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Abstract

Prediction with expert advice serves as a fundamental model in online learning
and sequential decision-making. However, in many real-world settings, this clas-
sical model proves insufficient as the feedback available to the decision-maker is
often subject to noise, errors, or communication constraints. This paper provides
fundamental limits on performance, quantified by the regret, in the case when the
feedback is corrupted by an additive noise. Our general analysis achieves sharp
regret bounds for canonical examples of such additive noise as the Gaussian distri-
bution, the uniform distribution, and a general noise with a log-concave density.
This analysis demonstrates how different noise characteristics affect regret bounds
and identifies how the regret fundamentally scales as a function of the properties of
the noise distribution.

1 Introduction

The prediction with expert advice framework is a cornerstone of online learning and sequential
decision-making [CBFH+97, CBL06, H+16, Ora19]. In this setting, a decision-maker repeatedly
selects an action over a sequence of rounds, leveraging the recommendations of a finite collection
of “experts.” At each round, the decision-maker may choose one expert’s action or form a mixture
over them. After observing the losses incurred by all experts, the learner updates its decision rule
to guide future actions. The overarching goal is to ensure that the learner’s cumulative loss remains
close to that of the best single expert in hindsight. Because this framework abstracts a broad range of
applications in domains such as finance, online advertising, and game playing, it continues to serve
as one of the most influential paradigms in online learning.

Despite its simplicity and generality, the classical expert setting assumes the decision-maker observes
exact feedback in the form of the experts’ losses. However, this assumption is often unrealistic in prac-
tical environments, where feedback can be noisy, incomplete, or rate-limited. Consider, for instance,
autonomous driving: decision-making is constrained by the time and bandwidth needed to process
sensor data, while the sensory inputs themselves may be corrupted by noise from environmental or
hardware factors. Similar challenges arise in financial markets, where imperfect information distorts
feedback signals. In such cases, the learner must adapt to uncertainty not only from the environment,
represented by the adversarially chosen losses, but also from the noise affecting feedback. This
motivates the study of algorithms that can learn effectively under imperfect observations, maintaining
robustness while still achieving low regret.

We now formalize the standard prediction with experts framework before extending it to noisy
feedback. Let there be m experts and a time horizon of n rounds. At each round t ∈ [n]:

• The decision-maker selects a probability distribution pt ∈ ∆m−1 over the experts, based on
all past observations. This can be viewed as assigning a weight to each expert.

• The adversary then reveals a loss vector ℓt ∈ L := [0, 1]m, where ℓtj denotes the loss of
expert j at round t. The learner’s expected loss for that round is ⟨pt(ℓt−1), ℓt⟩, i.e., the
average loss under the chosen mixture (where ⟨·, ·⟩ denotes the standard inner product).
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A strategy p thus corresponds to a sequence of mappings pt(·)nt=1, with pt : Lt−1 → ∆m−1. Given
any sequence of outcomes ℓn = (ℓ1, . . . , ℓn), the learner’s regret is defined as

Reg(p, ℓn) :=
∑

t = 1n⟨pt(ℓt−1), ℓt⟩ − min
j∈[m]

n∑
t=1

ℓtj . (1)

In words, the regret quantifies how much worse the learner performs compared to the best fixed
expert chosen in hindsight—an expert whose identity cannot be known until the sequence ends. The
learner’s challenge is thus to minimize this gap causally, adapting its choices as it recieves more
feedback.

A central quantity of interest is the minimax regret, defined as the smallest possible regret achievable
by any strategy against the most adversarial sequence of losses:

inf
p
sup
ℓn

Reg(p, ℓn).

A classical result [CBFH+97] establishes a sharp characterization of this value:

inf
p
sup
ℓn

Reg(p, ℓn) = Θ(
√
n logm), (2)

where the notation Θ(·) hides universal constants independent of n and m. This
√
n logm scaling

represents the optimal rate for learning with expert advice, setting the benchmark for subsequent
extensions to more complex feedback models.

We now describe the prediction with noisy expert advice setting, in which the decision-maker does
not observe the true expert losses directly, but instead receives a corrupted or partial observation ct
of the loss vector ℓt. For instance, ct might represent a noise-perturbed version of ℓt, or a quantized
signal produced when the loss is transmitted through a rate-limited communication channel. Formally,
the noisy feedback model consists of two components:

• Channel: a (possibly stochastic) mapping applied to the sequence of losses, ct : Lt → C,
where C denotes the output alphabet of the channel. This transformation may depend on the
current and past losses and introduces the noise or compression governing the feedback.

• Decision rule: at each round, the learner selects a probability distribution pt(c
t−1) over

experts, based solely on the previously observed channel outputs ct−1.

The central difficulty in this framework lies in the fact that the learner must compete against the best
expert with respect to the true (uncorrupted) losses ℓt, despite only observing the degraded signals ct.
Accordingly, we define the regret in this setting as

Reg(p,Pc|ℓ, ℓ
n) ≜

n∑
t=1

〈
E[pt(ct−1)], ℓt

〉
− min

j∈[m]

n∑
t=1

ℓtj , (3)

where the expectation is taken with respect to the randomness of the channel Pc|ℓ.

This formulation generalizes the standard prediction-with-experts setup (cf. (1)). While the benchmark
term (the cumulative loss of the best fixed expert minj∈[m]

∑n
t=1 ℓtj) remains identical, the learner

now faces the additional challenge of operating under information degradation. As a result, the
achievable regret depends not only on the underlying loss sequence and the learner’s strategy but also
on a measure of the channel’s fidelity.

While the outlined noisy expert advice setting is quite general, the practically-motivated class of
additive-noise channels is of particular interest in this paper. This is a subset of the class of channels
with memoryless noise, where the ct is the output of a fixed known random transformation Pc|ℓ with
input ℓt. In particular, the output ct = ℓt + Zt where Zt is drawn from some fixed distribution. In
this case, we wish to devise a decision strategy p that at time step t maps the noisy outputs ct−1 to a
decision and achieves low regret as defined in (3).

The study of additive noise channels is motivated by numerous real-world applications where feedback
is corrupted by predictable noise patterns. Gaussian additive noise represents perhaps the most
ubiquitous noise model, arising naturally in settings such as sensor networks, where thermal noise
in electronic components follows a Gaussian distribution; financial market predictions, where price
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observations contain normally distributed measurement errors; and healthcare monitoring systems,
where physiological measurements are subject to Gaussian instrument noise. Uniform additive
noise, on the other hand, is particularly relevant in scenarios involving quantization and digital
conversion, such as in communication-constrained IoT networks where continuous signals must be
discretized with limited precision; in crowdsourced data collection where human bias introduces
bounded random errors; and in privacy-preserving systems where uniform noise is deliberately added
to protect sensitive information while maintaining utility. Both noise models represent fundamental
corruption patterns that algorithms must contend with when learning from imperfect feedback, making
their theoretical analysis particularly valuable for designing robust decision-making systems.

2 Main results

Our primary contribution is a comprehensive characterization of the fundamental limits of prediction
with expert advice under various additive noise channel models. These results also provide practical
algorithmic insights for real-world applications where feedback is inherently noisy. In particular, our
results specialize to the following canonical additive noise models to yield the following results:

• Gaussian noise: For Gaussian noise with variance σ2 (denoted by AWGN(σ))

Reg(AWGN(σ)) = Θ
(√

(1 + σ2)n logm
)

(4)

This quantifies how increasing noise variance directly impacts the achievable regret, with a
clean dependency on the standard deviation.

• Uniform noise: When feedback is corrupted by uniform noise distributed in [−σ, σ] (de-
noted by AddUnif(σ))

Reg(AddUnif(σ)) = Θ
(√

(1 + σ)n logm
)

(5)

This result is particularly interesting as it reveals a fundamentally different scaling with the
noise parameter compared to the Gaussian case. The linear rather than quadratic dependence
on σ highlights how the shape of the noise distribution—not just its variance—critically
affects learning performance.

• Symmetric log-concave noise: Extending beyond specific distributions, we provide bounds
for the general class of symmetric log-concave noise distributions with variance σ2 (denoted
by Add(fσ))

Ω
(√

(1 + σ)n logm
)
≤ Reg(Add(fσ)) ≤ O

(√
(1 + σ2)n logm

)
(6)

Symmetric log-concave distributions are particularly valuable to study as they encompass
many real-world noise models in sensor networks, signal processing, and privacy-preserving
systems. In particular, they encompass the previous two examples of Gaussian and Uniform
distribution, and also include other noise distributions such as the Laplace (double expo-
nential) distribution. This broad class maintains favorable concentration properties while
often better modeling the heavier tails observed in practical measurement errors compared
to purely Gaussian assumptions, making our bounds widely applicable to realistic noise
scenarios. While the characterization (6) is not perfectly tight, it encompasses both previous
results as special cases: the lower bound is tight for uniform noise, and the upper bound is
tight for Gaussian noise.

Our results reveal that as noise intensity increases (σ → ∞), the regret eventually grows superlinearly
with time horizon n, indicating the fundamental impossibility of learning effectively when feedback
becomes extremely corrupted. Conversely, our bounds smoothly transition to the classical noiseless
case as noise diminishes. These theoretical guarantees are derived through an analysis combining two
complementary techniques: (1) an enhanced exponential weights algorithm adapted for noisy feed-
back, and (2) information-theoretic lower bounds that precisely characterize what is fundamentally
impossible to achieve. In particular, we employ the following two results:

Theorem 1 (informal) For any memoryless feedback channel

Regret ≤ O

(
logm

α
+ α · n · MSEestimation

)
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where m is the number of experts, n is the time horizon, α is a learning rate parameter, and
MSEestimation represents the mean squared error in estimating the true losses from noisy observations.

We note, in particular, that the regret additionally depends on the mean squared error (MSE) ob-
tained by the estimator ℓ̂t, drawing an interesting connection between estimation and noisy regret
minimization. This result echoes the well-known separation principle in measurement feedback
control [KSH00], where optimal control cost can be decomposed into optimal estimation cost fol-
lowed by optimal control cost based on the estimates. Our theorem suggests a similar phenomenon
in online learning: the performance degradation due to noisy feedback can be directly quantified
through estimation error.

Theorem 2 (informal) In memoryless channels

Regret ≥ Ω

(√
n · logm
η(Pc|ℓ)

)
where η(Pc|ℓ) is the strong data-processing constant of the channel—an information-theoretic
measure quantifying how well the channel preserves information.

This lower bound demonstrates that the fundamental barrier to learning is information-theoretic in
nature: as the channel’s ability to transmit information degrades (smaller η), the minimum achievable
regret increases proportionally.

3 Related work

In this section, we summarize prior work that relates most closely to the problem studied in this paper.
For brevity, we focus only on the works that are most directly connected to our setting, and defer a
more exhaustive literature overview to Appendix A.

To our knowledge, the earliest study of prediction with noisy feedback for individual loss sequences
ℓn was by Weissman, Merhav, and Somekh-Baruch [WMSB01], following the foundational works
of [FMG92, MF98]. Their analysis focused on the case where the losses are corrupted by a binary
symmetric channel (BSC). They introduced upper bounds and a notion of conditional finite-state
predictability, and proposed universal prediction schemes that are robust both to the choice of the
best expert in hindsight and to the unknown channel bias. Subsequent work by Weissman and
Merhav [WM01] generalized these ideas to a broader class of universal prediction schemes for
noisy individual sequences, while [WM04] extended the analysis to noisy prediction of stationary
ergodic sources. However, these results do not directly cover additive-noise channels, nor do they
establish matching lower bounds on regret. The study in [WM01] was later extended by Resler and
Mansour [RM19] to the adversarial bandit framework—where only the loss of the chosen expert is
revealed at each round—though their setting also assumed a BSC and is therefore not applicable to
additive-noise models.

In recent years, motivated partly by the rise of federated learning as a key paradigm in distributed
optimization [KMA+21], there has been growing interest in decision-making under communication
or rate constraints. Similar questions have been explored in the context of stochastic bandits [HYF22,
MHP23, MST23], which also served as inspiration for our work. In these studies, the focus is on
quantifying how limited feedback precision affects achievable regret. Specifically, for multi-armed
and linear bandit problems, [HYF22] and [MHP23] proposed communication-efficient algorithms
that attain regret comparable to the full-precision case while characterizing the number of bits required
to do so. Mayekar et al. [MST23] considered an additional constraint, modeling the feedback channel
as a power-limited AWGN link, and derived both achievability and converse bounds showing that
the regret deteriorates by a multiplicative factor of

√
1/SNR, where SNR denotes the signal-to-noise

ratio. Their analysis, however, is limited to Gaussian channels and relies on a UCB-style algorithm
that is not applicable in our framework.

In contrast, this paper addresses the full-information (experts) setting with adversarial losses for
individual sequences. We establish near-optimal upper and lower bounds on the regret and specialize
our results to a general family of additive-noise channels. Our findings unify and extend several
existing results: for instance, in the cases of one-bit per-expert quantization and AWGN noise, our
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regret bounds coincide (up to constants) with those in [HYF22, MST23]. Finally, [BK24] recently
investigated prediction with noisy expert advice, but their analysis has notable limitations that our
work overcomes. Specifically, we handle both bounded and unbounded loss functions—an essential
feature for dealing with additive noise that may have heavy tails. Moreover, whereas their Gaussian
lower bound was stated without proof, our result derives it rigorously from a unified framework
(Theorem 2). Most importantly, our analysis provides tight or near-tight characterizations for a broad
range of additive-noise channels, including uniform and symmetric log-concave distributions, which
are not captured by their framework.

4 Upper bounds

In this Section, we provide upper bounds for prediction with noisy expert advice with additive noise.
To do this, we need to construct a decision-making strategy and prove its performance limits. To this
end, consider the following estimator:

pEW
tj (ct−1) ∝ exp

(
−α

t−1∑
i=1

ℓ̂ij

)
. (7)

where ℓ̂t is any function f(ct) satisfying E[f(ct)] = ℓt. In other words, the employed strategy (which
we denote by p̂EW) is simply the landmark exponential weights strategy [CBFH+97] that is known
to be optimal in a sense for the vanilla prediction with expert advice problem [CBL06] used in
conjunction with an unbiased estimator for the true loss ℓt, with a fixed learning rate α. Unbiasedness
of an estimator is an important property in statistical estimation, with several interesting and attractive
consequences [LC06, Chapter 2]. In the realm of online learning, one of the prominent examples of
the use of unbiased estimator as a proxy for an unknown loss is in the celebrated EXP3 algorithm
of [ACBFS95].

We can now state Theorem 1 formally.

Theorem 1 Let the channel Pc|ℓ be memoryless and let ℓ̂t, constructed using ct, be an unbiased
estimator. For any α > 0 defining the event

E := {∃t, j : −αℓ̂tj ≥ 1}, (8)

Reg(p̂EW, Pc|ℓ, ℓ
n) ≤ logm

α
+ αn

(
1 + max

j,t
E[ℓtj − ℓ̂tj ]

2

)
+

√
4m2n2

(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E).

We once again point out that the regret depends on the mean squared error (MSE) obtained by the
estimator ℓ̂t, drawing an interesting connection between estimation and noisy regret minimization.
Theorem 1 follows from a “second-order" analysis of the exponential weights strategy pEW which
bounds the regret incurred by pEW in terms of the second moment of the loss functions [CBMS07,
GSVE14]. It follows the standard idea of constructing a potential function and carefully bounding
the change in the potential function at each time step, and the full proof is relegated to Appendix B.

4.1 Application of Theorem 1 to canonical channel models

We apply our general upper bound from Theorem 1 to several important additive noise channels. For
each channel model, we develop an appropriate unbiased estimator, calculate its estimation error
variance, and determine the resulting regret guarantees by substituting these values into the framework
established in Theorem 1. Recall that for additive noise channels, the output ctj = ℓtj + Ztj where
all the Ztj are independently and identically distributed.

Gaussian noise. Consider ct = ℓt+Zt where Zt ∼ N (0, σ2I). The most natural unbiased estimator
to use is simply ℓ̂t = ct, with MSE E[(ct − ℓt)

2] = σ2. Note that in this case since the noise is
unbounded −αctj can be arbitrarily large—but the probability of this event occuring is exponentially
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small. In particular, recalling from (8) that the event E is defined as E := {∃t, j : −αctj ≥ 1} we

note for α =
√

logm
n(1+σ2)

P(E)
(a)

≤
n∑

t=1

m∑
j=1

P

(
ctj ≤ −

√
n(1 + σ2)

logm

)
(b)

≤
n∑

t=1

m∑
j=1

P

(
Ztj ≤ −

√
n(1 + σ2)

logm

)

≤ mnP

(
Ztj ≤ −

√
n(1 + σ2)

logm

)
(9)

(c)

≤ mn exp

(
− n

2 logm

)
(10)

where (a) follows by the union bound, (b) follows since ctj = Ztj + ℓtj and 0 ≤ ℓtj ≤ 1, and
(c) follows by using that for Z ∼ N (0, σ2) the complementary CDF P(Z ≥ x) ≤ exp(−x2/2σ2).
Thus, Theorem 1 implies that the strategy p̂EW which sets pt = pEW(ct−1) with learning rate

α =
√

logm
n(1+σ2) achieves regret

Reg(p̂EW,AWGN(σ), ℓn) ≤ 2
√

(1 + σ2)n logm+ o(n). (11)

Uniform noise. For additive channels with uniform noise, the channel output ctj = ℓtj + Ztj where
Ztj ∼ Unif[−σ, σ] (so that the noise variance is σ2/3). Since we are interested in how the regret
scales as σ increases, it suffices to assume that σ ≥ 1. Then, consider the following estimator ℓ̂t
(which is a function of ct):

ℓ̂tj =

{ −σ + 1
2 if − σ ≤ ctj < −σ + 1

1
2 if − σ + 1 ≤ ctj ≤ σ
σ + 1

2 if σ < ctj ≤ σ + 1.
(12)

We observe that E[ℓ̂tj ] = ℓtj i.e. ℓ̂t is unbiased and that the MSE for this estimator satisfies
E[ℓ̂tj − ℓtj ]

2 ≤ σ (full calculations relegated to Appendix C).

For choice of learning rate α =
√

logm
n(1+σ) , we note that αℓ̂tj ≥ −σα = −σ

√
logm

n(1+σ) ≥ −1 for large

enough n. Therefore, if we use the strategy p̂EW with the unbiased estimator ℓ̂t in (12), Theorem 1
yields

Reg(p̂EW,Unif(σ), ℓn) ≤ 2
√
(1 + σ)n logm. (13)

In Section 5, we show a matching lower bound to (13) and establish that the regret must grow as
Ω
(√

(1 + σ)n logm
)

, showing the tightness of (13).

Symmetric noise with tail constraints. If the additive noise is symmetric, i.e. the distribution of
noise Z and −Z is the same, the most natural unbiased estimator for ℓt is ℓ̂t = ct (since the noise
is additive and 0−mean) which achieves mean-square error E[ctj − ℓtj ]

2 = σ2 where σ2 is the

variance of the noise Ztj . In order to apply Theorem 1 with α =
√

logm
n(1+σ2) to achieve regret scaling

as O(
√
(1 + σ2)n logm) (as in the AWGN channel setting) we need to establish a bound on P(E).

Following the line of reasoning employed to reach (9) we have

P(E) ≤ mnP

(
Ztj

σ
≤ −

√
n(1 + σ2)

σ2 logm

)
≤ mnP

(
Ztj

σ
≤ −

√
n

logm

)
which implies that a noise density with polynomially decaying tails (in particular for σ = 1 , if the
random variable Z satisfies for large x that P(Z ≥ x) ≤ c

x6+ϵ where c is a positive absolute constant
and ϵ > 0) suffices to achieve regret

2
√
(1 + σ2)n logm+ o(n). (14)
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An important class of distributions that achieves this tail condition is log-concave distribu-
tions [SW14], which are distributions having density f(z) for which the function z 7→ log f(z)
is concave. This class has a special significance across statistics and information theory and includes
distributions such as the Gaussian distribution, the uniform distribution and the Laplace distribution.
Since all log-concave distributions are subexponential (i.e. have exponentially decaying tails) these
satisfy aforementioned the condition on P(E) as n grows larger. While for the specific cases of
Gaussian and Laplace densities, it is possible to achieve a matching Ω(

√
(1 + σ2)n logm) lower

bound for the regret, the most general lower bound we are able to achieve is a fundamental lower
bound of Ω(

√
(1 + σ)n logm on the regret when the class of noise densities is log-concave. While it

might appear that the bound can be strengthened in general, we have seen that this fundamental lower
bound can in fact be achieved for uniform noise distributions by constructing a different unbiased
estimator that achieves O(

√
(1 + σ)n logm) regret.

5 Lower bounds

In this section, we establish fundamental lower bounds on the regret maxℓn Reg(p, Pc|ℓ, ℓ
n) for any

strategy p. To this end, we need the following definition.

Definition 1 The strong data processing constant of a binary-input channel PY |X is defined as

η(PY |X) = sup
PX ̸=QX

D(PX ◦ PY |X∥QX ◦ PY |X)

D(PX∥QX)
(15)

where PX and QX are distributions defined on {0, 1}.

Intuitively, this measure quantifies some sense of “loss of information" in a noisy channel—this
interpretation is more clear by the alternate representation of η(PY |X) (see [PW22, Theorem 33.5])

η(PY |X) = sup
PUX :U→X→Y

I(U ;Y )

I(U ;X)
(16)

where U is an auxiliary random variable, and U → X → Y represents a Markov chain. The
data processing inequality [CT06] from information theory immediately implies that η(PY |X) ≤ 1;
often, as we show subsequently, we can establish η(PY |X) < 1. There has been much interest in
characterizing η(PY |X) for various channels due to numerous applications arising in the domain of
statistical inference—see [PW17, Rag16], [PW22, Chapter 33] for a detailed survey.

Next, we state Theorem 2 formally. This result is stated in [BK24] as Theorem 2 (without a full
proof), and we provide a full proof in Appendix D.

Theorem 2 If the noise is memoryless and component-wise independent (i.e. Pc|ℓ =
∏m

j=1 Pcj |ℓj )
then

sup
ℓn

Reg(p, Pc|ℓ, ℓ
n) ≥

√
n log(m/4)

16η(Pc|ℓ)
(17)

where with some abuse of notation, η(Pc|ℓ) (as in Definition 1) restricts the channel to binary input
{0, 1}.

We now instantiate Theorem 2 for the class of additive noise channels, recalling that for these channels
ctj = ℓtj + Ztj for (independent and identically distributed) random variables Ztj . To quantify
η(Pc|ℓ), we will utilize the following characterization from [PW17, Theorem 21]

Theorem 3 For a binary-input channel PY |X ,

H2(PY |X=0, PY |X=1)

2
≤ η(PY |X) ≤ H2(PY |X=0, PY |X=1) (18)

where H represents the Hellinger divergence between two distributions.
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We can now use this result for the specific noise models we are interested in.

Additive white Gaussian noise. If Ztj ∼ N (0, σ2), then (18) implies that

η(AWGN(σ2)) = H2(N (0, σ2),N (1, σ2))

= 1− 1

2πσ2

∫ ∞

−∞
exp

(
− x2

2σ2
− (x− 1)2

2σ2

)
dx (19)

= 2− 2e−1/8σ2

≤ 4

1 + σ2
(20)

where (20) follows since (1− e−1/8x2

)(1 + x2) ≤ 4 for all x. Using (20) in Theorem 2 implies that

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ2)n log(m/4)

64
(21)

matching up to constants the upper bound in (11).

Additive uniform noise. The uniform additive noise channel has the noise Ztj ∼ Unif[−σ, σ]—
note that this noise has variance σ2/3. In this case PY |X=0 = Unif[−σ, σ] with density f0(x) =
1
2σ1{−σ ≤ x ≤ σ}, and PY |X=1 = Unif[−σ + 1, σ + 1] with density f1(x) =

1
2σ1{−σ + 1 ≤

x ≤ σ + 1}. Let us assume that σ ≥ 1; in this case

η(Unif(σ)) ≤ H2(Unif[−σ, σ],Unif[−σ + 1, σ + 1])

= 1− 1

2σ

∫ σ+1

−σ+1

dx =
1

2σ
. (22)

Combining (22) with the trivial bound η ≤ 1 yields

η(Unif(σ)) ≤ 1

σ + 1
(23)

for all σ > 0; implying the fundamental lower bound on the regret when the feedback is corrupted
with additive uniform noise

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ)n log(m/4)

16
(24)

matching the upper bound result obtained in (13) up to constants.

Additive symmetric, log-concanve noise. So far, in the additive noise examples we have considered
(Gaussian and uniform noise), we established that noisy feedback incurs a multiplicative cost (over
the noiseless case) on the regret that depends on the moments of the noise and this cost is strictly
greater than 1 (

√
1 + σ2 and

√
1 + σ respectively). In light of the upper bound result in (14), we

might hope that for general additive noise channels with mild tail conditions on the noise one can
achieve η(Pc|ℓ) ≥ Ω(σ). Unfortunately, this is not the case in general—consider the additive channel
Y = X + Z with noise distribution Z ∼ Uniform{−σ, σ}—this noise distribution is bounded; but
still η(PY |X) = 1 since given Y , X is perfectly known. Therefore, to obtain a more general result,
more conditions need to be imposed on the noise distribution.

We will show a lower bound for the general class of symmetric log-concave distributions considered
in Section 4.1, which encompasses the Gaussian and uniform distributions considered previously.
Consider a log-concave noise distribution with variance σ2 and let f denote its density. Then,

η(PY |X) ≤ H2(PY |X=0, PY |X=1)

(a)

≤ 2TV (PY |X=0, PY |X=1)

(b)
=

∫ ∞

−∞
|f(z)− f(z − 1)|dz (25)

where (a) follows from the well known inequality H2 ≤ 2TV between Hellinger and total variation
distances, and (b) follows from the definition of the total variation distance (and, the fact that the
density of Y |X = 1 is f(z− 1)). Next, we further simplify (25) using the symmetry and unimodality
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of f (since any log-concave distribution is also unimodal). Since f(z) is decreasing for z ≥ 0 and
f(z − 1) is increasing for z ≤ 1, for any z ≤ 1

2 , we have

f(z − 1) ≤ f(1/2) ≤ f(z)

and similarly for z > 1
2 , f(z) ≤ f(z − 1). Therefore,∫ ∞

−∞
|f(z)− f(z − 1)|dz =

∫ 1/2

−∞
(f(z)− f(z − 1))dz +

∫ ∞

1/2

(f(z − 1)− f(z))dz

= 2

∫ ∞

1/2

(f(z − 1)− f(z))dz (26)

= 2

(∫ ∞

1/2

f(z − 1)dz −
∫ ∞

1/2

f(z)dz

)

= 2

(∫ ∞

−1/2

f(z)dz −
∫ ∞

1/2

f(z)dz

)

= 2

(∫ 1/2

−1/2

f(z)dz

)

≤ 4

σ
(27)

where (27) is due to the following proposition, a proof of which is provided in Appendix E.

Proposition 1 For a symmetric, log-concave distribution with variance σ2, its density satisfies
f(z) ≤ 2

σ .

Putting together (27) and (25) along with the trivial bound η ≤ 1, we see that for any additive noise
channel with a symmetric, log-concave density

η(PY |X) ≤ 8

(1 + σ)
. (28)

This furthermore implies in the experts problem that if feedback is available with additive noise
ctj = ℓtj + Ztj where Ztj is symmetric and log-concave, then

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ)n log(m/4)

128
. (29)

It is interesting to note that the lower bound in (29) is not tight in general. This is true in particular
for Gaussian noise and Laplace (double exponential) additive noise—for both, we can establish a√
1 + σ2 scaling by direct computation of H2(PY |X=0, PY |X=1). Nonetheless, it is tight for uniform

noise, which is a log-concave distribution, as we have shown a matching upper bound in (13). Thus,
it is tight in the sense that it cannot be improved without imposed further restrictions on the class of
noise densities.

6 Discussion

This paper provides a comprehensive framework for prediction with expert advice under additive
noise feedback, establishing tight regret bounds for Gaussian, uniform and Laplace noise, and
nearly-tight bounds for the broader class of symmetric log-concave distributions. Our analysis
reveals important differences in how noise characteristics affect learning performance—with regret
penalties scaling quadratically with standard deviation for Gaussian noise but only linearly for
uniform noise. We identify the strong data-processing coefficient as a critical measure characterizing
how channel degradation impacts regret bounds. Important future directions include developing
high-probability guarantees beyond expected regret analysis for risk-sensitive applications, and
extending our framework to alternative loss functions beyond linear losses and to infinite expert
classes—connecting this work to broader statistical learning theory through concepts like Rademacher
complexity under noisy observations.

9



References
[AAK+20] Idan Amir, Idan Attias, Tomer Koren, Yishay Mansour, and Roi Livni. Prediction

with corrupted expert advice. Advances in Neural Information Processing Systems,
33:14315–14325, 2020.

[ACBFS95] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE
36th Annual Foundations of Computer Science, pages 322–331, 1995.

[ACL+21] Jayadev Acharya, Clément L Canonne, Yuhan Liu, Ziteng Sun, and Himanshu Tyagi.
Interactive inference under information constraints. IEEE Transactions on Information
Theory, 68(1):502–516, 2021.

[ACT20a] Jayadev Acharya, Clément L Canonne, and Himanshu Tyagi. Inference under informa-
tion constraints I: Lower bounds from chi-square contraction. IEEE Transactions on
Information Theory, 66(12):7835–7855, 2020.

[ACT20b] Jayadev Acharya, Clément L Canonne, and Himanshu Tyagi. Inference under in-
formation constraints II: Communication constraints and shared randomness. IEEE
Transactions on Information Theory, 66(12):7856–7877, 2020.

[BDPSS09] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In
Conference on Learning Theory, 2009.

[BHS23] Alankrita Bhatt, Nika Haghtalab, and Abhishek Shetty. Smoothed analysis of sequential
probability assignment. Advances in Neural Information Processing Systems, 36, 2023.

[BK21] Alankrita Bhatt and Young-Han Kim. Sequential prediction under log-loss with side
information. In Algorithmic Learning Theory, pages 340–344. Proceedings of Machine
Learning Research, 2021.

[BK24] Alankrita Bhatt and Victoria Kostina. Prediction with noisy expert advice. In 2024
IEEE International Symposium on Information Theory (ISIT), pages 3546–3551. IEEE,
2024.

[CBFH+97] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E
Schapire, and Manfred K Warmuth. How to use expert advice. Journal of the ACM
(JACM), 44(3):427–485, 1997.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

[CBMS07] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order
bounds for prediction with expert advice. Machine Learning, 66:321–352, 2007.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series
in Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[DRS15] Mehmet A Donmez, Maxim Raginsky, and Andrew C Singer. Online optimization
under adversarial perturbations. IEEE Journal of Selected Topics in Signal Processing,
10(2):256–269, 2015.

[FMG92] Meir Feder, Neri Merhav, and Michael Gutman. Universal prediction of individual
sequences. IEEE Transactions on Information Theory, 38(4):1258–1270, 1992.

[GSVE14] Pierre Gaillard, Gilles Stoltz, and Tim Van Erven. A second-order bound with excess
losses. In Conference on Learning Theory, pages 176–196. Proceedings of Machine
Learning Research, 2014.

[H+16] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends®
in Optimization, 2(3-4):157–325, 2016.

10



[HACM22] Yu-Guan Hsieh, Kimon Antonakopoulos, Volkan Cevher, and Panayotis Mertikopoulos.
No-regret learning in games with noisy feedback: Faster rates and adaptivity via
learning rate separation. Advances in Neural Information Processing Systems, 2022.

[HKYF23] Osama A Hanna, Merve Karakas, Lin F Yang, and Christina Fragouli. Multi-arm bandits
over action erasure channels. In 2023 IEEE International Symposium on Information
Theory, pages 1312–1317. IEEE, 2023.

[HRS20] Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online
and differentially private learning. Advances in Neural Information Processing Systems,
33, 2020.

[HYF22] Osama A Hanna, Lin Yang, and Christina Fragouli. Solving multi-arm bandit using a
few bits of communication. In International Conference on Artificial Intelligence and
Statistics. Proceedings of Machine Learning Research, 2022.

[KH19] Victoria Kostina and Babak Hassibi. Rate-cost tradeoffs in control. IEEE Transactions
on Automatic Control, 64(11):4525–4540, 2019.

[KMA+21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1–2):1–210, 2021.

[KSH00] Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice Hall,
2000.

[LC06] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science &
Business Media, 2006.

[Luo22] Haipeng Luo. Adversarial bandits: Theory and algorithms, 2022. Available online at
https://simons.berkeley.edu/sites/default/files/docs/22250/dddp22-bcslides-haipengluo.pdf.

[MF98] Neri Merhav and Meir Feder. Universal prediction. IEEE Transactions on Information
Theory, 44(6):2124–2147, 1998.

[MHP23] Aritra Mitra, Hamed Hassani, and George J Pappas. Linear stochastic bandits over
a bit-constrained channel. In Learning for Dynamics and Control Conference, pages
1387–1399. Proceeding of Machine Learning Research, 2023.

[MST23] Prathamesh Mayekar, Jonathan Scarlett, and Vincent YF Tan. Communication-
constrained bandits under additive gaussian noise. International Conference on Machine
Learning, 2023.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019.

[PGZ22] Francesco Pase, Deniz Gündüz, and Michele Zorzi. Rate-constrained remote contextual
bandits. IEEE Journal on Selected Areas in Information Theory, 2022.

[PW17] Yury Polyanskiy and Yihong Wu. Strong data-processing inequalities for channels and
bayesian networks. In Convexity and Concentration, pages 211–249. Springer, 2017.

[PW22] Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Book
draft, 2022.

[Rag16] Maxim Raginsky. Strong data processing inequalities and ϕ-sobolev inequalities for
discrete channels. IEEE Transactions on Information Theory, 62(6):3355–3389, 2016.

[Ris84] Jorma Rissanen. Universal coding, information, prediction, and estimation. IEEE
Transactions on Information theory, 30(4):629–636, 1984.

[RM19] Alon Resler and Yishay Mansour. Adversarial online learning with noise. In Interna-
tional Conference on Machine Learning, pages 5429–5437. Proceedings of Machine
Learning Research, 2019.

11



[RWH+12] Maxim Raginsky, Rebecca M Willett, Corinne Horn, Jorge Silva, and Roummel F
Marcia. Sequential anomaly detection in the presence of noise and limited feedback.
IEEE Transactions on Information Theory, 58(8):5544–5562, 2012.

[SPJM23] Ke Sun, Samir M Perlaza, and Alain Jean-Marie. 2× 2 zero-sum games with com-
mitments and noisy observations. In IEEE International Symposium on Information
Theory, 2023.

[SRV18] Yanina Shkel, Maxim Raginsky, and Sergio Verdú. Sequential prediction with coded
side information under logarithmic loss. In Algorithmic Learning Theory, pages 753–
769. Proceedings of Machine Learning Research, 2018.

[SW14] Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a review.
Statistics surveys, 8:45, 2014.

[TM04a] Sekhar Tatikonda and Sanjoy Mitter. Control over noisy channels. IEEE Transactions
on Automatic Control, 49(7):1196–1201, 2004.

[TM04b] Sekhar Tatikonda and Sanjoy Mitter. Control under communication constraints. IEEE
Transactions on automatic control, 49(7):1056–1068, 2004.

[TSM04] Sekhar Tatikonda, Anant Sahai, and Sanjoy Mitter. Stochastic linear control over a
communication channel. IEEE Transactions on Automatic Control, 49(9):1549–1561,
2004.

[WGS23] Changlong Wu, Ananth Grama, and Wojciech Szpankowski. Robust online classifica-
tion: From estimation to denoising. arXiv preprint arXiv:2309.01698, 2023.

[WM01] Tsachy Weissman and Neri Merhav. Universal prediction of individual binary sequences
in the presence of noise. IEEE Transactions on Information Theory, 47(6):2151–2173,
2001.

[WM04] Tsachy Weissman and Neri Merhav. Universal prediction of random binary sequences
in a noisy environment. The Annals of Applied Probability, 14(1):54–89, 2004.

[WMSB01] Tsachy Weissman, Neri Merhav, and Anelia Somekh-Baruch. Twofold universal
prediction schemes for achieving the finite-state predictability of a noisy individual
binary sequence. IEEE Transactions on Information Theory, 47(5):1849–1866, 2001.

[XB97] Qun Xie and Andrew R Barron. Minimax redundancy for the class of memoryless
sources. IEEE Transactions on Information Theory, 43(2):646–657, 1997.

12



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract, introduction and main results section reflect the paper’s contribu-
tions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The scope of the main results is outlined wherever applicable.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All statements have a full set of assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14



Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper consists of theoretical advancements with no foreseeable societal
consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper has no experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper contains no experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Literature Review

A closely related area where sequential decision-making with noisy feedback has been considered is
control. The question examined here is how control systems can maintain stability and performance
despite the presence of noise in the feedback loop. While measurement-feedback control is a classical
topic [KSH00], the line of work [TM04b, TM04a, TSM04, KH19] examines fundamental limits of
control performance when the feedback is subject to communication constraints.

[RWH+12] considered sequential anomaly detection and sequential probability assignment (i.e.
online prediction using the logarithmic loss [Ris84, XB97, BK21, CBL06]) in the presence of
noise and established minmax regret guarantees. Also in the setting of sequential probability
assignment, [SRV18] considered compressed side information available noncausally—our work
considers compressed feedback available causally, in the prediction with experts setting. Decision-
making with noisy feedback in the sequential classification setting has been considered in [BDPSS09,
WGS23]. The effect of noisy observations on the equlibrium value of games was characterized
in [HACM22, SPJM23]. The setting where rather than the feedback ℓt the action pt is communicated
over a noisy channel is considered in [DRS15, PGZ22, HKYF23], and minmax bounds on the
regret incurred are established. The line of work [ACT20a, ACT20b, ACL+21] considers sequential
statistical inference under constraints, designing optimal policies and well as establishing fundamental
converse bounds.

We remark that our setting is distinct from that of i.i.d. ℓt and adversarially injected corrup-
tions [AAK+20], a model which aims to bridge the distance between the case where the losses
ℓt at chosen i.i.d. and the individual-sequence case (adversarial ℓt). Moreover, our choice of
benchmark being minj∈[m]

∑n
t=1 ℓtj (see the regret definition (3)) makes our setting distinct from

smoothed analysis [HRS20, BHS23], where the benchmark is the best expert in hindsight on the
noisy loss function—making smoothed analysis a beyond-worst case setting.

B Proof of Theorem 1

First, the following proposition justifies the use of an unbiased estimator in the strategy.

Proposition 2 Let ℓ̂t (where ℓ̂t is a possibly noisy function of ct) be such that E[ℓ̂t|ℓ̂t−1] = ℓt, and
p be any strategy for the noiseless experts problem. Then, the strategy p̂ that plays p̂t = pt(ℓ̂

t−1)
achieves

Reg(p, Pc|ℓ, ℓ
n) ≤ E

[
n∑

t=1

⟨p(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]
.

Proof.

⟨E[pt(ℓ̂t−1)], ℓt⟩ = E[⟨pt(ℓ̂t−1), ℓt⟩]
(a)
= E[⟨pt(ℓ̂t−1),E[ℓ̂t|ℓ̂t−1]⟩]

= E[E[⟨pt(ℓ̂t−1), ℓ̂t⟩|ℓ̂t−1]]

(c)
= E

[
⟨pt(ℓ̂t−1), ℓ̂t⟩

]
(30)

where (a) follows by the conditional unbiasedness of ℓ̂t and (b) follows by the tower property of
expectation. Moreover,

min
j∈[m]

n∑
t=1

ℓtj
(a)
= min

j∈[m]
E
[ n∑

t=1

ℓ̂tj

] (b)

≥ E
[
min
j∈[m]

n∑
t=1

ℓ̂tj

]
(31)

where (a) follows by the unbiasedness of ℓ̂t and linearity of expectation, and (b) follows since
E[min(·)] ≤ minE[·]. The Proposition follows by summing up (30) over t and from (31).

Proposition 2 establishes that upon construction of an unbiased estimator ℓ̂t, the decision-maker can
pretend that the benchmark is minj∈[m]

∑n
t=1 ℓ̂tj , and employ a no-regret strategy for this benchmark.
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To construct a scheme, we need to utilize a no-regret strategy for the noiseless setting in conjunction
with an unbiased estimator ℓ̂t. To this end, we utilize the landmark exponential weights/Hedge
(EW) strategy. We will need the following analysis of the exponential weights strategy pEW (see for
example [Luo22]), which bounds the regret incurred by pEW in terms of the second moment of the
loss functions [CBMS07, GSVE14].

Lemma 1 If pEW
tj is chosen to be the exponential weights strategy, and if ℓn and α satisfy −αℓtj ≤ 1

for all t and j, we have

Reg(pEW, ℓn) ≤ logm

α
+ α

n∑
t=1

m∑
j=1

pEW
tj ℓ2tj . (32)

Proof. Define

Zt :=

m∑
j=1

exp
(
− α

t−1∑
i=1

ℓij
)
,

the normalizing term in pEW
t , so that pEW

tj = exp
(
−α

∑t−1
i=1 ℓij

)
/Zt. Then, we will consider logZt

to be the potential function and bound the difference in the potential function at each step. We have
Note that

logZt+1 − logZt = log

∑m
j=1 exp

(
− α

∑t
i=1 ℓij

)∑m
j=1 exp

(
− α

∑t−1
i=1 ℓij

)
= log

∑m
j=1 exp

(
− α

∑t−1
i=1 ℓij

)
exp(−αℓtj)∑m

j=1 exp
(
− α

∑t−1
i=1 ℓij

)
(a)
= log

 m∑
j=1

pEW
tj exp(−αℓtj)


(b)

≤ log

 m∑
j=1

pEW
tj

(
1− αℓtj + α2ℓ2tj

)
= log

1− α

m∑
j=1

pEW
tj ℓtj + α2

m∑
j=1

ptjℓ
2
tj


(c)

≤ −α

m∑
j=1

pEW
tj ℓtj + α2

m∑
j=1

pEW
tj ℓ2tj

= −α⟨pEW
t , ℓt⟩+ α2

m∑
j=1

pEW
tj ℓ2tj (33)

where (a) follows by the definition of pEW, (b) follows since ex ≤ 1 + x + x2 for x ≤ 1 (and
−αℓtj ≤ 1), and (c) follows since log(1 + x) ≤ x for all x. Now, we observe that

logZn+1 = log

 m∑
j=1

exp
(
− α

n∑
t=1

ℓtj
)

≥ max
j∈[m]

log

(
exp

(
− α

n∑
t=1

ℓtj
))

= −α min
j∈[m]

n∑
t=1

ℓtj (34)

and that Z1 = m. Summing up (33) over all t ∈ [n], using (34) and rearranging yields the Lemma.

Recall the achievability strategy p̂EW:
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• Construct an unbiased estimator ℓ̂t for ℓt from the channel output ct.

• Play pEW
t (ℓ̂t−1).

Define the “bad" event E := {∃t, j : −αℓ̂tj > 1}, which by the condition stated in the Theorem
occurs with probability P(E). We will split the regret analysis into two cases: if EC occurs, where
Lemma 1 can be invoked, and if E occurs, where we will utilize a worst-case bound on regret. First,
we use Proposition 2 which yields

Reg(p̂EW, Pc|ℓ, ℓ
n) ≤ E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]
(35)

and we have

E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]

= E
[( n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC}

]
+ E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩1{E}

]
− E

[(
min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{E}

]
. (36)

We analyze the three terms in the right hand side of (36) separately. First, note that if EC occurs, then
the conditions in Lemma 1 are satisfied which can be employed to get(

n∑
t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC} ≤ logm

α
+ α

n∑
t=1

m∑
j=1

pEW
tj (ℓ̂t−1)ℓ̂2tj (37)

where (37) also uses that indicator is bounded by 1 and the term to be multiplied is positive. Next,
note that

E[pEW
tj (ℓ̂t−1)ℓ̂2tj ] = E[pEW

tj (ℓ̂t−1)ℓ2tj ] + E[pEW
tj (ℓ̂t−1)(ℓ̂tj − ℓtj)

2] + E[2pEW
tj (ℓ̂t−1)ℓtj(ℓ̂tj − ℓtj)]

(a)
= E[pEW

tj (ℓ̂t−1)ℓ2tj ] + E[pEW
tj (ℓ̂t−1)]E[(ℓ̂tj − ℓtj)

2]

(b)

≤ E[pEW
tj (ℓ̂t−1)]

(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]
)

(38)

where (a) follows from the fact that ℓ̂t is independent of ℓ̂t−1 and that ℓ̂t is unbiased, and (b) uses
that ℓ2tj ≤ 1 by assumption. Taking expectations on both sides of (37) and (38) yields

E
[( n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC}

]
≤ logm

α
+ α

n∑
t=1

(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]
)

E
[ m∑
j=1

pEW
tj (ℓ̂t−1)

]
=

logm

α
+ αn

(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]

)
. (39)

To bound the second term in (36), we apply
n∑

t=1

E
[
⟨pEW(ℓ̂t−1), ℓ̂t⟩1{E}

]
≤

n∑
t=1

E
[
|⟨pEW(ℓ̂t−1), ℓ̂t⟩|1{E}

]
(a)

≤
n∑

t=1

E
[
∥ℓ̂t∥∞1{E}

]
(b)

≤
n∑

t=1

E

 m∑
j=1

|ℓ̂tj |1{E}


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(c)

≤
n∑

t=1

m∑
j=1

√
E[ℓ̂tj ]2

√
P(E)

(d)

≤ mn

√(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E) (40)

where (a) uses the Holder inequality and the fact that pEW(ct−1) is a probability distribution, (b)
uses the fact that the absolute maximum in a vector is bounded by the sum of the absolute values,
(c) uses the Cauchy–Schwartz inequality, and (d) uses unbiasedness of ℓ̂tj along with the fact that
ℓ2tj ≤ 1. The third term in (36) will be dealt with similarly:

E

[(
−min

j

n∑
t=1

ℓ̂tj

)
1{E}

]
≤

m∑
j=1

n∑
t=1

E
[
|ℓ̂tj |1{E}

]

≤ mn

√(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E) (41)

where (41) follows from (40). Finally, using (39), (40) and (41) in (36) concludes the proof.

C Upper bound for uniform additive noise

We first show that the estimator ℓ̂tj in (12) is unbiased. Note that

E[ℓ̂t] = E

[(
−σ +

1

2

)
1{−σ ≤ ctj < −σ + 1}+ 1

2
1{−σ + 1 ≤ ctj < σ}

+

(
σ +

1

2

)
1{σ ≤ ctj ≤ σ + 1}

]

=

(
−σ +

1

2

)
P (−σ ≤ ctj < −σ + 1) +

1

2
P (−σ + 1 ≤ ctj < σ)

+

(
σ +

1

2

)
P (σ ≤ ctj < σ + 1) (42)

Since ctj = ℓtj + Ztj is distributed as Unif[−σ + ℓtj , σ + ℓtj ], we have

P (−σ ≤ ctj < −σ + 1) =
1− ℓtj
2σ

(43)

P (−σ + 1 ≤ ctj < σ) =
2σ − 1

2σ
(44)

P (σ ≤ ctj ≤ σ + 1) =
ℓtj
2σ

. (45)

Substituting (43), (44) and (45) in (42) yields

E[ℓ̂t] =
(−2σ + 1)(1− ℓtj)

4σ
+

2σ − 1

4σ
+

(2σ + 1)ℓtj
4σ

= ℓtj (46)

The MSE for this estimator satisfies

E[ℓ̂tj − ℓtj ]
2 = E[ℓ̂2tj ]− ℓ2tj

=

(
−σ +

1

2

)2

P (−σ ≤ ctj < −σ + 1) +
1

4
P (−σ + 1 ≤ ctj < σ)

+

(
σ +

1

2

)2

P (σ ≤ ctj < σ + 1)− ℓ2tj
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(a)
=

(2σ − 1)2(1− ℓtj)

8σ
+

(2σ − 1)

8σ
+

(2σ + 1)2ℓtj
8σ

− ℓ2tj

=
σ

2
−
(
ℓtj −

1

2

)2

≤ σ (47)

where (a) uses (43), (44) and (45).

D Proof of Theorem 2

Consider the following (random) ensemble of loss vectors:

• Pick J∗ ∼ Uniform[m].
• Given J∗ = j∗, the loss vectors ℓn are generated i.i.d., with independent components as per

the distribution

ℓtj ∼
{
Bern(1/2− ϵ), if j = j∗

Bern(1/2), otherwise
(48)

for some 0 < ϵ < 1/4 to be determined later.

Intuitively, in order to achieve sublinear regret in n with these loss functions, the decision-maker
must eventually detect the expert j∗ that has the lowest bias and therefore this can be thought of as a
hypothesis testing problem. To formalize this, we have

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ E

[
n∑

t=1

⟨pt(ct−1), ℓt⟩

]
− E

[
min
j∈[m]

n∑
t=1

ℓtj

]
. (49)

Now, note that

E

[
min
j∈[m]

n∑
t=1

ℓtj

]
(a)

≤ E

[
min
j∈[m]

E

[
n∑

t=1

ℓtj

∣∣∣∣J∗

]]
(50)

(b)
= n

(
1

2
− ϵ

)
(51)

where (a) follows since E[min(·)] ≤ minE[·] and (b) follows since by the distribution on the losses
in (48)

E[ℓtj |J∗] =

{
1
2 , if j = J∗

1
2 − ϵ. otherwise

(52)

To further bring out the analogy between hypothesis testing and the regret, we note that for the
random variable distributed as Jt ∼ pt(c

t−1) conditional on ct−1 (i.e. a random expert is chosen as
per the distribution pt(c

t−1))

E[⟨pt(ct−1), ℓt⟩|ct−1, ℓt] = E[ℓtJt
|ct−1, ℓt],

and therefore
E[⟨pt(ct−1), ℓt⟩] = E[ℓtJt ].

Then,

E[⟨pt(ct−1), ℓt⟩] = E[E[ℓtJt |Jt]]
(a)
= E

[
1

2
1{Jt ̸= J∗}+

(
1

2
− ϵ

)
1{Jt = J∗}

]
=

1

2
− ϵP[Jt = J∗] (53)

where (a) follows from (52). Using (53) along with (51) and (49) yields

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ ϵ

n∑
t=1

P[Jt ̸= J∗]. (54)
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To further lower bound the regret, we apply the Fano inequality to each term in the right hand side
of (54)

P[Jt(c
t−1) ̸= J∗] ≥ 1− I(J∗; Jt) + log 2

logm
(55)

≥ 1− I(J∗; ct−1) + log 2

logm
, (56)

where (56) follows by the data processing inequality since J∗ → ct−1 → Jt.

Since the noise is memoryless by assumption,

I(J∗; ct) = H(ct)−H(ct|J∗)

(a)

≤
t∑

i=1

H(ci)−H(ct|J∗)

(b)
=

t∑
i=1

(H(ci)−H(ci|J∗))

=

t∑
i=1

I(J∗; ci)

(c)

≤ tI(J∗; c1). (57)

where (a) follows by the subadditivity of entropy, (b) follows since given J∗, ct are independent
(because given J∗, ℓt are independent as per (48) and the channel is memoryless by assumption), and
finally (c) follows by symmetry (lt are identically distributed, therefore so are ct). Next, we have

I(J∗; c1) = D
(
Pc1|J∗∥Pc1

∣∣PJ∗
)

=
1

m

m∑
j=1

D
(
Pc1|J∗=j∥Pc1

)

=
1

m

m∑
j=1

D

Pc1|J∗=j

∥∥∥ 1

m

m∑
j′=1

Pc1|J∗=j′


(a)

≤ 1

m2

m∑
j=1

m∑
j′=1

D
(
Pc1|J∗=j∥Pc1|J∗=j′

)
(b)
=

m2 −m

m2
D
(
Pc1|J∗=1∥Pc1|J∗=2

)
≤ D

(
Pc1|J∗=1∥Pc1|J∗=2

)
(c)
=

m∑
j=1

D(Pc1j |J∗=1∥Pc1j |J∗=2)

(d)
= D(Pc11|J∗=1∥Pc12|J∗=2) +D(Pc12|J∗=1∥Pc12|J∗=2)

= D
(
Bern(1/2− ϵ) ◦ Pc|ℓ∥Bern(1/2) ◦ Pc|ℓ

)
+D

(
Bern(1/2) ◦ Pc|ℓ∥Bern(1/2− ϵ) ◦ Pc|ℓ

)
(58)

where (a) follows since D(P∥Q) is convex in the pair P and Q, (b) follows by symmetry, (c) follows
since the vector c1 has a product distribution given J∗ (because ℓ1 has a product distribution and
the noise is component-wise independent) and (d) follows since all the other components except the
first and second have the same distribution (Bern(1/2) ◦ Pc|ℓ). Recalling the definition of η(Pc|ℓ) in
Definition 1, we have

D
(
Bern(1/2− ϵ) ◦ Pc|ℓ∥Bern(1/2) ◦ Pc|ℓ

)
≤ η(Pc|ℓ)

(
d

(
1

2
− ϵ
∥∥∥1
2

))
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≤ η(Pc|ℓ)ϵ
2 (59)

where d(·∥·) denotes the binary KL divergence, and the final inequality follows since
d( 1

2−x∥ 1
2 )

x2 ≤ 1
for x < 1/4 and ϵ < 1/4 by assumption. Using the same reasoning for the second term of (58), and
using (59) in (57) we have

I(J∗; ct) ≤ 2tη(Pc|ℓ)ϵ
2

and therefore from (54) and (56) we get

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ ϵ

n∑
t=1

(
1−

2(t− 1)η(Pc|ℓ)ϵ
2 + log 2

logm

)
≥ nϵ

(
1−

2nη(Pc|ℓ)ϵ
2 + log 2

logm

)
. (60)

Finally, the choice of ϵ =
√

log(m/4)
4nη(Pc|ℓ)

(which guarantees ϵ ≤ 1/4 for a large enough n) in (60) yields

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥

√
n log(m/4)

16η(Pc|ℓ)
(61)

as claimed.

Remark 1 (Lower bound for the noiseless problem) From (56), and since J∗ → ℓt → ct, we
see that I(J∗; ct) ≤ I(J∗; ℓt). Following the single-letterization argument in (57) and using the
arguments leading up to (58) we can recover the the lower bound for the noiseless prediction with
experts problem.

E Proof of Proposition 1

Define
g(z) := f(0) exp(−2xf(0)).

Then, f(0) = g(0) and
∫∞
0

(f(z) − g(z))dz =
∫∞
0

f(z)dz −
∫∞
0

g(z)dz = 1
2 − 1

2 = 0. Since
f, g → 0 and z → ∞, this implies that the function f(z) − g(z) crosses the origin at least once
in z > 0. Moreover, any solution of f(z) − g(z) = 0 =⇒ f(z) = g(z) must satisfy also
log f(z) − log g(z) = 0. Since z 7→ log f(z) − log g(z) is a concave function (by virtue of f(z)
being log-concave and g(z) being log-affine), this implies that log f(z)− log g(z) crosses the origin
at most once in z > 0. Therefore, putting the two together implies that f(z) − g(z) = 0 occurs
exactly at one point in 0 < z < ∞. Let us call this point t, so that f(t) = g(t). Therefore, for all
z ≤ t, f(z) ≥ g(z) and for all z > t, f(z) ≤ g(z). Putting these two together, we have

(f(z)− g(z))(t2 − z2) ≥ 0

which implies that ∫ ∞

0

z2f(z)dz ≤
∫ ∞

0

z2g(z)dz (62)

Since
∫∞
0

z2f(z)dz = σ2

2 and∫ ∞

0

z2g(z)dz =

∫ ∞

0

z2 exp(−2zf(0))dz =
1

8f(0)2

∫ ∞

0

z2 exp(−z)dz =
1

4f(0)2
,

(62) yields

f(0)2 ≤ 1

2σ2
(63)

which leads to the required Proposition.
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