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Abstract

In this paper, we propose DynODE, a method to model the video dynamics by
learning the trajectory of independently inverted latent codes from GANs. The
entire sequence is seen as discrete-time observations of a continuous trajectory of
the initial latent code. The latent codes representing different frames are therefore
reformulated as state transitions of the initial frame, which can be modeled by
neural ordinary differential equations. Our DynODE learns the holistic geometry of
the video dynamic space from given sparse observations and specifies continuous
latent states, allowing us to engage in various video applications such as frame
interpolation and video editing. Extensive experiments demonstrate that our method
achieves state-of-the-art performance but with much less computation. Code is
available at https://github.com/weihaox/dynode_released.

1 Introduction

GAN inversion [1, 38, 29] allows us to invert images into the latent space of pretrained GAN models,
facilitating further attribute editing of these images [22, 11]. Recent GAN-inversion based video
editing methods [34, 24] have demonstrated that even using a non-temporal StyleGAN [9, 10, 8], the
temporal consistencies can be preserved through identical operations across all frames. However,
applying the same operations to each frame is redundant; more importantly, the temporal relationships
of the independently-inverted latent codes in a GAN’s latent space are not exploited.

In this paper, we present DynODE, a method to model the latent Dynamics with neural ordinary
differential equations (ODEs) [2]. Our work borrows intuition from dynamical systems and treats the
video dynamics as the solution to a first-order non-autonomous ODE. To be specific, if considering
the latent space as a dynamical system, the changes in latent codes along a certain direction can be
likened to the trajectory of a moving particle. The non-temporal latent codes (in the latent space)
becomes discrete-time observations of a continuous trajectory of the initial latent state (in the dynamic
space). The subsequent latent codes are reformulated as state transitions from the initial one. The
entire video is therefore determined by the first frame and its temporal trajectory.

Given sparse observations, our method is encouraged to learn and recover the holistic geometry
of the video dynamic space. Our DynODE specifies continuous latent states. This design allows
time-oriented and motion-coherent frame interpolation at unseen timesteps and liberates video editing
from the laborious and repetitive frame-by-frame processing, demonstrating the benefits of modeling
the latent dynamics. Our contributions are summarized as follows: (1) we model the video dynamics
by learning the temporal trajectory of the non-temporal latent codes with neural ODEs; (2) we
present a dynamical view of the GAN latent space, in which video frames are seen as discrete-time
observations of a continuous trajectory of the initial latent code; (3) the learned video dynamics
facilitate various video applications such as frame interpolation and video editing.
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Figure 1: Our goal with DynODE is to model latent dynamics of GANs (e.g. StyleGANs [10]) using a
neural ODE. The learned continuous trajectory is then used for frame interpolation and video editing.

2 Background

GAN Inversion [1, 38] aims to invert a given image back into the latent space of a pretrained GAN
model so that the image can be faithfully reconstructed from the inverted code by the generator. The
generator of an unconditional GAN learns the mapping G : Z → X . When z1, z2 ∈ Z are close in
the Z space, the corresponding images x1, x2 ∈ X are visually similar. GAN inversion, denoted as
E , maps data x back to latent representation z∗ or, equivalently, finds an image x∗ that can be entirely
synthesized by the well-trained generator G and can remain close to the real image x. Formally,
denoting the signal to be inverted as x ∈ Rn, the well-trained generative model as G : Rn0 → Rn,
and the latent vector as z ∈ Rn0 , GAN inversion studies the following problem:

z∗ = argmin
z

ℓ(G (z), x) , (1)

where ℓ(·) is a distance metric in the image or feature space, and G is assumed to be a feed-forward
neural network. With the inverted z∗, we can obtain the original and manipulated images.

Neural ODEs [2] are a family of continuous-time models which define a hidden state h(t) to be the
solution to an ODE initial-value problem:

ḣ(t) =
dh(t)

dt
= fθ (h(t), t; θ) s.t. h(t0) = h0. (2)

The function fθ specifies the dynamics of the hidden state, using a neural network with parameters θ.
t ∈ [0, T ] is time and h(t) ∈ Rd. The hidden state h(t) is defined at all times, and can be evaluated
at any desired timestep by using a numerical ODE solver denoted as ODESolve:

h0, . . . , hN = ODESolve (fθ, h0, (t0, . . . , tN )) , (3)

where (t0, . . . , tN ) are timesteps where h(t) is evaluated. The gaps between consecutive timesteps ti
are not necessarily equal. Neural ODEs specify h(t) as a continuous function over time, even though
it is evaluated at discrete timesteps (t0, . . . , tN ).

3 Method

Given the inverted codes z0, · · · , zn corresponding to each frame in the sequence c0, · · · , cn, our
objective is to learn the video dynamics in the GAN latent space. This work specifically aims to
model the latent dynamics of StyleGAN [10], as illustrated in Fig. 1. We consider the dynamics of
a state z(t) in the phase space Ω (= R2n) of a dynamical system. These non-temporal latent codes
{z0, · · · , zn} become observations {z(t0), · · · , z(tn)} of a motion trajectory of z0 at specified times
t0, · · · , tn. The initial state, denoted as z(t0), is equal to z0. This trajectory can be treated as the
solution to a non-autonomous dynamical system determined by

dz

dt
= f (z(t), t) for t ∈ R, z ∈ Ω, (4)

where f : Ω×R 7→ TΩ is assumed to be continuous, and TΩ is the tangent space. By approximating
the differential with an estimator fθ ≃ f , where fθ is a θ-parameterized neural network, the neural
ODEs allow to model the evolution across time of such a dynamical system and learn the dynamics
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(or trajectories) from relevant data. For an arbitrary time ti, the ODESolve computes a numerical
approximation of the integral of the dynamics from the initial time value t0 to ti by Eq. (4) that is
equal to

zi = z̃(ti) = ODESolve (fθ, z0, (t0, ti))

≃ z0 +

∫ ti

t0

fθ (z(t), t) dt = z(ti),

where z0 = E(c0), ĉi = G(zi).

(5)

z̃(ti) is a prediction of z(ti) using a neural ODE network; ĉi is a reconstructed video frame.

For training the neural ODE network, given a source video consisting of N frames {xi}Ni=1, we first
obtain the preprocessed frames {ci}Ni=1 after a standard cropping-and-alignment step [34, 24]. We
then use an off-the-shelf inversion method [1] to produce the latent inversion {zi}Ni=1 = {E (ci)}Ni=1
for all frames. These latent codes are used to train a neural ODE network (ODEfunc, fθ), which aims
to predict the subsequent frames. Specifically, we randomly sample a small batch with the same size,
z0, · · · , zn (n < N ), for each iteration. Given the initial state z0, the neural ODE network is trained
to predict the known observations, z1, · · · , zn, at the corresponding times by minimizing the losses
in the latent, feature, and image spaces. The loss in the latent space is defined as the optimization
between original latent codes and those predicted by fθ at the same timesteps:

Llatent =

n∑
i=1

∥ ODESolve {fθ, z̃ (ti) , (ti, ti+1)}︸ ︷︷ ︸
z̃(ti+1)

−z (ti+1) ∥22. (6)

The losses in the image and feature spaces are similarly defined using the pixel-wise mean squared
error (MSE) and the learned perceptual image patch similarity (LPIPS) [35], respectively:

Limage =

n∑
i=1

∥G (z̃ (ti+1))− G (z (ti+1)) ∥22,

Llpips =

n∑
i=1

∥F (G (z̃ (ti+1)))−F (G (z (ti+1))) ∥22,
(7)

where G is the generator [10] and F is a pretrained model for feature extraction [5]. The final loss
is a weighted combination of these terms. Objective functions introduced for training may differ
depending on the dataset. For instance, a dedicated face recognition loss [3] that measures the cosine
similarity between the predicted image and its source could be incorporated to preserve facial identity.

Once trained, dividing the time interval by k, the neural ODE network produces the states at specified
timesteps in the form of z̃1, . . . , z̃k = ODESolve(fθ, z0, (t1, . . . , tk)). The predicted latent codes
z̃i are then fed into the generator G in order to produce frames G(z̃i). Our method is agnostic to
particular GAN inversion and latent editing techniques, and can thus be seamlessly integrated as a
versatile plug-and-play module for video dynamics modeling.

4 Experiments

This section describes experiments on dynamics modeling. We present the video reconstructions
from sparse observations, which is an important example of inverse problems. Two downstream
video applications of GAN latent dynamics modeling can be found in Sec. C.

Data. Our experiments use four video categories: face [9], outdoor scene [37], bird [26], and a
synthetic dataset Isaac3D [17]. The real videos in the first three categories are sourced from publicly
available datasets [27, 16] or obtained from YouTube. The synthetic Isaac3D videos are created by
generating consecutive frames depicting the movement of the robot or camera. For additional details
regarding the pretrained StyleGAN2 [10] and data preparation, please refer to Sec. B.

Evaluation. Neural ODEs are expected to learn the temporal properties of a trajectory, allowing
it to approximate the actual states at the observed timesteps and even those between observations.
Therefore, dynamics modeling performance can be assessed based on the reconstruction quality of
predicted images at certain timesteps, which is typically evaluated by using MSE and SSIM [28].
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Results. We sample frames at regular and irregular time intervals and compare the predicted frames
with the actual ones at both observed and unobserved timesteps. Fig. 2 displays both the sampled
frames from the original videos (real) and their predicted counterparts (pred), where the subtle
differences (diff ) indicate accurate reconstructions. Tab. 1 shows the performance of dynamics
modeling characterized by the reconstruction quality. The quantitative evaluation on four categories
demonstrates that our method not only models the video dynamics for the known observations but
also generalizes to the unobserved time. This capability indicates that neural ODEs are able to learn
the entire geometry of video dynamic rather than simply remembering given observations, enabling
them to accept irregularly sampled frames or create video frames at unknown timesteps.
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(a) regularly-sampled inputs

(b) irregularly-sampled inputs

Figure 2: Qualitative results of dynamics modeling on face videos. We sample frames at both regular
and irregular time intervals and compare the predicted frames with the actual observations.

Dataset Face Scene Bird Isaac3D

Metric MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑
Observed 6.752 98.9 22.956 97.6 25.407 98.1 15.655 99.2
Unobserved 35.397 93.2 48.323 92.4 55.368 90.3 27.651 96.5

Table 1: Quantitative evaluation of dynamics modeling on four datasets. The performance of dynamics
modeling is assessed based on the reconstruction quality of predicted images at certain timesteps,
reported as MSE ↓ (lower is better, scaled by ×e-3) and SSIM ↑ (higher is better).

5 Conclusion

In this paper, we present DynODE, a method to model video dynamics by learning the trajectory of
independently-inverted latent codes using neural ODEs. Our method estimates time-oriented and
motion-coherent frames at unseen timesteps by accounting for the holistic geometry of the video
dynamic space. Such a design enables continuous frame interpolation and consistent video editing,
freeing video editing from tedious and redundant frame-by-frame processing. Experiments on a wide
range of datasets show that our method improves upon prior state-of-the-art methods.

Limitations and Future Directions. Our framework has several limitations. For example, we use
the simplest implement of the neural differential equations to show their potential applications. From
the vast variants, we can provide the dynamic adjustment to the trajectory based on future observations
using the neural controlled differential equations (CDEs) [12], or introduce the stochasticity using
the neural stochastic differential equations (SDEs) [14]. Furthermore, since the dynamics is modeled
from a single video, the learned trajectory is deterministic, which contradicts the stochastic nature of
the time-varying videos. This can be addressed by training an encoder on large-scale video datasets.
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Appendices
A Related Work

Neural ODE [2] and its variants have recently been explored for video generation. Kanaa et al. [7]
combine a typical encoder-decoder architecture with Neural ODEs. Park et al. [18] propose an ODE
convolutional GRU as the encoder for continuous-time video generation. Unlike [7, 18], we use
a neural ODE network to model the temporal correlation among latent codes, which are derived
separately by using existing GAN inversion algorithms.

There are some ways to analyze the spatio-temporal dynamics of videos in addition to ODE-based
models. Recent studies [18, 12] have demonstrated that they are not as effective as ODE-based
models. The RNN-based models, for example, assuming fixed time intervals, are limited to learn the
representations only at the observed times. These methods can barely handle datasets collected from
wild environments with irregular time intervals and missing states.

B Experimental Settings

B.1 Pretrained Models and Datasets

Given their widespread popularity, most of the GAN inversion and latent editing methods focus on
StyleGANs [9, 10]. Therefore, we use StyleGAN2 [10] as the pretrained model in all experiments.
Our method is not dependent on StyleGANs and can be applied to any GAN model. The latent codes
are obtained by inverting each frame into W+ space of StyleGAN2 [10]. Other latent spaces [29],
e.g. Z or W space, are also supported. Experiments are conducted on several categories of publicly
available datasets to demonstrate the effectiveness of our proposed method.

Face. The StyleGAN2 model is trained on FFHQ [9] at a resolution of 1024×1024. The real face
videos are collected from public talking-head datasets [27, 16] or downloaded from YOUTUBE.

Scene. The StyleGAN2 is trained using Place365 [37] at the resolution of 256×256. We use [11] to
generate temporally-consistent frames by editing the time-varying attributes, e.g., NIGHT, DAWNDUSK,
and SUNRISESUNSET. We also download real videos of outdoor natural scenes from YOUTUBE and
obtain latent codes of sampled frames by direct optimization.

Bird. The StyleGAN2 model is trained using CUB-200-2011 dataset [26] at the resolution of
256×256. We collect bird videos from YOUTUBE.

Isaac3D. The StyleGAN2 model is trained using synthetic images with a resolution of 128×128 from
Isaac3D [17]. The dataset contains 9 factors of variation, such as background color, object shape,
robot movement, and camera height. We generate consecutive frames by moving the robot or camera.

B.2 Data Preparation

We collect some real videos of outdoor natural scenes, talking heads, and birds from YOUTUBE and
obtain latent codes of sampled frames by direct optimization. These in-the-wild images may not
be well suited to current GAN models and inversion methods due to their limitations. To overcome
the limitations of both datasets and off-the-shelf methods and maintain our focus on validation of
our proposed method, in some cases, we synthesize data by using [11], which is capable of editing
attributes of images generated by StyleGAN through latent editing. This process of data synthesis is
mainly performed on two categories: outdoor scenes [36] and Isaac3D [17].

Scene. The images of outdoor scenes are extracted from [36] and contain annotations for 40 binary
attributes, such as dusk, autumn, flowers, dull, colorful, midday, fog, snow, windy, and rain.

Isaac3D. Isaac3D [17] contains nine factors of variation, such as background color, lighting intensity,
object shape, robot movement, or camera height. We notice that some attributes are time-related,
such as NIGHT, DAWNDUSK, and SUNRISESUNSET for outdoor scenes [36], or ROBOT MOVEMENT
for Isaac3D [17]. To be specific, we use [11] to generate temporally-consistent frames by editing
the time-varying attributes, e.g., NIGHT, DAWNDUSK, and SUNRISESUNSET. As Isaac3D [17] is a
synthetic dataset, we generate consecutive frames by simulating the camera height adjustment or the
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Figure 1: Results of continuous frame interpolation. Based on given frames if talking faces or outdoor
natural scenes in (a), our method can generate in-between video frames in diverse time intervals.

robot movement along the x-/y-axis. The rest of the attributes are used for consistent video editing.
This data preparation process can alleviate the limitation of datasets and help us focus on validating
that the edited videos present identical video dynamics and maintain temporal coherence.

B.3 Implementation Details

We implement the proposed method in PyTorch on an Nvidia GeForce RTX 2080. The neural ODE
network is parameterized by a Multi-Layer Perceptron (MLP). The second and third layers together
form a repeating module. The parameter DEPTH that determines the number of repetitions is adjusted
depending on the complexity of the dataset. The parameters in the neural ODE function are optimized
using the Adam optimizer [13]. We train the neural ODE network for 5,000 gradient descent steps
using a learning rate of 0.01, β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. We use a adaptive-step DOPRI5
(Runge-Kutta [4] of order 5 of Dormand-Prince-Shampine) as the default ODE Solver. Details on
StyleGANs [9, 10] and the inversion method [1] can be found in the respective papers.

B.4 Performance Metrics

For dynamics modeling, we use pixel-wise Mean Square Error (MSE) and Structural Similarity Index
(SSIM) [28] as the metrics for quantitative comparisons. For video editing, we focus on the temporal
coherence of edited videos, which is measured by the identity similarity between frame pairs as
in [24]. Specifically, we use two metrics, temporally-local (TL-ID) and temporally-global (TG-ID)
identity preservation introduced in [24], and a variant of the Average Content Distance (ACD) [23].
We use Fréchet Video Distance (FVD) [25] to evaluate the motion quality in the edited videos.

C Example of Downstream Tasks

Our DynODE learns the holistic geometry of the video dynamic space from given sparse observations
and specifies continuous latent states, allowing us to engage in various video applications. This
section demonstrates two example of applying the acquired latent dynamics to two downstream video
processing tasks: frame interpolation (Sec. C.1) and video editing (Sec. C.2).

C.1 Continuous Frame Interpolation

The learned neural ODE specifies z(t) as a continuous function over time, which facilitates infinite
frame interpolation. It enables our framework to interpolate non-existent frames within the time
interval from t = 0 to t = N at arbitrary timesteps. Once trained, dividing the time interval [0, N ]
by k, the neural ODE network produces the in-between states at the corresponding timesteps in the
form of z0, . . . , zk = Solve(fθ, z0, (t0, . . . , tk)). The intrinsic properties of neural ODEs allow
to achieve such infinite frame interpolation at a constant memory cost even when the frames are
irregularly sampled or partially observed, which is the case that their RNN-based counterparts are
often struggling to deal with [12, 21]. This is particularly helpful when a temporally smooth video is
required. Fig. 1 shows the results of frame interpolation for talking heads and outdoor natural scenes
at arbitrary timesteps. While the generators are trained on image datasets and not specifically tuned
for the video, the predicted frames still exhibit high consistency across time.

It should be noted that intermediate video frames can also be generated by simply blending two
adjacent latent codes. This procedure, often called image morphing in literature, is to fuse two images

8



by interpolating their latent codes, which also presents a continuous process. Given zs and zt, a
series of semantically meaningful images can be generated following z∗ = zs + α(zt − zs) , where
α is a scale between 0 and 1. The term (zt − zs) can also be considered as a direction, similar to
those discovered by latent editing methods [34, 11, 22]. As opposed to the trajectory learned by
neural ODEs, which could be viewed as the temporal directions, these are spatial or manipulatable
directions for altering the semantics. Fig. 2 (adopted from [18]) illustrates a video dynamic space
from ts to tt. The 2D instead of 1D structure of such space indicates the stochasticity of the trajectory
between the two observed timesteps. The difference between direct morphing and ours is obvious in
the video dynamic space. The direct morphing creates the intermediate states (green) at ta, tb, and tc
by accumulating the differences between zs and zt, without considering the geometry structure of
the video dynamic space. The obtained states may fall outside of the video dynamic space and thus
produce frames that contain spatial changes instead of temporal motions. In contrast, our method
estimates in-between states (red) at unknown times by accounting for the holistic geometry of the
video dynamics. These states produce time-oriented and motion-coherent frames. The trajectory
obtained from our method, illustrated as the blue arrow curve, fits closely with the video dynamic
space and indicates the intrinsic motion of the video.

Due to limitations of StyleGAN [10], our method is suited more to videos with a specific category
and may not perform well on existing frame interpolation benchmarks that include different objects
or scenes. Existing frame interpolation methods [30, 6, 15] cannot be trained for specific categories
due to the lack of such high-quality video datasets. As a result, we do not conduct comparisons of
video interpolation. The comparison will be applicable if either constraint is lifted in the future.

video dynamic space
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Figure 2: In the video dynamic space,
the direct morphing creates the inter-
mediate states (green) by accumulating
the differences between the two states
at ts and tt. In contrast, neural ODEs
estimate in-between states (red) at un-
seen times by accounting for the holis-
tic geometry of the video dynamics.
These states produce time-oriented and
motion-coherent frames.

C.2 Consistent Video Manipulation

In this section, we present experiments that apply the latent dynamics to video editing.

Baselines. We compare our method with five state-of-the-art face video editing baselines that rely
on GAN inversion: IGCI [31], Latent Transformer [34], STIT [24], TCSVE [33], and RIGID [32].
These methods follow a pipeline that contains three key steps: pre-processing (inverting each cropped
and aligned frame into the latent space); attribute manipulation (editing images by employing off-the-
shelf latent based semantic editing techniques), and seamless cloning (blending the modified faces
with the original input frames using [20]). These three methods achieve attribute editing in the video
by applying the same redundant operations to every frame. In contrast, our method alters the initial
frame and extends these modifications to the entire sequence by leveraging the learned trajectory.

Qualitative evaluation. Comparison with face video editing methods is shown in Fig. 3. The last
two rows are results from implementing our method as a plug-and-play module for the video dynamics
modeling in Latent Transformer [34] and TCSVE [33], respectively. The results demonstrate highly
temporal coherence across all frames. However, it is worth noting that our results are obtained
by exclusively applying core operations to the first frame only, thereby eliminating the need for
redundant operations on all frames. Video editing results on talking heads and outdoor natural scenes
are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7. The target attribute is edited by employing off-the-shelf
latent semantic editing methods [11, 34, 22, 19] on the first frame. The edited video frames show
identical video dynamics and maintain temporal coherence.
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Figure 3: Qualitative comparison with the state-of-the-art face video editing baselines: IGCI [31],
Latent Transformer (Latent-T) [34], STIT [24], TCSVE [33], and RIGID [32]. The last two rows are
obtained through plug-and-play integration of our method into Latent-T [34] and TCSVE [33].

Quantitative evaluation. Tab. 1 shows the quantitative evaluation comparisons. We show the result
of our method embedded as a plug-and-play dynamics modeling module into Latent Transformer [34]
and TCSVE [33], denoted as “DynODE (w. (with) [34])” and “DynODE (w. [33])” in Tab. 1, respectively.
The best and second-best results are marked in bold and underline. Our method achieves state-of-the-
art performance. It significantly improves performance and mitigates the drifting identity issue by
holistically modeling the entire dynamics space. The quantitative evaluation of RIGID [32] is not
reported as the code is not available. In contrast to other video editing studies, our method avoids
repeating operations on every frame, without sacrificing editing quality or temporal consistency.

IGCI [31] STIT [24] Latent-T [34] TCSVE [33] DynODE (w. [34]) DynODE (w. [33])

TL-ID ↑ 0.969 0.989 0.957 0.992 0.965 0.995
TG-ID ↑ 0.851 0.912 0.839 0.939 0.843 0.957
ACD ↓ 1.485 0.846 1.352 0.798 1.331 0.778
FVD ↓ 632.7 352.9 582.4 323.1 522.3 304.2

Table 1: Quantitative comparison on video editing. We reported results of three identity preservation
metrics (TL-ID, TG-ID and ACD) and a motion quality metric FVD. The best and second-best results
are marked in bold and underline. ↑ means higher is better, while ↓ means the opposite.
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Figure 4: Video editing results on talking heads. We use [34] to alter facial attributes. Our method
changes the desired attributes of the entire video by only editing the initial frame and extending such
modifications to the entire sequence, without the need to apply redundant operations to every frame.
The edited video frames show identical video dynamics and maintain temporal coherence.
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Figure 5: Video editing results on outdoor scenes. Edited attributes are obtained by [11] except
MOUNTAIN, which is edited by StyleCLIP [19]. The manipulated frames of the entire video show
identical video dynamics and maintain temporal coherence.
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Figure 6: Video editing results on outdoor scenes. All edited attributes are obtained by using [11]
except MOUNTAIN, which is edited by using StyleCLIP [19]. The manipulated frames of the entire
video show identical video dynamics and maintain temporal coherence.
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Figure 7: Video editing results on talking heads with complex backgrounds. The edited attributes
of GENDER, AGE, and EYEGLASSES are obtained by InterFaceGAN [22]. The edited attributes of
SMILE and LIPSTICK are obtained by StyleCLIP [19]. The manipulated frames of the entire video
show identical video dynamics and maintain temporal coherence.

13


