⇤
���⌃�1/2(x�m)

���
2
�M 6  (x) 6 M for all x 2 Rd and  2  .

Moreover, for any  2  , it holds that T1 = E (X1) = 0.250

The condition T1 = 0 appears because of the fact that the Schrödinger potentials ⌫0 and ⌫T251

(see (1)) are defined up to a multiplicative constant. The requirement T1 = 0 is nothing but a252

normalization. Second, we assume that  is parametrized by a finite-dimensional parameter ✓ 2 RD:253

 = { ✓ : ✓ 2 ⇥} ,
where ⇥ is a subset of a D-dimensional cube [�R,R]D and each function  ✓ maps Rd onto R. We254

suppose that the parametrization is sufficiently smooth in the following sense.255

Assumption 4. There exists L > 0 such that256

| ✓(x)�  ✓0(x)| 6 L
�
1 + kxk2

�
k✓ � ✓0k1 for all ✓, ✓0 2 ⇥ and all x 2 Rd.

Assumptions 3 and 4 are quite general. We provide two examples when they hold. First, in a recent257

paper [Korotin et al., 2024], the authors model e (x) as a Gaussian mixture. Let ↵1, . . . ,↵K be258

non-negative numbers such that ↵1 + . . .+ ↵K = 1 and consider259

e (x) = e�C
KX

k=1

↵k'mk,⌃k(x), where 'mk,⌃k(x) =
e�k⌃�1/2

k (x�mk)k
2/2

(2⇡)d/2 det(⌃k)1/2
.

Here C is a normalizing constant which ensures that T1 = 0. In this situation, the parameter ✓260

consists of all ↵k’s and all components of mk’s and⌃k’s, k 2 {1, . . . ,K}. If the smallest eigenvalues261

of ⌃1, . . . ,⌃K are bounded away from zero uniformly over k 2 {1, . . . ,K}, then e (x) is bounded.262

On the other hand, if K is fixed, there is a component with a weight at least 1/K. Without loss of263

generality, we assume that it is the first one. Then264

 (x) > �C + log (↵1'm1,⌃1(x)) > �C � logK � 1

2

���⌃�1/2
1 (x�m1)

���
2
,

and we conclude that Assumption 3 is satisfied. Verification of the Assumption 4 is straightforward265

once we assume that the weight of each component is bounded away from zero, and the norms kmkk,266

k⌃kk, and k⌃�1
k k are bounded uniformly over k 2 {1, . . . ,K} (which is the case in [Korotin et al.,267

2024]). Second, Assumptions 3 and 4 will be fulfilled if one deals, for example, with a class of268

truncated feedforward neural networks with bounded weights and ReLU activations. It is known269

that (see [Schmidt-Hieber, 2020, Lemma 5]) they are Lipschitz with respect to each weight, and the270

Lipschitz constant grows linearly with kxk. More generally, Conforti [2024] analyzed semiconvexity271

properties of the Schrödinger potentials under rather mild assumptions on the marginals.272

We are ready to formulate the main result of this section.273

Theorem 1. Let ⇢0 be the density of the standard Gaussian distribution N (0, Id). Grant Assumptions274

1, 2, 3, and 4. Assume that T is sufficiently large in a sense that275

bT > (5 + log d) _ log
�
160b (v2 _ 1)

��⌃�1
��� .

Let b be defined in (3) and let b⇢T be the corresponding density of X
b 
T . Then, for any � 2 (0, 1/2),276

with probability at least 1� 2�, it holds that277

KL(⇢⇤T , b⇢T )� inf
 2 

KL(⇢⇤T , ⇢
 
T ) .

r
⌥(n, �) inf

 2 
KL(⇢⇤T , ⇢

 
T ) +⌥(n, �),

where278

⌥(n, �) = (⇤d+M + d)

✓
d+ log

RLn

�
+ (M _ log⇤)

p
de�bT

◆
D log n

n
.

The hidden constant behind . depends on ⌃, m, b, and v only.279
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In Theorem 1, we assume that ⇢0 is the density of N (0, Id). Though it is a standard choice of280

initial distribution in practice, we would like to emphasize that unbounded support of ⇢0 significantly281

complicates the proof and makes the problem even more challenging.282

The problem of Schrödinger potential estimation was also studied in [Korotin et al., 2024] and283

[Pooladian and Niles-Weed, 2024]. In [Korotin et al., 2024], the authors suggest an algorithm called284

Light Schrödinger Bridge, which is based on minimization of the empirical KL-divergence between285

entropic optimal transport plans. This slightly differs from our setup, since we aim to minimize286

empirical KL-divergence between marginal endpoint distributions. The reason is that Korotin,287

Gushchin, and Burnaev [2024] are motivated by the style transfer task, where the initial distribution288

is also unknown. In contrast, we focus on generative modelling where the initial distribution ⇢0289

is available to learner. In [Korotin et al., 2024, Theorem A.1], the authors consider the case when290

admissible potentials are Gaussian mixtures with K components. Assuming that both initial and291

finite distibutions have a compact support, they prove a O(n�1/2) upper bound on the Rademacher292

complexity of such class. On the other hand, we allow the support of ⇢0 and ⇢⇤T to be unbounded.293

Besides, the rate of convergence presented in Theorem 1 may be much faster than O(n�1/2) if the294

target distribution is close to {⇢ T :  2  }. In the realizable case (that is, ⇢⇤T 2 {⇢ T :  2  }) the295

right-hand side in Theorem 1 becomes O(log2 n/n). Finally Theorem 1 provides a high-probability296

upper bound on the excess risk while the result of Korotin et al. [2024] holds in expectation. In297

[Pooladian and Niles-Weed, 2024] the authors study properties of a plug-in Sinkhorn-based estimator.298

Similarly to Korotin et al. [2024], they consider the case of compactly supported initial and target299

measures. However, they assume that these measures are supported on smooth k-dimensional300

submanifolds. They derive a O(n�1/2 + (T � ⌧)�k�2n�1) bound on the squared total variation301

distance between path measures up to moment ⌧ < T . Unfortunately, the second term grows very302

fast when ⌧ approaches T , and there are no guarantees whether the marginal endpoint distributions303

will be close to each other.304

In Theorem 1, we focus on the statistical error leaving study of the approximation out of the scope305

of the present paper. The reason is that there are few results on properties of the true log-potential306

 ⇤(x) = log
�
⌫T (dx)/dx

�
. However, we would like to note that, according to our findings (see307

Lemma B.2 and (5)), if  ⇤ fulfils Assumption 3, then for any  2  and y 2 Rd308

log
⇢⇤T (y)

⇢ T (y)
. | (y)�  ⇤(y)|

+ (T1| �  ⇤|)1/K(T ) k⌃�1/2(y �m)k2�2/K(T )eO(e�bT
k⌃�1/2(y�m)k2),

where 1 6 K(T ) 6 1 + O(
p
de�bT ). In the proof of Theorem 1 (see Step 4), we show that the309

expectation310

EY⇠⇢⇤T

���⌃�1/2(Y �m)
���
2�2/K(T )

eO(e�bT
k⌃�1/2(Y�m)k2)

is finite, provided that bT > (5 + log d) _ log
�
160b (v2 _ 1)

��⌃�1
���. This allows us to relate the311

KL-divergence between ⇢⇤T and ⇢ T with the distances between the corresponding log-potentials:312

KL
⇣
⇢⇤T , ⇢

 
T

⌘
. k �  ⇤kL1(⇢⇤T ) + (T1| �  ⇤|)1/K(T ) .

5 Proof sketch of Theorem 1313

In this section, we discuss main ideas used in the proof of Theorem 1. Rigorous derivations are314

deferred to Appendix A. Since the proof is quite long, we split it into several steps.315

Step 1: log-density properties. Let us note that Assumptions 3 and 4 concern properties of316

log-potentials  2  while empirical risks include marginal densities ⇢ T . For this reason, before we317

consider the empirical process318

1

n

nX

i=1

log
⇢⇤T (Yi)

⇢ T (Yi)
� KL

⇣
⇢⇤T , ⇢

 
T

⌘
,  2  ,
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we have to study the random variables log
�
⇢⇤T (Yi)/⇢

 
T (Yi)

�
, 1 6 i 6 n. Using basic properties of319

the Ornstein-Uhlenbeck operator, we show that320

� log ⇢ T (y) . � (y) +
���⌃�1/2

�
y �m

����
2
.

In view of Assumption 3, this means that � log ⇢ T (y) grows as fast as a quadratic function. Since the321

target distribution is sub-Gaussian and has a bounded density, this yields that the random variables322

log
�
⇢⇤T (Yi)/⇢

 
T (Yi)

�
, 1 6 i 6 n, are sub-exponential. More specifically, applying Lemma C.3 we323

obtain the following upper bound on their Orlicz norm:324 �����log
⇢⇤T (Yi)

⇢ T (Yi)

�����
 1

. ⇤d+M + d for all i 2 {1, . . . , n}.

Step 2: "-net argument and Bernstein’s inequality. The result obtained on the first step allows us325

to use concentration inequalities for sub-exponential random variables. Let us fix " 2 (0, R) and let326

⇥" stand for the minimal "-net of ⇥ with respect to the `1-norm. We denote the set of corresponding327

log-potentials by  ":328

 " = { ✓ : ✓ 2 ⇥"} .
Using Bernstein’s inequality for unbounded random variables (see, for instance, [Lecué and Mitchell,329

2012, Proposition 5.2]) and the union bound, we obtain that330

�����KL
⇣
⇢⇤T , ⇢

 
T

⌘
� 1

n

nX

i=1

log
⇢⇤T (Yi)

⇢ T (Yi)

����� .

vuutVar

 
log

⇢⇤T (Y1)

⇢ T (Y1)

!
log(2| "|/�)

n

+
(⇤d+M + d) log n log(2| "|/�)

n
with probability at least (1� �) simultaneously for all  2  ".331

Step 3: bounding the loss variance. One of the key ingredients in the proof of Theorem 1,332

which allows us to hope for faster rates of convergence than O(n�1/2), is analysis of the variance of333

log
�
⇢⇤T (Y1)/⇢

 
T (Y1)

�
,  2  . Despite the fact that the admissible log-potentials may be unbounded,334

we are still able to show that the class  satisfies a Bernstein-type condition335

Var

 
log

⇢⇤T (Y1)

⇢ T (Y1)

!
. (⇤d+M + d) log n

✓
KL
⇣
⇢⇤T , ⇢

 
T

⌘
+

1

n

◆
.

Steps 4 and 5: from "-net to a uniform Bernstein-type bound. The hardest and technically336

involved part of the proof is to show that the losses log
�
⇢⇤T (y)/⇢

 
T (y)

�
and log

�
⇢⇤T (y)/⇢

�
T (y)

�
do337

not differ too much, once the corresponding log-potentials  and � are close to each other. This338

follows from Lemma B.2, which relies on properties of the Ornstein-Uhlenbeck operator established339

in and Lemma B.3. We would like to note that the unbounded support of the initial density ⇢0340

significantly complicates the proof of Lemma B.2. Nevertheless, we prove that341

log
⇢ T (y)

⇢�T (y)
. | (y)��(y)|+(T1| � �|)1/K(T ) k⌃�1/2(y�m)k2�2/K(T )eO(e�bT

k⌃�1/2(y�m)k2),

where 1 6 K(T ) 6 1 + O(
p
de�bT ). Though the right-hand side depends exponentially on the342

squared norm of ⌃�1/2(y � m), the coefficient O(e�bT ) is quite small, which is enough for our343

purposes.344

Steps 6 and 7: choice of " and the final bound. The rest of the proof is quite standard. On Step 6,345

we choose an appropriate " and obtain a uniform Berstein-type inequality346

KL
⇣
⇢⇤T , ⇢

 
T

⌘
� 1

n

nX

i=1

log
⇢⇤T (Yi)

⇢ T (Yi)
.
r
⌥(n, �)KL

⇣
⇢⇤T , ⇢

 
T

⌘
+⌥(n, �),

where347

⌥(n, �) = (⇤d+M + d)

✓
d+ log

RLn

�
+ (M _ log⇤)

p
de�bT

◆
D log n

n
,

which holds simultaneously for all  2  with probability at least (1� 2�). After that, we transform348

it into the desired excess risk bound and finish the proof.349
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NeurIPS Paper Checklist435

1. Claims436

Question: Do the main claims made in the abstract and introduction accurately reflect the437

paper’s contributions and scope?438

Answer: [Yes]439

Justification: The main result Theorem 1 fully corresponds to that stated in the Abstract and440

Introduction, confirming the specified Contribution of the article.441

Guidelines:442

• The answer NA means that the abstract and introduction do not include the claims443

made in the paper.444

• The abstract and/or introduction should clearly state the claims made, including the445

contributions made in the paper and important assumptions and limitations. A No or446

NA answer to this question will not be perceived well by the reviewers.447

• The claims made should match theoretical and experimental results, and reflect how448

much the results can be expected to generalize to other settings.449

• It is fine to include aspirational goals as motivation as long as it is clear that these goals450

are not attained by the paper.451

2. Limitations452

Question: Does the paper discuss the limitations of the work performed by the authors?453

Answer: [Yes]454

Justification: The assumptions we impose are discussed in Section 4 of the paper.455

Guidelines:456

• The answer NA means that the paper has no limitation while the answer No means that457

the paper has limitations, but those are not discussed in the paper.458

• The authors are encouraged to create a separate "Limitations" section in their paper.459

• The paper should point out any strong assumptions and how robust the results are to460

violations of these assumptions (e.g., independence assumptions, noiseless settings,461

model well-specification, asymptotic approximations only holding locally). The authors462

should reflect on how these assumptions might be violated in practice and what the463

implications would be.464

• The authors should reflect on the scope of the claims made, e.g., if the approach was465

only tested on a few datasets or with a few runs. In general, empirical results often466

depend on implicit assumptions, which should be articulated.467

• The authors should reflect on the factors that influence the performance of the approach.468

For example, a facial recognition algorithm may perform poorly when image resolution469

is low or images are taken in low lighting. Or a speech-to-text system might not be470

used reliably to provide closed captions for online lectures because it fails to handle471

technical jargon.472

• The authors should discuss the computational efficiency of the proposed algorithms473

and how they scale with dataset size.474

• If applicable, the authors should discuss possible limitations of their approach to475

address problems of privacy and fairness.476

• While the authors might fear that complete honesty about limitations might be used by477

reviewers as grounds for rejection, a worse outcome might be that reviewers discover478

limitations that aren’t acknowledged in the paper. The authors should use their best479

judgment and recognize that individual actions in favor of transparency play an impor-480

tant role in developing norms that preserve the integrity of the community. Reviewers481

will be specifically instructed to not penalize honesty concerning limitations.482

3. Theory assumptions and proofs483

Question: For each theoretical result, does the paper provide the full set of assumptions and484

a complete (and correct) proof?485

Answer: [Yes]486
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Justification: For the main result and auxiliary results, the assumptions are explicitly stated487

in Section 4. For Theorem 1, a sketch of the proof is given in Section 5, and references are488

given to auxiliary results in the Appendix, which are also completely proved.489

Guidelines:490

• The answer NA means that the paper does not include theoretical results.491

• All the theorems, formulas, and proofs in the paper should be numbered and cross-492

referenced.493

• All assumptions should be clearly stated or referenced in the statement of any theorems.494

• The proofs can either appear in the main paper or the supplemental material, but if495

they appear in the supplemental material, the authors are encouraged to provide a short496

proof sketch to provide intuition.497

• Inversely, any informal proof provided in the core of the paper should be complemented498

by formal proofs provided in appendix or supplemental material.499

• Theorems and Lemmas that the proof relies upon should be properly referenced.500

4. Experimental result reproducibility501

Question: Does the paper fully disclose all the information needed to reproduce the main ex-502

perimental results of the paper to the extent that it affects the main claims and/or conclusions503

of the paper (regardless of whether the code and data are provided or not)?504

Answer: [NA]505

Justification: The paper does not include numerical experiments and presents a theoretical506

derivation of a statistical bound, therefore the question about reproducibility does not apply507

to it.508

Guidelines:509

• The answer NA means that the paper does not include experiments.510

• If the paper includes experiments, a No answer to this question will not be perceived511

well by the reviewers: Making the paper reproducible is important, regardless of512

whether the code and data are provided or not.513

• If the contribution is a dataset and/or model, the authors should describe the steps taken514

to make their results reproducible or verifiable.515

• Depending on the contribution, reproducibility can be accomplished in various ways.516

For example, if the contribution is a novel architecture, describing the architecture fully517

might suffice, or if the contribution is a specific model and empirical evaluation, it may518

be necessary to either make it possible for others to replicate the model with the same519

dataset, or provide access to the model. In general. releasing code and data is often520

one good way to accomplish this, but reproducibility can also be provided via detailed521

instructions for how to replicate the results, access to a hosted model (e.g., in the case522

of a large language model), releasing of a model checkpoint, or other means that are523

appropriate to the research performed.524

• While NeurIPS does not require releasing code, the conference does require all submis-525

sions to provide some reasonable avenue for reproducibility, which may depend on the526

nature of the contribution. For example527

(a) If the contribution is primarily a new algorithm, the paper should make it clear how528

to reproduce that algorithm.529

(b) If the contribution is primarily a new model architecture, the paper should describe530

the architecture clearly and fully.531

(c) If the contribution is a new model (e.g., a large language model), then there should532

either be a way to access this model for reproducing the results or a way to reproduce533

the model (e.g., with an open-source dataset or instructions for how to construct534

the dataset).535

(d) We recognize that reproducibility may be tricky in some cases, in which case536

authors are welcome to describe the particular way they provide for reproducibility.537

In the case of closed-source models, it may be that access to the model is limited in538

some way (e.g., to registered users), but it should be possible for other researchers539

to have some path to reproducing or verifying the results.540
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5. Open access to data and code541

Question: Does the paper provide open access to the data and code, with sufficient instruc-542

tions to faithfully reproduce the main experimental results, as described in supplemental543

material?544

Answer: [NA]545

Justification: The paper does not include numerical experiments and presents a theoretical546

derivation of a statistical bound.547

Guidelines:548

• The answer NA means that paper does not include experiments requiring code.549

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/550

public/guides/CodeSubmissionPolicy) for more details.551

• While we encourage the release of code and data, we understand that this might not be552

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not553

including code, unless this is central to the contribution (e.g., for a new open-source554

benchmark).555

• The instructions should contain the exact command and environment needed to run to556

reproduce the results. See the NeurIPS code and data submission guidelines (https:557

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.558

• The authors should provide instructions on data access and preparation, including how559

to access the raw data, preprocessed data, intermediate data, and generated data, etc.560

• The authors should provide scripts to reproduce all experimental results for the new561

proposed method and baselines. If only a subset of experiments are reproducible, they562

should state which ones are omitted from the script and why.563

• At submission time, to preserve anonymity, the authors should release anonymized564

versions (if applicable).565

• Providing as much information as possible in supplemental material (appended to the566

paper) is recommended, but including URLs to data and code is permitted.567

6. Experimental setting/details568

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-569

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the570

results?571

Answer: [NA]572

Justification: The paper does not include numerical experiments and presents a theoretical573

derivation of a statistical bound.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The experimental setting should be presented in the core of the paper to a level of detail577

that is necessary to appreciate the results and make sense of them.578

• The full details can be provided either with the code, in appendix, or as supplemental579

material.580

7. Experiment statistical significance581

Question: Does the paper report error bars suitably and correctly defined or other appropriate582

information about the statistical significance of the experiments?583

Answer: [NA]584

Justification: The paper does not include numerical experiments and presents a theoretical585

derivation of a statistical bound.586

Guidelines:587

• The answer NA means that the paper does not include experiments.588

• The authors should answer "Yes" if the results are accompanied by error bars, confi-589

dence intervals, or statistical significance tests, at least for the experiments that support590

the main claims of the paper.591
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• The factors of variability that the error bars are capturing should be clearly stated (for592

example, train/test split, initialization, random drawing of some parameter, or overall593

run with given experimental conditions).594

• The method for calculating the error bars should be explained (closed form formula,595

call to a library function, bootstrap, etc.)596

• The assumptions made should be given (e.g., Normally distributed errors).597

• It should be clear whether the error bar is the standard deviation or the standard error598

of the mean.599

• It is OK to report 1-sigma error bars, but one should state it. The authors should600

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis601

of Normality of errors is not verified.602

• For asymmetric distributions, the authors should be careful not to show in tables or603

figures symmetric error bars that would yield results that are out of range (e.g. negative604

error rates).605

• If error bars are reported in tables or plots, The authors should explain in the text how606

they were calculated and reference the corresponding figures or tables in the text.607

8. Experiments compute resources608

Question: For each experiment, does the paper provide sufficient information on the com-609

puter resources (type of compute workers, memory, time of execution) needed to reproduce610

the experiments?611

Answer: [NA]612

Justification: The paper does not include numerical experiments and presents a theoretical613

derivation of a statistical bound.614

Guidelines:615

• The answer NA means that the paper does not include experiments.616

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,617

or cloud provider, including relevant memory and storage.618

• The paper should provide the amount of compute required for each of the individual619

experimental runs as well as estimate the total compute.620

• The paper should disclose whether the full research project required more compute621

than the experiments reported in the paper (e.g., preliminary or failed experiments that622

didn’t make it into the paper).623

9. Code of ethics624

Question: Does the research conducted in the paper conform, in every respect, with the625

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?626

Answer: [Yes]627

Justification: This paper is of purely theoretical nature, and the proposed methods do not628

deal with sensitive attributes that could induce unfairness or privacy issues.629

Guidelines:630

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.631

• If the authors answer No, they should explain the special circumstances that require a632

deviation from the Code of Ethics.633

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-634

eration due to laws or regulations in their jurisdiction).635

10. Broader impacts636

Question: Does the paper discuss both potential positive societal impacts and negative637

societal impacts of the work performed?638

Answer: [NA]639

Justification: This article does not have a direct social impact on society, as it is of theoretical640

nature. We are not aware of any cases where high-probability upper bound on the KL-641

divergence has a strong social impact on society.642
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Guidelines:643

• The answer NA means that there is no societal impact of the work performed.644

• If the authors answer NA or No, they should explain why their work has no societal645

impact or why the paper does not address societal impact.646

• Examples of negative societal impacts include potential malicious or unintended uses647

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations648

(e.g., deployment of technologies that could make decisions that unfairly impact specific649

groups), privacy considerations, and security considerations.650

• The conference expects that many papers will be foundational research and not tied651

to particular applications, let alone deployments. However, if there is a direct path to652

any negative applications, the authors should point it out. For example, it is legitimate653

to point out that an improvement in the quality of generative models could be used to654

generate deepfakes for disinformation. On the other hand, it is not needed to point out655

that a generic algorithm for optimizing neural networks could enable people to train656

models that generate Deepfakes faster.657

• The authors should consider possible harms that could arise when the technology is658

being used as intended and functioning correctly, harms that could arise when the659

technology is being used as intended but gives incorrect results, and harms following660

from (intentional or unintentional) misuse of the technology.661

• If there are negative societal impacts, the authors could also discuss possible mitigation662

strategies (e.g., gated release of models, providing defenses in addition to attacks,663

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from664

feedback over time, improving the efficiency and accessibility of ML).665

11. Safeguards666

Question: Does the paper describe safeguards that have been put in place for responsible667

release of data or models that have a high risk for misuse (e.g., pretrained language models,668

image generators, or scraped datasets)?669

Answer: [NA]670

Justification: This article does not contain anything that would require this kind of protection.671

Guidelines:672

• The answer NA means that the paper poses no such risks.673

• Released models that have a high risk for misuse or dual-use should be released with674

necessary safeguards to allow for controlled use of the model, for example by requiring675

that users adhere to usage guidelines or restrictions to access the model or implementing676

safety filters.677

• Datasets that have been scraped from the Internet could pose safety risks. The authors678

should describe how they avoided releasing unsafe images.679

• We recognize that providing effective safeguards is challenging, and many papers do680

not require this, but we encourage authors to take this into account and make a best681

faith effort.682

12. Licenses for existing assets683

Question: Are the creators or original owners of assets (e.g., code, data, models), used in684

the paper, properly credited and are the license and terms of use explicitly mentioned and685

properly respected?686

Answer: [NA]687

Justification: This article does not contain any existing assets that need to be referenced.688

Guidelines:689

• The answer NA means that the paper does not use existing assets.690

• The authors should cite the original paper that produced the code package or dataset.691

• The authors should state which version of the asset is used and, if possible, include a692

URL.693

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.694
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• For scraped data from a particular source (e.g., website), the copyright and terms of695

service of that source should be provided.696

• If assets are released, the license, copyright information, and terms of use in the697

package should be provided. For popular datasets, paperswithcode.com/datasets698

has curated licenses for some datasets. Their licensing guide can help determine the699

license of a dataset.700

• For existing datasets that are re-packaged, both the original license and the license of701

the derived asset (if it has changed) should be provided.702

• If this information is not available online, the authors are encouraged to reach out to703

the asset’s creators.704

13. New assets705

Question: Are new assets introduced in the paper well documented and is the documentation706

provided alongside the assets?707

Answer: [NA]708

Justification: This article does not contain any new assets that would fit this question.709

Guidelines:710

• The answer NA means that the paper does not release new assets.711

• Researchers should communicate the details of the dataset/code/model as part of their712

submissions via structured templates. This includes details about training, license,713

limitations, etc.714

• The paper should discuss whether and how consent was obtained from people whose715

asset is used.716

• At submission time, remember to anonymize your assets (if applicable). You can either717

create an anonymized URL or include an anonymized zip file.718

14. Crowdsourcing and research with human subjects719

Question: For crowdsourcing experiments and research with human subjects, does the paper720

include the full text of instructions given to participants and screenshots, if applicable, as721

well as details about compensation (if any)?722

Answer: [NA]723

Justification: This paper does not involve crowdsourcing nor research with human subjects,724

as it is theoretical in nature.725

Guidelines:726

• The answer NA means that the paper does not involve crowdsourcing nor research with727

human subjects.728

• Including this information in the supplemental material is fine, but if the main contribu-729

tion of the paper involves human subjects, then as much detail as possible should be730

included in the main paper.731

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,732

or other labor should be paid at least the minimum wage in the country of the data733

collector.734

15. Institutional review board (IRB) approvals or equivalent for research with human735

subjects736

Question: Does the paper describe potential risks incurred by study participants, whether737

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)738

approvals (or an equivalent approval/review based on the requirements of your country or739

institution) were obtained?740

Answer: [NA]741

Justification: This paper does not involve crowdsourcing nor research with human subjects,742

as it is of theoretical nature.743

Guidelines:744

• The answer NA means that the paper does not involve crowdsourcing nor research with745

human subjects.746
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• Depending on the country in which research is conducted, IRB approval (or equivalent)747

may be required for any human subjects research. If you obtained IRB approval, you748

should clearly state this in the paper.749

• We recognize that the procedures for this may vary significantly between institutions750

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the751

guidelines for their institution.752

• For initial submissions, do not include any information that would break anonymity (if753

applicable), such as the institution conducting the review.754

16. Declaration of LLM usage755

Question: Does the paper describe the usage of LLMs if it is an important, original, or756

non-standard component of the core methods in this research? Note that if the LLM is used757

only for writing, editing, or formatting purposes and does not impact the core methodology,758

scientific rigorousness, or originality of the research, declaration is not required.759

Answer: [NA]760

Justification: LLMs were not used in core method development in this research. We used761

LLM writing and editing purposes only.762

Guidelines:763

• The answer NA means that the core method development in this research does not764

involve LLMs as any important, original, or non-standard components.765

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)766

for what should or should not be described.767
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