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Abstract

Prompt learning is an effective means of fine-tuning multi-modal foundation models such
as CLIP. Despite existing success, the inner mechanism of multi-modal prompt learning
has not been well understood. In this work, we identify an inductive bias of multi-modal
prompt learning, which we refer to as view bias, that the learned prompts may extract only
a partial subset of useful features (views) and ignore others. This bias can undermine the
model’s generalization ability, particularly under distribution shifts. We further observe that
independently trained prompts have distinct view biases, contrary to the existing belief that
they may converge to similar local optima due to having the same cross-modal representation
matching objective. Based on our observations, we propose Multi-modal Matching Multi-
Prompt Learning (M3PL), which incorporates multiple paired prompts and a cross-modal
contrastive regularizer that facilitates the prompt pairs to encapsulate a broader spectrum of
views. Extensive experiments show that M3PL effectively boosts the model’s generalization
capability, achieving state-of-the-art performance under various distribution shifts.

1 Introduction

Recent advancements in Vision-Language pre-trained Models (VLMs) such as CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) have demonstrated impressive open-vocabulary generalization capabilities
across various downstream tasks (Li et al., 2022b; Ramesh et al., 2022; Tevet et al., 2022). However, the
large scale of VLMs and the scarcity of high-quality training data often make fine-tuning the entire model
costly. In response, prompt learning, which appends additional, learnable continuous vectors (prompts)
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Figure 1: (Left) Zero-shot performance of CLIP ViT-B/16 on EuroSAT after few-shot fine-tuning on Ima-
geNet. Existing prompt learning methods compromise the original generalization capability of CLIP. (Mid-
dle) The distribution of predicted labels for misclassified images on EuroSAT of three independently trained
prompts with nearly identical ID test accuracies. Different prompts exhibit distinct predictive distributions.
(Right) An illustration of view bias of different prompts. Each prompt only learns a partial set of OOD-
useful features and thus can only solve certain OOD tasks but not all of them.

to VLMs while keeping pre-trained weights intact, has emerged as an efficient alternative for fine-tuning
VLMs (Zhou et al., 2022b; Khattak et al., 2023b; Lu et al., 2022; Khattak et al., 2023a; Zhou et al., 2022a).

Although previous prompt learning methods (Zhou et al., 2022b;a) have significantly enhanced the in-
distribution (ID) performance of the fine-tuned models, their improvements in out-of-distribution (OOD)
settings are still limited. In particular, on datasets where both image and text exhibit substantial distri-
bution shifts, existing prompt-based methods may even underperform zero-shot CLIP. As an example, in
the EuroSAT (Helber et al., 2019) satellite dataset, existing methods reduce the OOD accuracy of CLIP by
0.07% to 7.40% after few-shot fine-tuning on ImageNet (Deng et al., 2009), as shown in Figure 1 (left).

Why do existing prompt learning methods reduce OOD robustness? To answer this question, it is necessary
to analyze what is actually learned by prompts and how it relates to generalization. In existing work, it
is believed that what is learned by prompts is roughly uniquely determined by the training data and the
prompt learning objective (Chen et al., 2023). However, through an empirical study of the mistakes made
by independently trained prompts in OOD settings, we challenge this belief. In particular, we observe
that prompts with nearly identical ID accuracies can make very different OOD mistakes. For example, as
illustrated in Figure 1 (middle), a set of learned prompts with almost the same ID performance exhibits
distinct incorrect image predictions. This phenomenon implies that prompts optimized under the same
conditions may converge to different local optima, where the model use different features for prediction. As
will be detailed in Section 4, similar phenomena also manifest in many datasets with distribution shifts.

To investigate the inner mechanism of the above phenomenon, we need to first characterize the learned
features of multi-modal prompts. However, the existing analysis is also limited in this direction: to our
knowledge, the most relevant work is by Oymak et al. (2023), which studies uni-modal instead of multi-modal
prompt learning. Moreover, they focus on analyzing the roles of the attention mechanism in prompt learning
without characterizing the learned features of the prompts. To overcome this limitation, we theoretically
analyze multi-modal prompt learning under a structured feature model. Compared to the work by Oymak
et al. (2023), our analysis draws inspiration from recent studies on the feature learning process of neural
networks (Allen-Zhu & Li, 2023; Shah et al., 2020) and analyzes the interaction between prompts and inputs
in different modalities. Through our analysis, we show that (1) prompt learning can be viewed as a feature
selection process that selects pre-trained features to match visual and textual representations on downstream
tasks, and (2) due to the multi-solution nature of the feature selection schemes, prompts may only select
a subset of useful features (views), which we term as view bias. For ID data, since the features useful for
prediction are often redundant (Guyon & Elisseeff, 2003), view bias does not impact test performance much
and may even mitigate overfitting. However, in OOD scenarios where not all features useful in ID data are

2



Published in Transactions on Machine Learning Research (09/2024)

still predictive, view bias can lead to the lack of predictive features, thus limiting the generalization ability.
This is consistent with our empirical observation that prompts with different OOD mistakes can still achieve
similar ID accuracies. Please see Figure 1 (right) for an illustration.

Based on the analysis, we propose a principled Multi-modal Matching Multi-Prompt Learning (M3PL)
method to mitigate the adverse effect of view bias in OOD generalization. The main idea of M3PL is to
aggregate different views from multiple independently optimized multi-modal prompt pairs. Leveraging
the fact that independently trained prompt pairs tend to have different view biases, M3PL can obtain
a diverse and rich collection of useful views through aggregation, hence improving generalization under
distribution shifts. However, ensembling multiple prompt pairs may also lead to view redundancy that can
harm generalization. To mitigate this problem, we further introduce a cross-modal contrastive regularizer to
facilitate distinct views for different prompts, which also enhances the model’s OOD robustness. Empirically,
on the cross-dataset setting with distribution shifts in both visual and textual domains, M3PL achieves a 3.5x
increase over previous methods in OOD accuracy gains over zero-shot CLIP, and significantly outperforms
prior methods in terms of a complementary OOD performance measure named effective robustness ratio.

In summary, our main contributions are three-fold:

• We identify a failure mode in existing prompt learning methods under large distribution shifts caused
by view bias, which provides new insights into analyzing the generalization of prompt learning.

• We theoretically analyze multi-modal attention-based prompt learning, which explains the view bias
phenomenon and lays a foundation for future analysis.

• We propose a theoretically grounded and minimally constrained prompt learning framework, M3PL,
which achieves state-of-the-art performance in average test accuracy and effective robustness ratio
across three common OOD generalization settings.

2 Related Work

Vision-language pre-trained models and downstream task adaptation. Vision-Language pre-
trained Models (VLMs) have achieved remarkable performance in few-shot and zero-shot recognition tasks
by leveraging large-scale image-text paired training data to align vision and text representations (Li et al.,
2021; Jia et al., 2021; Radford et al., 2021; Kim et al., 2021). Supported by the expressive power of language,
VLMs gain an understanding of open-world visual concepts, enabling them to adapt to various applications,
including object detection and segmentation (Li et al., 2022a; Xu et al., 2022; Gu et al., 2022; Li et al.,
2022b), image generation (Ramesh et al., 2022; Patashnik et al., 2021), action recognition (Tevet et al.,
2022; Wang et al., 2021), etc. While VLMs provide generalizable representations, how to efficiently adapt
them to downstream tasks remains an important challenge. Prior work has proposed parameter-efficient tun-
ing methods based on CLIP, including adapter-based (Gao et al., 2023; Zhang et al., 2022) and prompt-based
methods (Zhou et al., 2022b;a). Our work introduces a multi-modal multi-prompt learning framework that,
while maintaining parameter-efficiency during adaptation, enhances the robustness of the adapted models.

Prompt learning. Prompt learning originated in the NLP domain. Early methods used expert knowledge
to manually construct prompts, also known as prompt engineering (Brown et al., 2020; Petroni et al., 2019).
Later, Jiang et al. (2020); Shin et al. (2020) proposed to automatically search for templates, and Li &
Liang (2021); Tsimpoukelli et al. (2021); Liu et al. (2023); Lester et al. (2021) extended the search to the
continuous representation space. Recently, prompt learning has been introduced to vision tasks. Jia et al.
(2022) incorporated learnable prompts in vision models. CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a) add a learnable single prompt in the language branch of CLIP. MaPLe (Khattak et al., 2023a) extends
this approach to both vision and language branches. PromptSRC (Khattak et al., 2023b) incorporates self-
regularization into the prompt learning process. ProDA (Lu et al., 2022) and PLOT (Chen et al., 2023)
learn multiple prompts only in the language branch; ProDA assumes a Gaussian distribution for prompts,
while PLOT employs a two-stage optimization strategy based on local features and optimal transport theory.
Unlike these methods, M3PL does not require modifying the objective or assuming a parameter distribution,
enabling the learning of diverse prompts in a simpler and minimally constrained manner. Wang et al. (2023)
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attempts to utilize multiple soft text prompts and fine-tune a linear classifier on them, while our M3PL
adopts the CoOp paradigm of optimizing the prefix of the prompt. On the theoretical side, there is little
work analyzing prompt learning, even outside the multi-modal setting. The recent work by Oymak et al.
(2023) analyzes the role of attention in prompt learning. However, their analysis focuses on the single-modal
setting and considers a simplified attention model where learnable tokens are only appended to queries but
not keys and values, which deviates from the multi-modal prompt learning practice.

3 Preliminaries

This section briefly reviews the prompt learning framework based on CLIP, which our method is built upon.
Empirically, we can also apply our method to other image-text pre-trained backbones such as SigLIP (Zhai
et al., 2023) in a similar fashion. Here we only focus on CLIP for simplicity.

CLIP architecture. CLIP comprises both an image encoder and a text encoder and performs zero-shot
classification by matching the visual representation with different textual representations corresponding to
different labels. Our implementation is based on CLIP with Vision Transformer (ViT) (Dosovitskiy et al.,
2021) as its image encoder. Concretely, denote CLIP’s image encoder as f and text encoder as g, with
parameters denoted by θf and θg, respectively. Both encoders consist of L multi-head self-attention layers.
In the vision branch, the input image X is initially divided into N fixed-size patches {x1, . . . , xN }. Next, this
patch sequence is embedded as tokens {z1, . . . , zN } and concatenated with a learnable classification token z0

cls
to form the input sequence Z0 = {z0

cls, z0
1 , . . . , z0

N } of the first multi-head self-attention layer. Similarly, we
denote Zi = {zi

cls, zi
1, . . . , zi

N } as the input sequence for the (i + 1)-th layer. Finally, the classification token
zL

cls from the output of the L-th transformer layer is mapped to a d-dimensional vector in CLIP’s aligned
representation space, serving as the visual representation v = f(Z0; θf ) ∈ Rd. In the language branch, the
label is concatenated with a fixed template, such as “a photo of {label}”, to serve as input. This input is
then tokenized and embedded to form the input text token sequence W0 = {w0

SOS, w0
1, . . . , w0

K , w0
y, w0

EOS}
(assuming the template has K tokens), where w0

y represents the token corresponding to the class label.
Similar to the vision side, the wL

SOS from the output of the L-th transformer layer is mapped to a d-
dimensional vector, serving as the textual representation t = g(W0; θg) ∈ Rd.

CLIP for image classification. For classification, assuming a set of C candidate class labels {y1, . . . , yC},
the probability of a CLIP-based model predicting the label as yk is then given by:

p(ŷ = yk | X) = exp(cos(v, tk)/τ)∑C
i=1 exp(cos(v, ti)/τ)

(1)

where cos(·, ·) denotes the cosine similarity, τ is a temperature parameter, v is the output of the input image,
and tk represents the textual representation corresponding to label yk.

Prompt learning based on CLIP. We employ the basic method of Independent Vision-Language Prompt-
ing (IVLP) (Rasheed et al., 2023) to elucidate the fundamental principles of prompt learning. At the input
layer, Nv and Nt learnable tokens serve as visual and textual prompts, denoted by p0

v and p0
t , respectively.

In the vision branch, p0
v is concatenated directly with Z0, while in the language branch, p0

t replaces the cor-
responding tokens in W0, resulting in new input sequences Z̃0 = {p0

v, Z0} and W̃0 = {w0
SOS, p0

t , w0
y, w0

EOS}.
Given a prompt depth J , prompts will be added to the first J layers of the transformer. At the i-th
layer, the input sequences are Z̃i−1 = {pi−1

v , Zi−1} and W̃i−1 = {wi−1
SOS, pi−1

t , wi−1
y , wi−1

EOS}. Note that
the output tokens at the positions of the previous layer’s prompts are replaced with new learnable tokens
added in the subsequent layer. Ultimately, we obtain the visual and textual representations denoted by
ṽ = f(Z̃0; θf , {pi

v}J−1
i=0 ) and t̃ = g(W̃0; θg, {pi

t}J−1
i=0 ), respectively. During training, the pre-trained parame-

ters θf and θg are frozen and only the learnable prompts are optimized.

4 Empirical Evidence of View Bias

This section details the experimental settings and main observations in our empirical study in Section 1 and
presents additional evidence of the view bias problem in more datasets.
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Figure 2: Visualization of attention heatmaps of different prompts on test images in ImageNet and three
different target datasets. Different prompts focus on varying regions of the images, with significant differences
in the attention distribution. All prompts are learned using identical training data.

Table 1: Relative average Jenson-Shannon (JS) divergence of the predicted label distributions of different
prompts. A larger value indicates greater disparity. We also report the relative average JS divergence
(compared to the JS divergence on the EuroSAT dataset without M3PL) between the aggregated prompts
trained with different initializations using our proposed M3PL method.
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Average JS Divergence 1.043 0.520 0.590 0.850 0.254 1.470 0.358 0.516 1.000 0.579 0.718
+ M3PL(Ours) 0.364 0.091 0.079 0.155 0.031 0.303 0.055 0.083 0.117 0.144 0.142

∆ -65% -83% -87% -82% -88% -79% -85% -84% -88% -75% -80%

Experimental settings. For the prompt learning method, we employ the baseline IVLP (Rasheed et al.,
2023) as described in Section 3. Following standard experimental settings (Zhou et al., 2022b; Rasheed et al.,
2023), we train a CLIP ViT-B/16 (Radford et al., 2021) on ImageNet in a few-shot fashion, by randomly
sampling 16 images per class in training. Under identical training conditions (using the same few-shot
training data on ImageNet and hyperparameters), we independently optimize a set of prompt pairs with
differences only in their random Gaussian initialization.

Main results. As illustrated in Figure 1 (middle), although all trained prompts achieve nearly identical
ImageNet (ID) test accuracy, their label prediction distributions of misclassified images on the EuroSAT
dataset (OOD) exhibit significant differences. For instance, the first prompt tends to misclassify samples
as “Highway or Road” whereas the third prompt tends to categorize them as “Permanent Crop Land.”
This phenomenon implies that prompts optimized under identical conditions can converge to different local
optima, resulting in the divergence in their prediction distributions when significant distribution shifts occur.

The ubiquity of view bias. To show that view bias also exists in datasets other than EuroSAT, for every
dataset, we compute its Jenson-Shannon (JS) divergence (relative to EuroSAT) between independently-
trained prompts’ predicted label distributions for misclassified images. As shown in Table 1, the average
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JS divergence on most datasets is comparable to EuroSAT, implying the generality of the observation in
Figure 1. As another piece of empirical evidence of view bias, we present attention heatmaps of different,
independently-trained prompts on the source dataset ImageNet and three distinct target datasets including
EuroSAT, Flowers102 (Nilsback & Zisserman, 2008), and StanfordCars (Krause et al., 2013). As shown in
Figure 2, the heatmaps of different prompts indeed capture a diverse range of views. Concretely, different
prompts exhibit significantly varied attention distributions in both ID and OOD scenarios. For example,
on the ImageNet dataset, various prompts focus on different aspects: some on the whole object, some on
specific parts of the object, and others on the background areas which may serve as potential cues for
classification. Similarly, in the StanfordCars dataset, different prompts highlight different parts of the cars,
such as headlights, wheels, and windshields, while some capture more background information.

Discussion on possible extensions to larger VLMs. While our main empirical investigations are re-
stricted to CLIP, we expect similar findings may also be obtained in larger models. In particular, a large
number of existing VLMs such as LLaVa (Liu et al., 2024), MiniGPT-4 (Zhu et al., 2023) and Instruct-
BLIP (Dai et al., 2023) directly leverage CLIP and its derivatives as image encoders. It has been shown
that fine-tuning those image encoders can lead to worse OOD performance (Karamcheti et al., 2024), similar
to our empirical observation that the OOD accuracy can drop after prompt learning. We thus envision
that our results may be extended to those VLMs, but leave rigorous investigations as future work due to
computation constraints. Empirically, we also apply our method to SigLIP (Zhai et al., 2023) and observe
similar performance gains as to CLIP (see Section 6.7).

5 Analysis and Methodology

In this section, we theoretically analyze multi-modal prompt learning with the representation matching
objective and characterize the features learned by multi-modal prompts. First, by investigating the role of
the softmax-attention mechanism in prompt learning, we show that the representation matching objective
can be decomposed into complementary terms that isolate the feature selection effect of visual and textual
prompts (Section 5.1). Then, we analyze the innate multi-solution nature of prompt learning under a linear
feature model and further relate this to view bias and OOD generalization failure (Section 5.2). Motivated
by our analysis, we then introduce the M3PL framework, showing that the view bias of single prompt pair
can be mitigated by aggregating the output of multiple prompt pairs (Section 5.3), and further propose a
cross-modal contrastive regularizer to facilitate the learning of more diverse views in different prompt pairs
(Section 5.4).

5.1 Prompt Learning as Feature Selection

Self-attention model. We begin our analysis by introducing a model of single-head self-attention, which
serves as a primary building block of transformers. Concretely, let Zin = (z0, . . . , zN )⊤ ∈ R(N+1)×d0 be the
input sequence of the self-attention layer with z0 being the representation token (zcls on the vision branch
and wEOS on the language branch). The output of the layer is then defined as

Zout = ϕ
(
ZinWQW ⊤

K Z⊤
in

)
ZinW , (2)

where WQ ∈ Rd0×m, WK ∈ Rd0×m and W ∈ Rd0×d are model weights, and ϕ is a softmax nonlinearity that
acts row-wise when taking into a matrix as input. We consider the case where the weights WQ ∈ Rd0×m,
WK ∈ Rd0×m, and W ∈ Rd0×d have been pre-trained and keep frozen during prompt learning. The final
representation v ∈ Rd is then mapped from the representation token in Zout, given by its first row:

v⊤ = ϕ
(
z⊤

0 WQW ⊤
K Z⊤

in
)

ZinW . (3)

Multi-modal prompt learning. For simplicity, we consider appending a single learnable prompt token

p ∈ Rd0 to the raw input Zin: let Z̃in =
[

p⊤

Zin

]
∈ R(N+2)×d0 be the new input. The new representation for

classification is then given by

ṽ⊤ = ϕ
([

z⊤
0 WQW ⊤

K p z⊤
0 WQW ⊤

K Z⊤
in

]) [
p⊤W
ZinW

]
. (4)
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Our main observation here is that ṽ is a weighted mixture of the raw input Zin and the prompt p. In other
words, ṽ takes the form of

ṽ = ηv + (1 − η)W ⊤p, (5)

where the weighting coefficient η is obtained by expanding and reweighting the original softmax-attention
map in Eq. (3), with its concrete form detailed in Appendix B.1. In multi-modal prompt learning, both
vision branch and language branch have their learnable prompts. To avoid confusion, in what follows we
shall use v(ṽ) and t(t̃) to denote visual and textual representations, respectively. For other parameters, we
will use subscripts “v” and “t” to denote if they belong to vision branch or language branch.

Feature selection effect of prompts. We then introduce the common representation matching objective
in multi-modal prompt learning. For a C-way classification problem with training distribution D, multi-
modal prompt learning aims to minimize

LCE = E(Zin,y)∼D

[
− log exp(sim(ṽ, t̃y)/τ)∑C

i=1 exp(sim(ṽ, t̃i)/τ)

]
, (6)

where for every label y ∈ {1, . . . , C}, t̃y denotes the textual representations of y, and sim(·, ·) : Rd ×Rd → R
is a similarity measure. In practice, sim(·, ·) is often the cosine similarity as in Eq. (1). In our analysis, we
assume sim(·, ·) to be the inner product ⟨·, ·⟩. Note that inner-product and cosine similarity are equivalent
if we normalize the representations before calculating the loss. In practice, normalizing the representations
often results in comparable classification performance to using unnormalized representations (Radford et al.,
2021). We consider a binary classification setting with y ∈ {−1, 1} and τ = 1. This allows us to derive a
cleaner form of the loss function that reveals the role of multi-modal prompts, which is formally shown by
Proposition 1.
Proposition 1 (Objective decomposition). Under the conditions stated above, we have

LCE = E(Zin,y)∼D log
(

1 + exp
{

ηv(ηt,y − ηt,−y)⟨W ⊤
t pt, v⟩︸ ︷︷ ︸

(1)

+ (1 − ηv)⟨ηt,−yt−y − ηt,yty, W ⊤
v pv⟩︸ ︷︷ ︸

(2)

+ (1 − ηv)(ηt,y − ηt,−y)⟨W ⊤
t pt, W ⊤

v pv⟩︸ ︷︷ ︸
(3)

+ ηv⟨ηt,−yt−y − ηt,yty, v⟩︸ ︷︷ ︸
(4)

})
,

(7)

where ηv denotes the weighting coefficient in the vision branch, and ηt,y denotes the weighting coefficient in
the language branch for class y ∈ {−1, 1}.

Proof. The complete proofs of Proposition 1 and the following propositions are deferred to Appendix B.

Remarks. Proposition 1 shows that the multi-modal prompt learning objective can be decomposed into
terms that reflect the similarity between (1) the textual prompt and the visual representation, (2) the
visual prompt and the textual representation, (3) visual and textual prompts, and (4) visual and textual
representations. In particular, the first two terms can be viewed as a feature selection mechanism that allows
the model to emphasize the task-related features in both visual and textual representations by adjusting pt

and pv. This also justifies the advantage of multi-modal prompts as it makes the model expressible enough to
accommodate distribution shifts in both vision and text domains, which we empirically verify in Secion 6.6.

5.2 View Bias and OOD Generalization

Multi-solution property of prompt learning. Given Proposition 1, our key insight on multi-modal
prompt learning is that minimizing LCE can lead to multiple representation matching schemes that give
similar training risks, resulting in the observed view bias of different prompts. As an example, given input
Zin from a class y ∈ {−1, 1}, we assume that each input token zi for i ∈ {0, . . . , N} is a linear combination
of a set of orthogonal, unit-norm features fj , j ∈ {1, . . . , l} with each feature fj ∈ Rd. Similar assumptions
are common in analyzing the feature learning process of neural networks, and prior work has shown that it
can capture many practical feature learning characteristics (Allen-Zhu & Li, 2023; Zhang et al., 2024). For
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simplicity, we assume that there are no “useless” features, i.e., every feature is correlated with the label on
D. Then, due to Eq. (3), we can write v as also a combination of those features: v =

∑l
j=1 βjfj for some

random variable βj ∈ R depending on distribution D and pre-trained weights. Hence, by Eq. (7) we have
that matching pt and v by pushing W ⊤

t pt along the direction of any feature fi that correlates with the label
y can reduce the training risk LCE. We note that the crux of the above argument exploits the inner-product
term between multi-modal representations. Our analysis can thus be extended to other loss functions with
inner-product terms such as the sigmoid loss used by SigLIP (Zhai et al., 2023).

Given the multi-solution nature of the objective, how the finally learned prompt pt correlates with each
feature fi cannot be uniquely determined by the training distribution D and the loss function LCE, but is
also determined by the concrete process of optimization, where the inductive biases of the neural network
and gradient descent play a critical role. We will detail this next.

View bias in feature learning. Recently, several works (Allen-Zhu & Li, 2023; Zhang & Bottou, 2023)
show that independent neural networks with the same architecture trained by gradient descent can converge
to different optima that each extracts only a subset of useful features. This phenomenon also relates to the
simplicity bias of neural networks (Shah et al., 2020), i.e., neural networks may prefer “simple” solutions,
such as using only a subset of useful features for classification, over “complex” solutions, such as using all
useful features. In our prompt learning setting, such a bias corresponds to ⟨fj , W ⊤

t pt⟩ ≠ 0 holding for only
j ∈ S with S being a subset of {1, . . . , l}, which we name view bias. Empirically, we show that such a view
bias indeed holds in practice in Section 4. Yet, rigorously proving it is challenging due to the requirement
of analyzing fine-grained gradient descent dynamics, which we leave as future work.

While view bias may benefit in-distribution generalization by serving as an implicit regularization, Proposi-
tion 2 formally shows that it can adversely harm generalization under certain distribution shifts.
Proposition 2 (View bias can harm generalization). Under the conditions stated above, consider a test
distribution D′ satisfying ED′|y=1βj = ED′|y=−1βj for every j ∈ S and ED′|y=1βj ̸= ED′|y=−1βj for every
j ∈ S′ with S′ ⊆ {1, . . . , l} \ S. Assume that the weighting coefficients satisfy ηt,1 = ηt,−1. We then have

Pr(Zin,y)∼D′
[
⟨v, t̃y⟩ > ⟨v, t̃−y⟩

]
= Pr(Zin,y)∼D′ [⟨v, ty⟩ > ⟨v, t−y⟩]. (8)

Remarks. Proposition 2 reflects a distribution shift scenario where only a feature subset S′ remains useful
in the test distribution D′. In an extreme case, if this useful subset S′ does not overlap with the feature
subset S extracted by prompt learning, then prompt learning would essentially lead to no improvement in
test accuracy since no additional useful feature is properly conditioned during prompting. To make matters
worse, when the learned features S have spurious correlations with labels (Simon, 1954; Schölkopf et al., 2021)
or contain large noise, over-reliance on those features by prompt learning may even decrease distributional
robustness. This is consistent with our empirical observations that in some cases, prompt learning does not
improve the performance of CLIP under large distribution shifts and sometimes even decreases it.

5.3 M3PL: Multiple Prompt Pairs and View Aggregation

Motivated by the above analysis, this section proposes M3PL that aims to mitigate the intrinsic flaw of view
bias in prompt learning by introducing multiple, paired multimodal prompts and aggregating their views.

Incorporating multiple prompt pairs. Specifically, building upon the vanilla prompt learning approach
in Section 3, for each layer in the first J layers of CLIP’s vision branch, we introduce M sets of learnable
prompts, denoted as pv,1 = {pj

v,1}J−1
j=0 , . . . , pv,M = {pj

v,M }J−1
j=0 . Symmetrically, in the language branch, we

also add M sets of learnable prompts in the first J layers denoted by pt,i for i ∈ {1, . . . , M}. For each i, we
treat the visual prompt set pv,i and the textual prompt set pt,i as a prompt pair. The input sequences for
the i-th prompt pair and the j-th layer in the vision and language branches are then given by

Z̃j
i = {pj

v,i, Zj}, W̃ j
i = {wj

SOS, pj
t,i, wj

y, wj
EOS}. (9)

Paired representation matching with multiple prompts. In the forward process, we obtain visual
and textual representations for all prompt pairs, given by ṽi = f(Z̃0

i ; θf , pv,i) and t̃i = g(W̃ 0
i ; θg, pt,i) for

8
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Figure 3: The M3PL framework. We introduce multiple paired visual and textual prompts and jointly
optimize each prompt pair using representation matching (Section 5.3). Meanwhile, we randomly sample
from the multiple prompt representations corresponding to each example for contrastive regularization to
further enhance the learning of more diverse prompts (Section 5.4). We use superscripts to denote the indices
of prompt pairs in the figure for visual clarity.

the i-th prompt pair. During training, we sum the representation matching loss for every prompt pair:

Lmatch =
M∑

i=1
E(X,y)∼D

[
− log exp(cos(ṽi, t̃y,i)/τ)∑C

y′=1 exp(cos(ṽi, t̃y′,i)/τ)

]
, (10)

where for each y ∈ {1, . . . , C}, t̃y,i denotes the textual representation corresponding to the label y for the
i-th prompt pair. During inference, we average the prediction logits obtained from all prompt pairs.

Exploiting view bias by aggregating different views. The key intuition of our approach is that as
we empirically observe in Figures 1 and 2, independently trained prompts tend to have distinct view biases.
Hence, aggregating them naturally results in a richer collection of useful features. Formally, Proposition 3
demonstrates that if independently optimized prompts extract independent feature subsets, then aggregating
them by simply averaging their representation matching scores can benefit OOD generalization.
Proposition 3 (Effectiveness of aggregating multiple views). Under the same conditions as in Proposition 2,
consider M prompts that each independently extracts a feature subset Si, i ∈ {1, . . . , M} with |Si| = s and
the elements in each Si uniformly drawn from {1, . . . , l}. We then have

Pr(Zin,y)∼D′

[
M∑

i=1
⟨v, t̃y,i⟩ >

M∑
i=1

⟨v, t̃−y,i⟩

]
> Pr(Zin,y)∼D′ [⟨v, ty⟩ > ⟨v, t−y⟩] (11)

with probability at least 1 − Θ
( (

l−|S′|
l

)sM
)

.

Remarks. Proposition 3 assumes a scenario where different prompts learn independent views, while only
some of them remain useful in OOD data. Since we cannot determine which views are useful solely based on
ID data, simply aggregating all of them seems to be a fair approach as adopted by M3PL. Yet, such aggre-
gation may also induce redundant views, which is indeed observed in our experiments (see Appendix C.4.1).
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Thus, it would be more efficient to actively incentivize different prompts to learn more diverse views. In the
next section, we propose cross-modal contrastive regularization to achieve this goal.

5.4 Cross-Modal Contrastive Regularization

To further enhance the diversity of the learned views of different prompts, we introduce a cross-modal
contrastive regularization penalty. The main idea is to maximize the representation difference between
different prompt pairs while matching the representations in the same prompt pair. Concretely, given
a batch of B examples {(X1, y1), . . . , (XB , yB)}, for every example, we randomly sample a prompt pair
{pv,r(i), pt,r(i)}, where r(i) ∈ {1, . . . , M} denotes the prompt pair index for the i-th example in the batch.
We then calculate the cross-model contrastive regularization penalty by

Lcontrast =
B∑

i=1

[
− log

exp(cos(ṽi,r(i), t̃yi,r(i))/τ)∑B
k=1 exp(cos(ṽi,r(i), t̃yk,r(k)/τ)

− log
exp(cos(ṽi,r(i), t̃yi,r(i)/τ)∑B

k=1 exp(cos(ṽk,r(k), t̃yi,r(i)/τ)

]
, (12)

Our overall training objective is then given by:

L = Lmatch + λLcontrast, (13)

where λ > 0 is the balancing coefficient.

Explanation on contrastive regularization. Contrastive loss aims to pull positive examples together
and push negative examples apart. Here, we treat the visual and textual representations of the same input
with the same prompt pair as positive examples and all other cases as negative examples. In other words,
representations with different prompts would become negative examples and are thus pushed apart, even
for the same input. This relates to the effect of “class collision” that have been observed in the contrastive
learning literature (Goyal et al., 2023). However, instead of mitigating this effect, we actively leverage it to
encourage different prompt pairs to learn more diverse views. We empirically verify this in Secion 6.6.

6 Experiments

6.1 Protocols for Evaluating Generalization Performance

In prompt learning, the average accuracy on OOD test sets is commonly used to evaluate a model’s gen-
eralization performance (Zhou et al., 2022a; Khattak et al., 2023a;b). However, Taori et al. (2020) points
out that OOD accuracy is insufficient to reflect the accuracy drop under distribution shifts after fine-tuning.
And Miller et al. (2021) finds through large-scale experiments that there is a strong correlation between
a model’s OOD and ID performance, suggesting that improvements in OOD accuracy cannot be entirely
attributed to the fine-tuning methods. Instead, it may simply be due to better fit on the ID distribution.
Therefore, to comprehensively evaluate the generalization performance of prompt learning methods, we pro-
pose the effective robustness ratio, inspired by Taori et al. (2020), as a complementary metric to average
OOD accuracy. Its expression is as follows:

ρ(f) = accood(f) − accood(f0)
accid(f) − accid(f0) (14)

where f0 is the zero-shot CLIP, f is the fine-tuned model, and accood(·) denotes the average OOD accuracy.

Discussion on effective robustness ratio. This metric measures the relative accuracy drop under dis-
tribution shifts for the fine-tuned model compared to the pre-trained CLIP. Generally, ρ(f) ≤ 0% indicates
that the model has overfitted to the ID distribution. For ρ(f) ∈ (0%, 100%), the larger ρ(f), the smaller the
compromise of fine-tuning methods on the generalization ability of CLIP and the greater the generalization
ability. In particular, when the ID and OOD distributions are nearly identical, ρ(f) approaches 100%.

10
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6.2 Experimental Settings

Base-to-new generalization. This setting validates the model’s capacity to generalize unseen classes
during fine-tuning. We equally divided the classes of each dataset into new and base sections. After training
on base classes, the model is directly zero-shot tested on new classes.

Cross-dataset generalization. To verify the generalization performance of our method when both the
vision and language modalities distributions shift during testing, we fine-tune the model on ImageNet and
then conduct zero-shot testing directly on other downstream datasets.

Domain generalization. Unlike the previous settings, which exhibit significant distribution shifts in both
vision and language modalities, DG shows distribution shifts only in the vision modality and is not the main
focus of our method. Nonetheless, our proposed M3PL still achieves comparable performance in the DG
setting, slightly surpassing previous prompt-based algorithms. Details are provided in Appendix C.3.3.

Implementation details. Following MaPLe (Khattak et al., 2023a), we employ the ViT-B/16 based CLIP
as the backbone. We use a few-shot setting that samples 16 shots per class and report the results averaged
over three runs. For M3PL, we use a normal distribution with a mean of zero to randomly initialize the
prompts, and increase the variance with the number of prompts (M) to ensure diversity. In our experiments,
we set M to 8. Due to the use of Lcontrast, we use a larger batch size while reducing the training iterations
to compensate for the computation overhead. Since ProDA lacks an official implementation, we report the
results in Derakhshani et al. (2023) for the Base-to-New setting. For other baselines, we reproduce the results
based on the provided hyperparameters. Please refer to Appendix C.1 for additional training details.

Datasets. For cross-dataset generalization and from base-to-new generalization settings, we follow the
protocols of Zhou et al. (2022a;b); Khattak et al. (2023a) and consider 11 recognition datasets, including
ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) for generic recognition, OxfordPets (Parkhi
et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard
et al., 2014) and FGVCAircraft (Maji et al., 2013) for fine-grained classification, SUN397 (Xiao et al., 2010)
for scene classification, DTD (Cimpoi et al., 2014) for texture recognition, EuroSAT (Helber et al., 2019) for
satellite image recognition, and UCF101 (Soomro et al., 2012) for action recognition .

Baselines. We use zero-shot CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), ProDA (Lu et al., 2022), MaPLe (Khattak et al., 2023a), and PromptSRC (Khattak et al., 2023b).

6.3 Base-to-New Generalization

In the generalization from base to new classes, shifts in both modalities occur due to partial observations
during fine-tuning. In Table 2, M3PL demonstrates superior performance across all average metrics on 11
datasets, comprising base and new class test accuracy, harmonic mean accuracy, and effective robustness
ratio. In tests on new classes, M3PL consistently outperforms the state-of-the-art PromptSRC in 9/11
datasets, improving the average accuracy by 1.05% without compromising base class accuracy. It is worth
mentioning that on the larger-scale dataset ImageNet, M3PL surpasses PromptSRC by 1.13% in zero-shot
new class test accuracy. Full results are detailed in Appendix C.3.1.

6.4 Cross-Dataset Generalization

Table 3 illustrates that M3PL substantially improves both the average zero-shot test accuracy and the
effective robustness ratio in the cross-dataset generalization setting with shifts in both vision and language
modalities. Compared to zero-shot CLIP, existing methods only achieve a modest increase of 0.61% in
average accuracy, whereas M3PL realizes a substantial improvement of 2.16%. Even excluding the superior
performance on the EuroSAT dataset, where accuracy increased by 9.12% compared to zero-shot CLIP, M3PL
still demonstrates an average accuracy gain of 1.39%. Against the state-of-the-art PromptSRC, M3PL excels
in 8/10 target datasets, boosting the effective robustness ratio by 2.8 times without markedly affecting ID
performance. These results highlight the exceptional robustness of our framework in handling distribution
shifts. Full results are detailed in Appendix C.3.2.
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Table 2: Comparison with previous methods in base-to-new generalization. All baselines are reproduced
with reported parameters. HM and ρ(f) refer to harmonic mean and effective robustness ratio, respectively.

Dataset Zero-shot CLIP CoOp CoCoOp ProDA MaPLe PromptSRC M3PL(Ours)
Base 69.48 82.29 80.49 81.56 82.00 84.18 84.90
New 74.28 68.78 72.04 72.30 74.88 75.76 76.81
HM 71.80 74.93 76.03 76.65 78.28 79.75 80.65

Average on
11 datasets

ρ(f) - -43% -20% -16% 5% 10% 16%
Base 72.37 76.47 75.93 75.40 76.87 77.80 77.72
New 68.10 67.50 70.13 70.23 70.73 70.60 71.73ImageNet
HM 70.17 71.71 72.91 72.72 73.67 74.03 74.60
Base 97.22 98.10 97.80 98.27 97.93 98.10 98.45
New 94.21 93.20 93.00 93.23 95.23 94.03 94.25Caltech101
HM 95.69 95.59 95.34 95.68 96.56 96.02 96.30
Base 91.23 94.53 95.03 95.43 95.60 95.33 95.85
New 97.20 95.80 97.73 97.83 98.00 97.27 98.15OxfordPets
HM 94.12 95.16 96.36 96.62 96.79 96.29 96.99
Base 63.69 75.60 70.73 74.70 72.40 78.13 79.07
New 74.92 70.03 72.50 71.20 73.67 75.37 74.03StanfordCars
HM 68.85 72.71 71.60 72.91 73.03 76.73 76.47
Base 71.70 97.53 94.43 97.70 96.10 98.17 98.17
New 77.52 71.30 70.63 68.68 72.87 77.37 75.72Flowers102
HM 74.50 82.38 80.81 80.66 82.89 86.54 85.50
Base 90.07 89.50 90.57 90.30 90.83 90.63 90.85
New 91.17 88.90 91.27 88.57 92.03 91.47 92.08Food101
HM 90.62 89.20 90.92 89.43 91.43 91.05 91.46
Base 27.55 38.67 35.33 36.90 36.17 42.27 42.88
New 35.93 29.80 31.07 34.13 34.87 37.43 39.11FGVCAircraft
HM 31.19 33.66 33.06 35.46 35.51 39.70 40.91
Base 69.38 81.20 79.37 78.67 80.97 82.77 82.84
New 75.58 70.43 76.23 76.93 78.30 78.50 78.85SUN397
HM 72.35 75.43 77.77 77.79 79.61 80.58 80.80
Base 53.13 79.67 76.93 80.67 80.47 82.97 83.91
New 60.27 49.37 54.67 56.48 58.40 59.57 61.75DTD
HM 56.48 60.96 63.92 66.44 67.68 69.35 71.14
Base 56.98 88.97 87.10 83.90 91.07 92.70 96.72
New 63.74 56.00 61.87 66.00 72.83 73.17 77.94EuroSAT
HM 60.17 68.74 72.35 73.88 80.94 81.79 86.32
Base 70.99 85.00 82.13 85.23 83.57 87.10 87.40
New 78.47 64.20 73.30 71.97 76.73 78.57 81.29UCF101
HM 74.54 73.15 77.46 78.04 80.00 82.62 84.23

Table 3: Comparison with previous methods in the cross-dataset generalization. All baselines are reproduced
with reported parameters. M3PL shows a significant improvement in the effective robustness ratio.
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Zero-shot CLIP 66.68 93.31 89.10 65.51 70.73 85.88 24.66 62.60 44.09 48.40 67.59 65.19 -
CoOp 71.63 93.73 88.27 63.63 68.70 85.63 19.27 64.60 41.63 48.33 67.37 64.12 -22%
CoCoOp 71.20 94.43 90.60 64.83 71.03 86.13 23.23 67.20 45.87 41.00 68.50 65.28 2%
MaPLe 70.40 93.53 90.03 64.90 71.93 85.97 23.77 66.67 45.03 44.87 67.47 65.42 6%
PromptSRC 71.37 93.37 90.30 65.70 70.43 86.47 23.57 67.43 45.83 45.43 69.50 65.80 13%

M3PL(Ours) 71.11 93.94 90.88 66.35 72.26 86.56 24.23 67.65 45.61 57.52 68.45 67.35 49%
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Table 4: Ablation on each component of M3PL framework in the cross-dataset generalization setting.
Method ID Acc. Average OOD Acc. ρ(f)
Zero-shot CLIP 66.68 65.19 -
Independent V-L Prompting (IVLP) 71.16 65.22 1%
+ textual multi-prompts 71.00 66.15 22%
+ visual multi-prompts (w/o matching) 70.99 66.64 34%
+ visual multi-prompts 70.95 66.87 39%
+ Lcontrast (w/o collision) 70.96 66.82 38%
+ Lcontrast 71.11 67.35 49%

6.5 Performance Analysis

While the empirical evidence in Section 4 implies the prevalence of view bias in prompt learning, our proposed
M3PL algorithm, which leverages view bias, yields varying degrees of improvement across different datasets
in the cross-dataset generalization setting. This section provides an in-depth analysis of this phenomenon.

Theoretical interpretation. As shown by Proposition 1, minimizing the representation matching objective
can be viewed as implementing a feature selection mechanism for both visual and textual pre-trained features.
Hence, the degree of improvement of M3PL on a specific dataset depends on not only prompt learning but
also the overall quality and adaptability of CLIP’s pre-trained features and features that are learnable in
downstream ID data. For example, if pre-trained features are not predictive or the downstream ID data
lacks predictive features under distribution shifts, prompt learning may not improve the OOD performance
much.

Empirically, to examine the quality and adaptability of pre-trained and ID features, we design two com-
plementary metrics. (1) Informativeness: the generalization potential of CLIP’s pre-trained features on
a specific target dataset, measured by the average performance of zero-shot CLIP and the linear probe on
CLIP’s features on this dataset. (2) Transferability: the distributional similarity between target datasets
and ImageNet, measured by the average of the cosine similarity between visual and textual representations
of examples from the two datasets. We then examine the linear relationship between those metrics and
M3PL’s performance gains compared to zero-shot CLIP. More details are provided in Appendix D.

Results. On the EuroSAT dataset, where CLIP’s pre-trained features’ capability and the visual-textual joint
distribution similarity are both high, only M3PL fully realizes the above theoretical potential. Conversely,
on the FGVCAircraft dataset, both metrics are lower, resulting in poor prompt learning performance. Nev-
ertheless, M3PL still performs best among existing prompt-based methods. Performance on other datasets
can also be explained by these two metrics. For a detailed analysis, refer to Appendix D.3.

Reduction in JS Divergence. Moreover, we report in Table 1 the relative average JS divergence between
the predicted label distributions of aggregated prompts trained with different random seeds and initializa-
tions using M3PL. Comparing it to the results without M3PL, we observe that the average JS divergence
significantly decreases in all datasets, with an average reduction rate of 80%. This further demonstrates
the effectiveness of M3PL in mitigating the view bias problem.

6.6 Ablation Study

Effectiveness of M3PL. As shown in Table 4, the baseline IVLP, impaired by view bias, shows negligible
improvement in term of OOD accuracy over zero-shot CLIP. In contrast, integrating multiple prompts
significantly enhances OOD accuracy (rows 2-4), supporting our theoretical analysis in Section 5.3. The
incorporation of visual prompts further improves model performance (rows 3-4), corroborating our analysis
of the multi-modal prompt learning objective in Section 5.1. The introduction of the matching design in
Lmulti (row 4) proves more effective than scenarios where interplay exists among different prompt pairs (row
3). In addition, without Lcontrast, the OOD accuracy of M3PL is already 1.68% higher than CLIP, indicating
that it effectively exploits view bias and enhances generalization under distribution shifts. Please refer to
Appendix C.4.1 for an ablation study on the number of prompts.
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Cross-modal contrastive regularization. In Table 4, we further delineate the contributions of our
proposed cross-modal contrastive regularization. Compared to scenarios with class collisions (row 6), avoiding
collisions (row 5) does not enhance generalization performance with the addition of the Lcontrast. This
observation aligns with our discussion in Section 5.4, indicating that our proposed regularization objective
effectively steers different prompts to learn diverse views, thereby improving OOD performance. We also
conducted additional ablation studies on the impact of the λ and batch size in Appendix C.4.2.

Figure 4: Ablation on the number of prompts in the cross-dataset generalization setting. The left
vertical axis represents the ID test accuracy on ImageNet, and the right vertical axis indicates the average
zero-shot OOD test accuracy across target datasets. The trends of ID accuracy and average OOD accuracy
with the number of prompts M (λ = 0) are depicted by curves with circular and square markers, respectively.

The number of prompts. Based on the ID and OOD performance with different numbers of prompts on
the held-out validation set, we set the number of prompts (M) to 8 in the experiments to achieve optimal
OOD accuracy while maintaining satisfactory ID accuracy. Figure 5 presents the ID and OOD test accuracy
curves as M varies in the cross-dataset generalization setting. With an increase in M , ID accuracy initially
increases slightly but then decreases due to feature redundancy. In contrast, OOD accuracy significantly
improves first and then gradually declines. This behavior is attributed to the lack of view diversity when M
is small, and feature redundancy becomes dominant and causes performance degradation when M is large.

Computational overhead. MaPLe sets the prompt length for both visual and language branches to half
that of uni-modal prompt learning methods like CoOp, resulting in total floating-point operations (FLOPs)
comparable to CoOp (Khattak et al., 2023a). Following the same prompt length and depth settings as
MaPLe, the FLOPs of M3PL are approximately Mx those of CoOp. Since M3PL requires learning multiple
prompt pairs, it incurs a higher time cost. To address this, we reduce the number of training iterations,
ensuring that the total training time for M3PL is comparable to that of PromptSRC. Table 5 presents a
practical comparison between our M3PL and previous prompt learning methods in terms of training time
and inference speed. The training time for all methods is measured under the base-to-new generalization
setting, using a single Nvidia A100 GPU on the SUN397 dataset for complete training. Compared to the
state-of-the-art PromptSRC, our M3PL model reduces training time by approximately 5% when M = 8, but
at the expense of a 44% decrease in inference speed. Notably, as shown in Figure 5, with M = 4, M3PL
already achieves significant improvements over existing methods. Therefore, using fewer prompts can be an
option, which sacrifices part of generalization performance for a large increase in computational efficiency.

Comparison to temporal prompt aggregation in PromptSRC. Please refer to Appendix C.4.3.

Prompt length and depth. Please refer to Appendix C.4.4.
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CoOp CoCoOp MaPLe PromptSRC M3PL (Ours, M = 8)

Training time (min) 8.52 56.23 6.17 22.85 21.77
Inference time (images/s) 323.1 19.0 328.2 329.7 183.4

Table 5: The practical training and inference time comparison with previous methods (M = 8).

6.7 More Results on SigLIP

We extend our experiments to the new state-of-the-art vision-language pre-training model, SigLIP (Zhai
et al., 2023), which uses pairwise sigmoid loss. The results demonstrate that M3PL similarly enhances the
generalization performance of fine-tuned SigLIP, validating the scalability and universality of our approach
as a robust prompt learning method for large multi-modal models. For detailed experimental results, please
refer to Appendix C.5.

7 Discussion

Limitations. M3PL adopts a straightforward aggregation strategy of averaging different prompts’ logit
scores. While being simple and empirically effective, this design choice may lead to suboptimal generalization
on specific OOD tasks due to feature redundancy. Additionally, our experiments are currently limited to
CLIP/SigLIP ViT-B/16 and visual recognition tasks, although we expect that our results may also hold for
other backbones as well.

Future work. The currently rapidly evolving test-time prompt tuning methods (Shu et al., 2022) could
potentially serve as an effective means to filter the optimal prompts learned by M3PL. Furthermore, our
method has the potential to extend to larger-scale VLMs and more diverse tasks. We hope that M3PL,
a theoretically grounded, highly scalable, and minimally constrained framework, will establish itself as a
universal baseline of regularized prompt learning methods and facilitate future research in this domain.

Broader Impact Statement

This work is devoted to developing more robust ways to fine-tune VLMs. Therefore, it may benefit the broad
research area of building machine learning models that are robust, generalizable, and trustworthy. However,
it may also inherit the negative societal impact of the original VLMs, such as potential misuse cases, biased
output, and privacy and security concerns.
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A Appendix

In the appendix, we provide additional supplementary information, including proofs of the theoretical deriva-
tions presented in the main text, further implementation details, comprehensive experimental results, addi-
tional ablation studies, and visualization outcomes. The specific organization of the appendix sections is as
follows:

• Proofs of Theoretical Results (Appendix B)

– Proof of Eq. (5) (Appendix B.1)
– Proof of proposition 1 (Appendix B.2)
– Proof of proposition 2 (Appendix B.3)
– Proof of proposition 3 (Appendix B.4)

• Additional Experiment Details (Appendix C)

– Implementation details (Appendix C.1)
– Datasets (Appendix C.2)
– Full results (Appendix C.3)
– Additional ablation study (Appendix C.4)

• Supplementary Experiments (Appendix D)

– Linear Probe Experiment (Appendix D.1)
– Datasets Representation Similarity Experiment (Appendix D.2)
– Multivariate Linear Regression (Appendix D.3)

B Proofs of Theoretical Results

B.1 Proof of Eq. (5)

Proof. Define αi = exp(z⊤
0 WQW ⊤

K zi)∑N

j=0
exp(z⊤

0 WQW ⊤
K

zj) ∀i ∈ {0, . . . , N}, αp = exp(z⊤
0 WQW ⊤

K p)∑N

j=0
exp(z⊤

0 WQW ⊤
K

zj) , and the weighting

coefficient η =
∑N

j=0
exp(z⊤

0 WQW ⊤
K zj)

exp(z⊤
0 WQW ⊤

K
p)+

∑N

j=0
exp(z⊤

0 WQW ⊤
K

zj) . Applying the definition of αi to Eq. (3) gives

v = W ⊤
N∑

i=0
αizi. (15)

Plugging the above equations into Eq. (4) then gives

ṽ = W ⊤
N∑

i=0
ηαizi + W ⊤ηαpp

= ηv + (1 − η)W ⊤p

(16)

as desired.

B.2 Proof of Proposition 1

Proof. Applying Eq. (5) to both vision and language branches gives

ṽ = ηvv + (1 − ηv)W ⊤
v pv (17)

and
t̃y = ηt,yty + (1 − ηt,y)W ⊤

t pt, ∀y ∈ {−1, 1}. (18)
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Recall that the cross-entropy loss with sim(·, ·) being the inner product, C = 2 and τ = 1 can be written as

LCE = E(Zin,y)∼D

[
− log exp(⟨ṽ, t̃y⟩))

exp(⟨ṽ, t̃y⟩) + exp(⟨ṽ, t̃−y⟩)

]
= E(Zin,y)∼D

[
− log

(
1 + exp(⟨ṽ, t̃−y⟩ − ⟨ṽ, t̃y⟩)

)]
,

(19)

where

⟨ṽ, t̃−y⟩ − ⟨ṽ, t̃y⟩
= ⟨ηvv + (1 − ηv)W ⊤

v pv, ηt,−yt−y − ηt,yty⟩ + ⟨ηvv + (1 − ηv)W ⊤
v pv, (ηt,y − ηt,−y)W ⊤

t pt⟩
= ηv⟨ηt,−yt−y − ηt,yty, v⟩ + ηv(ηt,y − ηt,−y)⟨v, W ⊤

t pt⟩
+ (1 − ηv)⟨ηt,−yt−y − ηt,yty, W ⊤

v pv⟩ + (1 − ηv)(ηt,y − ηt,−y)⟨W ⊤
v pv, W ⊤

t pt⟩.

(20)

Finally, plugging Eq. (20) into Eq. (19) completes the proof.

B.3 Proof of Proposition 2

Proof. Applying Eq. (5) to the language branch gives

t̃y = ηt,yty + (1 − ηt,y)W ⊤
t pt, ∀y ∈ {−1, 1}. (21)

Combining the above equation and

v =
l∑

j=1
βjfj , ∀y ∈ {−1, 1} (22)

yields that for every y,

⟨v, t̃y⟩ =
l∑

j=1
βj⟨fj , t̃y⟩

=
l∑

j=1
βj

(
ηt,y⟨fj , ty⟩ + (1 − ηt,y)⟨fj , W ⊤

t pt⟩
)

.

(23)

Since ⟨fj , W ⊤
t pt⟩ = 0 for every j /∈ S, we have for every y that

⟨v, t̃y⟩ = ηt,y

l∑
j=1

βj⟨fj , ty⟩ + (1 − ηt,y)
∑
j∈S

βj⟨fj , W ⊤
t pt⟩. (24)

Since for every j ∈ S, the random variable βj satisfies ED′|y=1βj = ED′|y=−1βj , we have for every y that

E(Zin,y)∼D′⟨v, t̃y⟩ = ηt,yE(Zin,y)∼D′

l∑
j=1

βj⟨fj , ty⟩ + C1

= ηt,yE(Zin,y)∼D′⟨v, ty⟩ + C1,

(25)

where C1 is a constant that does not depend on y. Using the assumption that ηt,1 = ηt,2) we then have

Pr(Zin,y)∼D′
[
⟨v, t̃y⟩ > ⟨v, t̃−y⟩

]
= Pr(Zin,y)∼D′ [ηt,y⟨v, ty⟩ + C1 > ηt,−y⟨v, t−y⟩ + C1]
= Pr(Zin,y)∼D′ [⟨v, ty⟩ > ⟨v, t−y⟩].

(26)

This completes the proof.
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Remark 1. In Proposition 2, we make the assumption that the coefficients ηt,1 and ηt,2 are equal in order to
simplify our analysis. However, in practice, this assumption may not hold since those coefficients also depend
on the pre-trained attention weights as well as the learned prompts. We posit that this discrepancy may
lead to the scenarios where single-prompt learning can also harm OOD generalization due to the overfitting
of ηt,y to the training distribution, as we empirically observed in the experiments.
Remark 2. In our analysis, the learnable prompts in the vision and language branches have a symmetric
structure. Therefore, the analysis in Proposition 2 can be directly extended to the setting where both the
vision and language branches have learnable prompts.

B.4 Proof of Proposition 3

Proof. Akin to the proof of Proposition 2, we have for every y that

⟨v, t̃y⟩ = ηt,y

l∑
j=1

βj⟨fj , ty⟩ + (1 − ηt,y)
∑
j∈S

βj⟨fj , W ⊤
t pt⟩. (27)

Proposition 2 indicates that for every i, if the i-th prompt extracts a feature subset Si, i ∈ {1, . . . , M} with
Si ∩ S′ = ∅, then

Pr(Zin,y)∼D′
[
⟨v, t̃y,i⟩ > ⟨v, t̃−y,i⟩

]
= Pr(Zin,y)∼D′ [⟨v, ty,i⟩ > ⟨v, t−y,i⟩]

(28)

for this prompt. Conversely, if Si ∩S′ ̸= ∅, then the second term in the RHS of Eq. (27) also depends on the
label y, which leads to better accuracy since it brings more expressibility by incorporating more predictive
features (note that βj also depends on the prompts). We thus have

Pr(Zin,y)∼D′
[
⟨v, t̃y,i⟩ > ⟨v, t̃−y,i⟩

]
> Pr(Zin,y)∼D′ [⟨v, ty,i⟩ > ⟨v, t−y,i⟩]

(29)

for this prompt. Therefore, as long as at least one prompt satisfies Si ∩ S′ ̸= ∅, we must have

Pr(Zin,y)∼D′

[
M∑

i=1
⟨v, t̃y,i⟩ >

M∑
i=1

⟨v, t̃−y,i⟩

]
> Pr(Zin,y)∼D′ [⟨v, ty⟩ > ⟨v, t−y⟩].

(30)

We then formally characterize the above probability (Denoting the event that the inequality 30 holds by E).
Since here we work with the simple case that different prompts extract independent feature subsets that are
uniformly drawn from {1, . . . , l}, the probability that at least one prompt extracts features in S′ is given by
the union bound over M Bernoulli distributions, each with failure probability p =

Cs
l−|S′|
Cs

l
:

Pr(E) = 1 − pM

= 1 −
(

Cs
l−|S′|

Cs
l

)M

.
(31)

Consider the case where l is sufficiently large, we have Cs
l = Θ(ls) and Cs

l−|S′| = Θ((l − |S′|)s). Plugging
them into Eq. (31) gives the desired result.

C Additional Experiment Details

C.1 Implementation Details

Base-to-new generalization. Following the settings of MaPLe, we set the prompt depth J to 9, and
the length of both visual and textual prompts to 2. Due to the significant impact of class collision on the
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effectiveness of our proposed cross-modal contrastive regularization objective, and its frequency being related
to the ratio of batch size to the number of classes in a dataset, we employ varying batch sizes across different
datasets to maintain this ratio around 0.6 (e.g., 32 for DTD (Cimpoi et al., 2014), 64 for UCF101 (Soomro
et al., 2012)). We utilize an SGD optimizer with a learning rate of 2.5e-3, weight decay of 5e-4, and training
for 30 epochs (for a few datasets prone to overfitting, the training was limited to 20 epochs). The number
of prompts, M , is set to 8, with a balance coefficient, λ, of 1.0 (and 1.2 for EuroSAT). For computing the
effective robustness ratio, we use the average zero-shot test accuracy of new classes across 11 datasets as
accood(·), and the average test accuracy of base classes as accid(·).

Cross-dataset generalization. Following the settings of MaPLe (Khattak et al., 2023a), we set the prompt
depth J to 3, with both visual and textual prompts having a length of 2. Due to the incorporation of a
cross-modal contrastive regularization objective, we utilize a larger batch size of 512. To compensate for
the additional time expenditure, all the models are trained for only 50 epochs (1550 iterations, compared to
MaPLe’s 20,000 iterations). The model is optimized using SGD with a learning rate of 2.5e-3 and a weight
decay of 5e-4. We set the number of prompts M to 8 and the balancing coefficient λ to 1.0. For calculating
the effective robustness ratio (ρ(f)), we use the average zero-shot test accuracy on the target dataset as
accood(·), and the test accuracy on ImageNet as accid(·).

Domain generalization. Same as the cross-dataset generalization, we set the prompt depth, J , to be 3,
with both visual and textual prompts having a length of 2. We employ the SGD optimizer with a learning
rate of 2.5 × 10−3, weight decay of 5 × 10−4, and a batch size of 512, training the model for 50 epochs.
The number of prompts, M , is set to 8, and the balancing parameter, λ, is 0.1. For the effective robustness
ratio, we use the average zero-shot test accuracy on the target dataset as accood(·) and the test accuracy on
ImageNet as accid(·).

Reproducibility. We provide publicly the source code of M3PL, which contains the configuration files we
used, to ensure the reliability and reproducibility of our experimental results. All experiments are conducted
on NVIDIA A100 GPUs.

C.2 Datasets

ImageNet (Deng et al., 2009): The ImageNet dataset contains over 14 million high-resolution images,
manually annotated, and categorized into 1000 classes. It is widely used for image classification and object
detection tasks.

Caltech101 (Fei-Fei et al., 2004): The Caltech101 dataset includes 101 object categories and 1 background
category, with 9k images. The number of images per category ranges from 40 to 800, with an average of
about 50 images per category.

OxfordPets (Parkhi et al., 2012): The OxfordPets dataset comprises 7349 images of cats and dogs, divided
into 37 categories. Each category contains approximately 200 images, suitable for pet recognition and
classification tasks.

StanfordCars (Krause et al., 2013): The StanfordCars dataset consists of 16,185 images of cars, categorized
into 196 classes. Each class represents a specific car model and manufacturing year, primarily used for car
classification and recognition tasks.

Flowers102 (Nilsback & Zisserman, 2008): The Flowers102 dataset includes 8189 images of flowers, catego-
rized into 102 classes. The number of images per category ranges from 40 to 258, with an average of about
80.

Food101 (Bossard et al., 2014): The Food101 dataset comprises 101,000 images of 101 food categories.
Each category contains 1000 images, used for food recognition and classification tasks.

FGVCAircraft (Maji et al., 2013): The FGVCAircraft dataset contains 10,000 images of aircraft, catego-
rized into 100 classes with 100 images per category, most of which are airplanes.

SUN397 (Xiao et al., 2010): The SUN397 dataset includes 108,753 images of scenes, categorized into 397
classes. The number of images per category ranges from 100 to 2000, with an average of about 300.
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DTD (Cimpoi et al., 2014): The Describable Textures Dataset (DTD) comprises 5640 images of textures,
divided into 47 categories. Each category contains 120 images, used for texture recognition and classification
tasks.

EuroSAT (Helber et al., 2019): The EuroSAT dataset contains 27,000 satellite images, categorized into 10
classes. Each class contains 2000 to 3000 images, primarily used for geospatial classification tasks.

UCF101 (Soomro et al., 2012): The UCF101 dataset includes 13,320 video clips categorized into 101 action
classes. Each class represents a specific sport or action, mainly used for action recognition tasks.

C.3 Full Results

In this section, we report the average accuracy and standard deviation from three runs with three different
random seeds in three generalization benchmarks. It is important to note that all baselines are reproduced
using the official configuration file parameters on the same random seeds and hardware as our experiments,
ensuring fairness in comparison.

C.3.1 Base-to-New Generalization

The full experimental results in the base-to-new generalization setting are shown in Table 6. Please note
that, due to the absence of an official implementation for ProDA (Lu et al., 2022), we report only the results
provided by Derakhshani et al. (2023) in Table 2 of the main text, and do not include the full results in the
appendix.

C.3.2 Cross-Dataset Generalization

The full experimental results in the cross-dataset generalization setting are shown in Table 7.

C.3.3 Domain Generalization

Datasets. For DG, we use four ImageNet-derived datasets with different domain shifts: ImageNetV2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-
R (Hendrycks et al., 2021a).

The full experimental results in the domain generalization setting are shown in Table 8. Unlike the previous
two settings, in the DG setting, only the visual modality experiences shifts. Although existing methods have
achieved commendable results in this scenario, our M3PL still attains enhancements in both the average
target dataset accuracy and the effective robustness ratio.

C.4 Additional Ablation Study

C.4.1 Effectiveness of M3PL

Figure 5 presents the variation curves of both in-distribution (ID) and out-of-distribution (OOD) accuracy
with the changing number of prompts (M) in the cross-dataset setting. The ID accuracy initially increases
slightly with an increase in M and then decreases, aligning with our analysis in Section 1. This trend
is attributed to the view bias bias of prompts. When M is relatively small, the aggregation of useful
features from different views enhances ID test accuracy. However, as M further increases, redundant features
exacerbate overfitting. In contrast, the OOD accuracy significantly rises before gradually decreasing. This is
because when M is too small, the insufficient variety of views leads to inadequate coverage of OOD predictive
features, leading to a rapid improvement in OOD performance as M increases. But with a larger M , the
dominance of redundant and irrelevant features from the introduced views deteriorates the performance.
Considering the trends in both ID and OOD changes, we opt for M = 8 to trade off performance with
computational cost.
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Dataset Zero-shot CLIP CoOp CoCoOp MaPLe PromptSRC M3PL(Ours) ∆

Base 69.48 82.29 80.49 82.00 84.18 84.90 +0.72
New 74.28 68.78 72.04 74.88 75.76 76.81 +1.05
HM 71.80 74.93 76.03 78.28 79.75 80.65 +0.90

Average on
11 datasets

ρ(f) - -43% -20% 5% 10% 16% +6%

Base 72.37±0.00 76.47±0.17 75.93±0.24 76.87±0.05 77.80±0.00 77.72±0.08 -0.08
New 68.10±0.00 67.50±0.22 70.13±0.33 70.73±0.33 70.60±0.08 71.73±0.04 +1.13ImageNet
HM 70.17 71.71 72.91 73.67 74.03 74.60 +0.57

Base 97.22±0.00 98.10±0.00 97.80±0.08 97.93±0.12 98.10±0.16 98.45±0.05 +0.35
New 94.21±0.00 93.20±0.41 93.00±0.29 95.23±0.21 94.03±0.19 94.25±0.22 +0.22Caltech101
HM 95.69 95.59 95.34 96.56 96.02 96.30 +0.28

Base 91.23±0.00 94.53±0.38 95.03±0.40 95.60±0.22 95.33±0.09 95.85±0.35 +0.52
New 97.20±0.00 95.80±0.99 97.73±0.09 98.00±0.36 97.27±0.48 98.15±0.16 +0.83OxfordPets
HM 94.12 95.16 96.36 96.79 96.29 96.99 +0.70

Base 63.69±0.00 75.60±1.13 70.73±0.71 72.40±0.29 78.13±0.25 79.07±0.62 +0.94
New 74.92±0.00 70.03±0.62 72.50±0.86 73.67±0.60 75.37±0.33 74.03±0.52 -1.34StanfordCars
HM 68.85 72.71 71.60 73.03 76.73 76.47 -0.26

Base 71.70±0.00 97.53±0.09 94.43±0.66 96.10±0.22 98.17±0.05 98.17±0.20 +0.00
New 77.52±0.00 71.30±1.87 70.63±0.98 72.87±0.98 77.37±0.17 75.72±0.93 -1.65Flowers102
HM 74.50 82.38 80.81 82.89 86.54 85.50 -1.04

Base 90.07±0.00 89.50±0.45 90.57±0.09 90.83±0.05 90.63±0.12 90.85±0.10 +0.22
New 91.17±0.00 88.90±0.45 91.27±0.47 92.03±0.12 91.47±0.12 92.08±0.28 +0.61Food101
HM 90.62 89.20 90.92 91.43 91.05 91.46 +0.41

Base 27.55±0.00 38.67±0.12 35.33±0.97 36.17±0.09 42.27±0.54 42.88±0.84 +0.61
New 35.93±0.00 29.80±0.43 31.07±0.21 34.87±1.68 37.43±0.73 39.11±0.32 +2.56FGVCAircraft
HM 31.19 33.66 33.06 35.51 39.70 40.91 +1.21

Base 69.38±0.00 81.20±0.08 79.37±0.48 80.97±0.25 82.77±0.09 82.84±0.22 +0.07
New 75.58±0.00 70.43±1.65 76.23±0.58 78.30±0.41 78.50±0.57 78.85±0.24 +0.35SUN397
HM 72.35 75.43 77.77 79.61 80.58 80.80 +0.22

Base 53.13±0.00 79.67±0.54 76.93±0.86 80.47±1.38 82.97±0.90 83.91±0.29 +0.94
New 60.27±0.00 49.37±3.55 54.67±4.49 58.40±0.64 59.57±3.27 61.75±1.70 +2.18DTD
HM 56.48 60.96 63.92 67.68 69.35 71.14 +1.79

Base 56.98±0.00 88.97±1.07 87.10±0.70 91.07±3.76 92.70±0.99 96.72±0.39 +4.02
New 63.74±0.00 56.00±3.35 61.87±11.47 72.83±3.20 73.17±3.20 77.94±1.57 +4.77EuroSAT
HM 60.17 68.74 72.35 80.94 81.79 86.32 +4.53

Base 70.99±0.00 85.00±0.28 82.13±0.17 83.57±0.68 87.10±0.22 87.40±0.30 +0.30
New 78.47±0.00 64.20±3.71 73.30±0.85 76.73±1.53 78.57±1.55 81.29±0.79 +2.72UCF101
HM 74.54 73.15 77.46 80.00 82.62 84.23 +1.61

Table 6: Full results in the base-to-new generalization setting. All baseline results are reproduced
using the reported parameters. The harmonic mean of the base and new class test accuracy is denoted as
HM. Improvements over PromptSRC are in blue.

Source Target

Im
ag

eN
et

C
al

te
ch

10
1

O
x

fo
rd

P
et

s

S
ta

n
fo

rd
C

ar
s

F
lo

w
er

s1
02

F
o

o
d

10
1

F
G

V
C

A
ir

cr
af

t

S
U

N
39

7

D
T

D

E
u

ro
S

A
T

U
C

F
10

1

A
v

e
ra

g
e

ρ
(f

)

Zero-shot CLIP 66.68±0.00 93.31±0.00 89.10±0.00 65.51±0.00 70.73±0.00 85.88±0.00 24.66±0.00 62.60±0.00 44.09±0.00 48.40±0.00 67.59±0.00 65.19 -

CoOp 71.63±0.17 93.73±0.19 88.27±0.52 63.63±1.36 68.70±0.92 85.63±0.12 19.27±1.19 64.60±0.29 41.63±0.62 48.33±0.40 67.37±0.77 64.12 -22%
CoCoOp 71.20±0.00 94.43±0.05 90.60±0.08 64.83±0.68 71.03±0.87 86.13±0.05 23.23±0.12 67.20±0.08 45.87±0.62 41.00±3.22 68.50±0.57 65.28 2%
MaPLe 70.40±0.14 93.53±0.54 90.03±0.31 64.90±0.51 71.93±1.27 85.97±0.21 23.77±0.52 66.67±0.21 45.03±1.32 44.87±2.70 67.47±0.37 65.42 6%
PromptSRC 71.37±0.09 93.37±0.19 90.30±0.08 65.70±0.36 70.43±0.24 86.47±0.05 23.57±0.78 67.43±0.25 45.83±0.12 45.43±1.47 69.50±0.64 65.80 13%

M3PL(Ours) 71.11±0.02 93.94±0.14 90.88±0.0966.35±0.4472.26±0.1886.56±0.06 24.23±0.49 67.65±0.06 45.61±0.17 57.52±1.82 68.45±0.33 67.35 49%

Table 7: Full results in the cross-dataset generalization setting. All baseline results are reproduced
using the reported parameters. Since CLIP is directly zero-shot tested without training, its standard devia-
tion is reported as zero.
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Figure 5: The ablation experiments on the number of prompts in the cross-dataset generaliza-
tion setting. The left vertical axis represents the ID test accuracy on ImageNet, and the right vertical axis
indicates the average zero-shot OOD test accuracy across target datasets. The trends of ID accuracy and
average OOD accuracy with the number of prompts M (λ = 0) are depicted by curves with circular and
square markers, respectively.

Figure 6: The ablation experiments on the balancing coefficient λ in the cross-dataset general-
ization setting. The left vertical axis represents the ID test accuracy on ImageNet, and the right vertical
axis indicates the average zero-shot OOD test accuracy across target datasets. The trends of ID accuracy
and average OOD accuracy with the balancing coefficient λ (M = 8) are depicted by curves with circular
and square markers, respectively.
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Source Target

ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R Average ρ(f)

Zero-shot CLIP 66.68±0.00 60.91±0.00 46.09±0.00 47.76±0.00 73.97±0.00 57.18 -

CoOp 71.63±0.17 64.27±0.17 47.93±0.29 50.37±0.25 75.33±0.21 59.48 46%
CoCoOp 71.20±0.00 64.27±0.25 48.67±0.25 50.73±0.19 76.10±0.16 59.94 61%
MaPLe 70.40±0.14 63.73±0.12 48.60±0.16 50.20±0.37 76.57±0.12 59.78 70%
PromptSRC 71.37±0.09 64.43±0.05 49.53±0.05 50.77±0.26 77.77±0.05 60.63 73%

M3PL(Ours) 70.95±0.07 64.49±0.07 49.60±0.10 51.47±0.09 77.40±0.07 60.74 83%

Table 8: Full results in the domain generalization setting (λ = 0.1). All baseline results are repro-
duced using the reported parameters. Since CLIP is directly zero-shot tested without training, its standard
deviation is reported as zero.

C.4.2 Cross-modal Contrastive Regularization

Figure 6 presents the variation curves of ID and OOD accuracy in the cross-dataset generalization setting as
a function of the balancing coefficient λ. Both ID and OOD accuracies initially increase and then decrease
with the rising values of λ. We set λ =1.0 to optimally balance Lmulti and Lcontrast.

Batch size λ ID Acc. Average OOD Acc. ρ(f)
512 0.0 70.95 66.87 0.39
128 1.0 71.02 67.15 0.45
256 1.0 71.11 67.25 0.47
512 1.0 71.11 67.35 0.49

Table 9: The ablation experiments on the impact of batch size on the cross-modal contrastive
regularization objective in the cross-dataset generalization settings (M = 8). Note that under different
batch size settings, we control the same iteration for training.

Table 9 presents the ablation study results on the impact of batch size on the cross-modal contrastive
regularization objective in the cross-dataset generalization setting. We observe that with λ = 1.0, the average
OOD test accuracy on the target datasets increases as the batch size increases. This trend is attributed to a
lower class collision rate when the batch size is smaller, which in turn reduces the performance of the cross-
modal contrastive regularization. However, it is still evident that even with a batch size of 128 (feasible on a
single Nvidia A100 GPU), there is a significant improvement over the baseline that does not utilize Lcontrast,
further demonstrating the effectiveness of our proposed regularization objective.

C.4.3 Comparison to Temporal Prompt Aggregation in PromptSRC

Method ID Acc. Average OOD Acc. ρ(f)
Independent V-L Prompting (IVLP) 71.16 65.22 0.01
IVLP + GPA of PromptSRC 72.10 65.51 (+0.29) 0.06
IVLP + M3PL (w/o Lcontrast) 70.95 66.87 (+1.65) 0.39

Table 10: Ablation on aggregation strategy in the cross-dataset setting.

Rather than use multiple prompt pairs and aggregate their results, PromptSRC (Khattak et al., 2023b)
employs Gaussian weighted prompt aggregation (GPA), which temporally aggregates the results of a single
prompt pair across its training trajectory. Here we compare the effectiveness of the two techniques in
Table 10. As shown in the table, GPA yields little improvement due to the same view obtained from a single
optimization trajectory, which is consistent with our analysis that a single optimization trajectory may fail
to capture a broad range of views.
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C.4.4 Prompt Length and Depth

Figure 7: The ablation experiments on the prompt length in the cross-dataset generalization
setting (M = 8, λ = 0, J = 3). The left vertical axis represents the ID test accuracy on ImageNet, and the
right vertical axis indicates the average zero-shot OOD test accuracy across target datasets. The trends of
ID accuracy and average OOD accuracy with the prompt length are depicted by curves with circular and
square markers, respectively.

Figure 7 displays the results of ablation experiments on prompt length in a cross-dataset generalization
setting. The results indicate that both ID and OOD test accuracies generally exhibit an initial increase
followed by a decrease. Consequently, we select a prompt length of 2 to trade off the performance between
ID and OOD scenarios.

Figure 8: The ablation experiments on the prompt depth in the cross-dataset generalization
setting (M = 8, λ = 0, and prompt length 2). The left vertical axis represents the ID test accuracy
on ImageNet, and the right vertical axis indicates the average zero-shot OOD test accuracy across target
datasets. The trends of ID accuracy and average OOD accuracy with the prompt depth J are depicted by
curves with circular and square markers, respectively.

Figure 8 presents the ablation study results regarding the depth of prompts J in the cross-dataset general-
ization. It is observed that both ID and OOD test accuracies generally follow an initial increase followed by
a decrease, with OOD test accuracy being more significantly influenced by J . We opted for J = 3 to trade
off the performance between ID and OOD settings.
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C.5 Full Results on SigLIP

Our experimental design in the main text primarily focuses on CLIP. In this section, we report additional
results on the latest state-of-the-art image-text pre-trained model, SigLIP (Zhai et al., 2023), to further
validate our method’s scalability and generalization ability. Specifically, we use the pre-trained SigLIP-B/16
as the backbone and use the same hyperparameters as in our CLIP experiments. We evaluate the performance
of the zero-shot SigLIP model, Independent V-L Prompting (IVLP), and M3PL under the standard Base-
to-New generalization setting, as shown in Table 11. The results demonstrate that compared to the baseline
method IVLP, M3PL achieves a significant improvement in out-of-distribution (OOD) performance (+8.03%)
while maintaining in-distribution (ID) performance, corroborating the theoretical analysis in Section 5.2.

Table 11: Results of extending the M3PL approach to the SigLIP (Zhai et al., 2023) backbone in base-to-new
generalization. HM and ρ(f) refer to harmonic mean and effective robustness ratio, respectively.

Dataset Zero-shot SigLIP SigLIP + IVLP SigLIP + M3PL(Ours)
Base 77.75 87.00 86.84
New 81.23 78.75 82.61
HM 79.45 82.67 84.67

Average on
11 datasets

ρ(f) - -27% 15%
Base 79.60 81.26 81.70
New 76.90 76.09 78.32ImageNet
HM 78.23 78.59 79.97
Base 98.50 98.90 98.71
New 97.80 97.38 98.36Caltech101
HM 98.15 98.13 98.53
Base 96.50 95.27 96.97
New 98.10 98.55 98.60OxfordPets
HM 97.29 96.88 97.78
Base 85.00 91.58 89.63
New 96.20 95.67 96.56StanfordCars
HM 90.25 93.58 92.97
Base 91.00 99.43 98.67
New 86.00 81.06 86.24Flowers102
HM 88.43 89.31 92.04
Base 92.30 91.57 93.24
New 93.60 92.38 94.15Food101
HM 92.95 91.97 93.69
Base 29.20 48.44 41.24
New 40.80 37.19 46.07FGVCAircraft
HM 34.04 42.08 43.52
Base 75.30 82.69 83.75
New 78.60 76.68 81.23SUN397
HM 76.91 79.57 82.47
Base 75.60 88.19 88.43
New 73.60 67.27 73.55DTD
HM 74.59 76.32 80.31
Base 56.40 93.21 96.50
New 68.00 68.64 71.51EuroSAT
HM 61.66 79.06 82.15
Base 75.90 86.45 86.35
New 83.90 75.39 84.10UCF101
HM 79.70 80.54 85.21

D Supplementary Experiments

To further elucidate the performance gain of M3PL in zero-shot cross-dataset generalization across datasets
with varying distributions, we conduct two supplementary experiments: (1) A Few-shot Linear Probe exper-
iment based on the same protocol in Radford et al. (2021); Zhou et al. (2022b) to evaluate the generalization
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potential of CLIP’s pre-trained features on each target dataset, as detailed in Appendix D.1. (2) An as-
sessment of the cosine similarity between average visual and textual representations across target dataset
categories and those from ImageNet categories to measure the information gain through few-shot prompt
learning on ImageNet, presented in Appendix D.2. For simplicity, we limit our experiments to datasets with
zero-shot CLIP’s accuracy below 85%. We assume that if zero-shot CLIP performs above this threshold, its
pre-trained features are already generally sufficient for generalizing to the target dataset, so the influence of
view bias is relatively minor.

Based on the metrics from the above experiments, we use a simple multivariate linear regression model to
interpret M3PL’s relative improvements over zero-shot CLIP across different datasets, with specific results
detailed in Appendix D.3.

D.1 Linear Probe Experiment

Method StanfordCars Flowers102 FGVCAircraft SUN397 DTD EuroSAT UCF101

Zero-shot CLIP 65.51 70.73 24.66 62.60 44.09 48.40 67.59
Linear Probe CLIP 80.60 97.28 83.30 73.15 70.15 86.33 82.66
Average Performance 73.06 84.01 35.49 67.88 57.12 67.37 75.13

Table 12: Few-shot linear probe performance (%) on the target datasets.

Experimental settings. We adhere to the few-shot linear probe setup in Zhou et al. (2022b), sampling
16 instances per class and reporting the average results across three random seeds. Consistent with the
cross-dataset generalization setting discussed in Section 6, we employ ViT-B/16 as the backbone for CLIP.

Results in Table 12 reveal that on the FGVCAircraft dataset, both zero-shot CLIP and linear probe CLIP
demonstrate notably low performance, indicating the inadequacy of CLIP’s pre-trained features for this
dataset. Conversely, the significant improvement with linear probe CLIP on the EuroSAT dataset highlights
the generalization potential of CLIP’s pre-trained features on this distribution.

In practical prompt learning scenarios, samples from the target dataset distribution are unavailable. There-
fore, we evaluate the generalization potential of CLIP’s pre-trained features on each dataset by averaging
the performance of zero-shot CLIP and few-shot linear probe CLIP.

D.2 Datasets Representation Similarity Experiment

StanfordCars Flowers102 FGVCAircraft SUN397 DTD EuroSAT UCF101

Visual Similarity 0.3289 0.3433 0.2781 0.4359 0.4097 0.5103 0.2924
Textual Similarity 0.1253 0.1910 0.2017 0.2407 0.2196 0.3014 0.1993
Average Similarity 0.2271 0.2672 0.2399 0.3383 0.3147 0.4059 0.2459

Table 13: Estimated similarity between the target dataset and the ImageNet distribution. The
similarity refers to the minimum pairwise cosine similarity between category representations of the target
datasets and ImageNet.

Experimental settings. Since prompt learning adapts to downstream tasks through few-shot learning
using frozen CLIP pre-trained features, we measure the similarity between target datasets and ImageNet
using representations from the vision and text encoders of zero-shot CLIP. Specifically, for visual similarity, we
calculate the pair-wise cosine similarity between the average representation of test images from each category
in the target dataset and the average representation of few-shot images from each category in ImageNet,
selecting the minimum value as the measure of visual similarity. For textual similarity, we use the fixed
template “a photo of label” as input, compute the pair-wise cosine similarity between text representations
of each category in the target dataset and ImageNet, and again select the minimum value as the measure
of textual similarity. Ultimately, the average of visual and textual similarities is taken as the estimated
similarity between the distributions of the target dataset and ImageNet.
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The results in Table 13 demonstrate that the FGVCAircraft dataset exhibits low similarity with ImageNet,
aligning with observations from the experiment where prompt-based fine-tuning algorithms generally under-
perform zero-shot CLIP on FGVCAircraft in cross-dataset generalization settings. Conversely, the EuroSAT
dataset shows higher similarity to the ImageNet distribution, which partially explains the differing perfor-
mance of M3PL on these datasets.

D.3 Multivariate Linear Regression

StanfordCars Flowers102 FGVCAircraft SUN397 DTD EuroSAT UCF101

Average Performance 0.7306 0.8401 0.3549 0.6788 0.5712 0.6737 0.7513
Average Similarity 0.2271 0.2672 0.2399 0.3383 0.3147 0.4059 0.2459
Performance Gain (%) 0.84 1.53 -0.43 5.05 1.52 9.12 0.86

Table 14: Two metrics and performance gains of M3PL compared to zero-shot CLIP.

In this section, we use multivariate linear regression to explain the performance improvements of our proposed
M3PL model (relative to zero-shot CLIP), based on two metrics derived from the previous sections. The first
metric measures the generalization potential of CLIP’s original pre-trained features on the target dataset,
indicated by the average performance of zero-shot CLIP and few-shot linear probe CLIP. The second metric,
the average cosine similarity of textual and visual representations, estimates the distribution similarity
between the target dataset and ImageNet. We utilize these two metrics as independent variables in a simple
multivariate linear model, with the performance gain of M3PL as the dependent variable.

Y = α0 · X0 + α1 · X1 + β (32)

where αi is the regression coefficient and β is the intercept, X0 represents the average performance (infor-
mativeness), X1 the average similarity (transferability), and Y the performance gain of M3PL.

The fitting results in a Multiple R of 0.952 and an R2 of 0.906, indicating a strong fit and demonstrating
the interpretability of our method regarding the performance on the target dataset. Furthermore, both
coefficients α0 = 3.647 and α1 = 47.429 are positive, suggesting that the performance improvement of M3PL
on a given target dataset positively correlates with both the generalization potential of CLIP’s pre-trained
features on that dataset and the dataset’s similarity to ImageNet.

As shown in Table 32, the EuroSAT and SUN397 datasets exhibit high average performance and average
similarity metrics, which correlate with their significant performance enhancements. Conversely, the FGV-
CAircraft dataset shows lower values in these metrics, resulting in the poorest performance of M3PL. The
StanfordCars and UCF101 datasets, while having high average performance, are constrained by low average
similarity, limiting their gains to less than 1%. In contrast, the DTD and Flowers datasets benefit from
higher average similarity and average performance, respectively, achieving improvements exceeding 1.5%.
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