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ABSTRACT

Self-supervised learning (SSL) for graphs is an essential problem since graph data
are ubiquitous and data labeling is costly. We argue that existing SSL approaches
for graphs have two limitations. First, they rely on corruption techniques such as
node attribute perturbation and edge dropping to generate graph views for con-
trastive learning. These unnatural corruption techniques require extensive tuning
efforts and provide marginal improvements. Second, the current approaches re-
quire the computation of multiple graph views, which is memory and computa-
tionally inefficient. These shortcomings of graph SSL call for a corruption-free
single-view learning approach, but the strawman approach of using neighbor-
ing nodes as positive examples suffers two problems: it ignores the strength of
connections between nodes implied by the graph structure on a macro level, and
cannot deal with the high noise in real-world graphs. We propose CURSIVE, a
corruption-free single-view graph SSL approach that overcomes these problems
by leveraging graph diffusion to measure connection strength and denoise. With
extensive experiments, we show that CURSIVE achieves up to 4.55% absolute
improvement in ROC-AUC on graph SSL tasks over state-of-the-art approaches
while being more memory efficient. Moreover, CURSIVE even outperforms su-
pervised training on node classification tasks of ogbn-proteins dataset.

1 INTRODUCTION

Graph Neural Networks (GNN) (Welling & Kipf, 2016; Hamilton et al., 2017) are neural network
architectures that extract meaningful and useful representations out of graph data. GNNs have shown
great potential in a variety of fields including social networks (Fan et al., 2019; Chaudhary et al.,
2019; Min et al., 2021), recommendation systems (Wu et al., 2020; 2019; Chang et al., 2021), and
drug discovery (Jiang et al., 2021; Xiong et al., 2021; Jiang et al., 2021; Chen et al., 2018).

The Need for Self-Supervised Learning: Traditional supervised GNN training strategies require
intensive data labeling, which is prohibitively expensive in some essential applications such as bio-
chemistry (Xiong et al., 2019). As an alternative, Self-Supervised Learning (SSL) strategies do not
rely on labels and have shown promising potential in graph learning. Prior SSL approaches such as
DGI (Velickovic et al., 2019), GRACE (Zhu et al., 2020), BGRL (Thakoor et al., 2022) can learn
meaningful representations that are useful in downstream tasks such as academic paper categoriza-
tion, molecule classification, and product recommendation.

Problems of Existing Graph SSL Approaches: In this paper, we identify two problems in the
current graph SSL approaches. First, prior SSL approaches for graphs rely on corruption techniques,
which perturb node attributes or the adjacency matrix. The corruption techniques are inspired by
data augmentation tricks from the computer vision (Shorten & Khoshgoftaar, 2019). However,
unlike images, corrupted graphs may not maintain the original semantics at the node level or graph
level. As a result, the encoder may not be able to learn meaningful representations because the
learning goal is flawed. Second, existing graph SSL approaches need to compute multiple views of
the graph, which increase the memory and computation complexity during training. This efficiency
issue would be exacerbated when we train on large graphs with limited memory budget.

Given the limitation of current graph SSL approaches, it is natural to ask the following question.

Can we have a corruption-free single-view approach for graph SSL with promising performance?
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In this paper, we answer this question positively by proposing CURSIVE, a corruption-free single-
view graph SSL approach. In particular, we summarize our contributions as:

1. We propose a novel graph SSL approach by leveraging the diffusion matrix as the learn-
ing target for similarity between nodes from a single uncorrupted graph view. Without
corruption, our proposed method leverages a natural learning objective to achieve signif-
icantly better accuracy with minimal tuning. Using only a single view, our approach is
much more memory-efficient than previous methods and able to scale to large graphs that
are impossible for multi-view methods.

2. We introduce an extension to our approach to easily scale CURSIVE to large-scale graphs
by leveraging recent advances in efficient graph training. We scale SSL to large-scale
graphs that are difficult to tune and time-consuming to train for the existing SSL methods.

3. Our extensive experiments demonstrate that CURSIVE achieves state-of-the-art accuracy
on a variety of datasets. We highlight that our approach achieves 2.6% absolute improve-
ment on PubMed, 4.55% absolute improvement on ogbn-proteins, and 3.04% absolute im-
provement on ogbn-products over the previous best.

The following sections are organzied as follows. We introduce the graph SSL problem and existing
SSL methods’ two major drawbacks in Section 2. The motivation behind our approach and the
details of our proposed method are included in Section 3. We report the setup and results of our
extensive experiments for evaluating our method in Section 4.

2 GRAPH SELF-SUPERVISED LEARNING

In this section, we introduce the graph self-supervised learning problem studied in this paper. Next,
we identify the problems with two techniques of existing graph SSL methods.

2.1 PROBLEM FORMULATION

Graph SSL aims to learn a GNN-based encoder that produces high-quality representations for graph
data without using labels. We follow the standard problem setup of graph SSL (Velickovic et al.,
2019; Zhu et al., 2020; Thakoor et al., 2022) to keep the training and evaluation procedures consistent
with prior approaches. During the training stage, we have access to graph data (X,A) for training a
GNN-based encoder E , where X ∈ Rn×k is the node feature matrix and A ∈ Rn×n is the adjacency
matrix. We denote each row of X as xi, which corresponds to a k-dimensional feature vector of
node i, where i ∈ [n]. There should be an SSL objective to update the parameters of the encoder
E : Rn×k × Rn×n → Rn×d, which encodes the graph (X,A) into node representation matrix
Z ∈ Rn×d. Here each row of Z, denoted as zi, corresponds to the d-dimensional representation of
node i. We evaluate graph SSL methods by training and testing a linear classifier with the learned
node representation matrix Z on downstream tasks.

2.2 GRAPH CORRUPTION TECHNIQUES FOR CONTRASTIVE LEARNING

Prior competitive graph SSL methods rely on corrupting the input graph to generate positive and
negative examples for learning. Graph corruption techniques perturb node attributes or the adjacency
matrix to produce alternative graph views (Zhu et al., 2020). In this way, the GNN-based encoder
(see Section 2.1) can learn to produce invariant representations. Popular graph corruption techniques
include node feature masking (Zhu et al., 2020), node feature shuffling (Velickovic et al., 2019),
node dropping (You et al., 2020), edge dropping (Zhu et al., 2020), and subgraphing (You et al.,
2020). For example, CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022) employ node
feature masking and edge dropping to generate graph views and maximize the agreement between
those views, DGI (Velickovic et al., 2019) uses node feature shuffling to produce negative examples,
and GRACE (Zhu et al., 2020) uses node feature masking and edge removal for generating inter-
view positives, inter-view negatives and intra-view negatives for contrastive learning. The graph
corruption techniques are directly inspired by data augmentation methods from the computer vision
domain, such as random erasing (Zhong et al., 2020) and cropping (Shorten & Khoshgoftaar, 2019).
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However, corruption techniques for vision and graphs have a fundamental difference: corruptions
of natural images preserve their underlying semantics, while the properties of a graph may alter
significantly after minor corruptions. For example, dropping the edge to a hub node in a social net-
work or citation graph may change the semantics of connected nodes significantly, and node and
edge perturbations in molecular graphs can drastically change the properties of the molecule (Sun
et al., 2021). Through extensive experiments, You et al. (2020) demonstrate that edge perturbations
in graph SSL significantly degrade the model performance on molecular graphs. It is unclear which
corruption techniques are applicable in different graphs, and finding a decent graph corruption re-
quires significant trials and errors since many graphs are highly sensitive to corruption techniques
and parameters. As a result, previous works (You et al., 2021; Thakoor et al., 2022; Zhang et al.,
2021) resort to extensive grid search for the best combinations of corruption schemes, and show that
different datasets require vastly different corruption parameters since the performance of learned
models differ greatly with slight changes to corruption schemes and parameters.

2.3 MULTI-VIEW REPRESENTATION LEARNING ON GRAPHS

In addition to over-reliance on corruption techniques, prior graph SSL approaches compute multiple
views of the same graph, which has significant memory and computational overhead. The computa-
tion of multiple views are required for previous methods since they mine positive/negative examples
from them. For example, DGI (Velickovic et al., 2019) computes an additional view through shuf-
fling node features to produce negative examples, LaGraph (Xie et al., 2022) computes two views
and minimizes the distance between them, and BGRL Thakoor et al. (2022) computes four views
for positive-only contrastive learning. This creates significant concerns related to computational ef-
ficiency and scalability. Modern hardware used for GNN training such as GPU has limited memory,
and hence the computation of multiple views scale poorly to large graphs. Compared to supervised
training which only computes a single view of the graph, prior self-supervised methods consume
multiple times more memory and computation time. This is problematic in many real-world prob-
lems since common citation, co-purchasing, and social network graphs contain up to billions of
nodes and edges (Hu et al., 2020). Although sub-sampling techniques can fit multiple views of
the graph in a limited memory budget, they have been demonstrated to hurt performance signifi-
cantly (Thakoor et al., 2022). As a result, it is ideal to have a graph SSL method that computes only
a single view of the graph so that it can scale to larger graphs efficiently.

3 CURSIVE

In this section, we first motivate our proposed method by describing a strawman approach and
identify its flaws in 3.1. Then we describe our proposed method by explaining our learning target
in Section 3.2 and training strategy in Section 3.3. We then analyse the memory efficiency of our
proposed approach and compare it against existing methods in Section 3.4. Finally, we describe an
extension to our method for scaling to very large graphs in Section 3.5.

3.1 OUR MOTIVATION: A CORRUPTION-FREE SINGLE-VIEW SSL ON GRAPHS

The drawbacks of corruption techniques and multi-view approaches call for a corruption-free single-
view SSL approach for graphs. However, this is nontrivial in practice.

3.1.1 A STRAWMAN APPROACH

A strawman approach for corruption-free single-view SSL is to perform contrastive learning using
neighboring nodes as positive instances and non-neighboring nodes as negative instances. But this
method has two major problems: it only sees the local structure and fails to take into account the
graph structure at a macro level, and it is impacted by noise in real-world datasets.

In this strawman approach, neighboring nodes are considered as positive examples and their mutual
information is maximized. However, this is counterproductive because it ignores the rich informa-
tion implied by the graph structure at a macro level. The strengths of connections between nodes
vary greatly. For example, a graph may consists of a few densely connected node clusters with
sparse edges across clusters. This is a common structure for many real-world graphs such as cita-
tion and social networks Fan et al. (2019). The graph structure on a macro level implies nodes are
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more strongly linked to nodes within the same cluster, with weaker connection to nodes in other
clusters. However, this information is not captured in the strawman approach, in which each edge is
considered as equally strong. This hinders learning and discourages the encoder from understanding
the global graph structure. As a result, the learned node representations are disentangled, shown in
Figure 1. Furthermore, real-world graphs often include a large amount of noisy edges (Kang et al.,
2019). The existence of noisy edges confuses the encoder and results in poorer representations.

Figure 1: (a) Left: A graph of two densely connected clusters (orange and blue) with sparse edges
across clusters. Right: t-SNE plot of the learned node representation using the strawman approach,
in which clusters are not perfectly separated. (b) Left: The connection strengths measured by the
diffusion matrix. Right: t-SNE plot of the learned node representations using CURSIVE, in which
clusters are linearly separable.

3.1.2 OUR PROPOSAL

Figure 2: Our proposed training approach CURSIVE for graph SSL. During each training step, we
feed-forward the uncorrupted graph a single time, and minimize the divergence between normalized
node similarity and graph diffusion.

We propose to use the graph diffusion matrix as the learning target to resolve the two mentioned
problems and incorporation the knowledge of graph structure into learned representations. Diffusion
measures the flow of matter or information from one node to another through the global graph
structure. It has direct connections to natural sciences (Vassilevich, 2003). For example, heat graph
diffusion generalizes the kernel used for measuring the flow and distribution of heat to discrete graph
structure (Chung, 2007). The continuous distribution of matter or information measured by the
diffusion matrix can be seen as a measure of connection strength between nodes. This idea has been
leveraged in web page rankings by using personalized PageRank as a diffusion matrix to measure
the relative importance of web pages (Page et al., 1999). Thus, diffusion takes into account the
global structure of the graph by emphasizing important connections while weakening unimportant
ones. Moreover, the diffusion matrix has been shown to act as a denoising filter for graph structure
to smooths out noisy edges (Gasteiger et al., 2019b). The diffusion matrix significantly boosts the
signal-to-noise ratio of a graph.

Instead of maximizing mutual information between positive examples, we view the normalized sim-
ilarity measure between a node and all other nodes as a distribution, and consider each row of the
row-stochastic diffusion matrix as the target distribution, and minimize the divergence between the
two distributions. This way, we do not use explicit positive and negative examples for learning, but
we tune the relatedness of the learned node representations using the connection strength implied by
the graph structure at a macro level.
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Intuition In a graph, information in the neighbors around a node is important for the node’s
learned representation. Information should be spread from one node to other nodes across the graph
in a natural process similar to how heat diffuses through a medium. With the diffusion matrix, we
are able to measure the amount of information a source node should spread to other nodes. Since the
diffusion matrix is symmetric, the amount of information spread from node u to node v is equal to
the amount spread from v to u. We can use the similarity of two nodes’ representations to measure
the amount of their shared information. Therefore, if we enforce the similarity between nodes to
follow the diffusion matrix, we can encourage the representation of each node to capture the ideal
amount of information from nodes in the neighborhood around it.

3.2 GRAPH DIFFUSION MATRIX AS THE TARGET

We adopt the definition of generalized graph diffusion proposed by Gasteiger et al. (2019b), which
is defined as a convergent, infinite sum of weighted i-hop normalized adjacency matrices with self-
edges, T =

∑∞
i=0 αiÂ

i. We use the symmetric normalization scheme proposed in Welling & Kipf
(2016) for the adjacency matrix with self-edges, i.e., Â = (D+I)−

1
2 (A+I)(D+I)−

1
2 , where D is

the diagonal degree matrix. We consider two types of graph diffusion: heat diffusion (Chung, 2007)
and personalized PageRank (PPR) Page et al. (1999). For the weighting coefficients, heat diffusion
uses an exponential series αheat

i = e−tti

i! , where t is the diffusion time (Chung, 2007), and PPR
diffusion uses a geometric series αPPR

i = β(1− β)i, where β is the teleport probability (Page et al.,
1999). Heat diffusion is a concept commonly applied in natural sciences to measure the distribution
of heat or diffusive matter (Vassilevich, 2003), and Chung (2007) generalized the heat kernel to
discrete graph structures. PPR diffusion is interpreted as a probability matrix in which the entry
u, v is the probability of a random walk starting at node u with terminating probability β at each
step eventually terminating at node v, and it is used in search engines to measure the personalized
importance of a web page (Page et al., 1999). Both forms of diffusion have closed-form solutions,
or they can be approximated by computing the sum of only the first few terms in

∑∞
i=0 αiÂ

i.

Following the definition above, the diffusion matrix T is a row-stochastic matrix, and hence each
row of T can be viewed as a distribution. Specifically, we define the diffusion distribution of node
u as Tu(v) = Tu,v, v ∈ [n], where Tu,v is the value in the uth row and vth column of the diffusion
matrix. We will use the diffusion distribution of nodes as the target of our learning objective.

Node Similarity To measure the similarity between the learned representations of two nodes u, v,
we use dot product which is a symmetric similarity score, sim(zu, zv) =

∑
i zuizvi. We apply

softmax normalization to normalize the similarity scores between node u and all other nodes into a
distribution. Specifically, the similarity distribution of node u is

Su(v) =
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

,where v ∈ [n].

3.3 TRAINING STRATEGY

Loss Function Our proposed objective minimizes the divergence between the diffusion dis-
tribution and the similarity distribution of node u, for all u ∈ [n]. Therefore, we con-
struct our loss function as the mean Kullback–Leibler divergence (Kullback & Leibler, 1951)
between the diffusion distribution and the similarity distribution, 1

n

∑n
u=1 DKL(Tu ∥ Su) =

1
n

∑n
u=1(

∑n
v=1 Tu(v) logTu(v)−

∑n
v=1 Tu(v) log Su(v)). Since the entropy of the diffusion dis-

tribution of a given graph is fixed (i.e.
∑n

v=1 Tu(v) logTu(v) is a constant value), we omit it and
equivalently minimize the following loss function. An overview of CURSIVE’s training strategy is
shown in Figure 2.

L = − 1

n

n∑
u=1

n∑
v=1

Tu,v log
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

In practice, mini-batch gradient descent help convergence and reduce memory usage (Ruder, 2016).
Therefore, in each training step, we sample a batch of node indices B = {b1, · · · , b|B|} from
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{1, · · · , n} without replacements, and minimize the following batched loss function.

Lbatch = − 1

|B|
∑
u∈B

n∑
v=1

Tu,v log
exp(sim(zu, zv))∑n
i=1 exp(sim(zu, zi))

With batched execution, only |B| rows of the diffusion matrix needs to be loaded into GPU memory,
which reduces the memory complexity of the loss computation from O(n2) to O(|B|n). Since the
batched loss function and the original loss function are equal in expectation, i.e. E(Lbatch) = L, the
quality of the learned model does not degrade with batched execution. Empirically, we found batch
sizes of 1024 and 2048 work well. Pseudo-code for CURSIVE is given in Algorithm 1.

Algorithm 1 Our proposed method CURSIVE for graph SSL
Input: node features X ∈ Rn×k, adjacency matrix A ∈ Rn×n, GNN encoder E : Rn×k×Rn×n →

Rn×d, number of epochs nepochs

Output: trained GNN encoder E : Rn×k × Rn×n → Rn×d

Compute the diffusion matrix T through the closed-form solution or approximation
for e = 1 · · ·nepochs do

Let N = {1, · · · , n}
while |N | > 0 do

Sample a batch of node indices B = {b1, · · · , b|B|} from N without replacements
Let Z be the output of the encoder E(A,X)

Compute L = − 1
|B|

∑
u∈B

∑n
v=1 Tu,v log

exp(sim(zu,zv))∑n
i=1 exp(sim(zu,zi))

and perform back-
propagation to update the parameters of E

end
end
return E

3.4 MEMORY ANALYSIS

Without the reliance on multiple graph views or extra MLP layers, our approach has clear advan-
tage in memory efficiency over prior approaches. Table 1 presents the memory complexity and the
empirical GPU memory usage of the most competitive graph SSL methods on ogbn-arxiv and ogbn-
proteins datasets (Hu et al., 2020). Each forward pass/back-propagation consumes O(n+m) mem-
ory, where n is the number of nodes and m is the number of edges in the graph. We let C fw be the
constant factor for each forward pass and Cbw be the constant factor for each back-propagation. We
consider the most memory-efficient graph SSL methods GRACE (Zhu et al., 2020), BGRL (Thakoor
et al., 2022), LaGraph (Xie et al., 2022), and CCA-SSG (Zhang et al., 2021), all of which compute
two or more graph views at each training step. GRACE uses intra-view and inter-view negative
examples, and hence computing its loss function consumes O(n2) memory. BGRL does not use
negative instances in its loss function to avoid quadratic blowup, but it computes 4 graph views in
total, 2 by the online encoder and 2 by the target encoder. LaGraph and CCA-SSG both compute
2 graph views and maximize the invariance between views, and LaGraph uses an additional MLP
component as the decoder. Our method computes a single graph view, with memory efficiency on
par with supervised training theoretically and empirically.

We employ the same encoder (3-layer GCN (Welling & Kipf, 2016)) for all approaches to ensure a
fair comparison of memory usage. On ogbn-arxiv, the memory efficiency of our method is on par
with supervised training, while other methods consume 2× or more memory. On ogbn-proteins,
supervised training consumes more than half of the GPU memory, which makes multi-view training
impossible. Therefore, only our SSL method is able to train on ogbn-proteins without running out
of memory.

3.5 SCALING TO LARGE GRAPHS

Many real-world graphs are so large that even memory-efficient supervised training has to resort
sub-sampling techniques such as neighbor-sampling. For CURSIVE, neighbor sampling techniques
do not work since the traditional neighbor sampling technique (Hamilton et al., 2017) does not pre-
serve graph structure, so the diffusion matrix for the set of sampled nodes is not well defined. To
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Table 1: Memory complexity and empirical GPU memory usage of competitive graph SSL ap-
proaches on ogbn-arxiv and ogbn-proteins datasets. “OOM” means out of memory on a GPU with
32 GB of memory.

Method Memory Complexity GPU Memory Usage
ogbn-arxiv ogbn-proteins

Supervised GCN C fw
GCN(n+m) + Cbw

GCN(n+m) + CSupervised · n 6.9G 17.2G
GRACE 2C fw

GNN(n+m) + Cbw
GNN(n+m) + 2C fw

MLP · n+ Cbw
MLP · n+ CGRACE · n2 OOM OOM

BGRL 4C fw
GNN(n+m) + Cbw

GNN(n+m) + 2C fw
MLP · n+ Cbw

MLP · n+ CBGRL · n 25.4G OOM
LaGraph 2C fw

GNN(n+m) + C fw
GNN(n+m) + Cbw

MLP · n+ Cbw
MLP · n+ CLaGraph · n 16.9G OOM

CCA-SSG 2C fw
GNN(n+m) + Cbw

GNN(n+m) + CCCA-SSG · n 15.6G OOM
CURSIVE (ours) C fw

GNN(n+m) + Cbw
GNN(n+m) + CCURSIVE · b · n 7.8G 18.3G

scale to very large graphs, we propose a natural extension to our method by leveraging recent ad-
vances in efficient GNN training. Cluster-GCN (Chiang et al., 2019) proposes to train on subgraphs
partitioned with METIS (Karypis & Kumar, 1997) to avoid the exponential neighborhood expansion
problem. During training, a random batch of subgraphs are merged to form the input to the GNN.
The diffusion matrix is well-defined on the subgraphs, and we are able to leverage Cluster-GCN to
scale CURSIVE to very large graphs. We evaluate the effectiveness of CURSIVE scaled to large
graphs in Section 4.3.

4 EXPERIMENTS

In this section, we evaluate the performance of CURSIVE and compare it against the most compet-
itive graph SSL methods on a variety of node classification datasets. We first introduce the setup,
the datasets, and the baselines used for the evaluation in Section 4.1. Then we present the evalua-
tion results on small to medium-scale datasets in Section 4.2 and results on large-scale datasets in
Sectin 4.3. Finally, we present the results of the ablation study in Section A.3 in the Appendix.

4.1 SETTINGS

Evaluation Setup We take a untrained GNN encoder with randomly initialized parameters, and
train it using CURSIVE and baseline methods on the graph data (X,A) without labels until conver-
gence. Then we freeze the parameters of the GNN and and use it to encode the nodes into learned
node representations Z. We then train a linear classifier (logistic regression classifier) on the la-
belled training set with Z as input, and report the evaluation metrics on the unseen test set. Our
evaluation setup is identical to previous works (Velickovic et al., 2019; Thakoor et al., 2022) to keep
the evaluation fair and consistent. Details about the testbed for performing the evaluation is given in
Section A.2 in the Appendix, and the hyper-parameters and training details are presented in Table 6
in the Appendix.

Datasets Our baselines are evaluated on 6 datasets, including 3 small scale datasets (Cora, Citeser,
PubMed (Sen et al., 2008)), 1 medium scale dataset (ogbn-arxiv (Hu et al., 2020)) and 2 large scale
dataset (ogbn-proteins and ogbn-products (Hu et al., 2020)). The graph statistics are summarized in
Table 4 in the Appendix.

Baselines We perform a thorough comparison of CURSIVE against the current most competitive
graph SSL methods: 1) DGI (Velickovic et al., 2019) proposes to learn node representations by max-
imizing the mutual information between node representations and the global representation through
contrasting representations of a corrupted graph. 2) GATE (Salehi & Davulcu, 2019) reconstructs
the input graph with an auto-encoder architecture that uses self-attention. 3) GRACE (Zhu et al.,
2020) performs contrastive learning on positive and negative examples from two different corrupted
graph views. 4) BGRL (Thakoor et al., 2022) learns contrastively from positive examples only by
leveraging bootstrapping. 5) LaGraph (Xie et al., 2022) learns through a reconstruction loss and an
invariance loss between the representations of the original graph and a corrupted graph. 6) Graph-
MAE (Hou et al., 2022) learns through reconstructing node features using two GNNs as encoder
and decoder. 7) InfoGCL (Xu et al., 2021) maximizes the agreement between the learned repre-
sentations of two corrupted graph views encoded by a GNN and MLP. 8) CCA-SSG (Zhang et al.,
2021) maximizes the agreement between two corrupted graph views using a loss function inspired
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by Canonical Correlation Analysis. We also include the most common supervised model baselines
for reference, which are trained with the training set as supervision. 1) MLP (Hu et al., 2020) is
a multi-layer perceptron network with only the node features as input. 2) GCN (Welling & Kipf,
2016) propagates node information through convolutional layers. 3) GAT (Veličković et al., 2018)
leverages self-attention to adaptively aggregate node information. 4) GraphSage (Hamilton et al.,
2017) aggregates node feature information to generalize to unseen data.

4.2 EVALUATION ON SMALL AND MEDIUM-SCALE GRAPHS

Table 2 presents the accuracy of CURSIVE and baselines on Cora, Citeseer, Pubmed and ogbn-
arxiv. CURSIVE achieves state-of-the-art performance on all 4 datasets, and improves the previous
best by 2.6% on PubMed, 1.1% on CiteSeer, 0.2% on Cora and 0.33% on ogbn-arxiv. Our method
significantly exceeds the accuracy of supervised training on Cora, CiteSeer, PubMed, showing its
potential in eliminating the reliance on labels in graph learning. On ogbn-arxiv, our method achieves
accuracy competitive with the best supervised model GAT (within 0.02% difference) while using a
simpler model (GCN).

Table 2: Performance of self-supervised learning methods in terms of classification accuracy (along
with standard deviations). The results of baselines are taken from official papers. “OOM” means
out of memory on a GPU with 32 GB of memory.

Learning Paradigm Method Dataset
Cora Citeseer PubMed ogbn-arxiv

Supervised
MLP 55.1 46.5 71.4 55.50

GCN 81.5 70.3 79.0 71.74± 0.29

GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3 72.10± 0.13

Self-supervised

DGI 82.3± 0.6 71.8± 0.7 76.8± 0.6 70.34± 0.16

GATE 83.2± 0.6 71.8± 0.8 80.9± 0.3 OOM
GRACE 81.9± 0.4 71.2± 0.5 80.6± 0.4 71.51± 0.11

BGRL 82.7± 0.5 71.1± 0.8 79.6± 0.5 71.64± 0.12

LaGraph 84.1± 0.3 73.0± 0.4 80.9± 0.3 71.71± 0.21

GraphMAE 84.2± 0.4 73.4± 0.4 81.1± 0.4 71.75± 0.17

InfoGCL 83.5± 0.3 73.5± 0.4 79.1± 0.2 OOM
CCA-SSG 84.0± 0.4 73.1± 0.3 81.2± 0.3 71.24± 0.20

CURSIVE (ours) 84.4± 0.1 74.6± 0.1 83.8± 0.1 72.08± 0.12

Table 3: AUC-ROC on ogbn-proteins and accuracy on ogbn-products of the best graph SSL meth-
ods. We consider GCN and GraphSage as the backbone model for each method. †: sub-sampling is
used since multiple views of ogbn-proteins do not fit into GPU memory.

Learning Paradigm Method ogbn-proteins ogbn-products

Supervised GCN 72.51± 0.01 75.64± 0.01

GraphSage 77.68± 0.01 78.29± 0.01

Self-supervised

InfoGCL OOM OOM
GraphMAE 62.52± 0.69† 72.88± 0.37

GRACE 68.40± 0.59† 71.55± 0.88

LaGraph 71.86± 0.28† 73.23± 0.25

BGRL 73.25± 0.79† 72.86± 0.64

CCA-SSG 73.08± 0.37† 73.46± 0.26

CURSIVE (ours) 77.80± 0.21 (+4.55) 76.50± 0.18 (+3.04)

4.3 EVALUATION ON LARGE-SCALE GRAPHS

We evaluate CURSIVE and baselines on ogbn-proteins and ogbn-products, which are two chal-
lenging large-scale node classification datasets. Only CURSIVE is able to train on ogbn-proteins
using a single GPU without sub-sampling, other methods require sub-sampling to fit into 32 GB

8



Under review as a conference paper at ICLR 2023

of GPU memory since they rely on multiple graph views (see Section 3.4). We leverage the sub-
sampling techniques described by Hamilton et al. (2017); Thakoor et al. (2022) to scale the baselines.
CURSIVE achieves 4.55% better AUC-ROC than the current best SSL method. More importantly,
CURSIVE beats supervised training: 5.29% and 0.12% better AUC-ROC than supervised GCN and
GraphSage. As a biological graph, ogbn-proteins is sensitive to graph corruptions. Our method
achieves the best accuracy by avoiding corruptions and training on the full graph, which maximally
preserves semantics of the original graph.

The graph of ogbn-products is so large that even supervised training has to resort to sub-sampling.
Therefore, we leverage Cluster-GCN (Chiang et al., 2019) to efficiently scale CURSIVE by parti-
tioning the graph into 100 clusters. Our method exceeds the previous best SSL method by 3.04%.
Furthermore, our method beats supervised training by 0.86% when using the same GCN architec-
ture, suggesting our method has potential of eliminating the need for costly labels in graph learning.

5 RELATED WORKS

Self-supervised Learning for Graphs The success of self-supervised contrastive learning in com-
puter vision (Oord et al., 2018; Hjelm et al., 2018; Grill et al., 2020) inspired the development of
contrastive learning methods for graph SSL based on mutual information maximization. For exam-
ple, DGI (Velickovic et al., 2019) maximizes mutual information between local patch representa-
tions and global graph representation by contrasting with negative examples from shuffled node fea-
tures. GRACE (Zhu et al., 2020) maximizes the mutual information between node representations
of two corrupted graph views by contrasting with intra- and inter-view negatives. BGRL (Thakoor
et al., 2022) leverages BYOL (Grill et al., 2020) to perform contrastive learning without negative
examples. InfoGCL (Xu et al., 2021) proposes a contrastive framework to maintain task-relevant
information at different levels and minimize the information loss during graph representation learn-
ing. MVGRL (Hassani & Khasahmadi, 2020) uses graph diffusion to produce an alternative graph
view and maximize the mutual information between the local representation of one view and the
global representation of the other view. Although MVGRL also utilizes graph diffusion, it is very
different from our work since it uses diffusion to replace the graph structure, and MVGRL is a
multi-view multi-scale contrastive method. Graph SSL methods based on the reconstruction objec-
tive have also been proposed in the past. For instance, GATE (Salehi & Davulcu, 2019) uses stacked
self-attention-based encoder/decoder architecture to reconstruct node features and graph structure.
GraphMAE (Hou et al., 2022) proposes to focus on feature reconstruction using a graph autoen-
coder. Recently, predictive graph SSL methods have also been proposed. LaGraph (Xie et al., 2022)
proposes to learn through predicting unobserved latent graphs. CCA-SSG (Zhang et al., 2021) lever-
ages a feature prediction objective inspired by canonical correlation analysis.

Graph Diffusion Graph diffusion has been used extensively in search engines for ranking web
pages (Page et al., 1999; Chung, 2007). Diffusion has also been applied to graph learning in the
past, but previous works focus on changing the architecture of GNNs using diffusion. For example,
Gasteiger et al. (2019b) proposes graph diffusion convolution (GDC) that replaces the normalized
adjacency matrix with diffusion matrix in GCN to expand receptive field. Personalized propagation
of neural predictions (PPNP) (Gasteiger et al., 2019a) is an improved propagation scheme based on
personalized PageRank (PPR). PPRGo (Bojchevski et al., 2020) leverages an efficient approximation
to PPR to scale PPNP to large-scale graphs without compromising on accuracy.

6 CONCLUSION

We propose CURSIVE, a corruption-free single-view approach for graph SSL. By avoiding corrup-
tion techniques employed by prior SSL method, we achieve a natural SSL objective to attain signifi-
cantly better accuracy on a variety of datasets with minimal tuning efforts. Without the computation
of multiple views, our method is more memory-efficient and scalable than prior approaches and able
to scale to large graphs that are difficult for existing methods. Through extensive experiments, we
demonstrate the advantage of CURSIVE over existing SSL methods with significant improvements
in accuracy on popular graph benchmarks. Furthermore, our SSL approach is able to surpass or be
competitive with the accuracy of fully supervised training on large-scale datasets, which is a crucial
step towards eliminating the need for costly labels in graph learning.
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Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/S0950705121000095
https://www.sciencedirect.com/science/article/pii/S0950705121000095
http://arxiv.org/abs/1609.04747
https://openreview.net/forum?id=0UXT6PpRpW
https://openreview.net/forum?id=rJXMpikCZ


Under review as a conference paper at ICLR 2023

Max Welling and Thomas N Kipf. Semi-supervised classification with graph convolutional net-
works. In J. International Conference on Learning Representations (ICLR 2017), 2016.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys (CSUR), 2020.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
ommendation with graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 346–353, 2019.

Yaochen Xie, Zhao Xu, and Shuiwang Ji. Self-supervised representation learning via latent graph
prediction, 2022. URL https://openreview.net/forum?id=Da3ZcbjRWy.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
networks for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhao-
jun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
30414–30425. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/ff1e68e74c6b16a1a7b5d958b95e120c-Paper.pdf.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S. Yu. From canonical correlation
analysis to self-supervised graph neural networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=X3TdREzbZN.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In ICML Workshop on Graph Representation Learning and Beyond,
2020. URL http://arxiv.org/abs/2006.04131.

12

https://openreview.net/forum?id=Da3ZcbjRWy
https://proceedings.neurips.cc/paper/2021/file/ff1e68e74c6b16a1a7b5d958b95e120c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ff1e68e74c6b16a1a7b5d958b95e120c-Paper.pdf
https://openreview.net/forum?id=X3TdREzbZN
http://arxiv.org/abs/2006.04131


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 STATISTICS OF DATASETS

Table 4 presents the statistics of the 6 graph datasets used in our evaluations.

Table 4: Statistics of the graphs used in the experiments.

Dataset Cora Citeseer PubMed ogbn-arxiv ogbn-proteins ogbn-products

# of Nodes 2,708 3,327 19,717 169,343 132,534 2,449,029
# of Edges 5,429 4,732 44,338 1,166,243 39,561,252 61,859,140
Metric Accuracy Accuracy Accuracy Accuracy ROC-AUC Accuracy
# of Classes 7 6 3 40 112 (binary classification) 47

A.2 TESTBED

We implement our proposed method with the Deep Graph Library (Wang et al., 2019). Our exper-
iments are conducted on a machine with 1 NVIDIA Tesla V100 32GB GPU, 2 24-core/48-thread
Intel Xeon Gold 5220R CPUs, and 1.5TB of RAM.

A.3 ABLATION STUDY

We study the sensitivity of our method to hyper-parameter changes. A robust SSL method should
not be sensitive to hyper-parameters. This has been a weakness of prior SSL methods, which require
vastly different corruption parameters for different datasets (You et al., 2021; Thakoor et al., 2022;
Zhang et al., 2021). We vary the hyper-parameters in computing the diffusion matrix for both types
of diffusion matrix (diffusion time t for heat kernel and teleport probability β for PPR) and present
the test accuracy on Cora, Citeseer and PubMed in Table 5. Our method is not sensitive to hyper-
parameters of the diffusion target, since the accuracy drops at most 1.0% from the best accuracy for
all diffusion parameters and diffusion types considered. Therefore, our method is more robust than
previous SSL approaches which are sensitive to hyper-parameter changes.

Table 5: Evaluate performance of CURSIVE by varying the diffusion hyper-parameters.

Hyperparameter Heat (t) PPR (β)
3 4 5 6 7 0.02 0.04 0.06 0.08 0.10

Cora 83.9 84.1 84.0 84.0 84.4 84.1 84.0 84.3 84.1 84.0
Citeseer 73.3 74.1 74.3 74.1 74.1 74.0 74.6 74.2 74.0 74.2
PubMed 82.8 83.0 83.6 83.1 82.7 83.6 83.2 83.8 82.8 83.4

Table 6: Training details and hyper-parameters for CURSIVE on all datasets

Cora Citeseer PubMed ogbn-arxiv ognb-proteins ogbn-products

Architecture GCN GCN GCN GCN GCN GCN
Depth 1 1 2 3 3 3
Hidden Size 512 512 32 1024 1024 1024
Activation Leaky ReLU tanh tanh Leaky ReLU Leaky ReLU tanh
Learning Rate 5e-3 5e-4 1e-2 1e-4 1e-4 1e-4
Diffusion Type Heat PPR PPR PPR PPR PPR
Epochs 100 100 100 100 200 10
Optimizer AdamW (Loshchilov & Hutter, 2019)
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