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Abstract
Model-based reinforcement learning (RL)
achieves higher sample efficiency in practice
than model-free RL by learning a dynamics
model to generate samples for policy learning.
Previous works learn a “global” dynamics model
to fit the state-action visitation distribution for
all historical policies. However, in this paper,
we find that learning a global dynamics model
does not necessarily benefit model prediction
for the current policy since the policy in use
is constantly evolving. The evolving policy
during training will cause state-action visitation
distribution shifts. We theoretically analyze how
the distribution of historical policies affects the
model learning and model rollouts. We then
propose a novel model-based RL method, named
Policy-adaptation Model-based Actor-Critic
(PMAC), which learns a policy-adapted dynamics
model based on a policy-adaptation mechanism.
This mechanism dynamically adjusts the his-
torical policy mixture distribution to ensure
the learned model can continually adapt to the
state-action visitation distribution of the evolving
policy. Experiments on a range of continuous
control environments in MuJoCo show that
PMAC achieves state-of-the-art asymptotic
performance and almost two times higher sample
efficiency than prior model-based methods.

1. Introduction
Recent years have witnessed great successes of Reinforce-
ment Learning (RL) in many complex decision-making
tasks, such as robotics (Polydoros & Nalpantidis, 2017;
Yang et al., 2022) and chess games (Silver et al., 2016;
Schrittwieser et al., 2020). Among RL methods, a wide
range of works in model-free RL (Schulman et al., 2015;
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Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al.,
2018; Hu et al., 2021) have shown very promising perfor-
mance. However, model-free methods can be impractical
for real-world scenarios (Dulac-Arnold et al., 2021) since
massive samples from the real environment are required to
train, resulting in low sample efficiency.

Model-based RL is considered one of the solutions to im-
prove sample efficiency. Most of the model-based RL al-
gorithms first use supervised learning techniques to learn
a dynamics model based on the samples obtained from the
real environment, and then use this learned dynamics model
to generate massive samples to derive a policy (Luo et al.,
2018; Janner et al., 2019). Therefore, it is crucial to learn a
dynamics model which can accurately simulate the under-
lying transition dynamics of the real environment since the
policy is trained based on the model-generated samples. If
the learned dynamics has a high prediction error, the model-
generated samples will be biased, and the policy induced by
these samples will be sub-optimal.

To reduce the model prediction error and learn an accu-
rate dynamics model, prior works have proposed various
approaches to solve the problem. Some advanced archi-
tectures such as model ensemble (Kurutach et al., 2018;
Chua et al., 2018) and multi-step model (Asadi et al., 2019)
have been proposed to improve the multi-step prediction
accuracy of the learned dynamics model. To reduce the
distribution mismatch between model-generated samples
and real samples, the idea of a generative adversarial net-
work (GAN) (Goodfellow et al., 2014) is used to design the
training process of a dynamics model (Shen et al., 2020;
Eysenbach et al., 2021). Instead of accurately predicting the
transitions, the value equivalence model (Farahmand et al.,
2017; Grimm et al., 2020; Voelcker et al., 2022) is proposed
to generate the samples that can yield the same Bellman up-
dates like the real samples. All previous works aim to learn
a “global” dynamics model. To be precise, when training
the dynamics model, they randomly select the training data
from the real samples obtained by all historical policies in
the replay buffer. This dynamics model needs to adapt to the
state-action visitation distribution of all historical policies to
obtain a dynamics model that predicts transitions accurately
under different policies.

However, learning such a global dynamics model has an
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objective mismatch with model rollouts, since we only use
the current newest policy during model rollouts to generate
samples. In many real-world tasks, our goal is to identify a
good policy as efficiently as possible, and the newest policy
is believed to be the best we can achieve so far. Therefore,
the learned dynamics model only needs to make accurate
predictions for the current policy. Learning a global dy-
namics model may have a relatively good prediction for all
historical policies, but unfortunately, it may have a high
prediction error for current policy during model rollouts.

In this paper, we investigate how to learn an accurate dynam-
ics model for model rollouts based on existing samples. To
begin with, we confirm through experiments that although
the global dynamics model learned by the previous methods
has a low overall prediction error for all historical policies,
its prediction error for the current newest policy is still very
high. This leads to inaccurate model-generated samples and
reduces the sample efficiency and asymptotic performance
of the policy. We then theoretically analyze how the distribu-
tion of historical policies affects model learning and model
rollouts. The theoretical result suggests that the distribution
of historical policies used for model learning should always
tilt to the newer policies rather than uniformly distribute
to any policy to ensure the model prediction accuracy for
model rollouts. Motivated by this insight, we propose a
novel model-based RL method named policy-adaptation
model-based actor-critic (PMAC). Instead of learning a
global dynamics model, PMAC learns a policy-adapted dy-
namics model based on a policy-adaptation mechanism,
which adapts the learned dynamics model to the evolving
policy to ensure the accuracy of the model-generated sam-
ples. We conduct systematic and extensive experiments to
evaluate PMAC on a range of continuous control benchmark
MuJoCo environments (Todorov et al., 2012). Experiment
results show that PMAC achieves higher sample efficiency
and better asymptotic performance than previous state-of-
the-art model-based RL methods.

Summary of contributions: (1) Through detailed experi-
mental results, we establish that learning a global dynamics
model is not accurate enough for model rollouts. (2) We
theoretically analyze how the distribution over historical
policies affects model learning and model rollouts and how
the dynamics model should be learned. (3) We propose
policy-adaptation model-based actor-critic (PMAC), which
implements a policy adaptation mechanism that allows the
model to continuously adapt to the evolving policy. (4)
Experimental results on a range of MuJoCo environments
demonstrate that PMAC achieves state-of-the-art asymptotic
performance and a drastic sample efficiency improvement
(more than 2×) compared with previous model-based RL
methods.

2. Background
2.1. Preliminaries

Reinforcement learning Consider a Markov Decision
Process (MDP) defined by the tuple (S,A, T, r, γ), where S
is the state space,A is the action space, and T (s′|s, a) is the
transition dynamics in the real world. The reward function
is denoted as r(s, a) and γ is the discount factor. Reinforce-
ment learning aims to find an optimal policy π which can
maximize the expected sum of discounted rewards:

π = argmax
π

E st∼T (·|st−1,at−1)

at∼π(a|st)

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In model-based RL, the transition dynamics T in the
real world is unknown, and we aim to construct a model
T̂ (s′|s, a) of transition dynamics and use it to improve the
policy. We concentrate on the Dyna-style (Sutton, 1990)
model-based RL in this paper, which uses the learned dy-
namics model to generate samples and train the policy.
Model-based RL in this paper refers to Dyna-style model-
based RL.

Policy mixture During policy learning, we consider the
historical policies at iteration step k as a historical policy
sequence Πk = {π0, π1, π2, ..., πk}. For each policy in the
policy sequence, we denote its state-action visitation dis-
tribution as ρπi(s, a), and the policy mixture distribution
over the policy sequence as wk. Then the state-action visi-
tation distribution of the policy mixture πmix,k = (Πk, wk)

is ρπmix,k(s, a) =
∑k
i=0 w

k
i ρ
πi(s, a) (Hazan et al., 2019;

Zhang et al., 2021).

2.2. Global Dynamics Model in Model-based RL

Learning a dynamics model is the most crucial part of model-
based RL since the ground-truth transition dynamics is un-
known and the policy must be updated based on the samples
generated by the learned dynamics model. Previous works
learn the dynamics model by randomly selecting training
data from the samples obtained by the historical policy se-
quence Πk, which means the distribution of policy mixture
is a random distribution: wki = 1

k . The learned dynamics
model is trained based on the following state-action visita-
tion distribution:

ρπmix,k(s, a) =

k∑
i=0

1

k
ρπi(s, a). (2)

This model tries to fit all the samples obtained by sam-
pling the state-action visitation distribution corresponding to
each policy in the historical policy sequence, so the learned
“global” dynamics model is able to predict the transition for
any state-action input.
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However, it is difficult to learn such a global dynamics
model in many real-world tasks since the number of real
samples from the environment is very limited and obtaining
real samples is expensive. Meanwhile, the state-action vis-
itation density of historical policies may have a huge shift
from the current policy, which is used for model rollouts.
Suppose the dynamics model adapts to the state-action vis-
itation distribution of all historical policies. In that case,
this may hurt the accuracy of the model prediction for the
current policy during model rollouts, resulting in the policy
getting stuck in a sub-optimal solution or even being unable
to converge.

We conduct an experiment using a state-of-the-art model-
based RL baseline called MBPO (Janner et al., 2019), which
learns a global dynamics model on two MuJoCo (Todorov
et al., 2012) environments Hopper and HalfCheetah. We
present the global error curves and the local error curves
during learning steps in Figure 1(a) and 1(b). Here the global
error means the model prediction error for all historical
policies, and the local error is the model prediction error
for the current policy. We can find that although the global
error has converged to be very small, the local error for the
current policy is still very high, which will undoubtedly
cause inaccurate model-generated samples and misleading
the policy learning. Therefore, learning a global dynamics
model is not an efficient way for model-based RL (especially
for task-specific problems such as robotics).
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Figure 1: (a) and (b) are the global error curve and the local
error curve of MBPO on HalfCheetah and Hopper, respec-
tively. (c) and (d) are the state-action visitation distribution
of different history policies and the current policy expressed
using the Q value.

3. Dynamics Model Adapted to the Evolving
Policy

To ensure the accuracy of model-generated samples, we
present a dynamics model which aims to adapt the state-
action visitation density of the current policy. To motivate
our method, we first analyze how the distribution of policy
mixture affects the model rollout performance theoretically.
We then analyze the state-action visitation distribution of
the historical policies to guide us on how to adjust the dis-
tribution of policy mixture and learn the policy-adapted
dynamics model.

3.1. Performance guaranteed by policy mixture
distribution

As mentioned in Section 2.2, learning a dynamics model
that adapts the state-action visitation distribution for all
historical policies is not efficient for model-based RL. In
this section, we provide a theoretical analysis of how the
policy mixture distribution affects the model rollout.

First, we derive our main theorem that gives an upper bound
for the performance gap between the real environment roll-
out and the model rollout using the current policy π.

Theorem 3.1 Given the historical policy mix-
ture πmix,k = (Πk, wk) at iteration step k,
we denote ξρi = DTV (ρπT (s, a)||ρπiT (s, a)) and
ξπi = Es∼vπmix

T̂

[DTV (π(a|s)||πi(a|s))] as the state-
action visitation distribution shift and the policy distribution
shift between the historical policy πi and current policy π
respectively, where vπmix

T̂
is the state visitation distribution

of policy mixture under the learned dynamics model. rmax
is the maximum reward the policy can get from the real
environment, γ is the discount factor, and Vol(S) is the
volume of state space. Then the performance gap between
the real environment rollout J(π, T ) and the model rollout
J(π, T̂ ) can be bounded as follows:

J(π, T )− J(π, T̂ )

≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))]

+ rmax

k∑
i=0

wki (γVol(S)ξρi + 2ξπi)

+ 2rmaxDTV (ρπmix
T̂

(s, a)||ρπ
T̂

(s, a))

(3)

Proof. See Appendix. B �

Remarks. We have several remarks according to this bound.
(1) The first term is about model prediction error. This term
suggests that the model needs to adapt to the state-action
visitation distribution of the current policy to reduce the
model prediction error since the current policy induces the
model rollout. (2) For the second term, it shows the effect of
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the policy mixture distribution on model rollout. This item
contains two distribution shifts: state-action visitation dis-
tribution shift ξρi and policy distribution shift ξπi between
historical policy and current policy. It should be noted that
ξρi is induced by ξπi , so it is reasonable to think that a his-
torical policy with a larger ξπi will have a larger ξρi . Both
ξρi and ξπi are fixed since historical policies and the cur-
rent policy are immutable during model learning and model
rollout. Therefore, to reduce this term, we can only adjust
the policy mixture distribution wk. Since the distribution
shift varies across historical policies and the current policy,
it is obvious that the random distribution wki = 1

k is not
the best choice. (3) The last term is related to policy learn-
ing. To maximize sample utilization, the model-generated
samples obtained by the historical policies will be used to
update the current policy. Therefore, we need to adjust the
model-generated sample distribution of historical policies
to be close to the model-generated sample distribution of
the current policy during policy learning. This is out of the
scope of this paper, and we focus on reducing the first two
terms related to model learning.

The first two items on the right-hand side of Eq. 3 both
point out that learning a global dynamics model is not the
most efficient way for model learning. The first term states
that model learning should adapt as much as possible to the
state-action visitation distribution of the current policy. The
second term proposes that the state-action visitation distri-
bution in the training data should be closer to the current
policy by adjusting the policy mixture distribution. In the
next subsection, we present a specific method for adjusting
the policy mixture distribution to learn a policy-adapted
dynamics model.

3.2. Policy-Adaptation Dynamics Model

This section provides a policy-adaptation mechanism to ad-
just the policy mixture distribution for model learning. To
motivate our method, we first visualize the state-action vis-
itation distribution of different historical policies derived
from different environmental steps. We conduct this exper-
iment using MBPO. For each historical policy, we use the
policy to interact with the real environment to obtain a batch
of samples, then use the critic network of a converged SAC
(Haarnoja et al., 2018) (the policy part of MBPO) to esti-
mate the Q value of these samples and obtain a state-action
visitation distribution expressed by Q value. As shown in
Figure 1(c) and 1(d), the policy is updated as the number of
environmental steps increases. As a result, the historical pol-
icy that is closer to the current policy in the environmental
steps has a smaller deviation from the state-action visitation
distribution of the current policy. This phenomenon is also
consistent with the goal of reinforcement learning; that is,
although there may be fluctuations in the process of policy
updates, the overall trend should constantly be improving.

Algorithm 1 Policy-adaptation Mechanism

1: Input: Historical policy sequence Πk, current policy π,
policy mixture distribution wk, policy-adaptation rate
α

2: for all historical policies in Πk do
3: Multiply the weight wki of each historical policy by

α
4: end for
5: Calculate the weight of current policy using Eq. (4)
6: Add current policy to historical policy sequence Πk

7: Output: Historical policy sequence Πk+1, new policy
mixture distribution wk+1

Therefore, we propose a policy-adaptation mechanism
which adjusts the policy mixture distribution that contin-
uously adapts to the current evolving policy. The model
learned based on the state-action visitation distribution of
this policy mixture is a policy-adaptation dynamics model.
The policy-adaptation mechanism is an iterative updating
process that updates the policy mixture distribution as fol-
lows, and the pseudocode is shown in Algorithm 1.
(1) Before an interaction epoch, there are k policies existed
in the historical policy sequence Πk, where each policy πi
has a weight from the previous round, i.e., w̃ki , ∀i ∈ [k].
(2) We update the weights of the k existing policieswk+1

i ←
αw̃ki , ∀i ∈ [k], where α < 1 is a hyper-parameter called
policy adaptation rate.
(3) During the interaction epoch, we get a small batch of
new samples from the real environment using the current
policy and assign weights for the current policy,

wk+1
k+1 =

(1− α)
∑k
i=1 w

k+1
i

α
(4)

(4) The process goes to the next round: w̃k+1
i ← wk+1

i ,
∀i ∈ [k + 1] and the total number of historical policy in-
creases k ← k + 1. Go back to (1).

Remarks. (1) At each round, the total weights for historical
policies Wold =

∑k
i=1 w

k+1
i = α

∑k
i=1 w̃

k
i and the weight

for the current policy Wnew = wk+1
k+1 = (1 − α)

∑k
i=1 w̃

k
i .

Therefore, the weight ratio between historical policies and
current policy is Wold

Wnew
= α

1−α . As the iteration step of poli-
cies increases, the weights of historical policies gradually
decrease since α < 1. The current newest policy always
accounts for (1 − α) portion of the total weights, getting
significant attention during model learning. This enables the
state-action visitation distribution induced by the historical
policies always tilt toward the current policy’s state-action
visitation distribution. (2) Since the collection of the weights
of historical policies remains to be a probability vector, our
proposed policy-adaptation mechanism guarantees that the
sum of all weights maintains constant in every round, as
it can be easily verified that

∑k+1
i=1 w

k+1
i =

∑k
i=1 w̃

k
i . We
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initialize weights, to sum up to 1. (3) According to Theorem
3.1, we should have only the current policy in the policy
mixture; that is, the weights of other historical policies are
set to 0. However, the number of interactions with the envi-
ronment in model-based RL is very limited. We can only get
a few samples belonging to the current state-action visita-
tion distribution. It is challenging to learn the real transition
dynamics of the environment based on these few samples.
Therefore, we design this weight adaptation method to use
the samples obtained from the historical policies closest to
the current policy to make up for the shortcoming of the
scarcity of training samples.

4. Policy-adaptation Model-based
Actor-Critic

In this section, we introduce the practical algorithm called
Policy-adaptation Model-based Actor-Critic (PMAC) which
uses a policy-adaptation mechanism for model learning. The
full algorithm is in Algorithm 2.

Algorithm 2 Policy-adaptation Model-based Actor-Critic

Require: Dynamics model T̂θ, actor πφ, critic Qψ, real
sample buffer De, model sample buffer Dm, historical
policy sequence Πk, policy mixture distribution wk,
policy adaptation rate α, interaction epochs I , policy
update stepsE, number of rollout trajectoriesK, rollout
horizon H

1: for I epochs do
2: Update the historical policy mixture distribution wk

using Algorithm 1
3: Sample a batch of (st, at, r, st+1) from De according

to wk

4: Train dynamics model T̂θ via Eq. (5)
5: for E steps do
6: Obtain samples in the real environment using πφ,

add to De
7: for K model rollouts do
8: Sample st as an initial state from De according

to wk

9: Rollout H steps using dynamics model T̂θ and
actor πφ, add samples to Dm

10: end for
11: Update actor πφ and critic Qψ on Dm via Eq. (6)
12: end for
13: end for

Model Learning. The probabilistic neural network ensem-
ble is believed to better capture model uncertainty (Chua
et al., 2018) and has shown to be effective in model learning
(Janner et al., 2019; Wang & Ba, 2019; Shen et al., 2020).
Thus, we use the probabilistic neural network ensemble
T̂θ = {T̂θ1 , T̂θ2 , ..., T̂θB} as our dynamics model, where B

is the number of neural networks in the ensemble. Given a
(st, at) pair as an input, the output T̂θb of each network b in
the ensemble is the Multivariate Gaussian Distribution of the
next state: T̂θb(st+1|st, at) = N (µθb(st, at),Σθb(st, at)),
and the next state is sampled from this Multivariate Gaussian
Distribution. Moreover, the parameters of neural network
models in the ensemble are initialized differently. During
model learning, we select the training samples according
to the policy mixture distribution wk from the real sample
buffer and use the maximum likelihood to improve models:

L(θb) =

N∑
t=1

[µθb(st, at)− st+1]>Σ−1θb (st, at)[µθb(st, at)− st+1]

+ log det Σθb(st, at)
(5)

Model Rollouts. During model rollouts, we also sample
the initial states from the real sample buffer according to
the policy mixture distribution wk. At each rollout step,
we randomly select a neural network from the ensemble to
predict the next state and add the model-generated sample
into the model sample buffer Dm. After getting enough
samples, we then use the model sample buffer to train the
policy. For the rollout horizon setting, we adopt the same
mechanism as MBPO in which the rollout horizon increases
linearly along with the increase of environment steps. The
detail is in Appendix D.1.

Policy Learning. We use soft actor-critic (SAC) (Haarnoja
et al., 2018), which trains the critic network Qψ using the
Bellman backup operator and trains a stochastic policy πφ
as the actor with entropy regularization by minimizing the
expected KL-divergence:

L(φ) = Es∼Dm [DKL(πφ(·|s)|| exp(Q
πφ
ψ − V

πφ))]. (6)

During policy learning, training samples are a mixture of
real and model-generated samples with a mixture weight ρ.

5. Experiment
In this section, we will first compare our PMAC with the
previous state-of-the-art (including both model-free and
model-based) baselines and demonstrate that PMAC im-
proves SOTA sample efficiency and SOTA asymptotic per-
formance for Model-based RL. Then we conduct system-
atic ablation study to study the impact of Policy-adaptation
Mechanism. Lastly, we compare with three SOTA priori-
tized experience reply methods, PER (Goyal et al., 2018),
RECALL (Schaul et al., 2016) and MaPER (Oh et al., 2022),
to indicate the advantage of our policy-adaption mechanism
for model learning. Due to the space limitation, we pro-
vide more ablation studies in Appendix C including the
discussion of policy adaptation rate.
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Figure 2: Performance curves for our method (PMAC) and other baseline methods on six MuJoCo environments. Our
PMAC, AMPO, MBPO and PETS are model-based methods, while SAC and GEM are model-free methods. The dashed
lines indicate the asymptotic performance of SAC and GEM. The solid lines indicate the mean and shaded areas indicate the
standard deviation over five random seeds. We evaluate the performance every 1k interaction steps.

5.1. Comparison with State-of-the-arts
In this section, we compare our method with several pre-
vious state-of-the-art (SOTA) baselines. For model-based
methods, we choose AMPO (Shen et al., 2020), MBPO
(Janner et al., 2019), and PETS (Chua et al., 2018). MBPO
is the SOTA model-based method and our method is build-
ing upon the architecture of PyTorch-version MBPO (Liu
et al., 2020). AMPO is another SOTA model-based method
that uses unsupervised model adaptation to reduce the pre-
diction error of the learned dynamics model. PETS is a
SOTA model predict control (MPC) method that uses the
cross-entropy method (CEM) as the planner, and it also per-
forms well in many continuous control tasks. These three
methods use a probabilistic neural network ensemble as
the architecture of dynamics model. They all try to fit the
state-action visitation distribution of all historical policies
to learn a global dynamics model. For model-free methods,
we compare with SAC (Haarnoja et al., 2018), which is the
policy part of our method and is one of the SOTA model-
free methods, and GEM (Hu et al., 2021), which is another
recent SOTA method. The implementation details are in
Appendix D.1. We conduct experiment on six MoJoCo-v2
(Todorov et al., 2012) environments, the performance curves
are shown in Figure 2.

Results: (1) Improving SOTA sample efficiency. PMAC
outperforms all existing state-of-the-art methods, includ-
ing both model-based and model-free methods, in sample
efficiency in all six environments. (2) Improving SOTA
asymptotic performance for Model-based RL. In addi-
tion, PMAC obtains significantly better asymptotic perfor-

mance compared to other state-of-the-art model-based meth-
ods, including AMPO, MBPO, and PETS. It is worth noting
that the asymptotic performance of PMAC is very close to
SAC in four environments (Hopper, Walker2d, Ant, and
Pusher) and is even better than SAC occasionally. This indi-
cates the effectiveness of the policy-adaptation mechanism
of our proposed PMAC.

5.2. Impact of Policy-adaptation Mechanism
To further verify the impact of the policy-adaptation mech-
anism, we compare the one-step prediction error, and the
compounding error of the policy-adaptation model learned
by PMAC and the global dynamics model learned by MBPO.
Besides, we also compare the state-action visitation distribu-
tion of the historical policy mixture before and after using
the policy-adaptation mechanism.

One-step prediction error As shown in Figure 3(a), 3(b)
and 3(c), we evaluate the model prediction error for the
current policy on Hopper, HalfCheetah, and Walker2d. We
evaluate every 1000 environment steps. The error curves
show that the one-step prediction error for the current policy
of the policy-adaptation model is much smaller than that
of the global dynamics model, which means the model-
generated samples of PMAC are more accurate than MBPO,
so the policy induced by PMAC can perform better.

Compounding error We also compare the multi-step
model rollouts compounding error of PMAC and MBPO.
This directly determines the accuracy of the model-
generated samples in each model rollout trajectory. Figure
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Figure 3: (a), (b) and (c) display one-step (model-prediction) error for PMAC and MBPO. (d) demonstrates the compounding
error (i.e., the difference between the h-step state in the model rollout trajectory and the real environment rollout trajectory)
of PMAC and MBPO over 10 model rollout trajectories. (e) and (f) are the the state-action visitation distribution of the
historical policy mixture for PMAC and MBPO. (g) and (h) show the comparison of prior sample distribution adjustment
methods on Hopper and Walker2d. The experiments are run for 5 random seeds.

3(d) is the compounding error curves of PMAC and MBPO
on Hopper. We calculate the h-step compounding error as
the difference between the state at each rollout step h in the
model rollout trajectory and the real environment rollout
trajectory. The results demonstrate that PMAC has much a
smaller compounding error than MBPO, which means the
policy-adaptation model has a stronger multi-step planning
capability than the global dynamics model.

State-action visitation distribution In Figure 3(e) and
3(f) we plot the state-action visitation distribution of the
historical policy mixture before and after using policy-
adaptation mechanism. The curve of HalfCheetah is the
state-action visitation distribution at 100k environment steps,
and Hopper is at 50k environment steps. We can find that
the state-action visitation distribution of the historical pol-
icy mixture after using the policy-adaptation mechanism
(PMAC) is much closer to the current policy’s state-action
visitation distribution than before using policy-adaptation
mechanism (MBPO). This reveals the reason why the policy-
adaptation model has a smaller model prediction error than
the global dynamics model, and further proves the correct-
ness and effectiveness of our policy-adaptation mechanism.

5.3. Other Sample Distribution Adjustment Methods
We compare with the other three prioritized experience
replay methods to indicate the advantage of our policy-
adaptation mechanism for model learning. The first one is
Prioritized Experience Replay (PER) (Schaul et al., 2016),

which weighs the samples according to their TD-error. The
second method is RECALL (Goyal et al., 2018), which
chooses the top k highest value sample. They use this to
recall the samples that can induce the high-value samples
and train the policy. We implement this by choosing the
top 25% highest Q value samples to train the model and
as model rollout initial states. The third method is Model-
augmented Prioritized Experience Replay (MaPER) (Oh
et al., 2022), which is an extension of PER using both TD-
error and model prediction error to weight the samples for
model learning.

The experiment results are shown in Figure. 3(g) and 3(h).
Our PMAC outperforms significantly than all three methods
on both sample efficiency and asymptotic performance. We
believe this is because these methods adjust the weights
for each sample in the training data rather than each policy.
This will cause the samples belonging to the same state-
action visitation distribution to have different weights, and
the samples with higher weights may not necessarily ap-
pear in the state-action visitation distribution of the current
policy. Therefore, the learned model cannot be adapted to
the state-action visitation distribution of the current policy,
and the model prediction error during model rollouts cannot
be reduced. According to our theory, it is more crucial for
model learning to adapt to the state-action visitation distri-
bution of the current policy. This experiment result indicates
the correctness of our theory and the effectiveness of our
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method.

6. Related Work
Model-based RL is proposed as a solution to reduce the
sample complexity of model-free RL by learning a dynamics
model. Current model-based RL mainly focuses on better
model learning and better model usage.

To learn a model with more accuracy, many model archi-
tectures have been proposed, such as linear models (Parr
et al., 2008; Sutton et al., 2008; Kumar et al., 2016) and non-
parametric Gaussian processes (Rasmussen & Kuss, 2004;
Deisenroth & Rasmussen, 2011). With the rapid devel-
opment of deep learning, neural networks have become a
popular choice of model architecture in recent years (Kuru-
tach et al., 2018; Chua et al., 2018). Moreover, to reduce
the model error, a multi-step model (Asadi et al., 2019)
is designed to directly predict the transition of an action
sequence input, and unsupervised model adaptation (Shen
et al., 2020) is used to reduce the potential distribution mis-
match between model-generated samples and real samples.

For better model usage, a short-horizon model rollout (Jan-
ner et al., 2019) is shown to avoid the model error and
improve the quality of model samples. Based on this, a
bidirectional model rollout scheme (Lai et al., 2020) is pro-
posed to avoid the model error further. Furthermore, model
disagreement is used to decide when to trust the model (Pan
et al., 2020) and regularize the model samples (Yu et al.,
2020). To make more effective use of the model by exploit-
ing its differentiability, model-augmented actor-critic (Clav-
era et al., 2020) is proposed to estimate the policy gradient
more accurately by back-propagating the gradient through
model rollout trajectories. Based on this work, directional
derivative projection policy optimization (Li et al., 2022)
provides a two-model architecture to estimate the model
gradient more accurately. Recently, on-policy corrections
(Froehlich et al., 2022) is proposed to use the generalization
ability of the model to correct the model-generated samples
according to the real samples.

In addition, model-based RL has made good progress in
theoretical analysis and experimental tools. A theoretical
guarantee of monotone expected reward improvement of
model-based RL (Luo et al., 2018) is provided, and model-
based RL is shaped as a game-theoretic framework by for-
mulating the optimization of model and policy as a two-
player game (Rajeswaran et al., 2020). To save time tuning
hyperparameters, an automatic scheduling framework (Lai
et al., 2021) is designed. The dynamics model capacity is
systematically studied (Abbas et al., 2020) to show how it
affects the model-based methods.

7. Conclusion and Discussion
In this paper, we introduce a novel model-based RL method
PMAC, which learns a policy-adapted dynamics model
based on a policy-adaptation mechanism. This policy-
adapted dynamics model can continually adapt to the state-
action visitation distribution of the evolving policy. This
makes it more accurate than the previous dynamics model
when making predictions during model rollouts. We also
provide theoretical analysis and experimental results to mo-
tivate our method. PMAC achieves better asymptotic perfor-
mance and higher sample efficiency than previous state-of-
the-art model-based methods in MuJoCo. We believe our
work takes an important step toward more sample-efficient
RL. One limitation of our work is that the generalization
ability of the policy-adapted dynamics model may not be
strong enough because we focus on fitting the samples in-
duced by the evolving policy to improve the convergence
speed of the policy. Therefore, our method is efficient for
task-specific problems but may not perform well for some
exploration-oriented tasks. We leave this direction to future
work.
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Appendix: Live in the Moment: Learning Dynamics Model Adapted to
Evolving Policy

A. Useful lemma
Lemma A.1 (Shen et al., 2020) Assume the initial state distributions of the real dynamics T and the learned dynamics
model T̂ are the same. For any state s′, assume Fs′ is a class of real-valued bounded measurable functions on state-action
space, such that T̂ (s′|·, ·) : S ×A → R is in Fs′ . Then the gap between two different state visitation distributions vπ1

T (s′)
and vπ2

T̂
(s′) can be bounded as follows:

|vπ1

T (s′)− vπ2

T̂
(s′)| ≤ γE(s,a)∼ρπ1T

|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ
π1

T , ρ
π2

T̂
) (7)

Proof. For any state visitation distribution vπT , we have:

vπT (s′) = (1− γ)v0(s′) + γ

∫
(s,a)

ρπT (s, a)T (s′|s, a)dsda, (8)

where v0 is the probability of the initial state being the state s′. Then the gap between two different state visitation
distributions is:

|vπ1

T (s′)− vπ2

T̂
(s′)|

=γ

∣∣∣∣∣
∫
(s,a)

ρπ1

T (s, a)T (s′|s, a)− ρπ2

T̂ (s,a)
T̂ (s′|s, a)dsda

∣∣∣∣∣
=γ
∣∣∣E(s,a)∼ρπ1T

[T (s′|s, a)]− E(s,a)∼ρπ2
T̂

[T̂ (s′|s, a)]
∣∣∣

≤γ
∣∣∣E(s,a)∼ρπ1T

[T (s′|s, a)− T̂ (s′|s, a)]
∣∣∣+ γ

∣∣∣E(s,a)∼ρπ1T
[T̂ (s′|s, a)]− E(s,a)∼ρπ2

T̂

[T̂ (s′|s, a)]
∣∣∣

≤γE(s,a)∼ρπ1T
|T (s′|s, a)− T̂ (s′|s, a)|+ γdFs′ (ρ

π1

T , ρ
π2

T̂
)

(9)

�

B. Proof of main theorem
Theorem B.1 Given the historical policy mixture πmix,k = (Πk, wk) at iteration step k, we denote ξρi =
DTV (ρπT (s, a)||ρπiT (s, a)) and ξπi = Es∼vπmix

T̂

[DTV (π(a|s)||πi(a|s))] as the state-action visitation distribution shift
and the policy distribution shift between the historical policy πi and current policy π respectively, where vπmix

T̂
is the state

visitation distribution of policy mixture under the learned dynamics model. rmax is the maximum reward the policy can get
from the real environment, γ is the discount factor, and Vol(S) is the volume of state space. Then the performance gap
between the real environment rollout J(π, T ) and the model rollout J(π, T̂ ) can be bounded as follows:

J(π, T )− J(π, T̂ )

≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + rmax

k∑
i=0

wki (γVol(S)ξρi + 2ξπi)

+ 2rmaxDTV (ρπmix
T̂

(s, a)||ρπ
T̂

(s, a))

(10)
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Proof. ∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

=
∣∣∣J(π, T )− J(πmix, T̂ ) + J(πmix, T̂ )− J(π, T̂ )

∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix
T̂

(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term1

+

∣∣∣∣∣
∫
(s,a)

(ρπmix
T̂

(s, a)− ρπ
T̂

(s, a))r(s, a)dsda

∣∣∣∣∣︸ ︷︷ ︸
term2

(11)

For term 1:

∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix
T̂

(s, a))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix
T̂

(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
=

∣∣∣∣∣
∫
(s,a)

(vπT (s)π(a|s)− vπmix
T̂

(s)π(a|s) + vπmix
T̂

(s)π(a|s)− vπmix
T̂

(s)πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤

∣∣∣∣∣
∫
(s,a)

(vπT (s)− vπmix
T̂

(s))π(a|s)r(s, a)dsda

∣∣∣∣∣+

∣∣∣∣∣
∫
(s,a)

(vπmix
T̂

(s)(π(a|s)− πmix(a|s))r(s, a)dsda

∣∣∣∣∣
≤rmax

∫
s

∣∣∣vπT (s)− vπmix
T̂

(s)
∣∣∣ ds+ 2rmaxEs∼vπmix

T̂

[DTV (π(a|s)||πmix(a|s))]

(12)

For the first term of last inequality in Eq. 12, according to Lemma. A.1 we have:

rmax

∫
s

∣∣∣vπT (s)− vπmix
T̂

(s)
∣∣∣ds

≤rmaxγE(s,a)∼ρπT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
dFs′ (ρ

π
T , ρ

π∗

T̂
)ds′

(13)

We use total variance distance as the Fs′ to measure the distance between ρπT and ρπmix
T̂

. Suppose we can learn a dynamics
model that can perfectly adapt the state-action visitation distribution of πmix, which means the difference between the model
prediction and the environment next state s′ is very small, and the state-action visitation density induced by the learned
dynamics model ρπmix

T̂
is approximately equal to ρπmixT . This assumption is required by many model-based RL methods

(Voelcker et al., 2022). Then Eq. 13 can be expressed as:

rmax

∫
s

∣∣∣vπT (s)− vπmix
T̂

(s)
∣∣∣ds

≤rmaxγE(s,a)∼ρπT

∫
s′

∣∣∣T (s′|s, a)− T̂ (s′|s, a)
∣∣∣ds′ + rmaxγ

∫
s′
DTV (ρπT ||ρ

πmix
T )ds′

≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρπT ||ρ
πmix
T )

(14)

Combined Eq. 12 with Eq. 14, we can get:
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∣∣∣∣∣
∫
(s,a)

(ρπT (s, a)− ρπmix
T̂

(s, a))r(s, a)dsda

∣∣∣∣∣
≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρπT (s, a)||ρπmixT (s, a))

+ 2rmaxEs∼vπmix
T̂

[DTV (π(a|s)||πmix(a|s))]

=2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + γVol(S)rmaxDTV (ρπT (s, a)||
k∑
i=0

wiρ
πi
T (s, a))

+ 2rmaxEs∼vπmix
T̂

[
DTV (π(a|s)||

k∑
i=0

wiπi(a|s))

]

=2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wiDTV (ρπT (s, a)||ρπiT (s, a))

+ 2rmax

k∑
i=0

wiEs∼vπmix
T̂

[DTV (π(a|s)||πi(a|s))]

(15)

Finally, based on Eq. 15, we get:

∣∣∣J(π, T )− J(π, T̂ )
∣∣∣

≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + γVol(S)rmax

k∑
i=0

wkiDTV (ρπT (s, a)||ρπiT (s, a))

+ 2rmax

k∑
i=0

wki Es∼vπmix
T̂

[DTV (π(a|s)||πi(a|s))] + 2rmaxDTV (ρπmix
T̂

(s, a)||ρπ
T̂

(s, a))

≤2γrmaxE(s,a)∼ρπT [DTV (T (s′|s, a)||T̂ (s′|s, a))] + rmax

k∑
i=0

wki (γVol(S)ξρi + 2ξπi)

+ 2rmaxDTV (ρπmix
T̂

(s, a)||ρπ
T̂

(s, a)),

(16)

and the proof is completed. �

C. More experiments
C.1. Ablation Study of PMAC

As we described in Section 4, we use the historical policy mixture distribution twice after adjusting it. The first time we
sample the training data from the real sample buffer according to this distribution to train the dynamics model. The second
time is to sample the initial states from the the real sample buffer according to this distribution for model rollouts. In
this section, we conduct ablation experiments to show the impact of the policy-adaptation mechanism in these two parts
respectively. We conducted our experiments in Hopper and Walker2d, and the performance curves are shown in Figures
4(a) and 4(b). We find that using the policy-adaptation mechanism only for model learning or model rollouts significantly
improves in Hopper compared to MBPO. However, the improvement in Walker2d is not significant; only the asymptotic
performance of using the policy-adaptation mechanism for model rollouts is better than MBPO. We think this is because
the model-generate samples are all obtained through the model rollouts. If the initial samples of the model rollouts are
not in the state-action visitation distribution of the current policy, then even if the learned dynamics model is accurate, the
model-generate samples are helpless for policy learning. In addition, when the initial samples of the model rollouts are
sampled according to the adjusted historical policy mixture distribution, if the current dynamics model is not adapted to the
current policy, it will also make inaccurate predictions, thereby misleading policy learning. Therefore, model learning and
model rollout should be synergistic; that is, the training data for training the dynamics model and the initial samples of
model rollouts should obey the same distribution, so that the model prediction error can be minimized.
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C.2. Discussion of Policy-adaptation Rate

The experiment in this section is about the most crucial hyper-parameter of PMAC, the policy-adaptation rate. This
hyper-parameter determines how much the distribution of the historical policy mixture tilts towards the current policy.
We test different policy-adaptation rate rates in Hopper and find that 0.9 is the best rate. We think this is because, in the
model-based RL, the number of real samples obtained by each historical policy is very limited (1000 samples in both our
PMAC and MBPO implementations). If the policy-adaptation rate is low, the policy mixture distribution will be overly
inclined to the current policy. Therefore, it is difficult to learn a dynamics model that is accurate enough for the current
policy based only on these limited samples. Combined with our previous analysis, the distribution shift of adjacent policies
in the historical policy sequence is small, so we need to adjust the policy-adaptation rate appropriately to effectively use the
samples obtained from adjacent policies to learn the dynamics model.
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Figure 4: Ablation studies.

D. Implementation
D.1. Implementation Details

We implement PMAC based on the PyTorch-version MBPO (Liu et al., 2020). We also set the ensemble size of PMAC
to be the same as MBPO, which is 7. The warm-up samples are collected through interaction with the real environment
for 5000 steps using a randomly chosen policy. After the warm-up, we train the dynamics model and update the lifetime
weight every 250 interaction steps. We set the policy-adaptation rate α to be 0.9. One thing that needs to be noticed is the
rollout horizon setting. As introduced in MBPO (Janner et al., 2019), the rollout horizon should start at a short horizon
and increase linearly with the interaction epoch. [a, b, x, y] denotes a thresholded linear function, i.e. at epoch e, rollout
horizon is h = min(max(x+ e−a

b−a (y − x), x), y). We set the rollout horizon to be the same as used in the MBPO paper, as
shown in Table 1. Other hyper-parameter settings are shown in Table 2. For AMPO1, MBPO2, PETS3, SAC4, and GEM5,
we use their open source implementations. We evaluate PMAC and other baselines on six MuJoCo-v2 continuous control
environments (Todorov et al., 2012) with a maximum horizon of 1000, including HalfCheetah, Hopper, Walker2d, Ant,
Humanoid, and Pusher. For Ant and Humanoid, we use the modified version introduced by MBPO (Janner et al., 2019). All
experiments are conducted using a single NVIDIA TITAN X Pascal GPU.

For the experiment of MaPER in Sec 5.3, we use their open-source code in the supplementary material on openreview
6. However, we find a bug in their code that comes from the PyTorch-version MBPO implementation, i.e., the same
environment is used for policy training and policy evaluation. This causes the rollout length to exceed the 1000-step limit
during evaluation, resulting in the performance of the policy being much higher than the 1000-step performance. We fix this

1 https://github.com/RockySJ/ampo
2https://github.com/Xingyu-Lin/mbpo pytorch
3https://github.com/kchua/handful-of-trials
4https://github.com/pranz24/pytorch-soft-actor-critic
5https://github.com/MouseHu/GEM
6 https://openreview.net/forum?id=WuEiafqdy9H

https://github.com/RockySJ/ampo
https://github.com/Xingyu-Lin/mbpo_pytorch
https://github.com/kchua/handful-of-trials
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/MouseHu/GEM
https://openreview.net/forum?id=WuEiafqdy9H
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Table 1: Rollout horizon settings for PMAC

Walker2d Hopper Huamnoid HalfCheetah Ant Pusher

1 [1, 15, 20, 100] [1, 25, 20, 300] 1 [1, 25, 20, 100] 1

Table 2: Hyper-parameter settings for PMAC

Parameter Value

Dynamics model ensemble size 7
Dynamics model layers 4
Actor and critic layers 3

Dynamics model hidden units 200
Actor and critic hidden units 256

Learning rate 3 · 10−4

Batch size 256
Optimizer Adam

Activation function RelU
Real sample buffer size 106

Model sample buffer size 106

Real sample ratio 0.05
Policy updates per environment step 20

Environment steps between model training 250

bug and conduct the experiment, so the results of MaPER are lower than those reported in their paper.

D.2. Experiment environments

We visualize the six MuJoCo continuous control tasks we used in Figure 5 including Walker2d, Hopper, Humanoid,
HalfCheetah, Ant, and Pusher. The first five tasks aim to keep the agent moving forward without falling, and the last task,
Pusher, is designed to control the robotic arm to push the object to a fixed point.



Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy

(a) Walker2d (b) Hopper (c) Humanoid

(d) HalfCheetah (e) Ant (f) Pusher

Figure 5: Six MuJoCo-v2 continuous control tasks used in our experiment
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