

000 001 002 003 004 005 PRISM: AGENTIC RETRIEVAL WITH LLMS FOR 006 MULTI-HOP QUESTION ANSWERING 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Retrieval plays a central role in multi-hop question answering (QA), where an-
029 swering complex questions requires gathering multiple pieces of evidence. We in-
030 troduce an Agentic Retrieval System that leverages large language models (LLMs)
031 in a structured loop to retrieve relevant evidence with high precision and recall.
032 Our framework consists of three specialized agents: a Question Analyzer that de-
033 composes a multi-hop question into sub-questions, a Selector that identifies the
034 most relevant context for each sub-question (focusing on precision), and an Adder
035 that brings in any missing evidence (focusing on recall). The iterative interaction
036 between Selector and Adder yields a compact yet comprehensive set of support-
037 ing passages. In particular, it achieves higher retrieval accuracy while filtering
038 out distracting content, enabling downstream QA models to surpass full-context
039 answer accuracy while relying on significantly less irrelevant information. Ex-
040 periments on four multi-hop QA benchmarks—HotpotQA, 2WikiMultiHopQA,
041 MuSiQue, and MultiHopRAG—demonstrates that our approach consistently out-
042 performs strong baselines.
043
044

1 INTRODUCTION

045 Retrieval systems lie at the heart of question answering, yet designing them remains highly chal-
046 lenging (Asai et al., 2023). Their effectiveness depends on striking the right balance between
047 precision—ensuring that retrieved passages are relevant and free from distracting noise—and
048 recall—guaranteeing that no essential evidence is left behind. This trade-off is especially critical
049 in multi-hop reasoning, where the reasoning chain spans multiple passages: missing even one can
050 break the chain, while excessive irrelevant context can obscure the signal and degrade performance.
051 With the advent of large language models (LLMs), these challenges are amplified. LLMs strug-
052 gle with the *lost-in-the-middle* phenomenon, overlooking crucial evidence buried in long contexts
053 (Liu et al., 2024), and are prone to hallucination when information is incomplete or noisy (Laban
054 et al., 2024). Thus, enhancing retrieval to provide compact, comprehensive, and faithful evidence is
055 essential for reliable reasoning in LLM-based systems.

056 These challenges are particularly acute for complex questions requiring multi-hop reasoning, where
057 evidence must be drawn from multiple documents and combined into a coherent chain (Yang et al.,
058 2018; Ho et al., 2020; Trivedi et al., 2022). For example, answering “Which painter who shared
059 a house with Vincent van Gogh was married to a Danish ceramist?” entails finding who shared a
060 house with van Gogh (first hop), then using that result to find who that person married (second hop).
061 Solving such queries is challenging because a system must retrieve the relevant evidence for each
062 reasoning step while ignoring the many distractors present in a large corpus like Wikipedia.
063

064 A rich line of research has explored retrieval for multi-hop question answering, yet important gaps
065 remain. Early pipeline approaches such as GraphRetriever and Multi-hop Dense Retrieval (Asai
066 et al., 2020; Xiong et al., 2021; Qi et al., 2019) relied on iterative query rewriting or entity linking to
067 follow reasoning chains. While effective in controlled settings, these methods suffered from severe
068 error propagation—mistakes in early hops irreversibly degraded final performance. Later frame-
069 works such as ReAct (Yao et al., 2023) and IRCoT (Trivedi et al., 2023a) coupled large language
070 models with retrieval, interleaving chain-of-thought (Wei et al., 2022) reasoning and evidence gath-
071 ering. These approaches improved recall by letting intermediate reasoning guide the search, but
072

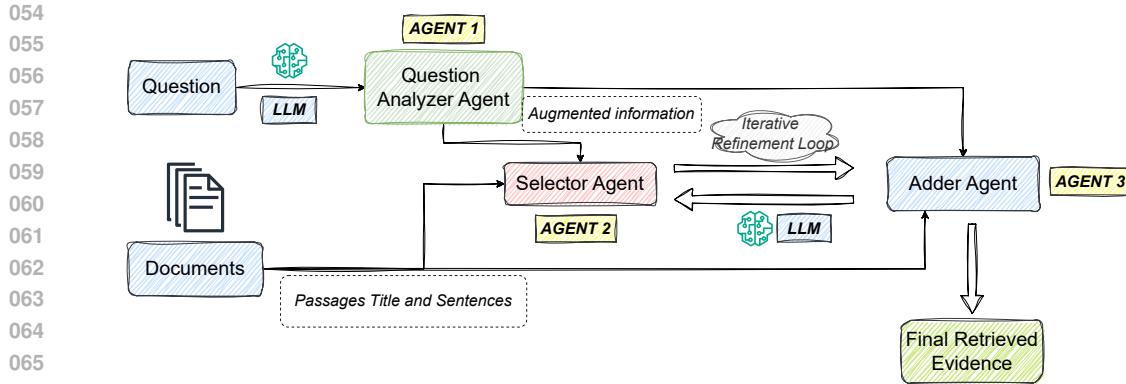


Figure 1: Overview of Agentic Retrieval Framework (PRISM). The complex question is decomposed by the Analyzer into sub-questions, the Selector narrows down relevant evidence for precision, and the Adder expands context for recall. The loop iterates N times to produce a refined evidence set for QA.

often at the cost of large, noisy evidence sets, since precision mechanisms were limited. IRCoT in particular emphasizes recall, leading to distractor-heavy contexts that can obscure reasoning.

Complementary efforts have aimed to improve relevance and coverage through reranking, as in RankZephyr (Pradeep et al., 2023). Likewise, set-wise selection (Lee et al., 2025) suggests that moving beyond naive top- k retrieval—by incorporating reasoning, selection, and refinement—is crucial for complex reasoning. However, these single-pass strategies are limited in that if essential evidence is absent from the initial retrieval pool, there is no mechanism for recovering it. Pruning-based methods such as Provence (Chirkova et al., 2025) improve efficiency by discarding irrelevant passages, but risk harming recall when essential evidence is mistakenly removed. Iterative self-refinement methods (e.g., Self-RAG (Asai et al., 2023)) attempt to balance these trade-offs, but lack a principled way to separate precision from recall, often generating redundant or hallucinated context.

Despite these advances, a key challenge remains: constructing evidence sets that are both *comprehensive and concise*. Standard retrievers and rerankers typically return a top- k list of individually relevant passages, but the set as a whole is often redundant or incomplete. More broadly, retrieval-augmented generation faces fundamental limitations: (i) single-vector embeddings cannot represent all possible query–document relevance patterns as candidate sets grow combinatorially (Weller et al., 2025); (ii) long-context LLMs systematically overlook mid-context evidence (Liu et al., 2024); and (iii) irrelevant material in long contexts increases hallucination (Laban et al., 2024). Together, these findings highlight that simply scaling embeddings or extending context windows cannot resolve the precision–recall trade-off.

In this work, we introduce **PRISM** (Precision–Recall Iterative Selection Mechanism), an agentic retrieval framework that explicitly separates precision-oriented filtering from recall-oriented addition in an iterative loop. Concretely, PRISM employs three collaborating agents: a **Question Analyzer** that decomposes the question into sub-questions targeting the required facts; a **Selector** that filters the candidate pool to eliminate distractors; and an **Adder** that reconsiders unselected candidates to recover any overlooked evidence. The Selector and Adder iterate, refining the evidence set until it is both compact and complete.

Our contributions are threefold. (1) We propose **PRISM**, an agentic retrieval framework that explicitly separates precision-oriented filtering from recall-oriented addition, enabling fine-grained control over the precision–recall trade-off in multi-hop QA. (2) We show that PRISM consistently produces evidence sets that are both compact and complete, achieving higher precision and recall than recent baselines on HotpotQA, 2WikiMultiHopQA, MuSiQue, and MultiHopRAG. (3) We demonstrate that these improved evidence sets translate into stronger end-to-end QA, allowing LLM readers to match or surpass full-context performance, with notable gains on the most challenging multi-hop benchmarks where distractors typically hinder accuracy.

108

2 METHODOLOGY

109
 110 We propose **PRISM** (Precision–Recall Iterative Selection Mechanism), an agentic retrieval frame-
 111 work that decomposes the multi-hop evidence gathering process into a sequence of coordinated
 112 steps. PRISM employs three LLM-based agents with distinct roles: the **Question Analyzer**, which
 113 decomposes complex queries into sub-questions; the **Selector**, which filters candidate evidence to
 114 maximize precision; and the **Adder**, which supplements missing evidence to improve recall. Each
 115 agent is instantiated as a prompted LLM with instructions tailored to its task. Operating in an itera-
 116 tive loop, these agents collectively produce a compact yet comprehensive set of supporting passages.
 117 Figure 1 illustrates the overall architecture and data flow. We provide an illustrative example in the
 118 Appendix A.5.
 119

120

2.1 QUESTION ANALYZER AGENT

121
 122 Multi-hop questions often intertwine multiple entities, relations, and constraints into a single com-
 123 plex query, making it easy for retrievers or LLMs to chase partial matches or irrelevant context.
 124 The Question Analyzer mitigates this risk by decomposing the query into a structured set of sub-
 125 questions that make the evidence requirements explicit and define a focused search space for later
 126 agents (Fu et al., 2021). This decomposition reduces the chance of missing critical hops while pre-
 127 venting downstream stages from being overwhelmed with loosely relevant candidates. Concretely,
 128 we prompt an LLM with a decomposition template that encourages explicit reasoning, and it returns
 129 a list of sub-questions, each targeting a distinct factual unit required to answer the original query.
 130

131

2.2 SELECTOR AGENT

132
 133 The Selector serves as a precision-focused filter that removes distractors introduced during retrieval.
 134 Large corpora inevitably yield passages that share surface-level words with the query but are se-
 135 mantically off-topic, and passing such noise directly to a QA model leads to error propagation and
 136 wasted context budget. The Selector mitigates this by enforcing a high bar for inclusion: it anchors
 137 the reasoning chain with the relevant passages that are strongly aligned with the sub-questions.
 138

139 Concretely, the agent is prompted with detailed instructions, the sub-questions, and the retrieved
 140 passages, and tasked with outputting only those that directly support the query. This filtering stage
 141 yields evidence sets with very high precision, ensuring that downstream reasoning operates over
 142 reliable, compact inputs and mitigating hallucinations as well as lost-in-the-middle effects. The
 143 trade-off, however, is that some relevant passages may be excluded if their connection is less ex-
 144 plicit—a limitation addressed by the Adder agent in the next stage.
 145

146

2.3 ADDER AGENT

147 While precision is vital, overly strict filtering risks omitting complementary or bridging facts that
 148 are crucial for multi-hop reasoning. The Adder is introduced to counterbalance this risk by explicitly
 149 prioritizing recall. Its role is to audit what the Selector left behind and add evidence that fill logical
 150 gaps—such as a spouse relation that pairs with a shared-house relation, or a bridging entity connect-
 151 ing two documents. This two-phase design, ensures that the final evidence set is both compact and
 152 complete. The instructions for the Adder agent are similar to the Selector’s, but with a different em-
 153 phasis. We provide it with the same list of candidates, the sub-questions, and additionally indicate
 154 which evidence have already been selected by the Selector.

155 In essence, the Adder is a second pass through the candidates, but primed to look for anything
 156 important that was left out. One common scenario is when the answer to the sub-question actually
 157 requires combining two facts from different passages. The Selector might pick one of them (e.g.
 158 a passage that gives part of the answer), not realizing another evidence from different passage is
 159 also needed for the full answer. The Adder, seeing what’s selected and what the question is, can
 160 identify the complementary piece. In the ideal outcome, after the Adder, the union of selected +
 161 added passages equals the complete set of supporting documents needed for answering the question.
 162 If the Selector already did a perfect job, the Adder will simply output nothing new. But if something
 163 was missing, the Adder ensures recall goes up. This two-phase selection is analogous to having a

162 strict filter followed by a gentle filter: one says “only keep absolutely sure things”, the next says
 163 “don’t leave out anything that might be required”.
 164

165 2.4 ITERATION AND MULTI-HOP HANDLING 166

167 Multi-hop questions typically require reasoning over multiple intermediate facts. After decompo-
 168 sition by the Question Analyzer, we provide the original question and all generated sub-questions
 169 together to the Selector and Adder agents. This joint formulation allows the Selector \leftrightarrow Adder Cycle
 170 to identify the minimal set of evidence that collectively cover the reasoning chain.

171 The Selector \leftrightarrow Adder cycle is repeated for several iterations, with the evidence set refined at each
 172 step. At the end of the process, evidences from all iterations are merged and de-duplicated, pro-
 173 ducing a compact set that typically contains only the essential evidence required for the multi-hop
 174 question while maintaining high precision and recall. This final set is then passed to a Answer
 175 Generator agent.

176 2.5 ANSWER GENERATOR AGENT 177

178 To demonstrate the overall question answering performance of our retrieval framework we intro-
 179 duce a **Answer Generator** agent, which produces the answer given the retrieved evidence set using
 180 our proposed framework. After the Question Analyzer, Selector, and Adder agents collaboratively
 181 construct a compact but comprehensive set of supporting evidence, we provide this context along
 182 with the original question to a large language model instructed to generate the final answer. We
 183 implement the Answer Generator as a prompted LLM operating in a **zero-shot** setting, without
 184 task-specific fine-tuning. This design choice allows us to directly assess how improvements in re-
 185 trieval quality translate into downstream QA performance, while avoiding additional supervision or
 186 domain adaptation.

187 3 EXPERIMENTAL SETUP

188 3.1 DATASETS 189

190 We evaluate our framework on three standard multi-hop QA benchmarks in the open-domain setting,
 191 where supporting passage and/or facts can be retrieved from a corpus, and additionally include the
 192 MultiHop-RAG (Tang & Yang, 2024) dataset for specialized retrieval analysis. **HotpotQA** (Yang
 193 et al., 2018) contains questions requiring reasoning over multiple paragraphs, and we use its open-
 194 domain variant in which systems must retrieve relevant paragraphs from the full Wikipedia index,
 195 with supporting sentences provided for evaluation. **2WikiMultiHopQA** (Ho et al., 2020) features
 196 questions that connect two Wikipedia pages via shared entities; following prior work, we employ
 197 only the structured text component using its development set. **MuSiQue** (Trivedi et al., 2022) con-
 198 sists of questions requiring 2–4 reasoning hops and was specifically constructed to prevent reasoning
 199 shortcuts; we use the answerable subset defined by Trivedi et al. (2023a). **MultiHop-RAG**
 200 (Tang & Yang, 2024), a recently proposed benchmark in the RAG (Retrieval-Augmented Genera-
 201 tion) domain, introduces multi-hop queries over a news-article knowledge base; we use this dataset
 202 particularly to assess the retrieval precision and recall of evidence selection in our framework.¹
 203

204 3.2 BASELINES AND EVALUATION METRICS 205

206 **Baselines.** We compare our Agentic Retrieval framework against several strong baselines. **IR-**
 207 **CoT** (Trivedi et al., 2023a) couples chain-of-thought reasoning with iterative retrieval. **SetR** (Lee
 208 et al., 2025) performs set-wise reranking with LLM reasoning, which we approximate by instracting
 209 LLMs to select a subset from the top-20 retrieved passages in a single step. **Oracle Gold** uses gold
 210 supporting paragraphs provided by the datasets, representing an upper bound for retrieval and QA.
 211 We also report a **No Retrieval (Full Context)** baseline, where LLMs answer questions using full
 212 context, and compare our results against DSP (Khattab et al., 2022), DecomP (Khot et al., 2023),
 213 RankZephyr (Pradeep et al., 2023), and RankGPT (Sun et al., 2023).

214
 215 ¹For evaluation, we sample 500 instances from each dataset, constrained by computational budget, while
 ensuring that the subset remains representative of the overall distribution.

Evaluation Metrics. We assess retrieval using standard supporting fact metrics, treating each passage as the retrieval unit. A passage is correct if it contains at least one gold supporting sentence (HotpotQA, 2WikiMultihopQA) or matches a labeled supporting paragraph (MuSiQue, MultiHopRAG). We report **Precision** (fraction of retrieved passages that are gold) and **Recall** (fraction of gold passages retrieved), and also track the number of retrieved passages, as compact evidence sets improve efficiency and reduce noise. For HotpotQA and 2WikiMultihopQA, we additionally report **fact-wise precision and recall** at the sentence level. End-to-end QA is evaluated with **Exact Match (EM)** and token-level **F1**. We further measure performance under three conditions: (i) *full context*, where the QA model sees all retrieved passages including distractors, (ii) *retrieved evidence only*, using the filtered set from our framework, and (iii) *gold evidence only*, where the QA agent receives only the labeled supporting facts. This setup enables us to evaluate both retrieval quality and its effect on QA accuracy.

3.3 IMPLEMENTATION DETAILS

We implement all agents as prompted large language models. Unless stated otherwise, we use GPT-4o (Hurst et al., 2024), Gemini-2.0-Flash-Lite(Team, 2025) and DeepSeek-Chat(DeepSeek-AI et al., 2024), all state-of-the-art models with large context windows, enabling evaluation over all candidate passages. Prompting is performed in a zero-shot setting, without task-specific fine-tuning. We enforce consistent structured outputs (lists of indices/titles) to ensure reliable parsing. The Selector \leftrightarrow Adder cycle is repeated at most $N = 3$ iterations, keeping the number of LLM calls tractable. As shown in Section 4, the system achieves strong retrieval performance, which directly translates into higher Question Answering accuracy.

4 RESULTS AND DISCUSSION

4.1 MAIN RESULT

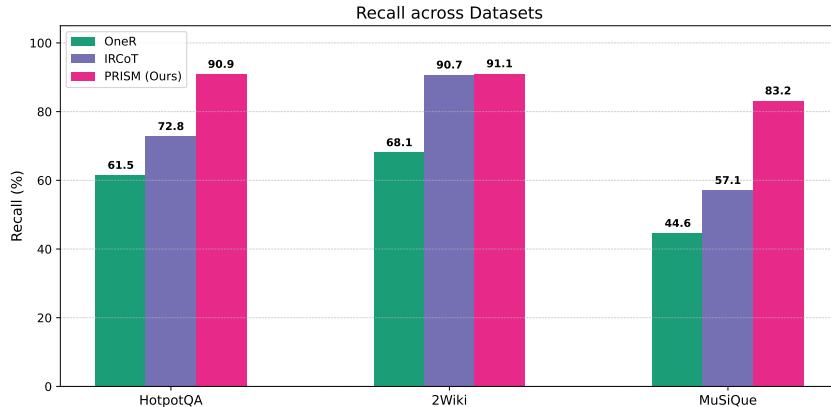


Figure 2: Passage recall across HotpotQA, 2WikiMultiHopQA, and MuSiQue. Our agentic retrieval framework (PRISM) consistently outperforms OneR and IRCoT (Trivedi et al., 2023b), with especially large gains on the challenging MuSiQue benchmark.

Retrieval Performance. Figure 2 reports recall performance across HotpotQA, 2WikiMultihopQA, and MuSiQue dataset. Our agentic retrieval framework achieves consistently higher recall than both OneR (one pass retriever), which utilize BM25 (Robertson & Zaragoza, 2009) to retrieves K paragraphs using the original question as a single query, and IRCoT, which guides retrieval through Chain-of-Thought reasoning, across all benchmarks (Trivedi et al., 2023b). On HotpotQA, our method attains **90.9%** recall compared to 61.5% for OneR and 72.8% for IRCoT. On 2WikiMultihopQA, we reach **91.1%** recall, improving over OneR (68.1%) and slightly exceeding IRCoT (90.7%). The largest margin appears on MuSiQue, where our approach achieves **83.2%** recall versus 44.6% and 57.1% for OneR and IRCoT, respectively. These gains validate the importance of explicitly balancing precision and recall through our Selector \leftrightarrow Adder loop: the Selector removes distractors while the Adder recovers missed but necessary passages, ensuring a comprehensive evidence set.

270 Table 1: Retrieval performance on the MultiHopRAG dataset. Metrics are precision (P) and recall
 271 (R). Our agentic retrieval framework substantially outperforms all baselines, achieving the highest
 272 recall while maintaining competitive precision.

Method	Precision (P)	Recall (R)
BM25 (Robertson & Zaragoza, 2009)	11.09	24.13
bge-large-en-v1.5 (Xiao et al., 2023)	16.12	32.32
RankGPT (GPT-4o) (Sun et al., 2023)	17.99	36.01
SETR-CoT & IRI (Lee et al., 2025)	22.68	36.69
Agentic Retrieval (PRISM)	28.18	42.22

282 We also assessed our proposed framework’s retrieval performance using the MultiHopRAG dataset
 283 (Tang & Yang, 2024) following Lee et al. (2025). Table 1 summarizes retrieval results on the MultiHopRAG dataset. Our agentic retrieval framework achieves a precision of 28.18 and a recall of
 284 42.22, which represents a large improvement over all baselines. Classical BM25 (Robertson &
 285 Zaragoza, 2009) performs poorly with only 11.09 precision and 24.13 recall, while dense retrievers
 286 such as bge-large-en-v1.5 (Xiao et al., 2023) and RankGPT (Sun et al., 2023) improve recall to around 32–36 but still fall significantly short of our method. SETR-CoT & IRI (Lee et al.,
 287 2025) narrows the gap with 22.68 precision and 36.69 recall, yet our framework surpasses it by
 288 about **6 points in recall and 4 points** in precision. These gains highlight that the combination of
 289 precision-oriented selection and recall-oriented addition in our agentic loop is also effective for the
 290 MultiHopRAG dataset, which demands accurate recovery of multiple supporting evidence across
 291 hops.

294 **Fact-Level Retrieval Performance.** To provide a more fine-grained evaluation of retrieval quality,
 295 we also report sentence-level (fact-wise) precision, recall, and F1 for our agentic retrieval framework
 296 on HotpotQA and 2WikiMultiHopQA. Unlike passage-level metrics, which count an entire
 297 paragraph as correct if it contains at least one gold supporting fact, the sentence-level evaluation
 298 requires retrieving the exact gold supporting sentences.

300 Table 2: Fact-level retrieval performance of our agentic retrieval framework on HotpotQA and
 301 2WikiMultiHopQA. Metrics are precision (P), recall (R), and F1 at the fact (sentence) level.

Dataset	P	R	F1
HotpotQA	56.70	75.51	64.77
2WikiMultiHopQA	60.81	74.42	66.93

308 These results show that our framework not only retrieves the correct passages but also identifies
 309 the exact supporting facts needed to answer multi-hop questions. This highlights the ability of
 310 the Selector \Leftrightarrow Adder loop to reduce noise and capture fine-grained evidence, complementing the
 311 passage-level metrics reported in the main paper.

313 **Impact on QA Accuracy** Table 3 shows that our agentic retrieval framework consistently im-
 314 proves end-to-end QA. On **HotpotQA** and **MuSiQue**, it surpasses recent methods such as IRCoT
 315 (Trivedi et al., 2023b) and SetR (Lee et al., 2025) by clear margins (e.g., +5 EM / +6 F1 on Hot-
 316 potQA), confirming that filtering distractors while recovering missing facts strengthens multi-hop
 317 reasoning. On **MultiHopRAG**, our method achieves the best accuracy (49.16), highlighting the ro-
 318 bustness of the Selector \Leftrightarrow Adder balance for distributed evidence. While **2WikiMultihopQA** favors
 319 recall-heavy approaches like IRCoT, our system remains competitive and outperforms other base-
 320 lines. Overall, these results validate that retrieval quality is a decisive factor for QA performance,
 321 with precision–recall balancing yielding compact, effective evidence sets.²

322
 323 ²Our QA agent operates in a zero-shot setting; no few-shot demonstrations were used in our experiments
 like IRCoT-QA.

324 Table 3: End-to-end QA performance on HotpotQA, 2Wiki, MuSiQue and MultiHopRAG. Metrics
 325 are Exact Match (EM) and token-level F1. Our agentic retrieval framework (PRISM) achieves state-
 326 of-the-art accuracy on HotpotQA, MuSiQue and MultiHopRAG, while remaining competitive on
 327 2Wiki. These results confirm that improved retrieval quality translates into stronger downstream
 328 QA performance, particularly in datasets requiring strict multi-hop reasoning.

330 Method	331 HotpotQA		332 2Wiki		333 MuSiQue		334 MHRAG
	335 EM	336 F1	337 EM	338 F1	339 EM	340 F1	341 ACC
342 Full Context (without retrieval)	44.18	58.28	43.20	52.11	19.77	29.42	44.37
343 Oracle Context	64.80	77.83	61.40	71.10	38.78	50.89	57.04
344 DSP (Khattab et al., 2022)	51.4	62.9	-	-	-	-	-
345 DecomP (Khot et al., 2023)	-	53.5	-	70.8	-	30.9	-
346 ZeroR (Trivedi et al., 2023a)	-	41.0	-	38.5	-	19.0	-
347 OneR (Trivedi et al., 2023a)	-	50.7	-	46.4	-	20.4	-
348 IRCoT QA (Trivedi et al., 2023a)	49.3	60.7	57.7	68.0	26.5	36.5	-
349 RankZephyr (Pradeep et al., 2023)	34.69	35.04	33.87	27.83	8.61	12.79	43.90
350 RankZephyr + CoT (Pradeep et al., 2023)	33.99	34.38	33.66	27.85	9.43	13.27	43.60
351 RankGPT (Sun et al., 2023; Lee et al., 2025)	34.61	35.26	34.77	28.18	9.52	13.51	45.26
352 SETR-CoT & IRI (Lee et al., 2025)	39.16	40.49	35.68	31.09	12.33	16.91	47.14
353 PRISM + QA Agent (Ours)	54.20	66.96	48.60	56.97	31.17	41.78	49.16

345 **Performance with Alternative LLMs** To assess the robustness of our framework
 346 across different large language models, we evaluated retrieval and QA performance using
 347 Gemini-2.5-Flash-Lite and DeepSeek, in addition to GPT-4o. All models were applied
 348 in the same zero-shot setting to implement the Selector, Adder, and Answer Generator agents.
 349 Although absolute scores vary across LLMs, our framework consistently delivers high recall and
 350 competitive QA accuracy, demonstrating its model-agnostic design and showing that improvements
 351 in base model capability naturally translate into downstream gains.

352 Table 4: Retrieval (P/R) and QA (EM/F1) performance of our framework with different LLM back-
 353 ends on HotpotQA, 2WikiMultiHopQA, and MuSiQue. Results show that while absolute scores
 354 vary across models, the framework consistently maintains high recall and competitive QA accuracy,
 355 confirming that improvements in base LLM reasoning translate into downstream performance gains.

357 LLM	358 HotpotQA		359 2Wiki		360 MuSiQue	
	361 P/R	362 EM/F1	363 P/R	364 EM/F1	365 P/R	366 EM/F1
367 GPT-4o	83.02/90.90	54.20/66.96	90.97/91.07	48.60/56.97	47.46/83.17	31.17/41.78
368 Gemini-2.5-Flash-Lite	87.24/93.46	56.93/70.37	93.73/95.19	47.65/55.58	63.06/83.74	36.64/44.52
369 DeepSeek	79.46/95.88	57.60/70.62	93.01/97.38	43.39/54.75	67.11/89.38	31.93/42.45

370 Table 4 shows that our framework maintains strong retrieval and QA performance across different
 371 LLM backends. While absolute scores vary, the precision-recall balancing of the Selector-Adder
 372 loop consistently yields high recall and competitive accuracy. On **HotpotQA**, Gemini-2.5-Flash-
 373 Lite and DeepSeek achieve higher EM/F1 than GPT-4o, with Gemini reaching 56.3 EM / 71.4
 374 F1. On **2Wiki**, all models perform well, with DeepSeek achieving the highest recall (97.4) but
 375 slightly lower EM than Gemini. On the challenging **MuSiQue** benchmark, Gemini again deliv-
 376 ers the strongest QA accuracy (36.6 EM / 44.5 F1), while DeepSeek maintains the highest recall
 377 (89.4). These results confirm that our agentic retrieval framework generalizes across LLMs, and
 378 improvements in base model reasoning naturally translate into retrieval and downstream QA gains.

379 **Comparison with Finetuned and Compression Based Methods** Table 5 summarizes the end-
 380 to-end QA performance of PRISM against a range of contemporary models, including advanced
 381 compression techniques RECOMP (Xu et al., 2024), fine-tuned agentic models CoRAG (Wang et al.,
 382 2025), R1-Searcher (Song et al., 2025), O²-Searcher Mei et al. (2025), structural alignment based

378
379
380
381 Table 5: End-to-end QA performance on HotpotQA, 2Wiki, MuSiQue dataset on more recent fine-
382 tuned and compression based methods. Metrics are Exact Match (EM) and token-level F1.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Method	HotpotQA		2Wiki		MuSiQue	
	EM	F1	EM	F1	EM	F1
RECOMP (Xu et al., 2024)	28.20	37.91	-	-	-	-
CoRAG (Wang et al., 2025)	56.30	69.80	72.50	77.30	30.90	42.40
R1-Researcher (Song et al., 2025)	-	34.20	-	34.40	-	17.20
O ² -Searcher (Mei et al., 2025)	-	38.80	-	37.40	-	16.00
ARM (Chen et al., 2025)	-	-	-	71.70	-	-
QD-RAG (Ammann et al., 2025)	28.10	35.00	-	-	-	-
RankRAG (Yu et al., 2024)	35.30	46.70	31.40	36.90	-	-
PRISM + QA Agent (Ours)	54.20	66.96	48.60	56.97	31.17	41.78

method ARM (Chen et al., 2025), and query decomposition methods such as QD-RAG (Ammann et al., 2025), RankRAG (Yu et al., 2024).

From the table we can see that on HotpotQA, PRISM’s 66.96 F1 significantly outperforms context compression based method RECOMP and general ranking methods RankRAG. Notably, PRISM achieves performance highly competitive with the costly fine-tuned model CoRAG. On the challenging MuSiQue benchmark, PRISM achieves strong F1 score (41.78) in this comparison, validating that our iterative Selector-Adder loop effectively constructs the comprehensive reasoning chains needed for deep multi-hop QA, outperforming specialized RL-trained search agents (Mei et al., 2025). While fine-tuned models excel on 2Wiki, the strong performance of PRISM (56.97 F1) reinforces its core value proposition: superior performance-to-cost trade-off by intelligently leveraging LLM reasoning in a novel agentic structure, without requiring expensive fine-tuning.

Ablation Study. Table 6 shows that each component of our framework contributes significantly to recall. The full model consistently achieves the highest recall across all datasets, while removing the Question Analyzer leads to a sharp drop, especially on MuSiQue (83.2 → 68.8). Eliminating the Selector↔Adder loop (one pass selection only, [removing the effect of Adder](#)) reduces recall significantly (90.9 → 79.7 on HotpotQA), highlighting that precision-oriented filtering and recall-oriented addition are both essential. These results confirm that question decomposition and Selector↔Adder iterative refinement are complementary, and together they enable the framework to recover a more complete evidence set.

Table 6: Ablation study on HotpotQA, 2WikiMultihopQA, and MuSiQue showing that both the Question Analyzer and Selector↔Adder loop are crucial, as removing either significantly reduces recall and weakens evidence completeness.

Variant	HotpotQA		2Wiki		MuSiQue	
	P/R	#Pssg	P/R	#Pssg	P/R	#Pssg
Full Model	83.0/ 90.9	2.67	83.2/ 91.1	2.74	47.7/ 83.2	6.15
w/o Q. Analyzer	78.9/ 86.8	2.88	90.6/ 85.8	2.68	36.2/ 68.8	7.68
w/o Adder (Selector Only)	86.9/ 79.7	2.63	92.1/ 80.5	2.71	77.4/ 69.3	2.82

Additional Results and Error Analysis. Additional results and detailed error analysis are discussed in Appendix A.

4.2 DISCUSSION

Our results demonstrate that retrieval quality is one of the key bottlenecks in multi-hop QA and that explicitly balancing precision and recall is crucial for robust performance. By separating precision-oriented selection (Selector) from recall-oriented addition (Adder), our framework produces compact yet comprehensive evidence sets that improve answer accuracy across diverse datasets. On

432 HotpotQA and MuSiQue, this balance enables clear gains over prior state-of-the-art methods, while
 433 on MultiHopRAG it proves particularly effective at recovering distributed evidence across documents.
 434 Even in 2WikiMultiHopQA, where recall-heavy approaches such as IRCoT remain slightly
 435 stronger, our framework remains competitive and consistently outperforms other alternatives.

436 Beyond dataset-specific results, two broader trends emerge. First, removing distractors helps the QA
 437 model focus on relevant reasoning chains, yielding higher exact match and partial match accuracy
 438 compared to full-context baselines. Second, the framework generalizes across different LLM back-
 439 ends, with retrieval improvements translating naturally into QA gains regardless of the base model.
 440 This confirms that our agentic loop is not tied to a specific architecture, but rather leverages the
 441 underlying LLM’s reasoning ability to optimize evidence selection. Together, these findings high-
 442 light that retrieval should be treated not as a static preprocessing step, but as an active, agent-driven
 443 process that collaborates with the QA model. By iteratively refining evidence through precision
 444 and recall, our approach provides a principled path forward for building reliable, reasoning-centric
 445 retrieval systems in multi-hop QA.

446 In addition to these empirical insights, several broader strengths stand out. The modular multi-agent
 447 structure provides interpretability and control. Another strength lies in the framework’s robust gen-
 448 eralization across models and datasets : despite differences in absolute performance across GPT-4o,
 449 Gemini, and other LLMs, our method consistently maintains high recall and competitive QA accu-
 450 racy, demonstrating its model-agnostic adaptability. Moreover, the design is conceptually extensible
 451 , naturally accommodating adaptive iteration strategies, domain-specific agents, positioning agentic
 452 retrieval as a foundation for the next generation of retrieval-augmented reasoning systems.

453 At the same time, several limitations highlight promising directions for further research. The multi-
 454 agent design increases computational cost relative to single-pass retrievers, even though we mitigate
 455 this with compact evidence sets and bounded iterations. Future work could explore more efficient
 456 strategies and lightweight agent variants to scale to even larger corpora. In addition, while the
 457 Selector \leftrightarrow Adder loop recovers most necessary evidence, it may occasionally miss subtle reasoning
 458 chains or introduce redundancy when passages are loosely connected. Addressing this challenge
 459 may require adaptive iteration control, uncertainty modeling, or tighter integration with reasoning
 460 signals . Finally, our evaluation focuses on benchmark QA datasets; broader deployment in special-
 461 ized domains such as scientific, biomedical, or legal corpora may require tailored adaptation. Since
 462 performance is partly dependent on underlying LLM capabilities, advances in base model efficiency
 463 and robustness will directly enhance our framework. The strengths emphasize that our framework is
 464 both effective and forward-looking: it establishes a solid foundation for agentic retrieval today while
 465 pointing to clear opportunities for innovation in efficiency, adaptability, and domain generalization.

466 5 RELATED WORK

467 **Multi-hop QA and Retrieval.** Benchmarks such as HotpotQA (Yang et al., 2018), 2WikiMulti-
 468 HopQA (Ho et al., 2020), and MuSiQue (Trivedi et al., 2022) have driven progress in multi-hop
 469 reasoning over large corpora. Early retrieval pipelines relied on iterative query rewriting or en-
 470 tity linking (e.g., Graph Retriever (Asai et al., 2020), PathRetriever, MDR), learning to traverse
 471 chains of documents. These methods are effective but brittle: errors in early hops often propa-
 472 gate, degrading final performance. Khattab et al. (2022) introduced the Demonstrate-Search-Predict
 473 (DSP) framework, showing how tightly integrating retrieval with reasoning improves performance
 474 on knowledge-intensive tasks. Khot et al. (2023) proposed Decomposed Prompting, which breaks
 475 complex queries into simpler sub-problems to enhance reasoning. Decomposition has long been
 476 used to simplify complex queries, from early heuristic methods (Talmor & Berant, 2018; Min et al.,
 477 2019) to recent LLM-based prompting strategies (Ammann et al., 2025; Khot et al., 2023; Fu et al.,
 478 2021). We adopt the decomposition idea in the Question Analyzer agent, which generates sub-
 479 questions to guide retrieval, but integrate it within a structured multi-agent loop. **While Question**
 480 **Decomposition (Ammann et al., 2025; Khot et al., 2023) is foundational to multi-hop QA, prior**
 481 **methods typically use decomposition to issue independent search queries, often aggregating noisy**
 482 **results without verification.**

483 **Passage Selection and Reranking.** Parallel work focuses on selecting compact supporting sets.
 484 Traditional rerankers score passages independently, which can miss coverage of all reasoning needs.

486 SetR (Lee et al., 2025) addresses this by performing set-wise selection with LLM reasoning, op-
 487 timizing for coverage across question aspects. Other efforts refine or prune retrieved knowledge
 488 before generation, e.g., Provence (Chirkova et al., 2025) and Self-RAG (Asai et al., 2023), both
 489 aiming to reduce spurious context. RankZephyr (Pradeep et al., 2023) introduces an open-source,
 490 instruction-tuned model for listwise zero-shot reranking, showing that smaller transparent mod-
 491 els can rival or surpass proprietary systems across both in-domain and out-of-domain benchmarks.
 492 While RankZephyr focuses on improving listwise reranking efficiency and reproducibility, our
 493 framework targets multi-hop retrieval with an explicit precision–recall balancing mechanism, ad-
 494 dressing a different challenge in evidence selection. Our Selector agent is conceptually related to
 495 set-wise and listwise reranking, but we explicitly decouple precision (Selector) and recall (Adder) in
 496 an iterative loop, which provides better control over the precision–recall trade-off in multi-hop QA.
 497 **RankRAG (Yu et al., 2024)** unifies context ranking and answer generation by instruction-tuning a
 498 single LLM to jointly perform both tasks. While this eliminates the need for a separate reranker, it
 499 relies on expensive supervised fine-tuning (SFT) and high-quality training data.
 500

501 **Finetuned Retrievers and Context Optimization** Recent work has explored optimizing retrieval
 502 through context compression, reinforcement learning, and structural alignment. Context Compre-
 503 ssion methods such as RECOMP (Xu et al., 2024) and EXIT (Hwang et al., 2025) aim to reduce the
 504 noise and cost of large context windows by summarizing or compressing retrieved documents be-
 505 fore they reach the generation model. While effective for token efficiency, these approaches operate
 506 as a post-retrieval step processing whatever the retriever initially returns. Another line of research
 507 focuses on Finetuned and RL-based Retrievers. Systems such as CoRAG (Wang et al., 2025), R1-
 508 Searcher (Song et al., 2025), and O²-Searcher (Mei et al., 2025) utilize supervised fine-tuning (SFT)
 509 or reinforcement learning (RL) to train specialized agents that learn to issue search queries or refor-
 510 mulate questions. While these methods achieve strong performance by baking retrieval capabilities
 511 into the model weights, they require significant computational resources for training and are often
 512 tied to specific model architectures. Our method leverages the inherent reasoning capabilities of off-
 513 the-shelf LLMs without requiring task-specific fine-tuning, making it a lightweight, model-agnostic
 514 solution that can be easily deployed with any capable instruction-tuned model.
 515

516 Alignment-Oriented Methods like ARM (Chen et al., 2025) use a single-shot, solver-based strategy
 517 to align questions with structured data layouts. Our framework instead targets multi-hop reasoning
 518 over unstructured text, addressing reasoning chains through an iterative precision–recall loop. RAP-
 519 TOR (Sarthi et al., 2024) require costly corpus pre-processing and recursive index reconstruction
 520 to build tree-organized knowledge structures. In contrast, PRISM achieves its strong performance
 521 purely through *inference-time* agentic interaction over standard flat indices, avoiding this significant
 522 upfront computational overhead.

523 **LLMs, Chain-of-Thought, and Agentic Retrieval.** The rise of large language models enabled
 524 retrieval-augmented reasoning via prompting. Frameworks such as ReAct (Yao et al., 2023) and
 525 Self-Ask (Press et al., 2022) interleave reasoning with tool calls, letting LLMs pose sub-questions
 526 and fetch evidence on the fly. More recently, IRCoT (Trivedi et al., 2023a) explicitly couples CoT
 527 reasoning with iterative retrieval, substantially improving recall by accumulating passages across
 528 reasoning steps. However, IRCoT emphasizes recall over precision, often yielding large evidence
 529 sets with many distractors. Our approach synthesizes three lines of research—LLM-guided retrieval,
 530 set-wise selection, and decomposition—into a unified framework. Unlike prior systems, we combine
 531 explicit decomposition with an iterative precision-and-recall retrieval loop, achieving high recall
 532 while maintaining a compact and noise-resistant evidence set.

533 6 CONCLUSION

534 We presented PRISM an agentic retrieval framework for multi-hop QA that leverages LLM agents
 535 not only as answer generators but as controllers of the retrieval pipeline. By analyzing ques-
 536 tions and iteratively selecting and adding evidence, the agents enable high-recall, high-precision
 537 retrieval—achieving state-of-the-art results on HotpotQA, 2WikiMultiHopQA, MuSiQue and Mul-
 538 tihopRAG, and translating into stronger QA performance with reduced context. More broadly, this
 539 work highlights the promise of LLM agents in retrieval processes, pointing toward retrieval systems
 540 that actively reason as they search and adapt to the needs of complex knowledge-intensive tasks.

540
541

ETHICS STATEMENT

542
543
544
545
546
547

This work builds on publicly available datasets such as HotpotQA, 2WikiMultiHopQA, MuSiQue and MultiHopRAG. These datasets contain questions and supporting passages derived from Wikipedia. These datasets are widely used in prior research and do not include personal or sensitive information beyond what is already part of the public domain. No new human subjects were involved in data collection, and no personally identifiable or private data were used. We used LLM for polishing the writings of the paper.

548
549
550
551
552
553

We acknowledge that large language models (LLMs) can reflect biases present in their training data, which may influence retrieval or answer generation. We therefore encourage responsible use of retrieval-augmented LLMs and transparency in communicating their limitations. Our method does not raise immediate risks of misuse beyond those already associated with general-purpose LLMs. We view our contribution as a step toward more accurate and efficient multi-hop retrieval, with the goal of improving reliability in knowledge-intensive applications.

554
555

REPRODUCIBILITY STATEMENT

556
557
558
559
560

We take several steps to support reproducibility. All datasets used (HotpotQA, 2WikiMultiHopQA, MuSiQue, MultiHopRAG) are publicly available and widely used in prior research. Dataset splits, preprocessing, baselines, and evaluation metrics (precision, recall, F1, EM, token-level F1) are described in Section 4.

561
562
563

Our agentic retrieval framework is fully specified in Section 2, including the roles of the Question Analyzer, Selector, and Adder agents, as well as iteration depth ($N = 3$). We detail prompting strategies for each agent in Appendix B, where templates are provided to ensure replicability.

564
565
566
567
568

Experiments were conducted using commonly used LLMs such as GPT-4o and Gemini-2.5-Flash-Lite and DeepSeek-chat. We provide detail implementation detail and prompt templates in Section 2 and Appendix B. To further promote reproducibility, we commit to releasing our code, prompts, and retrieval pipeline upon publication. This will enable others to replicate results, extend the framework with alternative LLMs, or apply it to new datasets.

569

REFERENCES

570
571
572
573
574

Paul J. L. Ammann, Jonas Golde, and Alan Akbik. Question decomposition for retrieval-augmented generation. In *ACL 2025 Student Research Workshop*, 2025. URL <https://openreview.net/forum?id=ZFxeCvtAqq>.

575
576
577

Akari Asai, Tatsunori Hashimoto, Hannaneh Hajishirzi, and Percy Liang. Learning to retrieve reasoning paths over wikipedia graph for question answering. In *International Conference on Learning Representations (ICLR)*, 2020.

578
579
580
581

Akari Asai, Yushi Wu, Zexuan Wang, Xiang Lisa Li, Mohit Iyyer, and Hannaneh Hajishirzi. Self-rag: Learning to retrieve, generate, and critique for retrieval-augmented generation. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

582
583
584
585
586
587
588

Peter Baile Chen, Yi Zhang, Mike Cafarella, and Dan Roth. Can we retrieve everything all at once? ARM: An alignment-oriented LLM-based retrieval method. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 30298–30317, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1463. URL <https://aclanthology.org/2025.acl-long.1463/>.

589
590
591
592

Nadezhda Chirkova, Sehoon Kim, Patrick Lewis, Thomas Hofmann, and Timo Schick. Provence: Pruning context for efficient retrieval-augmented generation. In *International Conference on Learning Representations (ICLR)*, 2025.

593

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,

594 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guant-
 595 ing Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang,
 596 Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong
 597 Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
 598 Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
 599 Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang,
 600 Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li,
 601 Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
 602 Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 603 Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
 604 Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhabin Gou,
 605 Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
 606 Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng
 607 Pan. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, December 2024. URL
 608 <https://arxiv.org/abs/2412.19437>. CoRR.
 609
 610 Ruiliu Fu, Han Wang, Xuejun Zhang, Jun Zhou, and Yonghong Yan. Decomposing complex ques-
 611 tions makes multi-hop QA easier and more interpretable. In Marie-Francine Moens, Xuanjing
 612 Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Findings of the Association for Compu-
 613 tational Linguistics: EMNLP 2021*, pp. 169–180, Punta Cana, Dominican Republic, November
 614 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.17.
 615 URL <https://aclanthology.org/2021.findings-emnlp.17/>.
 616
 617 Michael Ho, Siqi Sun, Tania Wu, Anh Tuan Luu, Lidong Bing, and Min-Yen Kan. Constructing a
 618 multi-hop qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th
 619 International Conference on Computational Linguistics (COLING)*, pp. 6609–6625. International
 620 Committee on Computational Linguistics, 2020.
 621
 622 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
 623 AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
 624 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
 625 Alex Paino, Alex Renzin, Alex Tachard Passos, et al. Gpt-4o system card. 2024. URL
 626 <https://arxiv.org/abs/2410.21276>. CoRR.
 627
 628 Taeho Hwang, Sukmin Cho, Soyeong Jeong, Hoyun Song, SeungYoon Han, and Jong C. Park.
 629 EXIT: Context-aware extractive compression for enhancing retrieval-augmented generation. In
 630 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 631 *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 4895–4924, Vi-
 632 enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
 633 5. doi: 10.18653/v1/2025.findings-acl.253. URL <https://aclanthology.org/2025.findings-acl.253/>.
 634
 635 Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
 636 and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
 637 knowledge-intensive nlp. *arXiv preprint arXiv:2212.14024*, 2022.
 638
 639 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
 640 Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In *The
 641 Eleventh International Conference on Learning Representations*, 2023.
 642
 643 Philippe Laban, Alexander Fabbri, Caiming Xiong, and Chien-Sheng Wu. Summary of a haystack:
 644 A challenge to long-context LLMs and RAG systems. In Yaser Al-Onaizan, Mohit Bansal,
 645 and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-
 646 ural Language Processing*, pp. 9885–9903, Miami, Florida, USA, November 2024. Associa-
 647 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.552. URL <https://aclanthology.org/2024.emnlp-main.552/>.
 648
 649 Dahyun Lee, Yongrae Jo, Haeju Park, and Moontae Lee. Shifting from ranking to set selection
 650 for retrieval augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
 651 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
 652 for Computational Linguistics (Volume 1: Long Papers)*, pp. 17606–17619, Vienna, Austria, July
 653

648 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/

649 2025.acl-long.861. URL <https://aclanthology.org/2025.acl-long.861/>.

650

651 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and

652 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*

653 *Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL

654 <https://aclanthology.org/2024.tacl-1.9/>.

655

656 Jianbiao Mei, Tao Hu, Daocheng Fu, Licheng Wen, Xuemeng Yang, Rong Wu, Pinlong Cai, Xinyu

657 Cai, Xing Gao, Yu Yang, Chengjun Xie, Botian Shi, Yong Liu, and Yu Qiao. O²-searcher: A

658 searching-based agent model for open-domain open-ended question answering, 2025.

659

660 Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. Multi-hop reading comprehension

661 through question decomposition and rescoring. In *Proceedings of the 57th Annual Meeting of the*

662 *Association for Computational Linguistics (ACL)*, pp. 6097–6109. Association for Computational

663 Linguistics, 2019.

664

665 Ronak Pradeep, Sahel Sharifmoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust zero-

666 shot listwise reranking is a breeze! *arXiv preprint arXiv:2312.02724*, 2023.

667

668 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, and Noah A. Smith. Measuring and nar-

669 rowing the compositionality gap in language models. In *Transactions of the Association for*

670 *Computational Linguistics (TACL)*, volume 10, pp. 1155–1170, 2022.

671

672 Peng Qi, Wenhan Xiong, Yuhao Ho, and Dan Jurafsky. Answering complex open-domain questions

673 through iterative query generation. In *Proceedings of the 2019 Conference on Empirical Meth-*

674 *ods in Natural Language Processing (EMNLP)*, pp. 2590–2602. Association for Computational

675 Linguistics, 2019.

676

677 Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.

678 *Foundations and Trends in Information Retrieval*, 3(4):333–389, 2009. doi: 10.1561/1500000019.

679

680 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D. Man-

681 ning. Raptor: Recursive abstractive processing for tree-organized retrieval. In *International*

682 *Conference on Learning Representations (ICLR)*, 2024.

683

684 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei

685 Fang, and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via rein-

686 forcement learning. *arXiv preprint arXiv:2503.05592*, 2025. URL <https://github.com/RUCAIBox/R1-searcher>.

687

688 Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,

689 and Zhaochun Ren. Is ChatGPT good at search? investigating large language models as re-ranking

690 agents. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference*

691 *on Empirical Methods in Natural Language Processing*, pp. 14918–14937, Singapore, December

692 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.923. URL

693 <https://aclanthology.org/2023.emnlp-main.923/>.

694

695 Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.

696 In *Proceedings of the 2018 Conference of the North American Chapter of the Association for*

697 *Computational Linguistics: Human Language Technologies (NAACL-HLT)*, pp. 641–651. Asso-

698 ciation for Computational Linguistics, 2018.

699

700 Yixuan Tang and Yi Yang. Multihop-RAG: Benchmarking retrieval-augmented generation for multi-

701 hop queries. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=t4eB3zYWBK>.

702

703 Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,

704 long context, and next generation agentic capabilities. Technical report, Google / DeepMind, July

705 2025. URL <https://arxiv.org/abs/2507.06261>. CoRR.

702 Harsh Trivedi, Aruna Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multi-hop
 703 questions via single-hop question composition. In *Proceedings of the 60th Annual Meeting of the*
 704 *Association for Computational Linguistics (ACL)*, pp. 5154–5169. Association for Computational
 705 Linguistics, 2022.

706 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 707 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna
 708 Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meet-
 709 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10014–10037,
 710 Toronto, Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 711 acl-long.557. URL <https://aclanthology.org/2023.acl-long.557>.

712 Harsh Trivedi, Tushar Khot, Ashish Sabharwal, and Aruna Balasubramanian. Interleaving retrieval
 713 with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Advances in*
 714 *Neural Information Processing Systems (NeurIPS)*, 2023b.

715 Liang Wang, Haonan Chen, Nan Yang, Xiaolong Huang, Zhicheng Dou, and Furu Wei. Chain-of-
 716 retrieval augmented generation. In *The Thirty-ninth Annual Conference on Neural Information*
 717 *Processing Systems*, 2025. URL <https://openreview.net/forum?id=gUPGGCM4WH>.

718 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 719 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 720 models. In *Proceedings of the 36th Conference on Neural Information Processing Systems*
 721 (*NeurIPS 2022*), 2022. URL https://openreview.net/pdf?id=_VjQ1MeSB_J.

722 Orion Weller, Michael Boratko, Iftekhar Naim, and Jinyuk Lee. On the theoretical limitations of
 723 embedding-based retrieval, 2025. URL <https://arxiv.org/abs/2508.21038>.

724 Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
 725 advance general chinese embedding. *arXiv preprint arXiv:2309.07597*, 2023. URL <https://arxiv.org/abs/2309.07597>.

726 Wenhan Xiong, Xiang Li, Srinivasan Iyer, Jinyuk Du, Patrick Lewis, William Yang Wang, Yashar
 727 Mehdad, Wen-tau Yih, and Sebastian Riedel. Answering complex open-domain questions with
 728 multi-hop dense retrieval. In *International Conference on Learning Representations (ICLR)*,
 729 2021.

730 Fangyuan Xu, Weijia Shi, and Eunsol Choi. RECOMP: Improving retrieval-augmented LMs
 731 with context compression and selective augmentation. In *The Twelfth International Confer-
 732 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=m1JLVi9NHp>.

733 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 734 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 735 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language*
 736 *Processing (EMNLP)*, pp. 2369–2380. Association for Computational Linguistics, 2018.

737 Shunyu Yao, Jeffrey Zhao Yu, Dian Yang, Karthik Narasimhan, Jiong Chen, Percy Liang, and
 738 Matthew Hausknecht. React: Synergizing reasoning and acting in language models. In *Inter-
 739 national Conference on Learning Representations (ICLR)*, 2023.

740 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
 741 Bryan Catanzaro. Rankrag: unifying context ranking with retrieval-augmented generation in llms.
 742 In *Proceedings of the 38th International Conference on Neural Information Processing Systems*,
 743 NIPS '24, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9798331314385.

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ADDITIONAL RESULTS**
757758 **A.1 ADDITIONAL RESULTS**
759760 **Partial Match Accuracy.** Table 7 shows that our framework achieves consistent gains in Partial
761 Match Accuracy (PMA) across all four datasets. Compared to the full-context baseline, our retrieved
762 evidence improves PMA by 10 points on HotpotQA and more than 10 points on MuSiQue, with
763 consistent gains also observed on 2WikiMultiHopQA and MultiHopRAG. These results highlight
764 that filtering out distractors not only improves exact matching but also increases the likelihood of
765 partial match demonstrating the robustness of our retrieval-based approach.766 Table 7: Partial Match Accuracy (PMA) of our QA agent across four datasets. We compare using
767 our retrieved evidence set against a full-context baseline. Our retrieval-based approach improves
768 robustness on all datasets by reducing distractors and focusing the generator on relevant content.
769770

771 Dataset	772 Full Context	773 Retrieved Context (Ours)
772 HotpotQA	773 61.4	71.6
773 2WikiMultiHopQA	774 52.2	57.8
774 MuSiQue	775 25.4	38.4
775 MultiHopRAG	776 46.1	54.5

777 **Passage-Level QA Performance.** Table 8 reports the QA agent’s performance when restricted to
778 answering from the passages retrieved by our framework that contain the supporting facts. Instead
779 of supplying only the supporting facts, we provide entire passages, and the QA agent reaches per-
780 formance close to the oracle level. On 2WikiMultiHopQA, the agent achieves 61.17 EM and 54.55
781 F1, while on HotPotQA it reaches 62.80 EM and 59.26 F1. These results demonstrate that our re-
782 trieval framework is able to retrieve passages that are sufficiently informative for accurate answer
783 generation.
784785 Table 8: Passage Level QA performance. QA Agent answers the question from the retrieved pas-
786 sages.
787788

789 Dataset	790 EM	791 F1
790 HotpotQA	791 62.80	59.26
791 2WikiMultiHopQA	792 61.17	54.55

793 **A.2 ERROR ANALYSIS**
794795 **Error Analysis (HotPotQA).** On HotpotQA evaluation set, we examined two error subsets: (1)
796 items with incomplete evidence retrieval ($recall < 1.0$) and (2) items where the QA Agents’s pre-
797 dicted answer did not exactly match the gold answer ($match_retrieved < 1.0$). As shown in Table 9,
798 the majority of errors in both groups are **bridge** questions (90.4% for retrieval failures and 83.8% for
799 answer mismatches), with the remainder classified as **comparison**. Notably, among the items where
800 answer mismatches, about 37% cases the error occur despite perfect retrieval recall, highlighting
801 that a substantial fraction of failures stem from the QA model rather than the retriever.
802803 Table 9: Error analysis on the HotpotQA dataset, showing the distribution of question types for
804 retrieval and QA answer errors.
805806

807 Subset	808 Bridge (%)	809 Comparison (%)
808 Retrieval recall < 1.0	809 90.4	9.6
809 QA match < 1.0	810 83.8	16.2

810
811 Table 10: Error analysis on the 2WikiMultiHopQA dataset, showing the distribution of question
812 types for retrieval and QA answer errors.

Subset	Compositional (%)	Comparison (%)	Bridge-Comparison (%)	Inference (%)
Retrieval recall < 1.0	57.64	5.24	17.90	19.21
QA match < 1.0	62.65	5.06	11.28	21.01

813
814
815
816
817
818
819 **Error Analysis (2WikiMultiHopQA).** We performed a similar analysis on the 2WikiMulti-
820 HopQA evaluation set. Among the questions with incomplete evidence retrieval ($recall < 1.0$), the
821 majority are **compositional** (57.6%), followed by **bridge_comparison** (17.9%), **inference** (19.2%),
822 and **comparison** (5.2%). For the questions where the QA Agent’s answer did not exactly match
823 the gold label ($match_retrieved < 1.0$), the distribution is similar: 62.7% compositional, 11.3%
824 bridge_comparison, 21.0% inference, and 5.1% comparison. Notably, about 33% of these answer
825 mismatches occurred despite perfect retrieval recall, indicating that roughly one-third of the answer
826 errors originate from the QA model itself rather than from the retriever.

827
828 **Error Analysis (MuSiQue).** On the MuSiQue evaluation set, we analyzed errors by question hop
829 count. Among the questions with incomplete retrieval ($recall < 1.0$), 33.3% require 2 hops, 41.4%
830 require 3 hops, and 25.3% require 4 hops. For the 181 questions where the QA reader’s prediction
831 did not exactly match the gold ($match_retrieved < 1.0$), 41.4% are 2-hop, 38.1% are 3-hop, and
832 20.4% are 4-hop. Notably, about 53% of these answer mismatches occurred despite perfect retrieval
833 recall, revealing that over half of the MuSiQue answer errors stem from the QA model itself rather
than from evidence retrieval.

834
835 Table 11: Error analysis on the MuSiQue dataset, showing the distribution of questions by hop count
836 for retrieval and QA answer errors.

Subset	2-hop (%)	3-hop (%)	4-hop (%)
Retrieval recall < 1.0	33.33	41.41	25.25
QA match < 1.0	41.44	38.12	20.44

841
842 Table 12: Error analysis on the MultiHopRAG dataset, showing the distribution of question types
843 for retrieval and QA answer errors.

Subset	Comparison (%)	Inference (%)	Temporal (%)
Retrieval recall < 1.0	30.42	42.59	26.98
QA match < 1.0	45.16	9.68	45.16

844
845
846
847
848
849
850 **Error Analysis (MultiHopRAG).** On the MultiHopRAG evaluation set, among the questions ex-
851 hibited incomplete retrieval ($recall < 1.0$) are dominated by **inference** queries (42.6%), with **com-**
852 **parison** and **temporal** queries accounting for 30.4% and 27.0%, respectively. Among the samples
853 where the QA reader’s prediction did not match the gold answer ($match_retrieved < 1.0$), the
854 distribution shifts: **comparison** and **temporal** queries each contribute 45.2%, while only 9.7% are
855 inference queries. This indicates that retrieval struggles most with inference-style questions, whereas
856 answer generation errors are more prevalent for comparison and temporal questions even when sup-
857 porting evidence is retrieved.

858
859 **Cross-Dataset QA Behavior.** Table 13 provides an error analysis by comparing QA performance
860 under two contrasting conditions. The first column (*QA Mismatch @ Recall = 1.0*) captures cases
861 where the retriever successfully collected all gold supporting evidence, yet the QA agent still failed
862 to produce the correct answer. This highlights reasoning or answer synthesis errors beyond retrieval.
863 For instance, mismatch rates are high on HotpotQA (37.1%) and especially MuSiQue (53.6%),
reflecting the greater reasoning complexity of these datasets.

864
 865 Table 13: QA Agent accuracy (%) under different retrieval coverage. The first column shows the
 866 proportion of questions where the QA agent did not matched the gold answer when all supporting
 867 evidence was retrieved ($recall=1.0$). The second column shows accuracy where QA Agent matched
 868 the gold answer even when evidence recall was below 1.0.

Dataset	QA Mismatch @ Recall = 1.0	QA Match @ Recall < 1.0
HotpotQA	37.11	42.62
2WikiMultiHopQA	32.68	24.45
MuSiQue	53.59	15.15
MultiHopRAG	12.90	64.28

876
 877 The second column (*QA Match @ Recall < 1.0*) shows cases where the QA agent generated the
 878 correct answer despite missing at least one gold supporting evidence. This indicates robustness of
 879 the generator in leveraging partial evidence or exploiting redundancy in the corpus. Interestingly,
 880 MultiHopRAG exhibits the highest robustness, with 64.3% of such cases still answered correctly,
 881 whereas MuSiQue remains brittle (15.2%).

882 Taken together, these results reveal a nuanced picture: full recall does not guarantee correctness
 883 if reasoning fails, and conversely, partial recall can still suffice when evidence **redundancy** exists.
 884 This underscores the need for both high-quality retrieval and robust reasoning in multi-hop QA.

A.3 EFFICIENCY AND SCALABILITY

885
 886 Table 14: Efficiency and scalability comparison. We report number of LLM calls, average tokens
 887 per query, inference latency, and reduction in context size on HotPotQA dataset.

Method	#LLM Calls	Avg Tokens / Query	Latency (s)	Context Reduction
IRCoT	8	26k	16	-
CoRAG (L = 10)	10	21k	15	-
PRISM (Ours)	8	14k	8.6	73.3%

896
 897 Table 14 demonstrate that Our approach is faster, requiring fewer LLM calls (7 vs. 8) and processing
 898 less than half the average tokens per query (14k vs. 26k) compared to IRCoT. This leads to a
 899 notable reduction in inference latency, achieving 8.6 seconds compared to IRCoT's 16 seconds.
 900 Additionally, the method is highly efficient in managing context, resulting in a 73.3% reduction in
 901 context size.

A.4 EXPERIMENT ON VARYING NUMBER OF SELECTOR \leftrightarrow ADDER ITERATION

902
 903 Table 15: Experiment on Variying Number of Selector \leftrightarrow Adder Iteration on HotpotQA dataset on
 904 100 samples.

Number of iteration	Precision	Recall
N = 1	84.80	85.00
N = 2	84.18	88.88
N = 3	85.11	91.00
N = 4	86.07	90.90

914
 915 We conducted a sensitivity analysis to determine the optimal number of Selector \leftrightarrow Adder iterations,
 916 N, before conducting our experiments. As summarized in Table 15 on the HotpotQA dataset, per-
 917 formance generally improves with an increasing number of iterations. However, we observed that
 918 the improvement becomes marginal after N=4. We noted that the outputs of the Selector and Adder

918 agents converged after the third iteration, yielding almost identical responses in iterations 3 and 4.
 919 Based on this trade-off between performance and computational cost, we selected N=3 for our final
 920 experiments.
 921

922 **A.5 ILLUSTRATIVE EXAMPLE**
 923

924 To provide intuition on how our retrieval framework operates, we present an example from the
 925 2WikiMultiHopQA dataset. This case highlights the iterative interaction between the Adder and
 926 Selector agents and the resulting evidence refinement.
 927

Example ID: e95acdbc085f11ebbd5dac1f6bf848b6

Question: Which film has the director who died earlier, *Deuce High* or *The King Is The Best Mayor*?

Gold Answer: The King Is The Best Mayor

Question Analyzer Output: [Who directed *Deuce High*?, Who directed *The King Is The Best Mayor*?, When did the director of *Deuce High* die?, When did the director of *The King Is The Best Mayor* die?, Which director died earlier?]

Initial Evidence (Zero-shot LLM): [["Deuce High", 0], ["The King is the Best Mayor", 0]]

Iteration 1: Adder → ["Deuce High", 0], ["The King is the Best Mayor", 0], ["Richard Thorpe", 0], ["Rafael Gil", 0]
Selector → Same as Adder

Iteration 2: Adder → Added ["Richard Thorpe", 1], ["Rafael Gil", 1]

Selector → Pruned to ["Deuce High", 0], ["The King is the Best Mayor", 0], ["Richard Thorpe", 0], ["Rafael Gil", 0]

Iteration 3: Adder → Re-added ["Richard Thorpe", 1], ["Rafael Gil", 1]

Selector → Retained compact set

Final Retrieved Evidence: [["Deuce High", 0], ["The King is the Best Mayor", 0], ["Richard Thorpe", 0], ["Rafael Gil", 0]]

Gold Supporting Facts: Same as above

Retrieval Metrics: Precision = 1.0, Recall = 1.0, F1 = 1.0, False Positive Rate = 0.0

950 This example illustrates how the Selector–Adder loop converges on the correct supporting set, even
 951 though downstream QA accuracy depends on subtle reasoning over death dates. The retrieval model
 952 achieved perfect precision and recall, confirming its ability to isolate necessary facts with minimal
 953 noise.
 954

955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **B PROMPTS**
973975 **B.1 QUESTION ANALYZER AGENT**
976977 Question Analyzer Prompt Template
978

979 You are a Question Analyzer Agent in a multi-hop question answering system. Your task is to analyze
980 a complex, multi-hop question and break it down into a sequence of concise, meaningful subquestions
981 that reflect the reasoning steps required to answer the original question. To do this, identify and extract
982 subquestions based on:

- 983 • Key entities (persons, organizations, locations, dates, etc.)
984
- 985 • Important nouns or noun phrases (e.g., titles, concepts, objects)
986
- 987 • Logical or temporal relationships (e.g., comparisons, causality, sequences)
988
- 989 • Specific conditions or constraints in the question

990 Each subquestion should focus on retrieving or verifying a specific piece of evidence that contributes
991 to the final answer. Return an ordered list of subquestions that represent a clear reasoning path from
992 the question to the answer. Keep each subquestion short, specific, and unambiguous.

993 Example Input: *“Which actor played the brother of the character who was portrayed by the same
994 actress that starred in Legally Blonde?”*

995 Example Output: 1. Who starred in Legally Blonde? 2. What character did that actress portray in
996 another film? 3. Who played the brother of that character?

997 For the following question, return a JSON object with a list of extracted elements like this:
998 [Subquestions: [..., ...]].

999 Question: [QUESTION]

1000
1001 **B.2 SELECTOR AGENT**
10021003 Selector Agent Prompt Template
1004

1005 You are a Selector Agent in a multi-hop QA system. Your goal is to maximize precision and minimize
1006 false positives.

1007 You are given:

- 1008 • A complex multi-hop question
- 1009 • Subquestions that represent the reasoning steps
- 1010 • A list of candidate facts, each represented as [title, sentence_index]
- 1011 • A set of currently selected evidence sentences

1012 Your task is to carefully remove only those evidence items that are definitely irrelevant for answering
1013 any of the subquestions.

1014 Important guidelines:

- 1015 • Do *not* remove sentences that are partially relevant or could help bridge reasoning steps.
- 1016 • Keep sentences containing named entities, dates, or events referenced in the question.
- 1017 • Do not add new items or regenerate content. Work strictly with the given evidence list.

1018 Return only the pruned list of [title, sentence_index] pairs, with no explanations. The
1019 sentence index starts from 0 for each paragraph.

1020 Question: [QUESTION]

1021 Subquestions: [SUBQUESTION]

1022 Candidates: [CANDIDATES]

1023 Current Selected Evidence: [CURRENT_EVIDENCE]

1024 Return only the updated list with clearly irrelevant sentences removed:

1026 B.3 ADDER AGENT
10271028 Adder Agent Prompt Template
10291030 You are an Adder Agent in a multi-hop QA system. Your goal is to maximize recall while minimizing
1031 false positives.
1032

You are given:

- A complex multi-hop question
- Subquestions that represent the reasoning steps
- A list of candidate passages and sentences
- A set of currently selected evidence items, each represented as [title, sentence_index]

Your task: Add only those candidate sentences that are likely to support answering any subquestion.
1039 Do NOT add:

- Vague, unrelated, or overly general sentences
- Off-topic facts or irrelevant entities
- Duplicates or sentences that overlap significantly with existing evidence

1044 Focus on:

- Bridging facts that connect entities across subquestions
- Sentences with named entities, dates, definitions, or relationships in the question
- Factual statements that clearly contribute to the reasoning chain

1048 Do not remove or modify the currently selected evidence. Return a combined list of both current and
1049 newly added items as [title, sentence_index] pairs, with no explanations. The sentence index
1050 starts from 0 for each paragraph.

1052 Question: [QUESTION]

1053 Subquestions: [SUBQUESTION]

1054 Candidates: [CANDIDATES]

1055 Current Selected Evidence: [CURRENT_EVIDENCE]

1056 Return the updated evidence list with only relevant additions:

1058 B.4 ANSWER GENERATOR AGENT
10591060 Answer Generator Prompt Template
1061

1062 You are a question answering agent. Given a question and the supporting evidence, provide a concise,
1063 factual and short answer based only on the evidence without other words. If the answer cannot be
1064 determined from the evidence, reply with 'Not Answerable'.

1065 Question: [QUESTION]

1066 Evidence: [EVIDENCE]

1067 Answer:

1069 C LLM USAGE
1070

1071 Large language models were used only to enhance the clarity and readability of this manuscript. Af-
1072 ter the complete technical content was authored by us, an LLM suggested minor edits for grammar,
1073 style, and phrasing, which we reviewed before inclusion. All conceptual contributions, analyses,
1074 and implementations are entirely our own. LLMs were also occasionally used to assist in debugging
1075 code, with all solutions verified and integrated by the authors.

1076

1077

1078

1079