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ABSTRACT

Representing documents in continuous numerical spaces is one of the key tasks
in NLP. Contemporary state-of-the-art techniques leverage large neural networks
and learn the document representations self-supervised. However, while these ap-
proaches excel at learning contextual word representations, they often overlook
implicit document-to-document relations that can arise in real-world settings. We
propose a blueprint method for constructing document representations that explic-
itly accounts for such implicit relations to address this issue.

1 INTRODUCTION

In contemporary NLP, researchers usually model documents as sequential collections of words us-
ing techniques such as (recurrent) neural networks Mikolov et al. (2013b;a); Peters et al. (2018)) or
attention-based transformer NNs (Devlin et al. (2018); Liu et al. (2019)) to capture contextual re-
lationships between words. Alternative methods for constructing document representations involve
building graphs from co-occurring words and using them to represent the documents (Bunke &
Riesen (2011); Sonawane & Kulkarni (2014); Yao et al. (2019); Osman & Barukub (2020)). These
graph-based document representations have shown promise in capturing not only the sequential re-
lationships between words but also the global structure of the document, performing on par with lan-
guage model approaches (Zhang et al. (2020); Ragesh et al. (2021); Wang et al. (2023)), allowing for
more effective and interpretable representations that can be useful in various downstream NLP tasks
(like document similarity (Paul et al. (2016)), topic modeling (Xie et al. (2021)) and document under-
standing (Gemelli et al. (2023))). Huang et al. (2022) presented a method that enhances the language
model’s representation by incorporating information from a sub-word co-occurrence graph using a
shared loss function. For tasks that involve analyzing documents within a network structure, such as
identifying fake news (Han et al. (2020)) or recommending items based on textual reviews Fan et al.
(2019), Graph Neural Networks (GNNs) have proven to be highly effective (Wu et al. (2023)). How-
ever, real-world documents often lack explicit connections between them, making it difficult to apply
GNNs. We present a framework for constructing a document-to-document (D2D) network (available
here https://github.com/bkolosk1/doc2doc.git) and evaluate various GNNs.

2 GRAPHS OF DOCUMENTS AND WHERE TO FIND THEM?

Let G = (V,E) be a graph, where V is the set of nodes (in our case, the set of documents) and E
is the set of edges. In our case the set of edges E is not given and the goal is to construct it with the
exmaination of the potential of documents to form links. The first step of our method is to transform
the documents from raw texts to d-dimensional continuous vector space L ∈ Rd. Next, we calculate
the the edge weight as follows:

ei,j = sim(L(vi), L(vj)) where L denotes the latent document embedding

Here, vi denotes a document, and L(vi) the latent embeddings of that document. The function sim
measures similarity between two embeddings, representing the edge weight ei,j ∈ {0, 1} between vi
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Figure 1: The proposed methodology aims to robustly create a network of related documents.

and vj . Finally, we apply the thresholding function thresh and keep only the edges that the function
discriminates. We examine a transductive and an inductive scenario for obtaining a representation
of a new document. The approach is presented in Figure 1 and the algorithm in Appendix 1.

Everything and all at once. In this scenario, we construct a graph between all the documents
in the corpus. The graph is built by first computing their latent embeddings and later calculating
their similarities. We hypothesize that a given document will have strong connections only with a
small subset of the documents. To address this, we relax the constraints and compute the closest k
documents for each document in D. We normalize the documents and construct a KDTree Qiu et al.
(2018) of distances, wherethe closest k documents are the most similar in terms of cosine distance.

The whole is the same as the sum of its parts. In this scenario, we attempt to induce representations
for new, previously unseen documents using the existing graph structure. We begin by constructing
the graph using the aforementioned approach only from the training set of documents. Next, we use
the NetMF embedding to obtain node (document) representations. To induce a representation for a
new document, we first query the KDTree to retrieve the k closest neighbors of the paper. We build
the final document representation by averaging over the retrieved neighbour node embeddings.

3 EXPERIMENTAL SETUP AND EVALUATION

To evaluate our method, we choose six different text classification datasets. We benchmark our
method against two SOTA language models, LinkBERT (Yasunaga et al. (2022)) and RoBERTa
(Liu et al. (2019)), both fine-tuned for 10 epochs with default parameters. We use MPNet as the
latent space representation (Reimers & Gurevych (2019)). We explore a grid of hyper-parameters
for our method with thresh ∈ {0.1, 0.9}, and k ∈ {5, 100}. For the transductive models, we use
the Spektral implementation of GCN (Kipf & Welling (2016)) and GAT (Veličković et al. (2017)))
with default parameters. For NetMF (Qiu et al. (2018)), we use the implementation by Škrlj et al.
(2020) and train a LogisticRegression classifier with C=1. Table 1 summarizes the evaluation results
(we select the models that performed the best on the dev. set with respect to the F1-Macro.

Table 1: Dataset information and averaged test data evaluation on the 10 runs with different seeds.
Dataset description Language Models Transductive D2D Inductive D2D

Dataset Train Size Dev Size Test Size Classes LinkBERT RoBERTa GAT GCN NetMF3

BBC (Greene & Cunningham (2006)) 790 264 352 4 0.9863 0.9815 0.6404 0.7937 0.9460
MBTI (Myers (1962)) 4879 1627 2169 16 0.5695 0.3468 0.5072 0.1341 0.2116
AAAI-FN (Patwa et al. (2021)) 6420 2140 2140 2 0.9802 0.9819 0.8229 0.7380 0.9120
PAN-Age (Rangel et al. (2016)) 225 76 101 5 0.3881 0.4356 0.7335 0.3445 0.4554
PAN-Gender (Rangel et al. (2017)) 2024 675 900 4 0.7523 0.7444 0.6823 0.5669 0.6078
PAN-FakeNews (Rangel et al. (2020)) 270 30 200 2 0.6475 0.6725 0.6697 0.5629 0.6450

4 CONCLUSION AND FURTHER WORK

Our method performs comparably with some SOTA techniques, especially with numerous classes
and small samples. When more data is available, the method’s performance falls compared to the
LLMs. To improve our method, we plan to improve the thresholding step, add more layers to
the network (either via different embedding methods or via metadata), and speed-up the similarity
search with fuzzy-search (e.g. FAISS). We believe the induced graph structure can transform NLP
tasks into graph-theoretic ones and vice versa (like clustering with community detection).
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APPENDIX 1: ALGORITHM

We present the pseudocode that outlines the steps involved in constructing the D2D network.
By following these steps, we can establish a network that captures the relationships between
different documents based on a SimilarityFunction, from a LattentEmbedding space based
on the ThresholdingFunction, and a NearestNeighbourAlgorithm for search of the target
kNeighbors. The algorithmic approach we use is detailed below.

Algorithm 1 D2D network construction algorithm
Require: Documents, SimilarityFunction, LatentEmbedding, NearestNeighbourAlgorithm,

ThresholdingFunction, kNeighbours
documentNetwork← Empty
documentEmbeddings← LatentEmbedding(Documents)
nnSearch← NearestNeighbourAlgorithm(documentEmbeddings)
for document ∈ Documents do

TargetDocuments← nnSearch(document, kNeighbours)
for targetDocument ∈ TargetDocuments do

edgeWeight← SimilarityFunction(document, targetDocument)
if ThresholdingFunction(edgeWeight) then

documentNetwork.makeEdge(document, targetDocument, edgeWeight)
end if

end for
end for
return documentNetwork

Time complexity In our approach, first, we use MPNet for LatentEmbedding, which infers the
embedding of an article in constant time clatent, in total O(D · clatent) = O(D). To enable effi-
cient search, we incorporate a KDTree as NearestNeighbourAlgorithm, which can be constructed in
O(D logD) time. The core component of our algorithm is the construction of the adjacency matrix
which is based on the number of target neighbours k. The overall complexity of our approach in the
worst-case scenario where k = D becomes O(D2).
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