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ABSTRACT

Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biologi-
cal neurons and are expected to play a key role in the advancement of neural com-
puting and artificial intelligence. The conversion of Artificial Neural Networks
(ANNSs) to SNNGs is the most widely used training method, which ensures that the
resulting SNNs perform comparably to ANNs on large-scale datasets. The effi-
ciency of these conversion-based SNNs is often determined by the neural coding
schemes. Current schemes typically use spike count or timing for encoding, which
is linearly related to ANN activations and increases the required number of time
steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS)
coding scheme. This method incorporates non-linearity into the encoding process
by weighting spikes at each step of neural computation, thereby increasing the
information encoded in spikes. We identify the temporal coupling phenomenon
arising from weighted spikes and introduce negative spikes along with a Ternary
Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent pe-
riod is implemented during neural computation, achieving high accuracy with low
latency. We apply the proposed methods to directly convert full-precision ANNs
and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental
results demonstrate that the CSS coding scheme effectively compresses time steps
for coding and reduces inference latency with minimal conversion loss.

1 INTRODUCTION

Spiking Neural Networks (SNNs), recognized as the third generation of neural network models, are
inspired by the biological structure and functionality of the brain (Wang et al.l [2020). Unlike tra-
ditional Artificial Neural Networks (ANNs), which rely on continuous activation functions, SNNs
utilize discrete spiking events. This enables SNNs to capture temporal dynamics and process infor-
mation in a manner that closely resembles brain activity (Taherkhani et al.,2020). The event-driven
nature of SNNs aligns with the brain’s energy-efficient computational paradigm, offering potential
for more efficient and low-power computing systems (Yamazaki et al.| [2022).

The two primary learning algorithms for SNNs are gradient-based optimization and ANN-to-
SNN conversion. Directly training using supervised backpropagation is challenging due to the
non-differentiable nature of spike generation (Lee et al. 2020; 2016). The conversion-based
method, however, offers a practical approach to overcome this difficulty and has produced the best-
performing SNNs (Deng & Gu, 20215 Bu et al., 2022; Ding et al., 2021).

Encoding the ANN activations into spike trains is a prerequisite for successful ANN-to-SNN con-
version. Various coding schemes, such as rate coding and temporal coding, have been proposed to
describe neural activity (Guo et al.|2021)). Rate coding maps the number of spikes to the correspond-
ing ANN activation (Cao et al}[2015). In contrast, temporal coding focuses on the precise timing
or patterns of spikes (Rueckauer & Liu} 2018; |Kim et al., [2018; |Han & Roy, [2020). For example,
Time-to-First-Spike (TTFS) coding maps the the activation value to the time elapsed before the first
spike (Stanojevic et al.| 2022).

However, both the spike counts in rate coding and the spike timing in TTFS coding are linearly
related to the encoded activation. This necessitates a large number of time steps to provide sufficient
encoding granularity (Stanojevic et al. 2023} Meng et al., [2022). These methods employ basic
Integrate-and-Fire (IF) neurons for neural computation, where the membrane potential accumulation
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also follows a linear trend over time. This further contributes to an increased inference latency.
Recent works have proposed alleviating these problems by quantizing the ANN activations before
conversion (Hu et al.,|2023;|Bu et al.l |2023;|Hao et al.,2023)). This approach simplifies the encoding
process but introduces additional quantizing and training overhead. Our goal is to develop a novel
encoding method that can directly convert full-precision ANNs while reducing the number of time
steps required.

In the study of the temporal information dynamics of spikes, |Kim et al.| (2022) discovered a phe-
nomenon of temporal information concentration in SNNs. It is found that after training, information
becomes highly concentrated in the first few time steps. This observation led us to hypothesize that
the spikes at earlier time steps carry more information and contribute more to the membrane poten-
tial. Consequently, we propose a mechanism whereby the neurons amplify its membrane potential
with a specific coefficient before processing the subsequent input. As a result, spikes are assigned
distinct, predetermined weights and are therefore referred to as canonical. This mechanism breaks
the two linear relationships mentioned above and effectively compresses the time steps.

We observed that weighted spikes are prone to temporal coupling during neural computation, which
can lead to large encoding errors. This issue can be alleviated by controlling the residual membrane
potential within an acceptable range. However, due to the amplification of the membrane potential at
each step, the traditional soft-reset method (Han et al.,|2020), which reduces the membrane potential
by an amount equal to the firing threshold, becomes insufficient. To address this issue, we introduced
negative spikes into our coding scheme, which is thus termed as the Canonic Signed Spike (CSS)
coding scheme. By leveraging negative spikes to correct the excessively fired information, we allow
neurons to reduce their membrane potential by an amount greater than the threshold. This results in
a neuron model fires both positive and negative spikes, and is termed as the Ternary Self-Amplifying
(TSA) neuron. To better balance the trade-off between coding time steps and inference latency in
CSS coding, we introduce a one-step silent period into the TSA neuron, which enables the resulting
SNN to achieve improved performance and efficiency.

The main contributions of this paper can be summarized as follows:

* By assigning weights to the spikes, we introduce non-linearity into the coding process and
compress the time steps to a logarithmic scale. Neurons amplify the membrane potential at
each time step, thereby obtaining more information from the preceding spikes.

* We find that weighted spikes are prone to temporal coupling during neural computation,
presenting the biggest challenge when incorporating non-linearity in spike coding. We
analyze the underlying reasons and introduces negative spikes along with a corresponding
TSA neuron model to address this issue.

* We demonstrate the effectiveness of the CSS coding scheme on CIFAR-10 and ImageNet
datasets. The results show that the proposed method effectively reduces the required coding
time steps and inference latency. Even in very deep networks, CSS coding scheme can still
achieve satisfactory performance with a minimal number of time steps (e.g., 16 time steps
for ResNet-50 on ImageNet).

2 RELATED WORK

Currently, the mainstream coding schemes in converted SNNs are rate coding and TTFS coding.
Rate coding represents different activities with the number of spikes emitted within a specific time
window. Due to its simplicity, rate coding is commonly used in deep learning of SNN. Initially,
research focused on reducing conversion loss, leading to methods such as weight normalization
(Diehl et al.|, 2015), threshold rescaling (Sengupta et al.| 2019), and soft-reset neuron models (Han
et al.,[2020). More recent work has shifted towards reducing the number of time steps by optimizing
neuron parameters. Meng et al.| (2022) introduced the Threshold Tuning and Residual Block Re-
structuring (TTRBR) method to minimize conversion error in ResNet architectures with fewer time
steps. [Bu et al.| (2022) proposed optimizing the initial membrane potential to reduce conversion
loss when using a small number of time steps. Despite these optimizations, deep networks or large
datasets still require hundreds of time steps to achieve satisfactory results.

Due to the functional similarity to the biological neural network, SNNs can embrace the sparsity
found in biology and are highly compatible with temporal coding. |[Rueckauer & Liu| (2018)) were
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the first to attempt converting an ANN to a TTFS-based SNN. While this coding method significantly
increased sparsity by limiting each neuron to fire at most one spike, they observed large conversion
errors, even on MNIST dataset. Stanojevic et al.| (2022) demonstrated that accurate mapping from
ANN to TTFS-based SNN is feasible but did not specify the number of time steps required. In their
subsequent work (Stanojevic et all, 2023), they quantized the spike timing, showing that each layer
needed around 64 time steps for accurate conversion. |Yang et al.| (2023) proposed a TTFS-based
conversion algorithm with dynamic neuron threshold and weight regularization. They completed
the conversion with 50 time steps per layer. Despite the reduction in the number of time steps
per layer, TTFS coding still suffered from high output latency in deep networks for its layerwise
processing manner. [Han & Roy| (2020) introduced the Temporal-Switch-Coding (TSC) scheme,
where each input pixel is represented by two spikes, and the time interval between them encodes
pixel intensity. However, as this time interval remains linearly related to activation, the issue of long
latency persists.

Some recent works have also incorporated non-linearity into the coding process.
(2021) and Rueckauer & Liu| (2021)) used spikes to encode the ’1”’s in the binary representations
of ANN activations. However, both works did not address the temporal coupling issue caused by
weighted spikes. Instead, they adopted an approach similar to TTFS coding, where neurons must
wait for the arrival of all input spikes before firing. Specifically, non-overlapping time windows are
set for each layer, and spikes are only allowed to be emitted during these time windows. In contrast,
our approach facilitates the greatest extent of synchronous neural computation, thereby reducing
both the coding time steps and output latency.

3 PRELIMINARIES

3.1 SPIKING NEURONS

Spiking neurons communicate through spike trains and are interconnected via synaptic weights.
Each incoming spike contributes to the postsynaptic neuron’s membrane potential, and a spike is
generated when the potential reaches a predefined threshold. Generally, a spike sequence S![t] in
the SNN can be expressed as follows:

Si) =Y 6'6lt— ;7] (D
i/ erl

where i _is the neuron index, [ is the layer index, @' is the spike amplitude, &[-] denotes an unit
impulseﬂ f is the spike index, and F! denotes a set of spike times which satisfies the firing condition:

t7 oty > ¢ @)

where ol[t] denotes the membrane potential before firing a spike. Conversion-based works often
employ soft-reset IF neuron model, where an amount equal to the spike amplitude is subtracted
from the membrane potential for reset. Specifically, its dynamics can be expressed as follows:

wi[t] = wilt — 1] + zi[t] — Si[] 3)

where ul[t] denotes the membrane potential after firing a spike and z![t] denotes the integrated
inputs:
2t = Z wi‘jS‘;*l[t] + b 4)
J

where wé?- is the synaptic weight and b! is the bias. For clarity, definitions of the common symbols

are provided in

3.2 ANN-SNN CONVERSION

The ANN-SNN conversion typically involves the following two key steps: 1) selecting an appropri-
ate encoding method to represent ANN activations as spike trains, and 2) adopting a suitable neuron

'5[t] takes the value 1 at ¢ = 0, and 0 otherwise
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Table 1: Common symbols in this paper.

Symbol Definition

Symbol Definition

l Layer index 15} Amplification factor
i, Neuron index wk; SNN weight

S Spike sequence oy ANN weight

ol[t] Membrane potential before firing | b SNN bias

ul[t] Membrane potential after firing | b ANN bias

2Lt] Integrated inputs (PSP)! T Time steps for coding
6! Spike amplitude 6! Initial spike amplitude

! Postsynaptic potential

model that ensures the generated spike trains accurately encode the outputs of the corresponding
ANN neurons.

The most widely used and state-of-the-art approaches employ (signed) soft-reset IF neurons and
interprets their output through spike rates (i.e. rate coding). Let 7" denote the number of time steps

with the initial condition u![0] = 0, we can iteratively update the membrane potential using
until ¢ = 7. Then substitute z![t] with|[Eq. (4)} and we can write:

LS o D ST S T
= 7zw”7+t21 T 5)

T T T

See for a detailed derivation. Note that both sides of the equation are divided by T'
to better highlight the interpretation of 3°7=, Si[t]/T as a “rate”. It defines the relationship between
neuron’s input rate and output rate and can be directly related to the forward pass in a ReL.U-activated
ANN:

al = max Z?bija‘[’j_l + lA)f;,O (6)

J

where a! denotes the ANN activation, 121§j and i)i denote the weight and bias, respectively. Note

that in [Eq. (5)| we have: 1) = St/r > 0, 2) w[T]/T becomes negligible as 7" increases. These
observations suggest that mapping ANN activations to SNN spike rates can be achieved by simply
using the scaled ANN weightg|and bias.

However, with fewer time steps, the number of activations that can be encoded by > S:[t]/T becomes
significantly limited, while the perturbation introduced by u:[T]/T increases. These factors together
result in a rapid increase in conversion loss. For any other encoding scheme that relies on a quantity
linearly related to the time steps, this issue will theoretically persist. Therefore, our goal is to incor-
porate nonlinearity into the encoding process to enhance the expressiveness of spike trains. Recent
rate-coding-based works have proposed quantizing the ANN before conversion. This approach di-
rectly reduces the number of activations that need to be mapped, providing an alternative way to
minimize time steps. Notably, this approach is complementary to ours. The proposed encoding
scheme can also convert quantized ANNSs and further reduce the required number of time steps.

4 METHODS

4.1 ASSIGNING WEIGHTS TO SPIKES

Based on our motivation, spikes that occur earlier in the sequence carry more information and should
have a greater impact on the membrane potential. To achieve this, we introduce an amplification
factor 5 > 1 into the soft-reset IF model:

wit] = Built — 1] + 2i[t] - Silt] @)

2In SNNG, ' is finally normalized to 1 for simplicity of implementation, which is achieved by absorbing it
into the synaptic weights. Consequently, the ANN weights still need to be scaled by a certain factor. Note that
0" is typically determined based on the number of time steps and the range of ANN activations in layer [.
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Following the same derivation as in[Eq. (5)] we can write:
T T T
GlT] = jwy d ATUSTI AT = AT ®)
j t=1 t=1 t=1

The detailed derivation can be found in |Appendix A.1} As expected, the input at time té’f raises

the membrane potential by GZBT_ti’f. In other words, the value encoded by the spike is weighted
by ﬁT’ti’f, enabling the use of Zthl BT—tS![t] rather than Zthl S![t] to map the ANN activa-
tions. The spike at time 7 still encodes #', which is the minimum value a spike can represent and
determines the granularity of encoding.

Definition 1. Since the number of time steps is finite, the quantization error resulting from lim-
ited coding granularity is unavoidable. Let v denote the target value. The encoding is considered

successful, denoted as S![t] ~ v, as long as Zthl BTESHt] — v| < 6.

According to[Eq. (8)} our method can theoretically encode the same number of activations as linear
encoding method while log-compressing the number of required time steps. Meanwlgﬂ%w
serves as the core equation for ANN-SNN conversion. By comparing [Eq. (3)] with [Eq. and
noting that Y, 87tS![t] > 0, we can conclude:

Observation 1. Let S;fl [t] ~ azfl, and set wﬁj = uﬁﬁj and bl = bi/5°, 37, respectively. To reduce

encoding errors in layer [, the residual membrane potential u.[T'] should be minimized.

However, we find that after spike weighting, u![T] can become vary large (e.g., far greater than 0").
Before analyzing and solving this issue, we first present the conditions that must be satisfied to limit
the value of ul[T:

Lemma 1. Making ui [T] < € is equivalent to satisfying the following equation:
VtO S {]-7 27 e 7T}7

T T T
- - - - )
BTt bty — 1]+ Y wh Y AT+ Y AT b < et > 08T
7 t=to t=to t=to

The second term on the right-hand side of [Eq. (9)]represents the maximum value a spike train after
to can encode. This imposes constraints on both the subsequent input to the neuron and the residual
membrane potential carried over from earlier computations (the left-hand side of the equation).
[Cemma 1] provides the mathematical foundation for the next section, with its detailed derivation

available in[Appendix A.2]

4.2 INCORPORATING NEGATIVE SPIKES

4.2.1 TEMPORAL DECOUPLING

Rueckauer et al. (2017) reported that large activation values in ANNs are rare, with most values
concentrated within a smaller range. This suggests that when mapped to weighted spike trains, the
majority of spikes will occur in the later time steps. As a consequence, @lbecomes difficult to
satisfy as ¢y approaches 7T the left-hand side contains a large amount of input, while the right-hand
side provides limited encoding capacity from the subsequent spikes. This mismatch results in an
increase in the residual membrane potential, a phenomenon we refer to as temporal coupling.

Definition 2. Temporal coupling occurs when the encoding of input information requires output
spikes from earlier time steps.

To see this more clearly, consider a two-layer network with two input neurons and one output neuron,
where wl, = wl; = 1and b} = 0. Let 8 = 2, T = 2, and §° = ' = 1. If both input neurons
fire at ¢ = 2, the output neuron will produce a spike at £ = 2 (which encodes 1) and leave half
of the information in u}[2]. Our desired outcome is a spike at t = 1 (which encodes 2), which is
impossible due to the temporal dependency between the input and output. Therefore, a new neuron
model is required to enable effective computation based on weighted spikes.
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Algorithm 1: The forward method of TSA

Input: input X of shape [BT, C, H, W], length of silent period L, spike amplitude 6

Output: output spike train S of shape [BT, C, H, W]

reshape and then pad X with zeros to shape [(T+L), B, C, H, W];

membrane potential M <« zeros_like (X[0]), threshold v <— 168%;

for 0 <i < Ldo

| M« BM + X[i]; /* silent period =/

end

fori=0toT —1do
M+ BM + X[i+ L]; /* accumulate input */
S[i] < (M > wv)float() — (M < —v).float() ; /+ fire ternary spikes x/
M + M — 2v x S[i]; /* over firing & soft reset x/

end

4.2.2 TERNARY SELF-AMPLIFYING NEURON MODEL

Based on the above analysis, our approach begins by encouraging spikes to be generated as early
as possible. The key idea is to lower the firing threshold and incorporate negative spikes into the
encoding scheme to correct the excess information caused by over-spiking.

We set the positive firing threshold to %Ql and introduce a negative threshold of — %01 into the neuron
model, which initiates a negative spike when o![t] falls below it. Intuitively, the neuron predicts that
a spike will occur after receiving only half of the required information, and uses negative spikes
to correct its prediction when it turns out to be wrong. This adjustment not only facilitates spike
generation but also reduces u![to — 1] in the left-hand side of making the equation easier to
satisfy. The coefficient % is selected to confine both positive and negative membrane potential within
a narrow and balanced range. Given the above characteristics, we designate the coding method as
the CSS coding scheme and the neuron model as the TSA neuron.

Noting that Sé [t] can now represent negative activations with negative spikes, we apply additional

logic to zero out sequences that encode negative values (a ReLU counterpart). Based on
h

ation 1| we limit the absolute value of u}[T] for accurate encoding and propose the following
theorems:
Theorem 1. Let S;fl[t] ~ agfl, wh; = wl;, and b = b/s5, 57", Then S{[t] ~ al, provided that
|[ul[T]] < 6"

[Theorem 1] provides the conditions for controlling the encoding error in the hidden layers. Next, we
give the method to encode the network input:

Theorem 2. Let the input pixel value be al and < 2. By Initializing the membrane potential
u?(0) with a3/, the resulting spike train SY (t) ~ a? with T steps.
The proofs of the above two theorems can be found in By encoding input with

Theorem 2] and applying layer-by-layer, an ANN is then converted to a CSS-coded

SNN. Combining|Lemma [|and|[Theorem I} we can directly derive the following corollary to ensure
conversion accuracy:

Corollary 1. In a converted CSS-coded SNN, the following equation should be satisfied for accurate
encoding:

Y layer index 1, Y neuron index i,Vtg € {1,2,--- , T},

T T T
BTt ulltg — 1]+ Y wl; Y BT ]+ Y AT <00+ Y 01T
J

t=to t=to t=to

(10)

We refer to this equation as the decoupling condition. Note that a lowered threshold and negative
spikes are not sufficient conditions for the above equation to hold, but they effectively keep the left-
hand side of the equation within an acceptable range. Next, we shift our focus to the right-hand side
of the equation.
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Data-Based Amplitude Adjustment. suggests that increasing #' can relax the constraints
on the input. Let 6! denote the initial spike amplitude. For initialization, we use a strategy similar
to rate coding (Rueckauer et al., [2017): after observing the ANN activations over a portion of the
training set, we calculate the 99.99th percentile p' of the activation distribution for each layer [ ,
and then set 6 to »' />, 87—t This setting ensures that the vast majority of the activations remain
below the maximum encodable value, Zt 6! BT’t, and increases the network’s robustness to outlier

activations. We then perform forward propagation with the converted SNN, and amplify §' based on
the distribution of the residual membrane potential (see |Appendix A.3|for more details).

However, an increase in §' makes the decoupling conditions for layer [ 4 1 harder to mee Con-
sequently, in deeper layers, the initial spike amplitude must be amplified by a large factor. This
requires a sufficiently small ' to preserve adequate encoding granularity after scaling, which in turn
necessitates a larger number of time steps. We address this issue by delaying the TSA output, which
eliminates the need for 6" amplification.

One-Step Silent Period. Inspired by the layerwise processing manner in TTFS coding (Stanojevic
et al.,|2022), we incorporate a one-step silent period into the TSA neuron model. During this period,
neurons integrate input and perform stepwise weighting but are prohibited from firing. This method
delays the output by one step, introducing a new term '3 —to—1 (spike from ¢ = t; — 1) to the
right side of thereby relaxing the decoupling condition. Since the input information is
amplified by [ after the silent period, the firing threshold is adjusted to g@l accordingly. Similarly,

the membrane potential is reduced by 56" for reset. In|Algorithm 1| we provide pseudocode for the
forward propagation process of TSA neurons. A mathematical description of the TSA neuron model

can be found in[Appendix A4)

The silent period partially sacrifices synchronous processing at each time step, leading to increased
output latency. For an n-layer network, the output layer will start to fire spikes only after n steps.
However, this approach effectively reduces the number of time steps for coding. With each layer
operating in a pipelined manner, the efficiency gain outweighs the drawback of the increased latency.

4.3 CHOICE OF THE AMPLIFICATION FACTOR

We find that the value of 3 affects the performance of the CSS-SNN. As 3 increases, the weight
difference between spikes becomes larger, causing input spikes to cluster at later time steps and
increasing the likelihood of temporal coupling. Conversely, a decrease in 3 necessitates a larger 6’
to encode the same range, which in turn raises quantization error. Taking these observations into
account and considering the limitation in we set § to 1.5 for our experiments. This
choice also facilitates future hardware implementation, as only shifters and adders are needed for
the amplification.

5 EXPERIMENTS

In this section, we converted ANNs to CSS-coded SNNs and conducted experiments on CIFAR-10
and ImageNet datasets. We compared the required time steps and output latency with other coding
schemes, including rate coding (Bu et al.| 2022} |Li et al., [2021; [Meng et al., [2022)), TTFS coding
(Stanojevic et al., 2023} |Yang et al., [2023)), TSC coding (Han & Roy, [2020), and FS coding (Stockl
& Maass| [2021). We conducted two ablation studies to validate the effectiveness of our proposed
method. First, we evaluated the trade-off between coding steps and inference latency introduced
by the one-step silent period. Then, we examined the role of negative spikes in breaking temporal
coupling and thereby reducing output latency.

5.1 OVERALL PERFORMANCE

In[Table 2] we compared the time steps and inference latency under different coding schemes, which
reflect the throughput and latency of the network, respectively. To ensure a fair comparison, all
SNNs are converted from full-precision ANNs. Furthermore, the accuracy of the ANNSs utilized

3In[Eq. (10)} the spike amplitude of the previous layer is included in S;fl [t].
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Table 2: Coding time steps and inference latency under different neural coding schemes, evaluated
on CIFAR-10 and ImageNet datasets.

. ANN Coding Coding Inference SNN

Methods Architecture Accuracy Scheme Time Steps Latency  Accuracy
FS-conversion (Stockl & Maass/[2021)  ResNet-20 91.58% FS 10 200 91.45%
TTRBR (Meng et al.|[2022) ResNet-18 95.27% rate 128 128 95.18%
TSC (Han & Roy|[2020) VGG-16 93.63% TSC 512 512 93.57%
S | LC-TTFS (Yang et al.[[2023) VGG-16 92.79% TTFS 50 800 92.72%
| Exact mapping (Stanojevic et al.]2023) VGG-16 93.68% TTFS 64 1024 93.64%
§ Calibration (Li et al.|[2021) VGG-16 95.72% rate 128 128 95.65%
O | OPI (Bu et al.|[2022) VGG-16 94.57% rate 128 128 94.50%
ResNet-20 92.10% 12 32 92.06%
CSS (ours) ResNet-18 95.24% CSS 12 30 95.30%
VGG-16 95.89% 10 26 95.88%
OPI (Bu et al.|[2022) VGG-16 74.85% rate 256 256 74.62%
TSC (Han & Roy|[2020) VGG-16 73.49% TSC 1024 1024 73.33%
RMP-SNN|Han et al.|(2020) VGG-16 73.49% rate 2048 2048 72.78%
% Calibration (L1 et al.|[2021) VGG-16 75.36% rate 256 256 74.23%
z | TSC (Han & Roy|[2020) ResNet-34 70.64% TSC 4096 4096 69.93%
gn CalibrationLi et al.|(2021) ResNet-34 75.66% rate 256 256 74.61%
g | FS-conversion (Stockl & Maass/[2021)  ResNet-50 75.22% FS 10 500 75.10%
~ | TTRBR (Meng et al.[|2022) ResNet-50 76.02% rate 512 512 75.04%
VGG-16 75.34% 12 28 75.24%
CSS (ours) ResNet-34 76.42% CSS 14 48 76.22%
ResNet-50 80.85% 16 66 80.10%

in each work is also provided. It’s important to note that rather than focusing solely on the SNN
accuracy, more attention should be given to the conversion loss.

Reduction in Coding Time Steps. The coding time steps refer to the number of time steps required
to encode the input into a spike train, as well as the number of time steps needed to encode acti-
vations in each layer. This metric reflects the efficiency of the encoding scheme, indicating how
well the method can represent information within a given time frame. For simpler classification
tasks such as CIFAR-10, CSS coding scheme demonstrated nearly lossless conversion with a sig-
nificant reduction in the number of required time steps. Compared to linear coding schemes like
rate coding, CSS reduces time steps by more than tenfold for both VGG-16 and ResNet-18, while
simultaneously reducing the conversion loss. While the FS coding scheme also applied weighted
spikes and required fewer time steps for ResNet-20, it experienced greater conversion loss compared
to our method. On the more complex ImageNet dataset, the higher precision demands for activation
encoding further highlighted the benefits of incorporating non-linearity. Rate coding, even with 256
time steps, resulted in noticeable conversion loss. For example, [Li et al.| (2021)) reported a conver-
sion error exceeding 1% on ResNet-34 with 256 time steps, whereas our method achieved only 0.2%
conversion loss with just 14 time steps. Although TTFS coding performed well on CIFAR-10, both
works did not extend experiments to the larger-scale ImageNet dataset. FS-coding achieved smaller
conversion loss for ResNet-50 with fewer time steps; however, this came at the cost of a latency
eight times greater than that of ours.

Reduction in Inference Latency. Inference latency refers to the time elapsed from the beginning
of input encoding to the receipt of the classification result, and is also measured in time steps. It
indicates how efficiently the encoding scheme transmits information through neural computation
across the network layers. In the CSS coding scheme, each layer of TSA neurons incorporates a
one-step silent period, making the inference latency equal to the sum of layer counts and coding
time steps. In contrast, both TTFS coding and FS coding require each layer to wait for the arrival
of all inputs before firing spikes. While this approach facilitates lossless conversion with fewer
coding time steps, it completely sacrifices the synchronous processing capability of SNNs, leading
to increased output latency (i.e. the product of layer counts and coding time steps). For instance,
in the CIFAR-10 classification task, the inference latency reported by |Stanojevic et al| (2023) on
VGG-16 is about 40 times that of our method. FS coding, as a nonlinear encoding scheme, performs
well in both coding steps and conversion loss, but its output latency remains a major weakness; on
ResNet-20, its latency exceeds that of CSS by over six times. Rate coding allows for synchronous
processing but suffers from a higher number of coding time steps, and thus the inference latency
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Figure 1: Trade-off between the coding time steps and inference latency. The dashed line represents
the results obtained without the silent period, while the solid line represents the results achieved
after incorporating the silent period. (a) Coding time steps on CIFAR-10. (b) Inference latency on
CIFAR-10. (c) Coding time steps on ImageNet. (d) Inference latency on ImageNet.

is still not ideal. In the ImageNet classification task, for example, rate coding on ResNet-34 has a
latency five times greater than our method.

5.2 CODING TIME STEPS VS. INFERENCE LATENCY

According to our previous analysis, relying solely on §' amplification to break temporal coupling
would require smaller #' in deeper layers, which leads to an increase in coding time steps. To ad-
dress this, we introduce a one-step silent period to achieve a trade-off between coding time steps and
inference latency. In this section, we conducted an ablation study to assess the effectiveness of this
approach. We performed classification tasks on CIFAR-10 using VGG-16 and ResNet-20, and on
ImageNet using VGG-16 and ResNet-34. (a) and (c) present the relationship between coding
time steps and accuracy, while (b) and (d) show the relationship between inference latency
and accuracy. The experimental results indicate that even with no silent period, deeper networks
experience larger latency due to increased coding time steps. This can also be understood as neu-
rons in each layer require time to accumulate membrane potential before firing. Thus, incorporating
a silent period has a limited effect on increasing inference latency, but plays a significant role in
reducing coding time steps. For example, in ResNet-20 on CIFAR-10, the silent period increased
latency from 20 to 30 steps but halved the coding time steps, greatly improving throughput. This
effect becomes more pronounced with increased network depth or dataset scale. For instance, with
ResNet-34 on ImageNet, the silent period added only about 5 steps to inference latency while reduc-
ing coding time steps by approximately 30 steps. Overall, incorporating the silent period effectively
reduces the required number of time steps for encoding, substantially improving throughput with
minimal impact on latency.

5.3 EFFECT OF NEGATIVE SPIKES

The introduction of negative spikes and the corresponding TSA neurons in CSS coding plays a
crucial role in breaking temporal coupling, setting our method apart from other coding schemes
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Figure 2: Inference latency with and without negative spikes. The solid line represents the results
with negative spikes, while the dashed line indicates the results without negative spikes. The lines
of different colors correspond to different lengths of the silent period as shown in the legend. (a)
ResNet-20 on CIFAR-10. (b) ResNet-34 on ImageNet.

using weighted spikes (Rueckauer & Liul 2021} [Stockl & Maass| 2021} |[Kim et al., 2018)). In this
section, we validated the importance of negative spikes in achieving low-latency nonlinear encoding.
We conducted experiments using ResNet-20 on CIFAR-10 and ResNet-34 on ImageNet, gradually
increasing the silent period length from zero in the absence of negative spikes. The results are shown
in For each configuration, data-based amplitude adjustment was applied to help mitigate
temporal coupling. The results from CIFAR-10 demonstrated that, without negative spikes, a silent
period of at least three steps was required to match the performance gains introduced by negative
spikes, which in turn increased inference latency by nearly 50 time steps. As network depth and
dataset size grow, the effectiveness of negative spikes becomes more pronounced. For instance, in
ResNet-34 on ImageNet, incorporating negative spikes reduced inference latency by over 100 time
steps, significantly improving inference speed. It is important to note that although the decoupling
condition is satisfied by incorporating silent period and amplitude adjustment on training set, this
does not ensure optimal performance on the test set (e.g. the orange dashed line in [Fig. 2). By
contrast, negative spikes provide a data-independent approach to break temporal coupling, resulting
in more stable and consistent performance improvements.

6 CONCLUSION AND DISCUSSION

In this work, we compress the coding time steps by assigning weights to spikes, enabling each spike
to carry more information. We also introduce negative spikes to break temporal coupling, effectively
reducing inference latency. The resulting CSS encoding scheme enhances both the throughput and
inference speed of converted SNNs, while minimizing conversion loss.

We note that the CSS coding scheme does not inherently exhibit sparse characteristics. Compared
to FS and TTFS coding, if we estimate energy consumption based solely on the number of spikes,
CSS coding may not appear advantageous. However, the reduction in coding time steps with our
method somewhat mitigates the energy disadvantage due to the lack of sparsity. On the other hand,
relying solely on spike counts to measure energy consumption can be misleading. For example,

10
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in TTFS coding, the neuron model requires adding the corresponding synaptic weight w] to the
membrane potential at every time step after receiving a spike. This leads to significant memory
access overhead, and when combined with the increased number of time steps, it further elevates the
energy consumption.

In this work, we apply the proposed method to encode conversion-based SNNs, which introduces
certain constraints on the CSS coding scheme. If we absorb 6! into the weight and normalize the

-1 -1
spike amplitudes, we find that @}, = 0 o wl = o7 J where 10! ;; represents the weight in

a normalized CSS coded SNN. Thus the data- based amphtude adjustment can be interpreted as an
adjustment to @' .. ;- As aresult, the decoupling condition can be viewed as a target for SNN learning,
allowing for the optimization of network weights through training. This could potentially eliminate
the need for a silent period, further reducing the inference latency of the network. We leave this
exploration for future work.

11
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A APPENDIX

A.1 PROOFS OF EQUATIONS

Proof of [Eq. (8)](A similar derivation leads to[Eq. O))

T

T
Z wi, Z ATtS ]+ 3 g7t - Y g (A1)

t=1 t=1 t=1

Proof. Starting with the initial condition u}[0] = 0 and[Eq. (7)} we can write:
1] = 2[1] - Si1]
Next, we derive the expression for u![2] by substitute the above 1nt0
uif2] = A=) - Si) + £[2] - S{[2]

We can generalize this process to iteratively compute the membrane potential up tot = 1"

T) = BT (=i[f] - Silt))

substituting z![¢] from [Eq. (4){and rearranging the terms, we get:

ZBT*Z%SH )+ - Si1t)

Reorganizing the terms by summation yields:

T T "
ARSI DERC I UED D B Dt
J t=1 —1 p

A.2 PROOFS OF LEMMAS AND THEOREMS

Lemma 1. Making ui [T] < € is equivalent to satisfying the following equation:

Vio € {1,2,---, T},

ﬂT t0+1 l +Zw ZﬂTftS;—l[t] + iﬂTﬁtbl‘ < e+ iglﬂTft (AZ)
i ] 7

t=to t=to t=to

Proof. We first prove the forward direction. Given that u![T] < ¢, we can express it using [Eq. (7)

and [Eq. (4)] as follows:
—1+Zw”S; YT 4+ bL < e+ 6 (A3)

Continue the above process, and we have:

g~

BPullT — 2]+ wh,BSS T — +ﬂbl+sz SENT 4+ bl < e+ 0+ 800 (A4)

The above process can be repeated until we obtain an equation involving u}[0]. The left-hand side
of each equation regarding u![t], where t € {1,2,---, T}, can be organized to demonstrate that the
forward reasoning is valid.

14



Under review as a conference paper at ICLR 2025

Then we proceed to prove the backward direction. For any ¢ € {1,2,---, T}, by iteratively updat-
ing the membrane potential using [Eq. (7)|from ¢ = ¢, until ¢ = T', and substitute z![t] with|Eq. (4)}
we can get:

T T T
ul[T] = BT ulltg — 1]+ ) 0wl TS e+ > g7l - Y pTSHE (A5

j t=to t=to t=to
Note that >°, BT~1S![t] < >°, 6'8T~t. Then we can write:
T T
ui[ ] ﬂT t0+1 l + Zwm Z BTftsé—l[t] + Z ﬁTftbé o Z alBTft
t—t t=t t=t (A6)
0 =to =to
<e
O
Theorem 1. Let Sé_l[t] ~ aé»_l, wh; = wlj;, and b, = bi/s>, st Then SL[t] ~ a', provided that
|ul[T]| < 6.
Proof. [Eq. (8)|can be organized into the following form:
T T
> BT S ] Z w}; Z BTTESIT M + > BT — [T (A7)
t=1 t=1 t=1

Given that Sé-*l [t] ~ aé- !, we use al ! to denote the difference between the encoded value and the

activation, defined as 0’; ' => 5T tS;fl [t] — aéfl. Substituting aéfl and 0! into[Eq. (A7), we

can write:
T

T
> BTl Zwm +ol )+ BT — [T
t=1

t=1

- Zwij (@ + o7ty + b — [T (A8)
J

= Zﬁ)ijaéfl + Z;i — ui[T] + Z’UA}MO'; L
J J

According to[Definition 1| we have —6' < a;-_l < 6'. Considering that ' is typically kept small to
provide fine-grained encoding and 1;; is generally symmetrically distributed around zero, we can ig-

nore the last term on the right-hand side of the equation. Since S![T'] can encode negative values, we
implemented a ReLU counterpart to zero out these spike sequences, corresponding to the max(+, 0)

operation in [Eq. (6)] Combining|[Eq. (A8)|with the condition |u!(T')| < 6" and |Definition 1} we can

conclude that S![t] ~ al. O
Theorem 2. Let the input pixel value be o and 3 < 2. By Initializing the membrane potential
u?(0) with a3/, the resulting spike train SY(t) ~ a? with T steps.

Proof. We proof this theorem by mathematical induction. Let @ ;- and m%. denote the encoded value
and the maximum encodable value, respectively, i.e. aj = Z TSV, mS = >, 0087,

step 1. For T' = 1, it’s obvious that:

~0 0 0 0 0
|ai70—ai‘<0 , a; < myg A9
~0 _ .0 0~ ,,0 (A9)
a; o0 =My y Ay Z My
step 2. Assume the statement is true for T = ¢, i.e. we have:
0 0 0 0 0
’ame—ai‘<9 y < My, ALO
-0 _ .0 0~ ,,0 ( )
Qi 1o = My, y Ay Z My
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0
my

Note the relationship between 6° and m{ : 6° =

still holds.

0

%

W Then we prove that for T' = tg+ 1,

case (1). For a; < mgo 11: Consider the first o steps. It can be observed that this process is

_ 14B4fplo!

equivalent to encoding ¢7/g with m(t)0 = m?o +1- Then we have:

1+B+--+p%0
0 0 0
~0 @ Mo +1 i 0
iy — 3| < - L
; 1 T 0
B + B+ Blo 60 (All)
- a
a’LQ,tO = m(t)o ) E > m?{)
For % < my , we can write:
0 0 0
~0 a; ﬁmto+1 2mt0+1 0
Ao — — | < < =26 Al2
B i1, 5’ 1+8+---+pt0 " 14+B4.--4 flo (Al2)
(LQ
For - > my,
glao, _ @[ oo LBt BT
7,t0 /8 7 1+6++/6t0 to+1
. (A13)
e g0 LEBE BT
= to+1 to+1 1 +B+ . +6t0
According to [Lemma 1} 3 |a?, — %0‘ < 26 is equivalent to [uf[to + 1]| < 6° (as there’s neither
input nor bias term). Also note |u?[to + 1]| = |a?, ., — a?|. Then we have |a?, , —a?| < 6°.
case (2). Fora > m{ ,,:
ad 1 1+B+4 -+ Bl
-+ > —m) my 4 =mj Al4
5—/8 to+1 1+B++5t0 to+1 to ( )
Then we have:
0 to—1 0
-0 a; 0_pltB+--4B Mio+1 0
0 _ i — g0 > =40 AlS
ﬂa’l,to B‘ 7 61+B++/6t0 mt0+1—1+ﬂ+.'.+ﬁt0 ( )

which means the neuron will fire a spike at ¢ = ¢y + 1, leading to &?7,50 11 = m?o +1- Combining case
(1) and (2), and we have:

~0 0 0 0 0
’ai,to—i-l - a’i‘ <07, a; <my gy ALG
~0 _ .0 0s 0 (A16)

Qi to+1 = Myg+1 y Ay Z My 41
step 3. By the principle of mathematical induction, VI € N*:

~0 0 0 0 0
’ai7Tfai| <6 ,a; <mp Al7
-0 _ .0 0> 0 (A17)

a; = mMmp , @ = M

Considering our initialization strategy for 6° and subsequent data-based amplification, we can al-
ways ensure that a) < m{.. Thus, |al ;, — af| < 6°, which means S?[t] ~ af. O

A.3 SPIKE AMPLITUDE ADJUSTMENT

We use a subset of the training set to perform forward propagation for the CSS-based SNN, and
then calculate the 99.9th percentile u! of the distribution of ul[T] for each layer I. If u! exceeds ',
we amplify #' by a factor s'. Note that increasing #' raises the firing threshold at the same time,
making the change in u}[T] a complex nonlinear process. To determine a suitable s', we simplify

the problem by assuming that u![T] accumulates uniformly over time. Thus, if the increment of &' is
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AB', then ul[T] will decrease by A9 Y, BT, Accordingly, s’ is determined using the following
equation:

u' — ¢ l l T—t
t
L' —0.01- T—t
sd—144% ZBT_tZtﬁ +0.04 ,O.O5-ZBT’tzul—91>0.01'ZﬂT’t
t t t
4'(Ul—91) T— l l
—_— ,001-) pIt>wl—60' >0
EtﬁT—t ;

(A18)
To ensure that the spike amplitude can still be effectively adjusted when u' slightly exceeds 6!,
we increase the value of s' for this range. It is important to note that this adjustment lacks strict
mathematical support and serves as a heuristic for fine-tuning the spike amplitude. The introduction
of negative spikes remains the core mechanism for breaking temporal coupling.

A.4 MATHEMATICAL DESCRIPTION OF THE TSA NEURON

To generalize the representation, let T denote the length of the silent period. For a TSA neuron in the
I-th layer, when the time step t € {1,2,.. ., T,l}, the membrane potential remains u![t] = ut[0] = 0,

and no spikes are generated. After this period, the neuron processes inputs in cycles z)f length T+ T5.
Let T* denote the start of the k-th cycle, i.e. TF = Tyl + k(Ts + T) + 1, and let Tbk denote the
end of the cycle, i.e. T = T,l + (k + 1)(T, + T), with k being a natural number. Without loss of

generality, we consider the case where t € {TX, T +1,...,TF}.

The set of its spike times can be expressed as follows:

l L
F. = {tif

The spike sequence it emits, S![t], can then be written as:

sl = > sen (ol[t7]) 001t — ] (A20)

b/ el

7

9! 3T
ol»[té’f]‘ > % o e (TF T, TF + Ty + 1, - ,T,f}} (A19)

where 6[-] denotes an unit impulse, sgn(-) is the sign function and ' is the spike amplitude. The
update process of the membrane potential can be expressed as follows:

wlt] = Buift — 1] + 2i[t] — BT Si[] (A21)
where z![t] denotes the integrated inputs:
ailt) =D wy S + b (A22)
J

A.5 PESUDOCODE FOR CONVERSION PROCESS

See The spike amplitude for each layer is determined using the method outlined in
Note that this value is absorbed into the weights and bias, so after conversion, the spike
amplitudes for TSA neurons are all normalized to 1. For data-based spike amplitude adjustment, we
first complete the above conversion process using the initial spike amplitudes. Then, based on the
residual membrane potentials observed in the resulting SNN, we update the spike amplitudes. These
updated values are then used to re-convert the ANN. The process can be repeated as may times as
needed.

A.6 IMPLEMENTATION OF THE RELU COUNTERPART

In the actual implementation, we fuse the ReLLU counterpart into the TSA neuron model to speed up
program execution. We refer to this model as TSA-ReLU neuron. Below, we continue the notation
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Algorithm 2: Algorithm for ANN-SNN conversion

Input: ANN model f A(W, 5), encode time steps 7', amplification factor /3, spike amplitude '
for each layer [, total layer number L

Output: SNN models fs(W,b)

reshape and pad X to [T, B, C, H, W] with zeros to shape [(T+L), B, C, H, W];

membrane potential M <« zeros_like (X[0]), threshold v < 168%;

set CSS encoder for the input layer; /% see */

for1 <l < Ldo

W« "lafvi/l; /* norms #' in SNN to 1 x/
v Zf;ll BLo! v,
replace ReLU activation with TSA and ReLU counterpart.

end

from to present the mathematical model of TSA-ReLU. Without loss of generality,
we consider the case where t € {TF Tk +1,... TF}. We use hl[t] and g![t] to represent the
accumulated input and output of TSA-ReL.U, respectively:

t max(t,TF+T)
=Yl T Y
J tT:T(f' T=TF (A23)
gll= > BS
T=min(TF+Ts,t)
Then we set o![t] according to the following equation:
hilt] = gilt]  hilt] > 0,¢ > Ty + T,
o[t =14 —gi[t] B[] < 0,t>TF 4+ 1T, (A24)
0 St <Th 4T,
The firing condition of TSA-ReLU is the same as that of TSA, and is given by[Egs. (A19)|and[(A20)}
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