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Abstract
In real-world scenarios, machine learning systems
often encounter continual distributional shifts due
to various factors in the test environment, result-
ing in unreliable predictions. Consequently, it is
crucial to develop a model that can robustly adapt
to the environment in an online manner. In this
work, we propose a method to meta-learn how
to guide unsupervised online adaptation, taking
into account the uncertainty of predictions. Typi-
cally, all unlabeled test samples are equally inte-
grated into online test-time adaptation. However,
samples with high uncertainty can negatively im-
pact the adaptation performance. Thus, we enable
the model to adaptively learn from test samples
by quantifying uncertainty during test-time on-
line adaptation. Our experimental results demon-
strate that our uncertainty-guided online adapta-
tion enhances both robustness and adaptation per-
formance during test-time on image classification
tasks experiencing distributional shifts.

1. Introduction
In real-world applications, distributional shifts during test-
time challenge the reliability of predictions in machine learn-
ing systems. Previous methods (Sun & Saenko, 2016; Li
et al., 2018; Tzeng et al., 2017; Sun et al., 2016) have con-
centrated on aligning feature distributions between labeled
source domains and unlabeled target domains, otherwise
known as unsupervised domain adaptation. However, these
methods require prior knowledge of the target distribution,
which limits their practicality.

In contrast, test-time adaptation methods hold the advan-
tage of not requiring target data during the training phase.
Existing techniques (Sun et al., 2020; Zhang et al., 2022)
generally depend on data augmentation methods. In addi-
tion, batch normalization (Li et al., 2016; Kaku et al., 2020;
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Nado et al., 2020; Schneider et al., 2020) and fine-tuning
strategies (Wang et al., 2020; Liang et al., 2020) are primar-
ily tailored for offline scenarios, and they lack effectiveness
in online applications where test data is accrued incremen-
tally (additional details can be found in the Appendix A.3).
Moreover, the practice of treating all unlabeled test sam-
ples equally during test-time adaptation can have adverse
effects, especially when considering the challenges posed
by samples with uncertain predictions.

We propose an innovative approach to unsupervised online
test-time adaptation that leverages both meta-learning and
uncertainty estimation. Our goal is to enable the model
to robustly adapt to distributional shifts in an online man-
ner during test time by taking prediction uncertainty into
account. We introduce a mechanism that selectively incor-
porates test samples during online adaptation by quantifying
and utilizing their prediction uncertainty.

In summary, our work tackles the problem of distribu-
tional shifts by employing a meta-learning framework that
facilitates uncertainty-guided online test-time adaptation.
Through the integration of uncertainty estimation, we em-
power the model to adaptively use test samples during on-
line adaptation, thereby enhancing its robustness and perfor-
mance in real-world scenarios.

2. Preliminaries
In this section, we define our problem setting and describe
an adaptive model for domain generalization by provid-
ing an explanation of the objective of Adaptive Risk Mini-
mization. In this section, we establish our problem setting
and describe an adaptive model for domain generalization,
providing a comprehensive explanation of the objective of
Adaptive Risk Minimization. In Section 3, we delve into
uncertainty measurement and present our strategy for under-
standing the context of inputs. Ultimately, in Section 4, we
empirically validate our methodology.

Problem setting We consider a classification problem
where x ∈ X represents the input data and y ∈ Y stands for
the output (target or label) data. The set of distributions on
X X is denoted as Px, and the set of joint distributions on
X × Y is denoted as Pxy. We sample a joint distribution
pxy ∼ Pxy and regard it as a domain defined by a specific
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Figure 1. Overall procedure: The context vector c̃t extracted from the input image xt is updated based on the uncertainty weight ut (i.e.,
context update ct). To measure the uncertainty, we employ predictive entropy, approximating the posterior predictive distribution by
averaging the softmax output, denoted as ỹk.

dataset or a user. Consequently, the distribution Pxy en-
compasses all potential domains. Under suitable regularity
conditions (Kallenberg & Kallenberg, 1997), pxy can be
decomposed into pxy = px · py|x, where py|x represents the
conditional probability distributions of y given x. In our
problem setting, we initially assume that a single underlying
distribution pxy exists during test-time. We then define our
objective as enabling our model to adapt to the distribution
pxy by solely experiencing samples from px without any
label information, and to maximize expected performance in
an online setting during test-time (i.e.,unsupervised online
adaptation).

Adaptive Risk Minimization (ARM) To achieve our ob-
jective of test-time adaptation, we first employ an adaptive
model f that incorporates both the input data x and the
marginal input distribution px from which x is sampled.
This model is designed to adapt its prediction for x by uti-
lizing px. In practice, it can be challenging to have direct
knowledge of the marginal input distribution px and utilize
it effectively. To address this challenge, Zhang et al. (2021)
propose an approximation method. Rather than having full
access to px, this approach initializes the model f with a
batch of K input samples x1, ..., xK , which are assumed
to be sampled from the same distribution px. The model f
then makes predictions based on this batch, serving as an
empirical approximation (e.g., a histogram) p̂x of the true
marginal distribution px. Based on this approach, the Adap-
tive Risk Minimization (ARM) framework (Zhang et al.,
2021) was proposed to train the adaptive model f , which
can effectively manage domain shifts. It comprises two
modules: (1) the context model h(·;ϕ) : XK → Rd, which
extracts a context feature c, and (2) the prediction model
g(·, ·; θ) : X × Rd → Y , which makes a prediction based
on the context feature c. These models are parameterized by
θ and ϕ, respectively. The context model h

(
{xk}Kk=1;ϕ

)
aims to approximate the marginal input distribution px with
a batch of samples from it and extract the corresponding
context feature c. In turn, the prediction model g(x′, c; θ)
generates a prediction based on the extracted context in an

adaptive manner. The ARM objective can be defined as:

min
θ,ϕ

EPxy

[
Epxy

[
1

K

K∑
k=1

ℓ (g (xk, c; θ) , yk)

]]
,

where the overall risk is computed over all possible domains
pxy ∼ Pxy. Moreover, a batch of K samples is treated as
a single episode sampled from a given domain pxy. The
objective can then be optimized within the meta-learning
framework by utilizing multiple episodes. For a detailed
explanation of a meta-learning approach to optimize the
ARM objective, please refer to Appendix D.

3. Method
When a batch of K samples is given, the context model h
in ARM approximates the marginal input distribution px by
extracting context features from them. To accomplish this, it
first separately processes each sample xk in the batch to ex-
tract a sample-level context feature vector ck = h̃(xk;ϕ). A
set of context feature vectors ckk = 1K is then aggregated
into a single context feature c using an average (pooling)
operation: c = 1

K

∑
k = 1Kck. This is often referred to

as context aggregation, the goal of which is to provide an
adapted context to the prediction model g. However, this ap-
proach is somewhat impractical in real-world scenarios, as
it assumes that in each episode a batch of multiple samples
is simultaneously and identically provided at test-time. To
address this limitation, we modify this approach by leverag-
ing a cumulative sum to effectively handle different batch
sizes and improve robustness in online scenarios, which are
more realistic than batch settings at test-time.

With a cumulative sum, we continually accumulate sample-
level context feature vectors in an online manner, denoted
as:

ck = ck−1 + h̃(xk;ϕ),

where the initial context c0 = 0 ∈ Rd is zero-initialized or
can be learned as additional trainable parameters. This en-
ables the ARM framework to extend the adaptation problem
to more realistic settings, where samples are provided in an
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online manner during test-time, such as in streaming or on-
line settings. Consequently, each prediction g(xk, ck, θ) is
conditioned on the context feature ck, which is solely based
on the experienced samples xk′k′≤k. Since the scale of
the context feature ck can proportionally increase with the
number of experienced samples k, we apply Layer Normal-
ization (Ba et al., 2016) to normalize its scale and stabilize
the learning procedure. In summary, this modified approach
enables the adaptive model to handle a wider range of online
and few-shot scenarios, more akin to real-world situations,
during meta-training in the ARM framework, thus leading
to more robust learning.

3.1. Uncertainty-Guided Context Aggregation

We need a model that can adapt to a target (test) domain
while only using unlabeled samples in an online setting.
To achieve this, it’s crucial to minimize the influence of
unknown samples that may negatively impact overall per-
formance. For instance, if a given sample, denoted as xk, is
uncertain due to its noisiness or if it comes from a different
source distribution (i.e.,domain), it can adversely affect the
overall performance by erroneously accumulating in the
context feature.

To alleviate this issue, we utilize predictive entropy as a
measure of uncertainty (Gal et al., 2017; Nair et al., 2020)
to adaptively guide the procedure of accumulating context
from the experienced samples. For each sample, predictive
entropy measures the information in the model’s categorical
predictive distribution. It is defined as the negative sum
of probabilities weighted by their logarithms, i.e.,H(p) =
−
∑

j pj log pj .

To correctly estimate the entropy and utilize it as a
measure of uncertainty, we adopt a two-step process in-
spired by Gal & Ghahramani (2016) using Dropout lay-
ers. First, we approximate the posterior predictive distri-
bution p̃(y|xk, ck−1), where the context feature ck−1 in-
cludes context from samples xk′k′<k. This is done by av-
eraging the predictive distribution computed by softmax
outputs p(y|xk, ck−1, θ) = softmax (f(xk, ck−1; θ)) ob-
tained from T Monte Carlo samples with different Dropout
masks θtTt=1 sampled from the Dropout distribution q(θ).

More precisely, our approximate posterior predictive distri-
bution is given by:

p̃(y|xk, ck−1) =

∫
p(y|xk, ck−1, θ)q(θ)dθ

≈ 1

T

T∑
t=1

softmax (f(xk, ck−1; θt)) .

Based on this approximated distribution, we estimate its
entropy and convert it into a measure of uncertainty for a

given sample xk as:

uk = e−β·H(p̃(y|xk,ck−1))

where β is a trainable positive value. Subsequently, we use
this measure to adaptively guide the context aggregation as:

ck = ck−1 + uk · h̃(xk;ϕ),

where the context aggregation assigns less weight when the
prediction of a given sample is uncertain and vice versa.
This aggregation method allows the adaptive model to han-
dle uncertain samples effectively, minimizing their impact
on its overall performance.

4. Experiments
4.1. Datasets and Evaluation protocol

Rotated MNIST. In our study, we examine a variant of
the MNIST dataset known as Rotated MNIST. The images
in this dataset are rotated in 10-degree increments, span-
ning from 0 to 130 degrees. Each rotation is considered
a distinct domain. We have limited training data for the
smaller domains, with only 108 data points for rotations of
120 and 130 degrees, and 324 points for rotations between
90 and 110 degrees. The overall training set comprises
32,292 points. During testing, we generate images from the
MNIST test set using various rotations and measure both
the worst-case and average accuracy across domains.

Federated Extended MNIST (FEMNIST). We analyze
the FEMNIST dataset, an extension of the EMNIST dataset
that includes handwritten uppercase and lowercase letters,
as well as digits (Cohen et al., 2017). FEMNIST further
provides metadata indicating the user who generated each
data point (Caldas et al., 2018). In our approach, we treat
each user as a separate domain. To evaluate the performance
of various methods, we measure both the worst-case and av-
erage accuracy across 35 test users. These users are distinct
from the training users, which ensures a fair evaluation.

Online Scenarios In Figure 2 and Table 2, each episode
refers to a scenario in which one sample arrives. The length
of an episode is 50, which corresponds to the batch size
used during training. The context feature vector accumu-
lates within the episode. These episodes occur within the
same domain, and the presented plots represent averaged
results across different domains and three distinct seeds. In
Clean episodes, no noise is present in any of the samples.
Conversely, Always episodes contain salt-and-pepper noise
in all samples. In Cycle episodes, there is a sequence of ten
normal samples followed by three noisy instances, which
then repeats.
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(a) Average Accuracy (MNIST, Cycle) (b) Average Accuracy (MNIST, Always)

(c) Average Accuracy (FEMNIST, Cycle) (d) Average Accuracy (FEMNIST, Always)

Figure 2. Comparison of Average Accuracy in Online scenarios

MNIST FEMNIST

Method WC Avg WC Avg

ERM 74.5 ± 1.4 93.6 ± 0.4 62.4 ± 0.4 79.1 ± 0.3

UW 80.3 ± 1.2 95.1 ± 0.1 65.7 ± 0.7 80.3 ± 0.6
DRNN 79.9 ± 0.7 94.9 ± 0.1 57.5 ± 1.7 76.5 ± 1.2
DANN 78.8 ± 0.3 94.9 ± 0.1 65.4 ± 1.0 81.7 ± 0.3
MMD 82.4 ± 0.9 95.3 ± 0.3 62.4 ± 0.7 79.8 ± 0.4

BN adaptation 78.0 ± 0.3 94.4 ± 0.1 65.7 ± 1.5 80.0 ± 0.5
TTT 81.1 ± 0.3 95.4 ± 0.1 68.6 ± 0.4 84.2 ± 0.1

ARM 88.0 ± 0.8 96.3 ± 0.4 70.9 ± 1.4 86.4 ± 0.3
ARM (cusum) 88.1 ± 0.3 96.7 ± 0.1 71.8 ± 0.2 86.2 ± 0.0
Ours 91.0 ± 0.3 97.2 ± 0.1 73.5 ± 1.5 87.8 ± 0.2

Table 1. There are four categories of methods based on their use
of components: none, training domains only, test batches only,
or both training domains and test batches. These categories are
separated by horizontal lines. The worst-case (WC) and average
(Avg) top-1 accuracy across all datasets for three separate runs of
each method are reported in terms of means and standard errors.

4.2. Comparisons and ablations

We compare our methods against robustness, invariance, and
adaptation baselines including ERM, UW, DRNN (Sagawa
et al., 2019), DANN (Ganin & Lempitsky, 2015), MMD
(Li et al., 2018), BN adaptation (Ioffe & Szegedy, 2015;
Schneider et al., 2020; Bronskill et al., 2020; Nado et al.,
2020), TTT (Sun et al., 2020), and ARM (Zhang et al.,
2021). ARM (cumsum) represents the result of using only
the cumulative sum without measuring uncertainty. In other
words, the uncertainty for all samples is set to zero. In the
context aggregation, all samples carry the same weight of 1.
More details can be found in Appendix C.

Method Type MNIST FEMNIST

ARM (Offline)
Clean 96.3 ± 0.4 86.4 ± 0.3
Cycle 90.5 ± 0.2 74.9 ± 0.1

Always 52.5 ± 1.9 32.7 ± 4.5

ARM (Online)
Clean 95.3 ± 0.1 83.7 ± 0.1
Cycle 89.1 ± 0.4 73.6 ± 0.4

Always 50.7 ± 1.6 30.5 ± 4.3

Ours (Online)
Clean 97.2 ± 0.1 87.8 ± 0.2
Cycle 94.3 ± 0.5 78.3 ± 0.4

Always 79.3 ± 3.8 39.0 ± 2.0

Table 2. Comparison with ARM according to the scenario and
noise episode.

4.3. Quantitative evaluation and comparisons

Our method in Table 1 excels in offline scenarios, surpass-
ing other worst-case and average accuracy methods, where
batch samples can be accessed simultaneously. It’s signif-
icant to note that our approach was mainly intended for
demanding online situations.

In general, methods that prioritize robustness and invariance
may lead to unsatisfactory performance. While techniques
like BN adaptation and TTT are widely recognized for their
effectiveness in addressing image corruption, adaptations
involving angles or users as domains do not yield favor-
able results. Our method and ARM rely less on favorable
inductive biases yet consistently deliver superior results.

As shown on the left side of Figure 2, the ARM method dis-
plays notably weaker performance during the initial stages
of an episode when there are limited samples available. This
decline is further accentuated by its significant underperfor-
mance compared to ERM. In contrast to the ARM method,
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our model demonstrates robust performance. Remarkably,
our proposed model exhibits the ability to identify the oc-
currence of periodic incoming noise.

When looking at Figure 2, it is clear that the model’s uncer-
tainty level increases when there is noise, as shown by the
green line. In the Always episode, as the episodes became
consistently noisy and more noise samples accumulate, the
uncertainty decreased. These results demonstrate that our
model effectively handles challenging scenarios.

5. Conclusion
Our research focuses on addressing distributional shifts and
enhancing model reliability for uncertainty measurement in
testing scenarios. The empirical results validate the efficacy
of our uncertainty-guided online adaptation approach in
handling distributional shifts. Future work should prioritize
overcoming architectural limitations in prediction models
and exploring alternative approaches to diverse datasets.
Additionally, improving uncertainty measurement with out-
of-distribution samples is crucial. By addressing these areas,
we can advance the reliability and performance of machine
learning systems in real-world scenarios.
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A. Related Work
A.1. Domain Adaptation

Unsupervised domain adaptation (UDA) (Patel et al., 2015) is a technique that helps improve the performance of a target
model when there is a discrepancy between the labeled source domain and the unlabeled target domain. During adaptation,
UDA methods try to align the feature distributions between the two domains using discrepancy losses (Tzeng et al., 2014;
Long et al., 2015; Sun & Saenko, 2016; Li et al., 2018) or adversarial training (Ganin & Lempitsky, 2015; Tzeng et al.,
2017), or by aligning the input space (Fernando et al., 2013; Gopalan et al., 2013; Sun et al., 2016). This requires the
assessment of the target distribution. In other words, DA assumes that the density function p(x) is already known during
training, which is often impractical for real-world applications.

A.2. Test-time Adaptation

Test-time adaptation methods are different from UDA methods as they do not require source data for adaptation. Some
previous studies have used generative models to align features when source data is unavailable (Li et al., 2020; Kurmi et al.,
2021; Yeh et al., 2021). However, anticipating diverse and challenging test distributions in advance can be difficult, limiting
the generalization performance (Hoffman et al., 2012; 2014; 2018). Other methods, such as TTT (Sun et al., 2020), MEMO
(Zhang et al., 2022; Jiang & Lin, 2023), and Fleuret et al. (2021), rely on image augmentation techniques, but these may not
be applicable or effective for modalities like text and audio (Li et al., 2021).

Instead of seeking consistent features across domains, some methods perform fine-tuning using batches or entire datasets of
test inputs. Batch normalization (BN) adaptations (Li et al., 2016; Kaku et al., 2020; Nado et al., 2020; Schneider et al.,
2020) compute BN statistics on the test set, while others, like Iwasawa & Matsuo (2021), update only the final classification
layer using class prototypes during test-time. Techniques like TENT (Wang et al., 2020) and SHOT (Liang et al., 2020)
minimize entropy and employ diversity regularization to improve adaptation performance. In a Bayesian perspective, Zhou
& Levine (2021) propose a regularized entropy minimization procedure that requires approximating density during training.

However, these methods are primarily designed for offline scenarios where all test data is available for training, which is not
practical for online applications where test data is acquired incrementally over time.

A.3. Online Test-time Adaptation (OTA)

Online test-time adaptation refers to the scenario where test samples are received incrementally, either one by one or in
small batches, rather than having access to all test samples simultaneously. In traditional online learning (Shalev-Shwartz
et al., 2012; Hazan et al., 2016), the learning algorithm receives a test sample, predicts its label, and then receives the true
label from an oracle to minimize regret. However, in OTA, true labels are not available during testing, rendering the concept
of regret irrelevant. Consequently, in OTA, the learning algorithm must account for uncertainty since there is no direct
feedback from the environment. Considering uncertainty enables the model to adapt and make informed decisions without
relying on true labels. It is worth noting that the term online learning can have different interpretations outside the context
of learning theory, leading to potential confusion or ambiguity (Sun et al., 2020).

A.4. Meta learning

Meta-learning is a powerful approach within machine learning that enables models to learn new tasks effectively by learning
algorithms that can adapt and generalize to different domains. While most research in meta-learning has focused on few-shot
learning (Finn et al., 2017; Nichol et al., 2018; Snell et al., 2017), a growing interest lies in extending meta-learning to
tackle domain shift challenges. The Adaptive Risk Minimization (ARM) framework is a notable methodology that tackles
domain shift (Zhang et al., 2021). By employing meta-learning paradigms, ARM focuses on unlabeled adaptation tasks and
specifically addresses distribution shifts. However, ARM approaches are not designed to effectively learn from the source
data when provided with limited target examples.

A.5. Uncertainty Quantification

In contrast with traditional deep learning models that produce deterministic predictions, Bayesian deep learning (Neal,
2012; Blundell et al., 2015; Kendall & Gal, 2017) is a popular approach that incorporates prior knowledge and expresses
uncertainty in model predictions, especially in cases involving domain-shift or out-of-distribution samples. Although
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mathematically rigorous, conventional Bayesian methods for deep learning have yet to be widely utilized in applications due
to implementation challenges and lengthy training times.

Prior works in UDA (Silver & Mercer, 2002; Lee et al., 2013; Yin et al., 2019; Hu et al., 2021) have used deep ensembles for
uncertainty quantification, while source-free DA scenarios have utilized feature augmentation and label mixup probabilisti-
cally (Qiao & Peng, 2021). Laplace approximation was applied in USDA (Roy et al., 2022), but Kronecker-factorization
was assumed for large numbers of classes.

Gal & Ghahramani (2016) introduced a simpler approach to uncertainty estimation in deep learning, by training a dropout
network and taking Monte Carlo (MC) samples of the prediction using dropout at test time. This approach produces an
approximation of the posterior of the network’s weights. In computer vision, this manner of modeling uncertainty has
demonstrated improved performance in standard scene understanding networks without additional parameterization (Kendall
& Gal, 2017). Therefore, while our framework can accommodate various uncertainty measurement methods, we adopt MC
dropout due to its ease of implementation and minimal assumptions that could compromise domain adaptation.

B. Additional Experimental Details
We conducted our tests using various computing clusters equipped with NVIDIA RTX 3090 GPUs, allocating one GPU for
each experiment. To ensure reliable results, we performed multiple runs for each method using three different seeds and
reported the mean and standard error across these runs. The training hyperparameters were meticulously chosen based on
preliminary experiments, with a focus on optimizing validation accuracy.

In our experiments, we followed a similar setup as described in the work by Zhang et al. (2021). We provide detailed
information on how we constructed the dataset splits. These splits were designed independently of the training, validation,
and test accuracies of any method. The design decisions were made intuitively, such as preserving the original data splits
for MNIST or randomly, such as selecting users for different splits in FEMNIST. In some cases, we chose disjoint sets of
corruptions with mostly different types for specific purposes.

Table 2 and Figure 2 display the results for the Cycle and Always noise episode, where the noise level is 10% salt-and-pepper
noise. However, for FEMNIST, the noise level is set to 5%.

B.1. Rotated MNIST details

We create a training set comprising 32,292 data points by using 90% of the original training set. To construct this set, we
sample and apply random rotations to each image. The rotations are independent of the image or label, but certain rotations
are less frequently sampled. Specifically, rotations from 0 to 20 degrees (inclusive) have 7,560 data points each, rotations
from 30 to 50 degrees have 2,160 points each, rotations from 60 to 80 degrees have 648 points each, rotations from 90 to
110 degrees have 324 points each, and rotations from 120 to 130 degrees have 108 points each.

We conducted training for all models over 200 epochs using mini-batches of size 300. Our optimization approach involved
Adam updates with a learning rate of 0.0001, momentum of 0.9, and a cosine scheduler. To introduce an additional level
of mini-batching similar to the ARM method, we adjusted the batch dimensions to 6 × 50, where each inner mini-batch
contained examples from the same rotation. The image dimensionality remained at 28 × 28 × 1, and we normalized the
inputs by dividing them by 256. Convolutional neural networks were employed across all methods, with varying depths, to
ensure fairness in terms of parameters.

In our evaluation process, we monitored validation accuracy every ten epochs. For each rotation, we estimated validation
accuracy by randomly sampling 300 points from the held-out original training set and applying the specific rotation. This
estimation procedure mirrored the test evaluation, which randomly sampled 3,000 test points and applied a specific rotation.

The network architecture consisted of two convolution layers with 128 filters of size 5 × 5, followed by 4 × 4 average
pooling. Additionally, there was a fully connected layer of size 200 and a linear output layer. ReLU nonlinearities were
used throughout the network, and batch normalization (BN) was applied to the convolution layers. Dropout layers were
added after the ReLU activation in all layers, while the two convolution layers utilized 2 × 2 max pooling. Regarding the
context network, it comprised two convolution layers with 64 filters of size 5 × 5, incorporating ReLU nonlinearities, BN,
and padding. It was then followed by a final convolution layer with 12 filters of size 5 × 5 and padding.
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B.2. FEMNIST details

Compared to MNIST, FEMNIST (as well as EMNIST) poses greater challenges due to its larger label space (62 classes
compared to 10), label imbalance (with digits accounting for nearly half of the data), and inherent ambiguities (such as
distinguishing lowercase and uppercase ”o”). In our dataset processing, we filtered out users with fewer than 100 examples,
resulting in 262, 50, and 35 unique users and a total of 62,732, 8,484, and 8,439 data points in the training, validation, and
test splits, respectively. The most minor users contain 104, 119, and 140 data points, respectively.

With regard to the hyperparameters and evaluation process, we followed the same settings as for rotated MNIST, except for
one modification: we set the meta batch size to 2. As for the network architectures, they remained unchanged, except for
instances where the context network’s last layer consisted of only one filter with a size of 5 × 5.

C. Comparisons Details
Empirical risk minimization (ERM) is a standard deep network training approach that aims to minimize the average loss
on the training data. Up-weighting (UW) approach is an extension of ERM where groups are up-weighted to follow a
uniform distribution. Distributionally robust neural networks (DRNN) (Sagawa et al., 2019) is a state-of-the-art method,
which uses distributional regularization to build robust neural network models for group shifts. Domain-Adversarial Neural
Networks (DANN) (Ganin & Lempitsky, 2015) is a method that utilizes a domain discriminator to learn domain-invariant
representations. Maximum Mean Discrepancy (MMD) (Li et al., 2018) is a statistical measure used to quantify the difference
between two distributions, often utilized in domain adaptation and domain generalization to minimize the distribution
discrepancy across different domains.

BN adaptation refers to the process of updating the batch normalization statistics on the target data during testing, based on
the approach introduced by Ioffe et al. (Ioffe & Szegedy, 2015), as further developed and discussed in the works (Schneider
et al., 2020; Bronskill et al., 2020; Nado et al., 2020). Test-Time Training (TTT) is a method that involves the joint training of
supervised and self-supervised tasks on the source domain, and during testing, it continues training only the self-supervised
task on the target domain, as proposed by Sun et al. (Sun et al., 2020).

Adaptive Risk Minimization (ARM) (Zhang et al., 2021) is a domain generalization method that adapts to unseen domains by
using context variables to capture domain-specific information and improve adaptation performance.

D. Optimizing the ARM objective via Meta-Learning
Unlabeled adaptation and meta-learning have traditionally been studied separately. However, the ARM framework (Zhang
et al., 2021) integrates meta-learning tools to address domain shift problems, distinguishing it from previous meta-learning
approaches focused on non-adaptive generalization performance (Li et al., 2017; Dou et al., 2019; Qiao et al., 2020). These
earlier methods aimed to meta-train models for generalization across given training domains, while the ARM framework
extends existing meta-learning techniques to effectively handle domain shift.

In our study, we adopt this framework. Algorithm 1 presents a comprehensive meta-learning approach for optimizing the
ARM objective. As described earlier, the function h generates context variables c using an unlabeled batch of data (line 5).
This mimics the adaptation process during testing, where label availability is not assumed (lines 7-8). However, the training
update itself relies on labeled data (line 6). We assume that h is differentiable with respect to its input parameters θ and ϕ,
allowing us to utilize gradient updates on both θ and ϕ to optimize the model’s post-adaptation performance on a mini-batch
of data sampled from a specific domain ρ.
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Algorithm 1 Meta-Learning for ARM
// Training Phase

Require: # training steps T , batch size K, learning rate η
1: Initialize: θ, ϕ
2: for t = 1 to T do
3: Sample ρ uniformly from training domains
4: Sample (xk, yk) ∼ p(·, ·|ρ) for k = 1 to K
5: c← h(θ, x1, . . . , xK ;ϕ)

6: (θ, ϕ)← (θ, ϕ)− η∇(θ,ϕ)

∑K
k=1 ℓ(g(c, xk; θ), yk)

7: end for
// Test time adaptation Phase

Require: θ, ϕ, test batch x1, . . . , xK

8: c′ ← h(θ, x1, . . . , xK ;ϕ)
9: ŷk ← g(c′, xk;ϕ) for k = 1, . . . ,K


