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ABSTRACT

Backdoor attack poses a significant security threat to Deep Learning applications.
Existing attacks are often not resilient to established backdoor detection and mitiga-
tion approaches. This susceptibility primarily stems from the fact that these attacks
typically possess an unbounded or under-bounded attack scope. In other words, the
trigger can cause misclassification for any input. This unbounded nature implies
that the backdoored model overly emphasizes on spurious features of the trigger
(e.g., only the color of a square patch), on which trigger inversion techniques can
effortlessly generate effective triggers. In addition, the unbounded attack effects
can be easily mitigated by backdoor removal methods. In this paper, we propose a
novel backdoor attack LOTUS that is evasive and resilient by restricting the attack
scope. Specifically, it leverages a secret function to separate samples in the victim
class into a set of partitions and applies unique triggers to different partitions. Fur-
thermore, LOTUS incorporates an effective trigger focusing mechanism, ensuring
only the trigger corresponding to the partition can induce the backdoor behavior.
Extensive experimental results show that LOTUS can achieve high attack success
rate across 4 datasets and 7 model structures, and effectively evading 13 backdoor
detection and mitigation techniques.

1 INTRODUCTION

Backdoor attack is a prominent security threat to Deep Learning applications, evidenced by the
large body of existing attacks (Gu et al., 2019; Chen et al., 2017; Liu et al., 2018b; Salem et al.,
2020; Turner et al., 2018) and defense techniques (Wang et al., 2019; Guo et al., 2020; Li et al.,
2021a; Wu & Wang, 2021; Liu et al., 2018a). It injects malicious behaviors to a model such that the
model operates normally on clean samples but misclassifies inputs that are stamped with a specific
trigger. A typical way of injecting such malicious behaviors is through data poisoning (Gu et al.,
2019; Liu et al., 2020; Bagdasaryan & Shmatikov, 2020). This approach introduces a small set
of trigger-stamped images paired with the target label into the training data. Attackers may also
manipulate the training procedure (Nguyen & Tran, 2020a;b; Doan et al., 2021), and tamper with the
model’s internal mechanisms (Liu et al., 2018b; Lv et al., 2023).

The majority of existing attacks rely on a uniform pattern (Gu et al., 2019; Chen et al., 2017; Liu et al.,
2020; Turner et al., 2018) or a transformation function (Li et al., 2021c; Doan et al., 2021; Salem
et al., 2020) as the trigger. These attacks tend to exhibit unbounded effects, meaning that the trigger
(e.g., a transformation function (Doan et al., 2021; Li et al., 2021c)) is effective on any input. Such
unbounded attack effects render the attacks less robust to existing backdoor detection and mitigation
techniques. For instance, trigger inversion methods (Wang et al., 2019; Liu et al., 2019; Guo et al.,
2020; Wang et al., 2020) aim to reverse engineer a trigger that can achieve high attack effectiveness
given a set of validation samples. According to the results reported in the literature (Wang et al.,
2019; Guo et al., 2020; Tao et al., 2022b), for a number of attacks, it is not hard to invert a pattern
that closely resembles the ground-truth trigger and has a substantially high attack success rate (ASR).
The ease of inverting injected triggers can be attributed to their unbounded attack effects since the
trigger is effective on any sample. In addition, the unbounded attack effects are easily eliminated by
existing backdoor mitigation methods. For example, simply fine-tuning the backdoored model using
5% of the training data can significantly reduce the ASR (Liu et al., 2018a; Li et al., 2021a; Wu &
Wang, 2021). This is because the model pre-dominantly focuses on simple trigger features such as
the trigger color and fails to learn its correlation with benign features.
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Recent works propose sample-specific attacks (Nguyen & Tran, 2020a;b) that leverage adversarial
training to encourage the model to focus on the correlation between the trigger and the input sample.
These methods essentially utilize a transformation function as the trigger and applies the perturbations
from other transformed images to an input sample without altering its label. While such adversarial-
poisoning methods partially mitigate the unbounded attack effects, they are still under-bounded
according to the literature (Wang et al., 2022b; Li et al., 2021a; Wu & Wang, 2021) (i.e., can be
detected/removed). The reason is that adversarial-poisoning only considers individual triggers and
neglects the combination of triggers (i.e., the correct trigger together with random triggers), which
may still have attack effects.

In this paper, we introduce an evasive and resilient attack that constrains the attack effects through
sub-partitioning. It aims to misclassify the samples of a victim class to a target class. For these
victim-class samples, we divide them into sub-partitions and use a unique trigger for each partition.
With such an attack design, existing defense such as trigger inversion is unlikely to find a uniform
trigger as a set of samples are likely from different partitions, and hence fails to defend against our
attack. In addition, we develop a novel trigger focusing technique to ensure that a partition can
only be attacked by its designated trigger, not by any other trigger or trigger combinations. This is
non-trivial as a straightforward data-poisoning or adversarial-poisoning alone is insufficient to bound
the attack scope (i.e., causing a uniform attack effect). More details can be found in Section 4. Since
the triggers are closely related to their corresponding partitions, it makes the attack more resilient to
backdoor mitigation techniques.

Our contributions are summarized as follows: (1) We propose a new backdoor attack prototype LOTUS
(“Evasive and ResiLient BackdOor ATtacks throUgh Sub-partitioning”) that effectively bounds the
attack scope. (2) We address a key challenge of the proposed attack, to precisely limit the scope of a
trigger to its partition. As a straightforward data-poisoning or adversarial-poisoning is insufficient,
we introduce a novel trigger focusing technique as the solution (Section 4.2). (3) We conduct an
extensive evaluation of LOTUS on 4 datasets and 7 model structures. Our results show that LOTUS
achieves a high ASR under a variety of settings. Our trigger focusing method effectively reduces
the ASR on undesired victim classes and partitions. Furthermore, our experiments demonstrate that
LOTUS is evasive and resilient against 13 state-of-the-art backdoor defense techniques, substantially
outperforming existing backdoor attacks.

Threat Model. We follow the same threat model as state-of-the-art backdoor attacks (Doan et al.,
2021; Nguyen & Tran, 2020a;b), where the adversary has control over the training procedure and
provides a model to victim users after training. The adversary’s goal is to achieve high attack
effectiveness while also ensuring the attack’s evasiveness and resilience against defense. LOTUS
primarily focuses on label-specific attack. It can be easily extended to universal attack that aims to
flip samples from all classes to a target class. The defender possesses white-box access to the model
and a small set of clean samples for each class. She aims to determine if a model contains backdoor
or mitigate the backdoor effects based on the validation samples. In our attack, the sub-partitioning
function and the corresponding triggers are the secret of the attacker.

2 RELATED WORK

Backdoor Attack. As mentioned in the introduction, existing backdoor attacks use uniform pat-
terns (Gu et al., 2019; Chen et al., 2017; Liu et al., 2020), or complex transformations (Nguyen &
Tran, 2020a; Cheng et al., 2021; Nguyen & Tran, 2020b; Doan et al., 2021; Salem et al., 2020; Li
et al., 2021c) to serve as the trigger. In addition, the attacker can leverage adversarial perturbations
within a small bound to derive poisoned data (Shafahi et al., 2018; Zhu et al., 2019; Zhao et al.,
2020; Saha et al., 2020; Wang et al., 2022c), making them indistinguishable from normal data.
Subpopulation attack (Jagielski et al., 2021) is a recent data poisoning technique related to LOTUS.
It is an availability attack, and its primary objective is to decrease the test accuracy of a specific
subpopulation within the dataset. In contrast, LOTUS is a comprehensive backdoor attack with the
intention of injecting a backdoor into the model. Therefore, these two attacks differ significantly.
Subpopulation attack does not involve trigger injection or require the implementation of trigger
focusing, making it distinct from LOTUS in terms of its objectives and mechanisms.

Backdoor Defense. Backdoor defense involves backdoor detection on model and dataset, certified
robustness, as well as backdoor mitigation. Backdoor detection aims to determine whether a model
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is poisoned, it can be performed by analyzing the model’s behavior and output, such as Neural
Clean (Wang et al., 2019), ABS (Liu et al., 2019), and so on (Wang et al., 2022b; Kolouri et al., 2020;
Xu et al., 2019; Qiao et al., 2019; Guo et al., 2020; Huang et al., 2019; Tao et al., 2022b; Shen et al.,
2021; Wang et al., 2020). Another type of defenses focuses on detecting poisoned data instead of
models, it can be achieved through techniques such as data sanitization and outlier detection (Ma
et al., 2019; Tang et al., 2021; Gao et al., 2019; Chen et al., 2018; Li et al., 2020; Liu et al., 2017;
Chou et al., 2020; Tran et al., 2018; Fu et al., 2020; Chan & Ong, 2019; Du et al., 2019; Veldanda
et al., 2020; Hayase et al., 2021). Certified robustness provides assurance that the the classification
results are reliable and robust, even in the presence of backdoors (Xiang et al., 2021a; 2022; McCoyd
et al., 2020; Jia et al., 2022). Backdoor mitigation aims to remove the backdoor effects from the
attacked models (Liu et al., 2018a; Borgnia et al., 2020; Zeng et al., 2020; Tao et al., 2022a; Zhang
et al., 2023; Li et al., 2021a;b; Wang et al., 2022a).

3 ATTACK DEFINITION

We formally define our attack in this section. For a typical classification task, given (x, y) ∼ D where
sample x ∈ Rd and label y ∈ {1, 2, · · ·N}, the goal is to train a classifier Mθ : Rd → {1, 2, · · · , N},
such that parameters θ = argmaxθ P(x,y)∼D[Mθ(x) = y]. Typically, the cross-entropy loss L(yp, y)
(yp is the predicted label) is utilized for achieving the goal. In this case, the optimization problem can
be expressed as θ = argminθ E(x,y)∼D[L(Mθ(x), y)].

Backdoor attack aims to derive a classifier Mθ : Rd → {1, 2, · · · , N} such that compromised
parameters θ = argmaxθ P(x,y)∼D[Mθ(x) = y & Mθ(T⊕ xV ) = yT ], in which T is the trigger
and T⊕ xV injects the trigger to a victim input sample xV whose label is yV . Symbol yT denotes
the attack target label. Backdoor attacks can be mainly classified to universal attack that aims to
flip a sample x of any class with T to the target label, and label-specific attack that aims to flip
any sample of a specific victim class to the target label. Based on trigger patterns, they can be
classified to input-independent backdoor or static backdoor that has a fixed trigger pattern for all
victim samples, and dynamic trigger that has changing patterns for different inputs. Our attack is a
label-specific dynamic backdoor attack. Extending to other scenarios is relatively straightforward,
e.g., X2X attacks (Xiang et al., 2021b; 2023), which involve multiple victim classes targeting multiple
target classes using various triggers.

Assume there exists a partitioning algorithm Cn : Rd → {p1, p2, · · · , pn} that separates input
samples to n partitions. In our attack, victim samples (samples from the victim class) are partitioned
to n groups using Cn and each partition pi is assigned a unique trigger Ti, such that only Ti⊕xpi

V can
trigger the backdoor, where i ∈ {1, 2, · · ·n} and xpi

V denotes the victim samples in the i-th partition.
A straightforward design would follow the classic data poisoning, which aims to derive the following
model parameters.

θ = argmin
θ

( E(x,y)∼D[L(Mθ(x), y)]

Benign Utility Loss

+
n∑

i=1

E(x
pi
V

,yV )∼D[L(Mθ(Ti ⊕ xpi
V ), yT )]

Attack Target Loss

) (1)

The first loss term Benign Utility Loss aims to ensure the high benign accuracy of the model. The
second term, Attack Target Loss, means that a trigger Ti can cause the i-th partition samples of the
victim class xpi

V to misclassify, which is our attack goal. However, simple data poisoning cannot
effectively bound the attack scope. As a result, a trigger for a particular partition can easily induce
misclassifications for other partitions. That is, Tj ⊕ xpi

V , where i ̸= j, is miclassified to yT . Besides,
a trigger for a correctly-assigned partition of non-victim samples (samples from classes other than
the victim class ¬V ) can induce misclassification. That is Ti ⊕ xpi

¬V is misclassified to yT . Such
unbounded attack effects can be attributed to the model’s tendency to overfit on naive trigger features.
For instance, when it encounters any trigger, it immediately predicts the target class without verifying
if the background image aligns with the trigger according to the partitioning criteria. This overfitting
issue renders the backdoored model being detected by trigger inversion techniques (Wang et al., 2019;
2022b). Moreover, these attack effects are not resilient to existing backdoor mitigation methods (Liu
et al., 2018a; Li et al., 2021a).

Our objective is to establish a clear one-to-one correspondence between Ti and xpi

V . That is, only
Ti ⊕ xpi

V can cause misclassification. The intricate mapping criteria learned by the model make it
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resilient to mitigation methods and evasive against trigger inversion as the defender is unlikely to
assemble images from a specific partition. We hence aim to derive the following optimal model
parameters.

θ = argmin
θ

(E(x,y)∼D[L(Mθ(x), y)] +

n∑
i=1

(E(x
pi
V

,yV )∼D[L(Mθ(Ti ⊕ xpi
V ), yT )]

+ E(x
pi
V

,yV )∼D[
∑

T ∈ P({T1,··· ,Tn})
−{{},{Ti}}

LMθ(T ⊕ xpi , yV ) ]

Dynamic Loss

+ E(x
pi
¬V

,y¬V )∼D[L(Mθ(Ti ⊕ xpi
¬V ), y¬V )]

Label-specific Loss

))

(2)

Note that compared to Equation 1, we introduce two additional terms, i.e., Dynamic Loss and Label-
specific Loss in Equation 2. Intuitively, the dynamic loss controls that for a particular partition,
only the corresponding trigger can cause misclassification, and any other trigger, or combination
of/with other triggers shall be correctly predicted as the victim class. In particular, T is a subset of
all possible triggers/combinations P({T1, · · · ,Tn}), excluding empty {} and {Ti}. The last term,
Label-specific Loss, ensures that only samples of the victim class can cause misclassification, even if
they are from the correct partition. Here ¬V denotes the classes other than the victim class. This two
additional loss terms ensure LOTUS as a dynamic and label-specific attack, which render it evasive
and resilient according to our evaluation in Section 5.3 5.4.

4 DETAILED ATTACK DESIGN

The overview of LOTUS is shown in Figure 1. Victim class input samples are first separated to
partitions. We then apply unique triggers to samples from the corresponding partitions, whose
labels are set to the target class. Data poisoning is then conducted to acquire a raw poisoned model,
for which the injected triggers tend to have unbounded effects. To address this problem, LOTUS
further introduces a trigger focusing step that strictly limits the attack scope of each trigger. It finally
produces a trojaned model with triggers that are evasive and resilient.

Partition

Victim Samples

Raw Poisoned Data

Raw Poisoned Model Trigger 
Focusing

Selective Adversarial Data

Evasive and Resilient 
Poisoned Model

Figure 1: Overview of LOTUS

In the following, we elaborate two major components of LOTUS, namely, victim-class sample
partitioning and trigger focusing.

4.1 VICTIM-CLASS SAMPLE PARTITIONING

LOTUS separates a set of victim-class samples into multiple partitions, and injects different triggers to
different partitions. We propose two ways to partition input samples. The first is explicit partitioning
that leverages a subset of explicit attributes of the victim class (e.g., hair color and w./ or w./o. glasses
for face recognition). Assume k attributes are used and each attribute has t possible values. This
allows to generate tk partitions. The first two columns in Figure 2 show a partitioning based on the
taxonomy attribute of the bird class. Explicit partitioning leverages known attributes, which may not
be available for some dataset. We hence introduce an advanced partitioning method that is applicable
to arbitrary datasets in the following.

The second partitioning scheme is implicit, meaning that human uninterpretable features are used
in partitioning. A straightforward idea is to directly use traditional clustering algorithms such as
K-means to partition victim-class samples based on their feature representations derived from a
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Bird p1 Bird p2 Cat p1 Cat p2
Figure 2: Explicit (left) and im-
plicit (right) partitioning. Victim Samples Pre-trained Encoder

Traditional
Clustering

Different Partitions

Sub-class 𝑛

Sub-class 𝑛 + 1

Sub-class 𝑛 + 2

Non-victim Samples

...

Class 1, 2, … , 𝑛 − 1

Surrogate Model

Training a Surrogate Model

Feature Maps

Class 𝑛

Figure 3: Implicit partitioning with surrogate model.

pre-trained encoder. However, according to our experiment in Appendix K.1, such a naive method
does not work well. The root cause is that K-means is a clustering algorithm on a set of known data
points and does not consider generalization to unseen data points. However, we need to classify a test
sample to a particular cluster during attack and directly using K-means in classification does not have
satisfactory results (Wu et al., 2018; Ogasawara et al., 2021; Cohn & Holm, 2021).

We hence introduce a surrogate model to help sample partitioning. Figure 3 illustrates the procedure
for separating victim class samples to 3 clusters. The surrogate model has the same structure as the
victim model to reduce complexity caused by structural differences. On the bottom left, the features
of samples from victim class n are extracted using a pre-trained encoder. We then use a traditional
clustering method such as K-means to partition these samples into 3 different sub-classes based on
their features. We assign labels n, n+ 1, n+ 2 to samples from the respective sub-classes. They are
then combined with samples from the original classes 1 to n− 1 (excluding the victim class n) to
form a new dataset consisting of n+ 2 classes. The surrogate model is trained on this new dataset
with n+ 2 classes. The idea is to use K-means to provide a meaningful prior separation and then use
classifier training to achieve generalizability. Furthermore, the decision boundaries by the surrogate
model have the classes other than the victim class in consideration, whereas those by distances to
centroids of K-means clusters only have victim class samples in consideration. After the training
converges, the surrogate model is utilized to determine the partition of a test sample. That is, the
partition index can be derived from the its classification outcome (i.e., the class with largest logits
from classes n to n+ 2). The last two columns in Figure 2 show two implicit partitions of the “cat”
class. Observe that the partitions are largely uninterpretable, which makes the attack more stealthy
compared to using explicit attributes which are public.

Handle Potential Imbalanced Examples. We control that for any partitioning, the sizes of each parti-
tion are roughly the same, which mitigates the potential of causing partitioning bias. This is achieved
by removing samples from exceptionally large clusters. In practice, such a removal is rarely needed.

4.2 TRIGGER FOCUSING

After partitioning, LOTUS aims to limit each trigger to its own partition, preventing it from attacking
other partitions or classes. To achieve this, we design a trigger focusing technique during training.

A straightforward idea is to strictly follow the definition in Equation 2 to bound the trigger scope.
However, the third term, which aims at stamping all combinations of triggers that are different from
{Ti} to a sample of partition pi and setting the label to yV , is extremely expensive. The number of
combinations is (2n − 2), which grows exponentially with the increase of the number of partitions n.
Moreover, the inclusion of a substantial number of additional samples will not only slow down the
training but also imbalance the dataset, ultimately impacting the overall performance.

Adversarial Poisoning Is Insufficient. Another idea to bound the trigger scope is inspired by
adversarial training (Nguyen & Tran, 2020b;a), which adds adversarial perturbations to a sample and
use the original label to improve model robustness. To suppress the undesirable attack effect in our
context, we could inject triggers that are not for a partition pi, i.e., Tj where j ̸= i, to samples of pi
and set the injected samples’ labels to the victim class. This approach is referred to as adversarial
poisoning. However, it is only effective in eliminating individual non-matched triggers Tj , but fails
for trigger combinations that contain the matched trigger Ti, e.g., [Ti,Tj ].
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Figure 4: Decision boundaries for different poisoning strategies.

Figure 4 presents a visualization of decision boundaries for various poisoning strategies, namely:
(a) Straightforward data-poisoning; (b) Adversarial-poisoning; and (c) Trigger-focusing (which will
be discussed in the next paragraph). Within each subfigure, we provide an intuitive illustration and
employ t-SNE (Van der Maaten & Hinton, 2008) to visualize the feature representations of different
samples under these poisoning strategies. The experiment is conducted on the CIFAR-10 dataset
using the ResNet18 model, and we utilize implicit partitioning to create four distinct partitions. In
the figure, a hollow closed lock is used to denote clean images xpi

v in the victim class of partition pi,
while a red opened lock is used to represent clean images of the target class. Triggers are depicted
as keys with various colors. According to our objective, only the red keys, signifying the correct
trigger for partition Ti, can unlock the lock, crossing the red decision boundary, and be classified
as the target class. Keys of different colors, signifying various triggers or combinations, are unable
to unlock the lock and remain within the victim class region. In Figure 4(a), any trigger leads to
unbounded attack effects in straightforward data-poisoning. Observe any key, denoting a trigger, can
unlock the lock and cross the boundary without limitations. The t-SNE visualization on real data on
the right aligns with the illustration on the left. In contrast, adversarial-poisoning, as depicted in (b),
mitigates the impact of samples with unmatched individual triggers, as represented by the green key.
However, trigger combinations containing both the matched trigger Ti and unmatched trigger Tj , as
shown by the key with half red and half green, still lead to misclassification. Similarly, in the t-SNE
visualization, the yellow triangles, which represent this type of trigger combination, are substantially
close to the red triangles, denoting the strictly matched triggers. This indicates the insufficiency of
adversarial-poisoning.

Efficient and Effective Trigger Focusing. Inspired by the observation in Figure 4, we propose a
novel trigger focusing method that can effectively bound trigger scopes and is in the mean time cost-
effective. In addition to adversarial poisoning that stamps samples in a partition pi with individual
out-of-partition triggers Tj (j ̸= i) and sets their labels to the victim class yV , it further stamps
samples in partition pi with a pair of triggers [Ti, Tj] (j ̸= i), that is, the partition’s trigger and
another different partition’s trigger, and sets their labels to yV .

n∑
i=1

E(x
pi
V ,yV )∼D[

n∑
j=1,j ̸=i

(L(Mθ(Tj ⊕ xpi

V ), yV ) + L(Mθ([Ti,Tj ]⊕ xpi

V ), yV ))] (3)

Our approach, with the dynamic loss term expressed in Equation 3, requires only (2n− 2) trigger
combinations, which increases linearly with the growth of partitions n. This number is significantly
smaller than that of the dynamic loss in Equation 2.

Intuitively, the different labels of samples Ti ⊕ xpi

V and [Ti,Tj ]⊕ xpi

V enable the model to learn new
behaviors. As such, further stamping any other partition triggers to [Ti,Tj ]⊕ xpi

V yields the same
classification result, which is the victim class. Please refer to Appendix D for a detailed reasoning
and theoretical analysis.

In Figure 4(c), it is noteworthy that trigger combinations are effectively excluded from the target class
and only the trigger that matches the victim partition can cause the misclassification, well aligning
with our attack objective.
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5 EVALUATION

In this section, we evaluate on 4 benchmark datasets and 7 model structures to demonstrate the
attack effectiveness of LOTUS (Section 5.2). We illustrate that LOTUS is evasive and resilient
against 13 state-of-the-art detection/defense methods, compared with 7 popular backdoor attacks
(Section 5.3 5.4). Besides the main results, we evaluate LOTUS against 2 poisoned sample detection
baselines in Appendix G and show its evasiveness against them. We validate the effectiveness
of Trigger Focusing (Section 4.2) through comparison with straightforward poisoning strategies
in Appendix E. We extend LOTUS to universal attacks in Appendix H and compare LOTUS with
two additional novel attacks, demonstrating its superiority over them in Appendix I. We study the
effectiveness of LOTUS under adaptive defense scenarios in Appendix J. A series of ablation studies
are carried out to understand the effects of different components of LOTUS in Appendix K. We also
provide examples of inverted triggers in Appendix C and GradCAM visualization in Appendix L.

5.1 EXPERIMENT SETUP

We evaluate LOTUS on 4 widely-used benchmarks, CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), CelebA (Liu et al., 2015), and restricted ImageNet (RImageNet) (En-
gstrom et al., 2019; Santurkar et al., 2019; Tsipras et al., 2018). Detailed description of these
datasets can be found in Table 4 in Appendix A. We conduct experiments on 7 different model
structures, including VGG11 (Simonyan & Zisserman, 2014), VGG16 (Simonyan & Zisserman,
2014), ResNet18 (He et al., 2016b), ResNet50 (He et al., 2016b), Pre-act ResNet-34 (PRN34) (He
et al., 2016a), WideResNet (WRN) (Zagoruyko & Komodakis, 2016), and Densenet (Huang et al.,
2017).

We leverage several sub-partitioning methods to partition samples from the victim class. We utilize
secondary labeling, e.g., various cat species, to create clear and explicit partitions. For implicit
partitioning, we first leverage K-means clustering (Hartigan & Wong, 1979) and GMM (McLachlan
& Basford, 1988) to partition the feature representations of victim samples through a pre-trained
encoder (Zhang et al., 2018). Then we train a surrogate model to learn the partitioning principle,
which serves as the implicit sub-partitioner (Section 4.1). Details of the sub-partitioning and encoder
can be found in Appendix B.

Table 1: Evaluation of attack effectiveness. The first three columns denote different partitioning
algorithms (PA), datasets, and model structures. The following columns present the original accuracy
of clean models (Acc.), benign accuracy of the backdoored models (BA), the attack success rate when
stamping a trigger on the proper partition (ASR), and the average ASR when stamping other triggers
and trigger combinations, with the standard deviation) (ASR-other).

PA Dataset Model Acc. BA ASR ASR-other

K
-m

ea
ns

CIFAR-10
VGG11 92.16% 92.04% 93.80% 4.77% ± 19.27%

ResNet18 95.22% 94.71% 94.30% 4.39% ± 17.08%

CIFAR-100
Densenet 75.14% 75.15% 92.00% 4.36% ± 14.24%
PRN34 74.70% 74.52% 89.00% 5.43% ± 13.50%

CelebA WRN 80.47% 79.40% 92.33% 6.87% ± 17.49%
RImageNet ResNet50 97.77% 97.19% 93.87% 2.16% ± 19.34%

G
M

M

CIFAR-10 ResNet18 95.22% 94.59% 90.70% 4.80% ± 21.38%
CIFAR-100 PRN34 74.70% 74.02% 91.00% 2.21% ± 12.57%

CelebA WRN 80.47% 79.66% 92.53% 5.39% ± 16.77%
RImageNet VGG16 96.51% 95.93% 93.52% 3.11% ± 14.39%

Se
c. RImageNet

VGG16 96.51% 96.36% 96.50% 1.79% ± 13.24%
ResNet50 97.77% 97.08% 92.50% 2.14% ± 16.53%

5.2 ATTACK EFFECTIVENESS

We evaluate the performance of LOTUS on various datasets, model structures and partitioning methods.
Table 1 presents the results. For all the experiments, we use the first class of each dataset as the
victim and the last class as the target. We generate 4 partitions for the victim class throughout all
datasets and model structures. Our triggers are polygon patches with single colors injected on the
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Figure 5: Evaluation of LOTUS against four trigger-inversion based backdoor detection methods.

side or in the corner of input images, which avoids occluding the features for normal classification
tasks. Example images with triggers can be found in Figure 11 in Appendix. The top two blocks
in Table 1 (separated by the double lines) show the results for implicit partitioning, and the bottom
for explicit partitioning. For K-means clustering, ASRs are at least 89.00%, with the highest ASR
of 94.30% for ResNet18 on CIFAR-10, while the degradation of benign accuracy is within 1.07%.
This indicates LOTUS is a highly effective attack, which injects successful malicious behaviors to
the model while maintains its benign utility. The last column shows the ASR when trigger/trigger-
combinations other than a partition’s trigger are stamped on the partition (ASR-other). Observe that
the average ASR-other is less than 6.87%, delineating the effectiveness of trigger focusing (a trigger
is only effective for the corresponding partition). A more comprehensive study on trigger focusing
is presented in Section E. We have similar observations for using GMM in implicit partitioning.

Table 2: Evaluation of label specificity. ASR-
victim means the attack success rate when stamp-
ing a trigger on the proper partition of victim class
images. ASR-other-label means the attack success
rate when stamping a trigger on the proper parti-
tion of other class images.

Dataset Network ASR-victim ASR-other-label

CIFAR10 ResNet18 93.80% 14.37%
CIFAR100 Densenet 92.00% 11.23%

CelebA WRN 92.33% 19.67%
RImageNet VGG16 93.52% 12.22%

For the explicit secondary labeling, LOTUS can
achieve an ASR over 92.50%. The ASR-others
are also quite small. The better performance
of LOTUS using secondary labeling can be at-
tributed to the fact that the victim class in RIm-
ageNet is merged from a set of similar classes
in ImageNet. Those classes are naturally sepa-
rable, which can be easily differentiated by the
model when triggers are injected on different
partitions.

Besides, we also evaluate the label specificity of
LOTUS on several models. Results are presented
in Table 2. Observe that even if the trigger is
stamped on the proper partition of the input im-
age, the ASR-other-label is low (< 20%) because the input image is not of the victim class. The
result shows that LOTUS exhibits a high level of label specificity. Furthermore, LOTUS offers an easy
extension into universal attack scenarios through the integration of explicit partitioning techniques.
Detailed examples can be found in Section H.

5.3 EVASIVENESS AGAINST BACKDOOR DETECTION METHODS

In this section, we study the evasiveness of LOTUS against 4 well-known trigger-inversion based
backdoor detection methods, including Neural Cleanse (NC) (Wang et al., 2019), Pixel (Tao et al.,
2022b), ABS (Liu et al., 2019), and FeatRE (Wang et al., 2022b). We compare the results of LOTUS
with 7 novel backdoor attacks, including BadNets (Gu et al., 2019), Dynamic backdoor (Salem et al.,
2020), Input-aware (IA) (Nguyen & Tran, 2020a), WaNet (Nguyen & Tran, 2020b), ISSBA (Li et al.,
2021c), LIRA (Doan et al., 2021), and DFST (Cheng et al., 2021). For fair comparison, we launch all
backdoor attacks on ResNet18 models trained on CIFAR-10. As LOTUS is a label-specific attack,
we implement all other attacks in label-specific setting, where the poisoned samples are composed
of images from victim class 0 stamped with the trigger and labeled as the target class 9. Besides,
all detection methods are required to invert triggers based on 100 clean validation images from the
victim class, targeting to labels other than it. We follow all the other settings and techniques of the
original papers to implement the attack and detection methods.

Figure 5 illustrates the detection results, where the x-axis denotes different attacks and the y-axis
denotes the decision scores of each baseline. The thresholds are highlighted in red dashed lines. If
the decision score of an attack is higher than the threshold, it’s considered to be backdoored by the
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Table 3: Evaluation of resilience against backdoor mitigation methods. The first column denotes the
attacks, with the following columns representing the performance of different mitigation methods. A
resilient attack is expected to have both high benign accuracy (BA) and ASR after mitigation. The
best results are in bold.

Attacks w./o. Mitigation Fine-tuning Fine-pruning NAD ANP

BA ASR BA ASR BA ASR BA ASR BA ASR

BadNets 92.02% 100.00% 89.31% 1.74% 91.70% 0.53% 87.81% 0.80% 89.15% 0.32%
Dynamic 91.81% 100.00% 88.87% 2.91% 91.39% 22.03% 89.11% 2.90% 88.25% 12.81%
IA 91.70% 99.65% 87.74% 2.78% 91.07% 0.17% 87.14% 2.29% 88.73% 1.98%
WaNet 91.22% 98.57% 89.56% 1.37% 90.22% 1.07% 89.74% 1.40% 89.07% 0.54%
ISSBA 91.67% 99.96% 87.73% 2.72% 91.12% 14.27% 87.97% 2.83% 85.64% 10.01%
LIRA 91.70% 100.00% 89.96% 2.19% 91.29% 12.14% 90.23% 2.32% 89.70% 37.91%
DFST 91.81% 99.97% 88.49% 22.86% 91.47% 21.61% 88.52% 24.66% 87.13% 36.17%

LOTUS 91.54% 93.80% 88.10% 46.90% 91.14% 44.90% 87.61% 42.30% 88.14% 34.90%

baseline. Specifically, NC (Wang et al., 2019) and Pixel (Tao et al., 2022b) use anomaly index as their
decision scores while ABS (Liu et al., 2019) and FeatRE (Wang et al., 2022b) leverages REASR,
namely the ASR of reverse-engineered triggers. Observe that NC, Pixel, ABS are effective against
several attacks, including BadNets, Dynamic, ISSBA, LIRA and DFST, while leaving other advanced
attacks, i.e., WaNet, IA and LOTUS. FeatRE, on the other hand, observes internal linear separability
properties of existing backdoors and improves the trigger inversion process, which is able to detect
the advanced backdoors operating in the feature space. Figure 5(d) shows that it can detect both
IA and WaNet, but still fails to detect LOTUS. This illustrates that LOTUS is more evasive than all
these baseline attacks. The underlying reason is that LOTUS leverages partitioning secrets and trigger
focusing, which breaks the linear separability assumption. Without knowledge of partitioning, it’s
unlikely to invert a trigger with high ASR, and hence unlikely to detect the backdoor. Examples of
inverted triggers can be found in Appendix C.

We also test LOTUS in the adaptive defense scenario, where the defender can create partitions before
detection. The results in Appendix J demonstrate that LOTUS is resilient against adaptive defense
strategies, as guessing the correct partitioning is challenging.

Besides trigger inversion methods, we also evaluate LOTUS using meta-classifiers, e.g., MNTD (Xu
et al., 2019) and ULP (Kolouri et al., 2020), which train model-level classifiers for detection. Results
in Appendix F show that LOTUS is evasive against them.

5.4 RESILIENCE AGAINST BACKDOOR MITIGATION METHODS

In this section, we study the resilience of LOTUS against 4 state-of-the-art backdoor mitigation
methods, including standard Fine-tuning, Fine-pruning (Liu et al., 2018a), NAD (Li et al., 2021a),
and ANP (Wu & Wang, 2021). We compare the results of LOTUS with 7 novel backdoor attacks. For
fair comparison, all the models are trained using VGG11 on CIFAR-10 dataset. For each mitigation
method, we assume the access to 5% of the training data. Besides, some standard input argumentation
techniques are used, e.g., random cropping and horizontal flipping. We follow the original setting to
conduct these baseline methods.

Table 3 provides the result. Observe that for all the baselines, benign accuracy change is slight,
meaning that the mitigation preserves the model utility on benign tasks. However, ASR degradation
is considerable for all backdoored models. Note that LOTUS can still remain part of the attack
effectiveness with 34.90%-46.90%, outperforming all other attacks. The result indicates that LOTUS
is more resilient against baseline mitigation methods compared to the existing attacks. This can be
attributed to the design that LOTUS learns the correlation between the partitions and triggers which is
hard to unlearn. Other attacks only learn partial trigger patterns that tend to be mitigate.

6 CONCLUSION

We propose a novel backdoor attack that leverages sub-partitioning to restrict the attack scope. A
special training method is designed to limit triggers to only their corresponding partitions. Our
evaluation shows that the attack is highly effective, achieving high attack success rates. Besides, it is
evasive and resilient against state-of-the-art defense techniques.
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ETHICS STATEMENT

In this paper, our research does not involve human subjects, data set releases, considerations related to
discrimination, bias, or fairness, and we also do not encounter legal compliance or research integrity
issues. Backdoor attacks are designed to cause any inputs marked with a specific pattern to be
misclassified as a target label. Consequently, backdoors are emerging as a significant security concern
in real-world deployments. While malicious users could potentially exploit our method to launch
attacks on pretrained models, it’s important to note that, similar to adversarial attacks, our research
serves the purpose of raising awareness about the existence of backdoor attacks in deep learning
models. It can encourage the community to develop models that are free from backdoors and are
more secure.

REPRODUCIBILITY STATEMENT

The implementation code will be released upon publication. All datasets and code platform (PyTorch)
we use are public. In addition, we also provide detailed experiment setups in the Appendix.
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APPENDIX

A DETAILS OF USED DATASETS

Table 4 provides the detailed description of datasets used in the experiments. We use the standard
datasets of CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009). For the
CelebA (Liu et al., 2015), we follow the existing work (Nguyen & Tran, 2020b) to generate 8 classes
based on multiple facial attributes. For the restricted ImageNet (RImageNet) dataset, following the
setup in existing works (Engstrom et al., 2019; Santurkar et al., 2019; Tsipras et al., 2018), we merge
similar classes into one class and generate a dataset with 20 classes. The mapping between the
merged classes and their original classes is shown in Table 5. During model training, we normalize
input images and perform various data augmentations, including random horizontal flipping, shifting,
spinning, etc.

Table 4: Description of different datasets
Dataset # Classes Shape of Images # Training Samples # Test Samples

CIFAR-10 10 32 × 32 50,000 10,000
CIFAR-100 100 32 × 32 50,000 10,000

CelebA 8 64 × 64 162,770 19,867
RImageNet 20 224 × 224 101,837 3,950

Table 5: The mapping of classes in restricted ImageNet and class ranges in original ImageNet
Merged Classes of RImageNet Corresponding Original ImageNet Classes

“Birds” 10 to 13
“Turtles” 33 to 36
“Lizards” 42 to 45
“Spiders” 72 to 75
“Crabs” 118 to 121
“Dogs” 205 to 208
“Cats” 281 to 284

“Bigcats” 289 to 292
“Beetles” 302 to 305

“Butterflies” 322 to 325
“Monkeys” 371 to 374

“Fish” 393 to 396
“Fungus” 992 to 995
“Snakes” 60 to 63

“Musical-instrument” [402, 420, 486, 546]
“Sportsball” [429, 430, 768, 805]

“Cars-trucks” [609, 656, 717, 734]
“Trains” [466, 547, 565, 820]

“Clothing” [474, 617, 834, 841]
“Boats” [403, 510, 554, 625]

B DETAILS OF SUB-PARTITIONING

Secondary Labeling. Existing datasets such as ImageNet have thousands of classes. Many classes
are similar to each other (e.g., from the same species). For instance, there are at least five breeds of
cats in the ImageNet dataset. We hence can leverage this to merge similar classes into one class. The
breeds naturally become the partitions in the new class. This has be used in existing works (Engstrom
et al., 2019; Santurkar et al., 2019; Tsipras et al., 2018). We call such a partitioning method secondary
labeling. We generate a RImageNet dataset with 20 new classes. The class mapping between the
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new dataset and ImageNet is presented in Table 5. For example, We use “Birds” as the victim class,
which has 4 breeds (corresponding to labels 10 to 13 in the original ImageNet). Then LOTUS can
directly exploit the 4 breeds to generate 4 secret partitions.

K-means Clustering. K-means (Hartigan & Wong, 1979) clustering aims to partition n observations
into k clusters, where each observation is a d-dimensional vector. The resultant partitioning ensures
that each observation belonging to a cluster has the smallest distance to its cluster center or centroid.
Specifically, given a set of observations {x1, x2, · · · , xn}, K-means partitions them into k(≤ n)
clusters C = {C1, C2, · · · , Ck} by minimizing the within-cluster sum of distances as follows.

argmin
C

k∑
i=1

∑
xj∈Ci

∥xj − µi∥p, (4)

where µi is the mean of observations in cluster Ci. We use p = 2 in our setting, which corresponds
to the Euclidean distance.

Gaussian Mixture Model (GMM). A Gaussian mixture model (McLachlan & Basford, 1988) is
a probabilistic model that assumes there exist a finite number of Gaussian distributions which can
represent the given data points. Each Gaussian distribution denotes a cluster. Other than considering
the mean of data points as in K-means, GMM also incorporates the covariance during clustering (e.g.,
the variance of data points within the cluster).

Pre-trained Encoders. We utilize the pre-trained encoders available in the LPIPS GitHub repository1,
with the VGG model serving as the default encoder structure. As prior research (Zhang et al., 2018)
has demonstrated, the feature maps generated by a large pre-trained encoder can offer effective
perceptual representation. Therefore, we extract input sample features via the pre-trained encoder
prior to implicit partitioning.

C ILLUSTRATIONS OF INVERTED BACKDOOR TRIGGERS

In this section, we visualize some inverted triggers using Pixel (Tao et al., 2022b) in Figure 6. The first
row shows the poisoned images with trigger (beginning with the original clean version for reference.)
The second row presents the pixel difference between the poisoned images and their clean versions,
illustrating the trigger effect. The last row visualizes the inverted triggers by Pixel. We compare the
result of LOTUS at the last column with other four attacks. Observe that the inverted triggers for
other attacks are visually similar to that of the ground-truth triggers. However, the inverted trigger of
LOTUS is far different from the ground-truth one, which validates that LOTUS is evasive.

Ground-truth
Trigger

Inverted
Trigger

Clean BadNets Dynamic Invisible LIRA LOTUS

Figure 6: Visualization of inverted triggers using Pixel.

D THEORETICAL ANALYSIS OF EFFECTIVENESS OF TRIGGER FOCUSING

Section 4.2 introduces the advantage of trigger focusing over adversarial poisoning. In this section,
we formally analyze the two methods and provide our hypothesis.

1https://github.com/richzhang/PerceptualSimilarity
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Poisoning a partition pi essentially introduces strong correlations between the features of pi, denoted
as F(pi), the trigger Ti, and the target label yT , such that the conditional probability P (yT | F(pi)∪
F(Ti)) is high. If another partition pj shares substantial common features with pi, without any
special training, P (yT | F(pj)∪F(Ti)) is high as well, meaning the model tends to predict yT when
pj samples are stamped with Ti.

Adversarial Poisoning is Insufficient. The goal of adversarial poisoning introduced in Section 4.2
is to unlearn the undesirable associations among features F(pi), triggers Tj (with j ∈ [1, n] and
j ̸= i), and the target label yT . However, we observe that although P (yT | F(pj) ∪ F(Ti)) with
j ̸= i becomes low after adversarial poisoning, P (yT | F(pi)∪F(Ti)∪F(Tj)) and P (yT | F(pj)∪
F(Ti) ∪ F(Tj)) may still be high. It implies that stamping a set of partition triggers at the same
time may still achieve a reasonably high class-wide ASR. As such, the composition of these partition
triggers may constitute a uniform trigger that exceeds the attack scope. This could potentially make it
vulnerable to trigger inversion techniques and various backdoor mitigation methods.

Intuitively, this is because after data poisoning, features F(pi) together with the features of Ti become
features of the target class. That is,

F(pi) ∪ F(Ti) ⊂ F(yT )

In contrast, normal training tends to make F(pi) ⊂ F(yV ), that is, partition features become
features of the victim class. A sample with the presence of F(pi) hence already tends to be classified
to yV . As such, adversarial poisoning, i.e., stamping Tj (j ̸= i) to samples of pi, does not require the
model to further learn much. The model hence tends to consider out-of-partition triggers Tj noises
for partition pi samples, instead of considering F(pi) ∪ F(Tj) features of yV . Consequently, victim
class samples stamped with a trigger composition, e.g., xpi

V ⊕ [Ti,Tj ] and x
pj

V ⊕ [Ti,Tj ], tend to
have sufficient target class features such that they can be uniformly flipped by the combination.

We formulate the above observation with the following definition and hypothesis and then use them
to explain the phenomenon.

Definition 1 Let xpi

V be a set of victim class samples in partition pi and T a subset of {T1, ...,Tn}.
We say Ts the maximum subset of T regarding partition pi if samples (xpi

V ⊕ Ts, y) have been
explicitly added to the training set and have a consistent label y, which could be yV or yT , and there
is not another subset T ′

s with Ts ⊂ T ′
s ⊂ T such that T ′

s satisfies the aforementioned condition.

Intuitively, a maximum subset of a trigger set T regarding a partition pi is a subset that has been
stamped to victim samples xpi

V and set to a consistent label. For example, in simple data poisoning,
since individual triggers are only added to samples of their respective partitions. A trigger set
{Ti,Tj} has only one maximum subset regarding pi, which is {Ti} with label yT . In adversarial
poisoning, the trigger set {Ti,Tj} has two maximum subsets regarding pi, {Ti} and {Tj}. The
former has the label of yT and the latter yV .

Hypothesis 1 (Maximum Trigger Subset) Given a trigger set T ⊂ {T1, ...,Tn}, if all the maxi-
mum subsets of T have a consistent label y, Mθ(T ⊕x) = y in testing. Otherwise, the classification
results are undecided.

The hypothesis says that the testing results of stamping a set of triggers T are determined, if its
maximum subsets have a consistent label during training. Otherwise, it is undecided. It is a hypothesis
because it is difficult to quantify or formally prove. According to the hypothesis, when only simple
data poisoning is used, stamping {Ti,Tj} or any of its supersets to samples of partition pi in testing
yields the target label yT . In contrast, when adversarial poisoning is used, stamping {Ti,Tj} to
samples of partition pi yields an undecided label, which could be yT or yV . In practice, it is more
likely yT . The reason is that although adversarial poisoning adds training samples (Tj ⊕ xpi , yV )
for each j ∈ [1, n] with j ̸= i. The trigger set {Tj} has a maximum subset {} (i.e., equivalent to
stamping no trigger) whose label is already yV . Therefore, such additional training samples may not
have substantial effects on changing model behaviors. Intuitively, the model is already capable of
making the correct prediction based on F(pi). It tends not to learn the additional features F(Tj).
Instead, it likely treats them as noises. Therefore, F(Ti) ∪ F(pi) dominates.

Efficient and Effective Trigger Focusing. Although data poisoning (i.e., setting Ti ⊕ xpi
to yT )

forces features F(pi) together with features F(Ti) to become features of the target class, adding
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training inputs ([Ti,Tj ]⊕ xpi
, yV ) forces F(pi) ∪ F(Ti) ∪ F(Tj) to become features of the victim

class. The different labels of samples Ti ⊕ xpi
and [Ti,Tj ] ⊕ xpi

V enable the model to learn new
behaviors. As such, further stamping any other partition triggers to [Ti,Tj ]⊕ xpi

V yields the same
classification result, which is the victim class, according to the maximum trigger hypothesis.

Hypothesis 2 Our training method is sufficient to achieve precise focusing, meaning that only
Ti ⊕ xpi

V can yield the target label and stamping any other trigger or trigger combinations yields the
victim class label.

We can prove the hypothesis assuming the maximum subset hypothesis is correct. We focus on
proving that an arbitrary non-empty set of triggers T ≠ {Ti} must yield the victim class label for
xpi

V . There are two possible cases. One is when Ti ̸∈ T and the other is when Ti ∈ T . In case one,
without losing generality, assume T = {Tt1 , ...,Ttk} with 0 < k < (n− 1) and t1, ..., tk not equal
to i. As such, {Tt1}, ..., {Ttk} are the maximum subsets of T regarding pi. They have a consistent
label yV . As such, Mθ(T ⊕ xpi

V ) = yV based on the maximum subset Hypothesis (1).

In case two, without losing generality, assume T = {Ti,Tt1 , ...,Ttk} with 0 < k < (n− 1) and t1,
..., tk not equal to i. As such, {Ti,Tt1}, ..., {Ti,Ttk} are the maximum subsets of T regarding pi.
They have a consistent label yV . As such, Mθ(T ⊕ xpi

V ) = yV . The hypothesis is hence proved. □

E EVALUATION ON POISONING STRATEGIES
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Figure 7: ASR on all trigger combinations by different poisoning strategies

Table 6: Evaluation on different poisoning strategies
Strategy BA ASR ASR-indi ASR-comb NC index

Simple Poison 94.79% 98.80% 97.86% ± 1.84% 97.88% ± 1.81% 5.338
Adv. Poison 94.47% 94.20% 18.95% ± 10.22% 73.88% ± 31.87% 2.161

Trigger Focus 94.71% 91.40% 14.15% ± 7.46% 0.02% ± 0.09% 1.156

We evaluate different poisoning strategies including simple data poisoning, adversarial poisoning,
and trigger focusing. We employ a ResNet18 model on CIFAR-10 as the subject. The victim class is
0 and the target class is 9. We apply implicit partitioning based on K-means to generate 4 partitions.
The number of possible non-empty trigger combinations is 24 − 1 = 15. In the following, we use a
four-bit binary to represent each combination. For example, 0110 denotes T2 and T3 are stamped
on inputs but not T1 and T4. Figure 7 illustrates the ASRs on all trigger combinations by different
poisoning strategies. Sub-figures from left to right present the results for simple poisoning, adversarial
poisoning, and trigger focusing, respectively. In a sub-figure, each column denotes input samples

18



Under review as a conference paper at ICLR 2024

from a partition pi, and each row denotes a trigger combination. The value in each cell shows the
ASR when a trigger combination (row) stamped on the samples from a partition (column). Brighter
the color, higher the ASR. The left sub-figure shows the ASR for simple data poisoning. Observe
that all the ASRs are greater than 92.0% (with an average of 97.94%), showing the sub-partitioning
is not learned by the model. The middle sub-figure is the results for adversarial poisoning. We can
see around half of cells have small values, especially for single trigger combinations (the top four
rows). For more complex trigger combinations, the ASRs are still high with the highest of 100.0%
(trigger combination 0111 on partition p2), indicating the insufficiency of adversarial poisoning. The
right sub-figure is for our trigger focusing. Observe that except for stamping a trigger on the proper
partition, the other cases all have a low ASR with an average of 3.04%. We compute the average
ASR for individual wrong triggers (other than the correctly-assigned trigger for the partition) and
trigger combinations for each strategy and report the results in Table 6. The first column denotes the
poisoning strategies. The following columns show the BA (benign accuracy), ASR-indi (ASR for
individual wrong triggers), ASR-comb (ASR for trigger combinations), and NC anomaly indexes,
respectively. Observe that all the ASRs are almost 100% for simple poisoning. Adversarial poisoning
reduces the ASR-indi to a low level while leaving ASR-comb high (73.88% on average). Our trigger
focusing strategy has the lowest ASR-indi with an average of 14.15% and ASR-comb 0.02%. We
further use NC (Wang et al., 2019) to evaluate on poisoned models by different strategies. The last
column shows the anomaly index for different poisoned models. Observe that models poisoned by
simple data poisoning and adversarial poisoning can be easily detected by NC (with anomaly index
> 2). Poisoned models by trigger focusing, on the other hand, are able to evade NC’s detection,
delineating the effectiveness of trigger focusing strategy to achieve evasiveness.

F EVALUATION AGAINST META-CLASSIFIERS

Table 7: Evaluation on ULP and MNTD.
# Partitions 2 3 4 5 6 7 Accuracy

ULP 0 1 0 0 0 0 16.7%
MNTD 1 0 1 1 0 0 50.0%

In this section, we evaluate LOTUS against backdoor detection methods based on meta-classifier, i.e.,
MNTD (Xu et al., 2019) and ULP (Kolouri et al., 2020). Both methods aim to train a binary classifier
from a large number of benign and poisoned models for backdoor scanning. They generate a set of
input patterns and feeds them to the models whose output logits are then used to train the classifier.
During training, the patterns and the binary classifier are optimized together in order to distinguish
benign and poisoned models in the training set. During inference, these patterns are fed to the given
model whose output logits are used by the binary classifier to decide whether the model is poisoned.

As MNTD and ULP require a large number of models for training, we adopt the TDC dataset2, which
consists of 125 benign models and 125 poisoned models trained on CIFAR-10 using WRN. We are
able to train a MNTD and ULP classifier with over 90% training accuracy. To evaluate LOTUS against
both meta-classifiers, we generate 6 poisoned models using the same dataset and structure, with 2-7
partitions. Table 7 presents the detection results by MNTD and ULP, where 0 denotes benign and 1
poisoned. Observe that the detection accuracy of ULP is only 16.7%, and MNTD 50.0%, showing
they are unable to detect LOTUS.

G EVALUATION AGAINST TESTING-TIME SAMPLE DETECTION

We conduct experiments to study the evasiveness of LOTUS against 2 testing-time sample detection
techniques, STRIP (Gao et al., 2019) and Spectral Signitures (Tran et al., 2018) on a ResNet18
model trained on CIFAR-10 using K-means implicit partitioning and a VGG16 model trained on
RImageNet using secondary labeling. Specifically, for each model, we randomly select 400 clean and
400 poisoned samples and assess their distributions according to different baselines.

STRIP (Gao et al., 2019) examines the entropy of the resulting predictions to identify the presence of a
backdoor trigger by superimposing an input with a set of clean samples. The overlapping distributions

2https://trojandetection.ai/
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Figure 8: Evaluation against STRIP
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Figure 9: Evaluation against Spectral Signitures

of the normalized entropy for clean and poisoned data in Figure 8 indicate that LOTUS evades the
detection of STRIP. The reason is that super-imposing breaks condition of correct partitions to trigger
the backdoor. On the other hand, Spectral Signatures (Tran et al., 2018) identifies backdoor attacks
by detecting outliers in feature covariance spectra through singular value decomposition. Figure 9
visualizes the distributions of outlier scores for clean and poisoned samples, where they highly
overlap, meaning Spectral Signatures is unable to detect LOTUS’s poisoned samples. This is because
LOTUS learns a complex mapping from partition secrets to trigger injection, making the internal
values similar to that of complex benign features.

H EXTENSION TO UNIVERSAL ATTACKS

We extend LOTUS to universal attack by partitioning samples based on their classes. Using ResNet18
as an example model, we divide CIFAR-10 samples into 5 partitions (2 classes for each partition)
and apply Trigger Focusing for target label 0. We achieve 94.14% BA, 95.99% ASR and 5.94%
ASR-other. Furthermore, the attacked model successfully evades the detection by NC, with an
anomaly index of 1.614, which is below the established outlier threshold of 2.

I COMPARISON WITH ADDITIONAL BACKDOOR ATTACKS

We reproduce another two novel attack clean-label (Turner et al., 2018) and adaptive blend (Qi et al.,
2022) on CIFAR-10 and ResNet-18 with over 94% BA and 99% ASR. NC can detect both of them and
Fine-pruning can reduce their ASRs to <10%. However, NC and Fine-pruning cannot detect/mitigate
LOTUS according to the results in Section 5.3 and Section 5.4, which indicates LOTUS outperforms
these attacks regarding both evasiveness and resilience.

J ADAPTIVE DEFENSE

Table 8: Evaluation on adaptive defense.
Partition Method Par. 0 Par. 1 Par. 2 Par. 3 MO

GT 2.587 1.985 2.366 2.841 100%
Inputs 1.178 0858 0.691 0.832 47%

Internels 1.358 0.699 1.387 0.905 67%

Table 9: Evaluation on other partitions.
Metrics Half 0 + half 1 Half 2 + half 3 Equal 4 Random

NC index 1.316 0.823 1.041 1.019
MO 50% 50% 25% 27%

In this section, we assess the performance of LOTUS under various adaptive defense scenarios. We
operate under the assumption that defenders have knowledge about the victim class and the number
of partitions implemented by LOTUS. With this information, they can independently create partitions
and utilize existing defense strategies to reverse-engineer a trigger for each partition and conduct
detection. To illustrate, we conduct experiments using the ResNet18 model on CIFAR-10 attacked
by LOTUS, employing four partitions generated via the implicit partitioning using K-means. We
leverage NC (Wang et al., 2019) as a typical baseline for detection against LOTUS on partitioned
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samples. A model with anomaly index exceeding 2, as produced by NC, is considered backdoored.
Table 8 displays the outcomes for different partitioning techniques. The first column denotes the
partitioning methods, with “GT” implying that the defender possesses precise knowledge of the
partitions, “Inputs” suggesting that the defender employs K-means to generate partitions from input
samples, and “Internals” meaning the defender utilizes K-means to partition based on internal feature
representations. Subsequent columns represent NC anomaly indexes generated on various partitions.
The last column, “MO” quantifies the maximum overlap between generated partitions and one of the
ground-truth partitions. We observe that if defenders possess knowledge of the ground-truth partitions,
they have a higher likelihood of detecting LOTUS by using samples from a specific partition. However,
it is often impractical for defenders to have such knowledge. Scenarios where defenders generate
partitions from input or feature data are more realistic. However, even when defenders employ the
same partitioning algorithm on input samples and feature representations, they face difficulties in
detecting LOTUS. This is because LOTUS leverages a surrogate model to learn partitioning principles,
rather than directly using K-means results. Consequently, their partitioning outcomes differ, with
an MO of only 67%. Table 9 presents additional results, testing detection scenarios where samples
consist of an equal mix from two partitions (Half 0 + half 1), an equal mix from all four partitions
(Equal 4), or random selections from partitions. In all instances, defenders find it challenging to
detect LOTUS. In conclusion, even when defenders possess prior knowledge of LOTUS, detecting the
backdoor remains challenging due to the complexity of its sub-partitioning approach.

K ABLATION STUDY

In this section, we conduct a series of ablation studies of LOTUS on different settings and hyper-
parameters.

Table 10: Results w/ and w/o surrogate models.
Method BA ASR ASR-other

K-means 94.36% 84.40% 19.01% ± 39.24%
K-means + surrogate 94.71% 94.30% 4.39% ± 17.08%

GMM 94.78% 86.38% 20.51% ± 40.38%
GMM + surrogate 94.59% 90.70% 4.80% ± 21.38%

K.1 NECESSITY OF USING SURROGATE MODELS

We verify the necessity of training a surrogate model for implicit sub-partitioning to attain high
attack effectiveness with LOTUS. To validate this, we conducted experiments utilizing the ResNet18
model on CIFAR-10 and compared the attack performance achieved through traditional partitioning
methods, specifically K-means and GMM, with the performance achieved when training a surrogate
model for partitioning. The outcomes are presented in Table 10.

Notably, when we omit the surrogate model, the ASRs experience a noteworthy reduction, ranging
from 4% to 10%. Additionally, ASRs-other exhibit an increase. This decline in performance is due
to the difficulty of the attacked model to effectively learn the traditional partitioning schemes. This
also highlights the necessity of training a surrogate model for sub-partitioning to achieve good attack
performance.

K.2 EFFECT OF DIFFERENT NUMBER OF PARTITIONS

We evaluate the attack’s effectiveness by generating different numbers of partitions. The experiment
is conducted on ResNet18 trained on CIFAR-10 using implicit sub-partitioning. The results are
shown in Figure 10, with the x-axis representing the number of partitions and the y-axis indicating
the percentage values for different metrics. These metrics include BA (Backdoor Accuracy), ASR
(Attack Success Rate), ASR-other (Attack Success Rate of images assigned incorrect triggers), and
Acc.-other (Accuracy for images with incorrect triggers).

It is noteworthy that BAs and ASRs consistently remain at high levels, showcasing the attack’s
effectiveness across various partition numbers, even when the number of partitions is as high as 12
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Figure 10: Attack effectiveness of different number of partitions

or 16. Additionally, ASR-other values are low, while Acc.-others values are high, indicating that
images marked with incorrect triggers tend to be predicted as belonging to their source labels. This
observation further indicates that LOTUS achieves good performances across various partition counts.

Table 11: Results on different number of samples per partition.
# Samples per Partition BA ASR ASR-other

1000 (default) 94.74% 93.90% 5.65%
500 93.94% 90.70% 7.09%
250 94.45% 91.20% 5.77%
100 92.00% 81.10% 9.46%
50 89.46% 79.40% 8.64%

K.3 EFFECT OF DIFFERENT NUMBER OF SAMPLES PER PARTITION

We explore the influence of different sample counts per partition, a crucial factor when employing sub-
partitioning within the victim class. First, unevenly distributed samples resulting from partitioning
could introduce fairness issues in learning. To mitigate this, we analyze the post-partitioning sample
counts and strive to maintain a roughly balanced distribution, although sample imbalance rarely
occurs (as discussed in Section 4.1).

Another potential challenge arises when the number of samples per partition is limited, potentially
affecting trigger focusing due to the requisite knowledge of sub-partitioning secrets. To examine
this effect, we conducted experiments using ResNet18 models on the CIFAR-10 dataset, generating
4 partitions within victim class 0. The results are displayed in Table 11, with the first column
representing the number of samples per partition, followed by benign accuracy (BA), attack success
rate (ASR), and attack success rate for non-targeted triggers (ASR-other). We compare LOTUS’s
performance with the default setting of 1000 samples per partition and other configurations. It is
notable that as the number of samples per partition decreases, both BA and ASR exhibit declines,
while ASR-other experiences an increase. These results indicate that LOTUS’s performance degrades
with fewer samples per partition. However, it’s worth highlighting that even with just 250 samples,
an ASR of over 91% can be achieved. This suggests that LOTUS generally requires around 1000
samples per victim class for good performance, which is often practical across various datasets.

Table 12: Results on different victim-target class pairs.
Victim Target BA ASR ASR-other

0 9 95.01% 91.40% 4.65% ± 16.06%
4 5 94.94% 93.10% 3.64% ± 18.74%
1 6 95.13% 95.70% 5.44% ± 22.67%
7 4 95.03% 93.40% 5.89% ± 23.55%
3 2 95.21% 89.60% 6.38% ± 24.44%
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K.4 EFFECT OF DIFFERENT VICTIM-TARGET CLASS PAIRS

In the previous experiments, we use the first class as the victim and the last class as the target as the
default setting. Here, we randomly select a few victim-target class pairs to study how they affect
the performance of LOTUS. We conduct an experiment on ResNet18 on CIFAR-10 and use implicit
sub-partitioning to generate 4 partitions. Table 12 shows the results. Observe that LOTUS consistently
has a high ASR with different victim-target class pairs, and the ASR-other values are relatively low,
delineating the generalizability of LOTUS to different class pairs.

Table 13: Results on different trigger patterns.
Trigger Pattern BA ASR ASR-other

Color Patch 95.01% 91.40% 4.65% ± 16.06%
Logo 94.89% 91.40% 4.63% ± 16.00%

Instagram Filter 94.40% 89.10% 6.90% ± 21.24%

Color 
Patch

Logo

Filter

Figure 11: Different trigger patterns. The first row shows the color patch triggers, the second row
logo triggers and the third row Instagram filter triggers.

K.5 EFFECT OF DIFFERENT TRIGGERS

We use solid polygon patches as triggers in our previous experiments. We study two other types of
triggers, logos and Instagram filters. Figure 11 shows different trigger patterns. The first row shows
the color patch triggers, the second row the logo triggers (downloaded form the Internet), and the
third row the Instagram filter triggers. We use a ResNet18 model on CIFAR-10 with 4 partitions
for the study. Table 13 presents the results. All three studied cases have high BAs, ASRs, and low
ASRs-other. Due to the overlapping of triggers during trigger focusing, there is a slight degradation
of the attack effectiveness on Instagram filter, with 2% ASR degradation and 2% ASR-other increase.
The Instagram filter cases perturb the entire image and hence slightly degrade the performance of
trigger focusing. Overall, LOTUS is effective with different types of triggers.

Table 14: Results on different patch sizes.
Patch Size BA ASR ASR-other

3 × 3 94.80% 93.90% 4.32%
6 × 6 94.89% 94.30% 4.39%

10 × 10 94.40% 94.40% 5.09%

K.6 EFFECT OF DIFFERENT PATCH TRIGGER SIZES

We study the effect of different trigger sizes using solid patches as the trigger. We conduct experiments
on ResNet18 model on CIFAR-10 with 4 secret partitions. We evaluate patch sizes of 3 × 3, 6 × 6
and 10 × 10. Results are shown in Table 14, where the first column denotes the trigger sizes with the
subsequent columns illustrating LOTUS’s performance, i.e., BA, ASR and ASR-other. Observe that
LOTUS is generally effective using multiple trigger sizes, with high benign accuracy, ASR and low
ASR-other.
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Table 15: Results on different pre-trained encoders.
Encoder BA ASR ASR-other

VGG 94.71% 94.30% 4.39% ± 17.08%
AlexNet 95.10% 92.70% 4.59% ± 20.92%

SqueezeNet 94.75% 91.60% 4.26% ± 20.21%

K.7 EFFECT OF DIFFERENT PRE-TRAINED ENCODERS

In the previous experiments, we leverage the pre-trained encoders of VGG (Zhang et al., 2018) to
extract features of victim samples. We study other two encoders of different structures. We conduct
experiments on a ResNet18 model on CIFAR-10 with 4 implicit partitions. Table 15 shows the results
of using different pre-trained encoders. Observe that LOTUS achieves a consistent good performance
through out all encoders.

L EVALUATION AGAINST GRADCAM

The GradCAM (Selvaraju et al., 2017) method is commonly used to visualize the important regions of
inputs through gradient propagation. In this study, we evaluate LOTUS using GradCAM and compare
the results with those of BadNets (Gu et al., 2019) and Dynamic (Salem et al., 2020) backdoors.
Figure 12 displays the results, which are organized into four groups of images representing the
GradCAM visualizations for the clean model, the BadNets attacked model, the Dynamic attacked
model, and the LOTUS attacked model. In each group of images, the first row shows the poisoned
images (clean images for the clean model), while the second row shows the GradCAM visualizations.
The reddish regions represent important areas, while the bluish regions represent less important parts.

Our observations revealed that for both BadNets and Dynamic backdoors, the important regions
are located at the trigger positions, indicating that their triggers have notable features regarding the
gradients. However, for LOTUS’s poisoned images, the important regions are more similar to those of
the clean models. This further validates the evasiveness of LOTUS and explains why it is difficult to
be inverted.
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Figure 12: Important region visualizations via GradCAM.
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