
NeurIPS 2022 Deep Reinforcement Learning Workshop

SCALING UP AND STABILIZING DIF FERENTIABLE
PLANNING WITH IMPLICIT DIF FERENTIATION

Linfeng Zhao1∗, Huazhe Xu23, Lawson L.S. Wong1
1Khoury Colleges of Computer Science, Northeastern University,
2Institute for Interdisciplinary Information Sciences, Tsinghua University,
3Shanghai Qi Zhi Institute

ABSTRACT

Differentiable planning promises end-to-end differentiability and adaptivity.
However, an issue prevents it from scaling up to larger-scale problems: they need
to differentiate through forward iteration layers to compute gradients, which cou-
ples forward computation and backpropagation and needs to balance forward plan-
ner performance and computational cost of the backward pass. To alleviate this
issue, we propose to differentiate through the Bellman fixed-point equation to de-
couple forward and backward passes for Value Iteration Network and its variants,
which enables constant backward cost (in planning horizon) and flexible forward
budget and helps scale up to large tasks. We study the convergence stability, scal-
ability, and efficiency of the proposed implicit version of VIN and its variants and
demonstrate their superiorities on a range of planning tasks: 2D navigation, visual
navigation, and 2-DOF manipulation in configuration space and workspace.

1 INTRODUCTION

Planning is a crucial ability in artificial intelligence and robotics (LaValle, 2006; Sutton & Barto,
2018). Typically, a planning algorithm either uses a ground-truth dynamics model or takes as input
a separately learned model. It enables jointly learning a compact MDP that promises the learned
value is equivalent to the original problem. Recently, differentiable planning (Tamar et al., 2016;
Schrittwieser et al., 2019; Oh et al., 2017; Grimm et al., 2020; 2021) alleviates these requirements
by training models and policies in an end-to-end manner. It enables jointly learning a compact MDP
and promises that the learned value is equivalent to the original problem.

However, current differentiable planning suffers from scalability and convergence stability issues
because it requires to differentiate through the planning computation. When performing the differ-
entiation, we inevitably need to iteratively unroll network layers to improve value estimates, espe-
cially for long-horizon planning problems. It results in slower inference and, more fatally, inefficient
and unstable gradient computation through multiple network layers. Thus, this work aims to study
the question: can we scale up differentiation planning and keep the training efficient and stable?

We find the bottleneck is caused by explicit differentiation, which backpropagates gradients through
layers and thus couples forward and backward passes. Instead, since the Bellman equations define
a fixed-point system, the solution is defined by an implicit function and can be solved with implicit
differentiation. Value Iteration Networks (VINs) (Tamar et al., 2016) use convolution networks to
solve the fixed-point problem by embedding value iteration into its computation. We propose to use
implicit differentiation for VIN-based planners to compute the equilibrium, including Gated Path
Planning Networks (GPPN) (Lee et al., 2018) and Symmetric VIN (SymVIN) (Zhao et al., 2022),
and name it implicit differentiable planning (IDP). This implicit differentiation idea has also been
recently studied in supervised learning (Bai et al., 2019; Winston & Kolter, 2021; Amos & Yarats,
2019; Amos & Kolter, 2019).

Using implicit differentiation in planning brings several benefits. It decouples forward and backward
passes, so when the forward pass scales up to more iterations for long-horizon planning problems,

∗Corresponding Author: Linfeng Zhao zhao.linf@northeastern.edu.

1

zhao.linf@northeastern.edu

NeurIPS 2022 Deep Reinforcement Learning Workshop

Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

Figure 1: An overview of VIN, a differentiable planner with explicit differentiation, and ID-VIN, our proposed
planner with implicit differentiation. Lighter colors for the backward pass with explicit differentiation (solid red
arrows) indicate larger backpropagation depth. For backward passes with implicit differentiation, the dashed
red arrows start from the solved equilibrium V 󰂏 and end at each forward layer (black arrows).

the backward pass can stay constant cost. It is also no longer constrained to differentiable forward
solvers/planners, potentially allowing other non-differentiable operations in planning. It can poten-
tially reuse intermediate computation from forward computation in the backward pass, which is in-
feasible for explicit differentiation. We focus on scaling up implicit differentiable planning to larger
planning problems and stabilizing its convergence, and also experiment with different optimization
techniques and setups. In our experiments on various tasks, the planners with implicit differentiation
can train on larger tasks, plan with a longer horizon, use less (backward) time in training, converge
more stably, and exhibit better performance compared to explicit counterparts. We summarize our
contributions below:

• We apply implicit differentiation on VIN-based differentiable planning algorithms. This connects
with deep equilibrium models (DEQ) (Bai et al., 2019) and prior work in both sides, including (Bai
et al., 2021; Nikishin et al., 2021; Gehring et al., 2021).

• We propose a practical implicit planning pipeline and implement implicit version of VIN, as well
as GPPN (Lee et al., 2018) and SymVIN (Zhao et al., 2022).

• We empirically study the convergence stability, scalability, and efficiency of the explicit planners
and proposed implicit planners, on four planning tasks: 2D navigation, visual navigation, and 2
degrees of freedom (2-DOF) manipulation in configuration space and workspace.

2 RELATED WORK

Differentiable Planning In this paper, we use differentiable planning to refer to planning with
neural networks, which can also be named learning to plan and may be viewed as a subclass of
integrating planning and learning (Sutton & Barto, 2018). It is promising because it can be inte-
grated into a larger differentiable system to form a closed loop., Grimm et al. (2020; 2021) propose
to understand model-based planning algorithms from value equivalence perspective. Value iteration
network (VIN) (Tamar et al., 2016) is a representative work that performs value iteration using con-
volution on lattice grids, and has been further extended (Niu et al., 2017; Lee et al., 2018; Chaplot
et al., 2021; Deac et al., 2021). Other than using convolution network, the work on integrating learn-
ing and planning into differentiable networks includes (Oh et al., 2017; Karkus et al., 2017; Weber
et al., 2018; Srinivas et al., 2018; Schrittwieser et al., 2019; Amos & Yarats, 2019; Wang & Ba,
2019; Guez et al., 2019; Hafner et al., 2020; Pong et al., 2018; Clavera et al., 2020).

Implicit Differentiation Beyond computing gradients by following the forward pass layer-by-
layer, the gradients can also be computed with implicit differentiation to bypass differentiating

2

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 2: Demonstration of differentiable planners with explicit differentiation, which cannot scale up to large
tasks or more iterations, due to coupled forward and backward pass.

through some advanced root-find solvers. This strategy has been used in a body of recent work
(Chen et al., 2019; Bai et al., 2019; Amos & Kolter, 2019; Ghaoui et al., 2020). Particularly related,
Bai et al. (2019) propose Deep Equilibrium Models (DEQ) that decouples the forward and backward
pass and solve the backward pass iteratively also through a fixed-point system. Winston & Kolter
(2021) study the convergence of fixed point iteration in a specific type of deep network. Amos &
Kolter (2019) formalize optimization as a layer, and Amos & Yarats (2019) further apply the idea
to iterative LQR. Gehring et al. (2021) theoretically study gradient dynamics of implicit parameter-
ization of value function through the Bellman equation. Nikishin et al. (2021) similarly use implicit
differentiation, while they explicitly solve the backward pass and only work on small-scale tasks
because explicit solving is not scalable. Bacon et al. (2019) instead focus on a Lagrangian perspec-
tive. Our work is focused on scalability and convergence stability on differentiable planning, and
experiments with challenging tasks in simulation to empirically justify the approach.

3 DIF FERENTIABLE PLANNING WITH EXPLICIT DIF FERENTIATION

Background: Value Iteration Networks. Value iteration is an instance of the dynamic program-
ming (DP) method to solve Markov decision processes (MDPs). It iteratively applies the Bellman
(optimality) operator until convergence, which is based on the following Bellman (optimality) equa-
tion: Q(s, a) = R(s, a) + γ

󰁓
s′ P (s′|s, a)V (s′) and V (s) = maxa Q(s, a).

Tamar et al. (2016) used a convolution network to parameterize value iteration, named Value Itera-
tion Network (VIN). VINs jointly learn and plan in a latent MDP on the 2D grid, which has the latent
reward function R̄ : Z2 → R|A| and has transition probability P̄ represented as WV : Z2 → R|A|,
which only relies on differences between states. The value function is written as V̄ : Z2 → R and
Q̄ : Z2 → R|A|. Value iteration can be written as:

Q̄
(k)
ā,i′,j′ = R̄ā,i,j +

󰁛

i,j

WV
ā,i,j V̄

(k−1)
i′−i,j′−j , V̄

(k)
i,j = max

ā
Q̄

(k)
ā,i′,j′ . (1)

If we let f be a single application of the Bellman operator, Eq. 1 can be written as:

V̄ (k) = f(V̄ (k−1), R̄,WV) ≡ max
a

R̄a+WV
ā 󰂏 V̄ (k−1) ≡ max

a
R̄a+Conv2D(V̄ (k−1);WV

ā) (2)

where convolution WV
ā 󰂏 V is implemented as a 2D convolution layer Conv2D with learnable

weight WV . For simplicity, we later use θ to refer to network weights, and write each iteration as
vk+1 = f(vk, r,θ), where r stands for reward map R̄ and vk for value map V̄ (k).

Pitfall: Coupled forward and backward pass. The forward computation of VIN iteratively ap-
plies the Bellman update f . Thus, the optimization needs automatic differentiation: differentiating
through multiple layers of forward iterations f ◦ f ◦ . . . ◦ f . Using automatic differentiation for
VIN has a major drawback: the forward computation of value iteration (“forward pass”) and the
computation of its gradients (“backward pass”) are coupled. That is, if the planning horizon is en-
larged, VINs would need larger number of iterations to propagate the value from goals to remaining
positions. As used in VIN and GPPN (Tamar et al., 2016; Lee et al., 2018), it requires intensive
memory usage to store every intermediate iterate V (k) to enable automatic differentiation.

To illustrate the effects, we show the performance of explicit planners in Figure 2, including three
models with increasingly higher memory use and time cost: VIN, SymVIN (Zhao et al., 2022) and

3

NeurIPS 2022 Deep Reinforcement Learning Workshop

ConvGPPN (a modified version of GPPN (Lee et al., 2018)). They are trained on 15×15, 27×27, and
49× 49 path planning tasks. To solve larger mazes, each model consumes more memory while also
needing more iterations (x-axes). However, since explicit differentiation requires backpropagating
gradients layer by layer, with more iterations or larger tasks, some models either diverge or run out
of memory (11GB limit). We present further experimental details and analyses in Section 5.2.

4 APPROACH: FROM Explicit TO Implicit Differentiation FOR PLANNING

This section introduces a strategy with implicit differentiation to resolve the issue by decoupling the
forward and backward computation. We first derive implicit differentiation for VIN-based planners,
then propose a pipeline for implementing those planners with implicit differentiation. We refer to
them as implicit planners, in contrast to explicit planners with explicit differentiation. We analyze
the technical differences and similarities of implicit planners vs. explicit planners afterward.

4.1 IMPLICIT DIF FERENTIATION FOR VALUE ITERATION

We derive implicit differentiation for VIN and variants, where each layer f is a step as in value
iteration. Since the derivation does not rely on the concrete instantiation of f , we can freely replace
f from Conv2D with other types of layers. We will introduce these variants in the next subsection.

Implicit differentiation. A fixed-point problem can be solved iteratively by fixed-point iteration
and other algorithms. However, as pointed out in (Bai et al., 2019), naively differentiating through
the solver would require intensive memory usage, since it needs to store every intermediate iterate
V (k) to enable automatic differentiation, as in (Tamar et al., 2016; Lee et al., 2018). As also used
recently in (Bai et al., 2019; Nikishin et al., 2021; Gehring et al., 2021), another solution is to instead
differentiate directly through the fixed point z∗ using the implicit function theorem and implicit
differentiation. Then, we can skip all of this by decoupling forward (fixed-point iteration as the
solver) and backward pass (differentiating through the solver).

We start with the fixed point equation v󰂏 = f(v󰂏, r,θ) from the Bellman optimality equation.
Below we use x to stand for either input r or θ. The implicit function theorem tells us that, under
some mild conditions of the derivatives (f is continuously differentiable with non-singular Jacobian
∂f(v,x)/∂x), v󰂏(x) is a differentiable function of x locally: 0 = f(v󰂏(x),x).

For fixed point equation, we can assume the fixed point solution v󰂏 is obtained, thus this can be used
to compute the partial derivative w.r.t. to any quantity (input, parameter, etc) ∂v󰂏(·)/∂(·). It avoids
backpropagating gradients through the forward fixed-point iteration, which is computationally inef-
ficient and requires considerable memory to store intermediate iteration variables. Additionally, it
also allows to even use of non-differentiable operations in the forward pass.

Differentiating both sides of the equation v󰂏 = f(v󰂏,x) and applying the chain rule:

∂v󰂏(·)
∂(·) =

∂f(v󰂏(·),x)
∂(·) =

∂f(v󰂏,x)

∂v󰂏

v󰂏(·)
∂(·) +

∂f(v󰂏,x)

∂(·) , (3)

where we use (·) to denote an arbitrary variable. Rearranging terms:

∂v󰂏(·)
∂(·) =

󰀕
I − ∂f(v󰂏,x)

∂v󰂏

󰀖−1
∂f(v󰂏,x)

∂(·) . (4)

Solving backward pass. To integrate into a deep learning framework for automatic differentia-
tion, two quantities are needed: VJP (vector-Jacobian product) and JVP (Jacobian-vector product)
(Gilbert, 1992). Nevertheless, the computation of the inverse term (I − ∂f(v󰂏,x)/∂v󰂏)−1 can be a
major bottleneck due to its dimension (O(d2) or O(m4), where d = m2 is the matrix width and
m is the map size) (Bai et al., 2019; 2021). Additionally, when applied to VINs, we concatenate a
policy layer that maps the final equilibrium v󰂏 ∈ Rm×m to action logits Rm×m and compute the
cross-entropy loss ℓ(·) (Tamar et al., 2016). Thus, the derivative of loss is:

∂ℓ

∂(·) =
∂ℓ

∂v󰂏

∂v󰂏(·)
∂(·) =

∂ℓ

∂v󰂏

󰀕
I − ∂f(v󰂏,x)

∂v󰂏

󰀖−1
∂f(v󰂏,x)

∂(·) , (5)

4

NeurIPS 2022 Deep Reinforcement Learning Workshop

Environment

Mapper

Planner

Figure 3: The proposed pipeline of implicit planning by using implicit differentiation.

Defining w as follows forms a linear fixed-point system (Bai et al., 2019):

w⊤ ≜ ∂ℓ

∂v󰂏

󰀕
I − ∂f(v󰂏,x)

∂v󰂏

󰀖−1

; w⊤ = w⊤ ∂f(v󰂏,x)

∂v󰂏
+

∂ℓ

∂v󰂏
. (6)

This backward pass fixed-point equation can also be solved by a generic fixed-point solver or root
finder. Then, we can substitute the solution w back: ∂ℓ/∂(·) = w⊤∂f(v󰂏,x)/∂(·). The computation
is then purely based on VJP and JVP. In summary, an implicit planner needs to solve both the
(nonlinear) forward fixed-point system and the (linear) backward fixed-point system, as in DEQ.

4.2 A PIPELINE OF IMPLICIT PLANNING

We can derive variants of VIN using implicit differentiation by abstracting out the implementation
of value iteration layer. In this section, we propose a generic implicit planning pipeline to extend
our approach to Gated Path Planning Networks (GPPN) (Lee et al., 2018) and Symmetric VIN
(SymVIN) (Zhao et al., 2022). Spatial Planning Transformers (SPT) (Chaplot et al., 2021) also fits
into the pipeline, but it performs less well, as discussed in Section C.

Figure 3 shows the general pipeline, where the network layer fθ can be replaced by any single
layer that is capable of iterating values. The pipeline follows VIN and GPPN, where for 2D path
planning a map Z2 → {0, 1} is provided, and the planners’ output actions (their logits) for each
position Z2 → R|A|. We also run on other tasks including visual navigation, 2-DOF configuration
space manipulation, and 2-DOF workspace manipulation, where all these tasks can be represented
as taking a form of map “signal” over grid Z2, as previously been done (Zhao et al., 2022; Chaplot
et al., 2021). We use four directions as actions for all tasks: A = (north,west,south,east).

Planner instantiations. We now introduce the instantiations of implicit planners one by one. We
focus on the value iteration part (omit map input and action output), and all planners follow the form
V̄ (k+1) = fθ(V̄

(k), R̄) (bars omitted later). There are two design principles: (1) input inject (R̄
must be input, as input x) and (2) weight-tied (θ is shared across layers f), as also used in DEQ
(Bai et al., 2019). Specifically, the purpose of input inject is that fixed-point solution V̄ 󰂏 does not
depend on initialization V̄ (0), so we must pass information of the map through input inject (by R̄).

(i) ID-VIN uses regular 2D translation-equivariant convolution layer, where f(V,R) = maxa R
a +

Conv2D(V ; θ). (ii) ID-SymVIN aims to integrate symmetry into planning and uses equivariant
E(2)-steerable CNN (Weiler & Cesa, 2021). It has similar form to VIN and just replaces Conv2D
with SteerableConv, thus the form is f(V,R) = maxa R

a + SteerableConv(V ; θ).

(iii) ID-ConvGPPN is based on our modified version of GPPN [Redacted for anonymous review],
where we (1) use GRU since it has a single input with form z′ = GRU(z, x) and is easier to
integrate into our current form, (2) replace all fully connected layers with convolution layers, and
(3) inject R to every step. The result is that every layer is a ConvGRU, instead of LSTM in GPPN:
f(V,R) = ConvGRU(V,R; θ). Note that the GPPN variants do not have max in each iteration
anymore and directly take reward R to the recurrent cell (Lee et al., 2018).

Mapper Layer. We can handle tasks with more challenging input, such as visual navigation and
workspace manipulation (Lee et al., 2018; Chaplot et al., 2021; Zhao et al., 2022), by learning an
additional mapping network (mapper) to first map the input to a 2D map. Further details about
environments and mapper implementation are deferred to Section 5.1 and Section C.

5

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 4: Performance of implicit planners on 2D navigation tasks. Since the forward and backward pass are
decoupled, the implicit planners can keep consistent runtime and memory cost for backward pass while have
forward pass of value iteration converged for large tasks and iterations.

Optimization. We adopt a body of work around deep equilibrium models (DEQ) (Bai et al., 2019;
2020; 2021), which adapts several empirically useful techniques. Since we have abstracted out
the implementation of value iteration as fixed-point solving, we can use any fixed-point solver for
f(v,θ) = v or root solver for v − f(v,θ) = 0. As VIN does through its feedforward network
(Tamar et al., 2016), a naı̈ve solver is forward iteration f(vk,θ) = vk+1. Additionally, recent work
has been using Anderson’s method or Broyden’s method (Bai et al., 2019; 2020). We empirically
compare using forward iteration or Anderson solver in forward and backward pass, separately. Note
that SymVIN requires the entire forward pass to be equivariant, so the design of the forward solver
needs extra care. We provide additional implementation details and results in Section C and E.

4.3 IMPLICIT VS. EXPLICIT DIF FERENTIABLE PLANNERS

Underlying computational similarity. The gradient computation is done by automatic differenti-
ation (Gilbert, 1992). For explicit differentiation, the gradients are computed through direct back-
propagation and the implementation is also based on efficiently computing vector-Jacobian product
(VJP) and Jacobian-vector product (JVP) (Bai et al., 2019). Christianson (1994) studied automatic
differentiation for implicit differentiation of fixed-point system. The only difference is the number
of operations required and that implicit differentiation is based on the Jacobian at the equilibrium.
We derive the connection in Section B.1.

Comparison: Implicit vs. explicit planners. Continuing on the empirical comparison, we show
the performance of our three implicit planners with different iterations in forward pass in Figure 4.
Compared to explicit planners in Figure 2, our implicit planners converge stably with larger (max)
forward-pass iterations, while explicit planners sometimes diverge on large iterations.

Note that we should not directly compare implicit and explicit planners with the same numbers of
forward iteration (horizontal axis), because they refer to different things: implicit planners rely on
a reasonable equilibrium from forward pass to solve backward fixed-point equation (more forward
iterations would be better), while for explicit planners # iterations = # layers (more iterations/layers
leads to instability). We present further analyses in Section 5.2.

Tradeoff: The quality of equilibrium. Theoretically, implicit planners have a constant cost of the
backward pass with respect to the forward planning horizon. However, the backward pass requires
the Jacobian of the final equilibrium v󰂏 ≈ vK from the forward pass. If the equilibrium v󰂏 is not
solved reasonably well, the backward pass in Eq. 6 would iterate based on an inaccurate Jacobian
∂f(v󰂏,x)/∂v󰂏, which would cause poor performance. In contrast, because explicit planners compute
exact gradients by backpropagation through layers, they do not suffer from this issue. Additionally,
fewer iterations (layers) would also alleviate their convergence issues.

Empirically, with fewer forward iterations (e.g., 10), we observed a performance drop from implicit
planners. Although explicit planners also perform worse with fewer layers, they have a smaller
drop compared to implicit planners. However, when scaling up to more forward iterations Kfwd
(e.g. ≥ 30 iterations, which are necessary for maps ≥ 27 × 27) implicit planners may solve the
equilibrium well enough and are more favorable because of their efficient backward pass. Moreover,
we empirically found that using around Kbwd ≈ 15 iterations for backward pass works well enough
consistently across different map sizes (15 × 15 through 49 × 49). Since both explicit and implicit
differentiation use a similar amount of vector-matrix products, using more than Klayer ≥ 15 ≈ Kbwd
would consume more resources and favor implicit planners.

6

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 5: (1) Workspace manipulation. The top-down view is the workspace of a 2-DOF manipulation task.
It is mapped by a mapper layer to configuration space, shown in subfigure (2), and provided to 2D planners as
well. (3) Visual navigation. The environment provides a set of egocentric panoramic images for each location,
where a set of panoramic images in four directions is visualized. Then, a mapper layer takes them as input and
predicts a map, visualized in subfigure (4). The predicted map is used for 2D path planning.

5 EMPIRICAL ANALYSIS

We present more results on convergence, scalability, generalization, and efficiency on four different
tasks, which extends the study in previous sections on comparing implicit vs. explicit planning.

5.1 ENVIRONMENTS AND SETUP

Environments and datasets. We run our implicit and explicit planners on four types of tasks:
(1) 2D navigation, (2) visual navigation, (3) 2 degrees of freedom (2-DOF) configuration space
manipulation, and (4) 2-DOF workspace manipulation. These tasks require planning on either
given (2D navigation and 2-DOF configuration-space manipulation) or learned maps (visual navi-
gation and 2-DOF workspace manipulation), where the maps are 2D regular grid as in prior work
(Tamar et al., 2016; Lee et al., 2018; Chaplot et al., 2021). To learn maps, a planner needs to jointly
learn a mapper that converts egocentric panoramic images (visual navigation) or workspace states
(workspace manipulation) into a 2D grid. We follow the setup in (Lee et al., 2018; Chaplot et al.,
2021) and further discuss in Section D. In both cases, we randomly generate training, validation and
test data of 10K/2K/2K maps for all map sizes. For all maps, the action space is to move in 4 ↺
directions: A = (north,west,south,east).

Training and evaluation. We report success rate and training curves over 5 seeds. The training
process (on given maps) follows (Tamar et al., 2016; Lee et al., 2018; Zhao et al., 2022), where we
train 60 epochs with batch size 32, and use kernel size F = 3 by default. We use RTX 2080 Ti cards
with 11GB memory for training, thus we use 11GB as the memory limit for all models.

5.2 CONVERGENCE AND SCALABILITY

In the previous sections with Figure 2 and 4, we have presented quantitive analysis of implicit and
explicit planners in terms of convergence with more iterations and scalability on larger tasks. Here,
we provide the detailed setup of the experiment and put the attention more on the qualitative side.

Setup. We train all models on 2D maze navigation tasks with map sizes 15× 15, 27× 27, and 49×
49. We use Klayer = 30, 50, 80 iterations for explicit planners, which is effectively the number of
layers in their networks. Correspondingly, for implicit planners, we choose to use forward iteration
solver for forward pass and Anderson solver for backward pass. We fix the number of iterations of
backward solver as Kbwd = 15 and of forward solver as Kfwd = 30, 50, 80.

Results. We examine results by algorithm and focus on their trend with iteration number (x-axis)
and map size (column), not just the absolute numbers. The conclusion already mentioned in the
above section: Beyond an intermediate iteration number (around 30-50), implicit planners are more
favorable because of scalability and computational cost. We present other analyses here.

We start from ConvGPPN and ID-ConvGPPN, which perform the best in explicit and implicit plan-
ner class, respectively. They also have the most number of parameters and use greatest time because
of the gates in ConvGRU units. As shown in Figure 2, this also caused two issues of ConvGPPN:
scalability to larger maps/iterations (out of memory for 27× 27 80 iterations and 49× 49 50 and 80
iterations), and also convergence stability (e.g. 27× 27 50 iterations).

7

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 6: The runtime (in seconds) on 2D navigation tasks with size 15× 15, 27× 27, and 49× 49, averaged
over 5 seeds. The explicit planners are on the left six figures and the implicit planners on the right. Missing
dots are due to out of memory caused by explicit differentiation. The upper row is for forward pass runtime,
and the lower row is for backward runtime. The horizontal axes mean differently: (1) explicit planners: the
number of layers Klayer, also number of iterations, and (2) implicit planners: the forward pass iterations Kfwd.

Figure 7: (Left) Training curves on 2D maze navigation 15 × 15 maps, with 80 layers for explicit planners
and 80 iterations for implicit planners. (Right) Training curves on 49 × 49 maps, with 30 layers for explicit
planners (due to scalability issue) and 80 iterations for implicit planners.

As for SymVIN and ID-SymVIN, they replace Conv2D with SteerableConv, with computa-
tional cost slightly higher than VIN and much lower than ConvGPPN. Thus, they can successfully
run on all tasks and iteration numbers. However, we find that explicit SymVIN may diverge due
to bad initialization, and this is more severe if the network is deeper (more iterations), as in Fig-
ure 2’s 50 and 80 iterations. Nevertheless, ID-SymVIN alleviates this issue, since implicit planning
decouples forward and backward pass, so the gradient computation is not affected by forward pass.

Furthermore, VIN and ID-VIN are surprisingly less affected by the number of iterations and problem
scale. We find their forward passes tends to converge faster to reasonable equilibria, thus further
increasing iteration does not help, nor break convergence as long as memory is sufficient.

Forward and backward runtime. We visualize the runtime of explicit and implicit planners in Fig-
ure 6. For implicit planners, we use the forward-iteration solver for the forward pass and Anderson
solver for the backward pass. Note that in the bottom left, we intentionally plot backward runtime
vs. forward pass iterations. This emphasizes that implicit planners decouple forward and backward
passes because the backward runtime does not rely on forward pass iterations. Instead, for explicit
planners, value iteration is done by network layers, thus the backward pass is coupled: the runtime
increases with depth and some runs failed due to limited memory (11GB, see missing dots).

Therefore, this set of figures shows better scalability of implicit planners (no missing dots – out of
memory – and constant backward time). In terms of absolute time, the forward runtime of implicit
planners when using the forward solver is comparable with successful explicit planners.

5.3 TRAINING PERFORMANCE

Setup. Beyond evaluating generalization to novel maps, we compare their training efficiency with
learning curves, to give a general impression of the training. Each learning curve is aggregated over
5 seeds, which are from the models in the above section. The learning curves are for all planners on

8

NeurIPS 2022 Deep Reinforcement Learning Workshop

15× 15 maps (Figure 7 left) and 49× 49 maps (Figure 7 right, 30 layers for explicit planners – due
to scalability issue – and 80 iterations for implicit planners).

Results. On 15 × 15 maps, we show Klayer = 80 layers for explicit planners and Kfwd = 80
iterations for implicit planners. ID-ConvGPPN performs the best among all planners and is much
more stable than its explicit counterpart ConvGPPN. ID-SymVIN learns reliably, while SymVIN
fails to converge due to instability from 80 layers. ID-VIN and VIN are comparable throughout the
training. On 49×49 maps, we visualize Klayer = 30 layers for explicit planners (due to their limited
scalability) and Kfwd = 80 iterations for implicit planners. ConvGPPN can not run at all even for
only 30 layers, while ID-ConvGPPN still reaches a near-perfect success rate. ID-SymVIN learns
slightly better than SymVIN and reaches a better number at the end. ID-VIN has a similar trend to
VIN, although it has a slight drop, potentially due to the complexity of the task.

5.4 PERFORMANCE ON MORE TASKS

Table 1: Averaged test success rate (%) over 5 seeds for using 10K/2K/2K dataset on the rest of 3 types of
tasks. We highlight entry with italic for runs with at least one diverged trial (any success rate < 20%).

Type Methods 18× 18 Mani. 36× 36 Mani. Workspace Mani. Visual Nav.

Explicit
VIN 89.65±7.97 74.75±8.18 80.98±3.84 66.11±8.91

SymVIN 55.15±49.54 65.72±47.11 82.17±24.72 96.04±4.24

ConvGPPN 79.71±20.71 70.55±36.13 70.23±19.44 81.76±31.04

Implicit
(ours)

ID-VIN 80.53±6.98 56.27±20.92 77.17±7.24 62.53±15.93

ID-SymVIN 99.63±0.08 98.53±1.42 87.60±24.11 86.41±30.34

ID-ConvGPPN 97.28±0.74 93.60±1.68 92.60±1.83 98.91±0.34

Setup. We run all planners on the other three challenging tasks. For visual navigation, we
randomly generate 10K/2K/2K maps using the same strategy as 2D navigation and then render
four egocentric panoramic views for each location from produced 3D environments with Gym-
MiniWorld (Chevalier-Boisvert, 2018). For configuration-space manipulation and workspace
manipulation, we randomly generate 10K/2K/2K tasks with 0 to 5 obstacles in workspace. In
configuration-space manipulation, we manually convert each task into a 18 × 18 or 36 × 36 map
(20◦ or 10◦ per bin). The workspace task additionally needs a mapper network to convert the 96×96
workspace (image of obstacles) to an 18× 18 2-DOF configuration space (2D occupancy grid). We
provide additional details in the Section D.

Results. In Table 1, due to space limitations, we average over Klayer = 30, 50, 80 for explicit plan-
ners and Kfwd = 30, 50, 80 for implicit planners. For each task, we present the mean and standard
deviation over 5 seeds times three hyperparameters and delay the separated results to Section E. We
italicize entries for runs with at least one diverged trial (any success rate < 20%).

Generally, implicit planners perform much more stably. On 18 × 18 or 36 × 36 configuration-
space manipulation, ID-SymVIN and ID-ConvGPPN reach almost perfect results, while ID-VIN
has diverged runs on 36× 36 (marked in italic). SymVIN and ConvGPPN are more unstable, while
VIN even outperforms them and is also better than ID-VIN. On 18 × 18 workspace manipulation,
because of the difficulty of jointly learning maps and potentially planning on inaccurate maps, most
numbers are worse than in configuration-space. ID-ConvGPPN still performs the best, and other
methods are comparable. For 15× 15 visual navigation, it needs to learn a mapper from panoramic
images and is more challenging. ID-ConvGPPN is still the best. ID-SymVIN exhibits some failed
runs and gets underperformed by SymVIN in these seeds, and ID-VIN is comparable with VIN.

Across all tasks, the results confirm the superiority of scalability and convergence stability of implicit
planners and demonstrate the ability of jointly training mappers (with explicit differentiation for this
layer) even when using implicit differentiation for planners.

6 CONCLUSION

This work studies how VIN-based differentiable planners can be improved from an implicit-function
perspective: using implicit differentiation to solve the equilibrium imposed by the Bellman equation.
We develop a practical pipeline for implicit planning and propose implicit versions of VIN, SymVIN,

9

NeurIPS 2022 Deep Reinforcement Learning Workshop

and ConvGPPN, which is comparable to or outperforms their explicit counterparts. We find that
implicit planners can scale up to longer planning-horizon tasks and larger iterations. In summary,
implicit planners are favorable for these cases to explicit planners for several reasons: (1) better
performance mainly due to stability, (2) can scale up while some explicit planners fail due to memory
limit, (3) less computation time. On the contrary, if using too few iterations, the equilibrium may be
poorly solved, and explicit planners should be used instead. While we focus on value iteration, the
idea of implicit differentiation is general and applicable beyond path planning, such as in continuous
control where Neural ODEs can be deployed to solving ODEs or PDEs.

7 REPRODUCIBILITY STATEMENT

We provide an appendix with extended details of implementation in Section D, experiment details
in Section D, and additional results in Section E. We plan to open-source our code next.

10

NeurIPS 2022 Deep Reinforcement Learning Workshop

REFERENCES

Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization as a Layer in Neural Net-
works. arXiv:1703.00443 [cs, math, stat], October 2019. URL http://arxiv.org/abs/
1703.00443. arXiv: 1703.00443.

Brandon Amos and Denis Yarats. The Differentiable Cross-Entropy Method. September 2019. doi:
10.48550/arXiv.1909.12830. URL https://arxiv.org/abs/1909.12830v4.

Pierre-Luc Bacon, Florian Schfer, Clement Gehring, Animashree Anandkumar, and Emma Brun-
skill. A Lagrangian Method for Inverse Problems in Reinforcement Learning. pp. 12, 2019.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. arXiv:1909.01377 [cs,
stat], October 2019. URL http://arxiv.org/abs/1909.01377. arXiv: 1909.01377.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Multiscale Deep Equilibrium Models.
arXiv:2006.08656 [cs, stat], November 2020. URL http://arxiv.org/abs/2006.
08656. arXiv: 2006.08656.

Shaojie Bai, Vladlen Koltun, and J. Zico Kolter. Stabilizing Equilibrium Models by Jacobian Regu-
larization. Technical Report arXiv:2106.14342, arXiv, June 2021. URL http://arxiv.org/
abs/2106.14342. arXiv:2106.14342 [cs, stat] type: article.

Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable Spatial Planning using
Transformers. arXiv:2112.01010 [cs], December 2021. URL http://arxiv.org/abs/
2112.01010. arXiv: 2112.01010.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary
Differential Equations. Technical Report arXiv:1806.07366, arXiv, December 2019. URL
http://arxiv.org/abs/1806.07366. arXiv:1806.07366 [cs, stat] type: article.

Maxime Chevalier-Boisvert. Miniworld: Minimalistic 3d environment for rl & robotics research.
https://github.com/maximecb/gym-miniworld, 2018.

Bruce Christianson. Reverse accumulation and attractive fixed points. Optimization Methods
and Software, 3(4):311–326, January 1994. ISSN 1055-6788, 1029-4937. doi: 10.1080/
10556789408805572. URL http://www.tandfonline.com/doi/abs/10.1080/
10556789408805572.

Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-Augmented Actor-Critic: Backpropagating
through Paths. arXiv:2005.08068 [cs, stat], May 2020. URL http://arxiv.org/abs/
2005.08068. arXiv: 2005.08068.

Andreea Deac, Petar Velikovi, Ognjen Milinkovi, Pierre-Luc Bacon, Jian Tang, and Mladen Nikoli.
Neural Algorithmic Reasoners are Implicit Planners. October 2021. URL https://arxiv.
org/abs/2110.05442v1.

Clement Gehring, Kenji Kawaguchi, Jiaoyang Huang, and Leslie Pack Kaelbling. Understanding
End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization. May
2021. URL https://openreview.net/forum?id=xj2sE--Q90e.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Y. Tsai. Implicit Deep
Learning. Technical Report arXiv:1908.06315, arXiv, August 2020. URL http://arxiv.
org/abs/1908.06315. arXiv:1908.06315 [cs, math, stat] type: article.

Jean Charles Gilbert. Automatic differentiation and iterative processes. Optimization Methods
and Software, 1(1):13–21, January 1992. ISSN 1055-6788. doi: 10.1080/10556789208805503.
URL https://doi.org/10.1080/10556789208805503. Publisher: Taylor & Francis
eprint: https://doi.org/10.1080/10556789208805503.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, Second Edition. SIAM, November 2008. ISBN 978-0-89871-659-7.
Google-Books-ID: qMLUIsgCwvUC.

11

http://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1909.12830v4
http://arxiv.org/abs/1909.01377
http://arxiv.org/abs/2006.08656
http://arxiv.org/abs/2106.14342
http://arxiv.org/abs/2112.01010
http://arxiv.org/abs/1806.07366
https://github.com/maximecb/gym-miniworld
http://www.tandfonline.com/doi/abs/10.1080/10556789408805572
http://arxiv.org/abs/2005.08068
https://arxiv.org/abs/2110.05442v1
https://openreview.net/forum?id=xj2sE--Q90e
http://arxiv.org/abs/1908.06315
https://doi.org/10.1080/10556789208805503

NeurIPS 2022 Deep Reinforcement Learning Workshop

Christopher Grimm, Andr Barreto, Satinder Singh, and David Silver. The Value Equivalence Prin-
ciple for Model-Based Reinforcement Learning. arXiv:2011.03506 [cs], November 2020. URL
http://arxiv.org/abs/2011.03506. arXiv: 2011.03506.

Christopher Grimm, Andr Barreto, Gregory Farquhar, David Silver, and Satinder Singh. Proper
Value Equivalence. arXiv:2106.10316 [cs], December 2021. URL http://arxiv.org/
abs/2106.10316. arXiv: 2106.10316.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sbastien Racanire, Thophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
Timothy Lillicrap. An investigation of model-free planning. arXiv:1901.03559 [cs, stat], May
2019. URL http://arxiv.org/abs/1901.03559. arXiv: 1901.03559.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to Control: Learn-
ing Behaviors by Latent Imagination. arXiv:1912.01603 [cs], March 2020. URL http:
//arxiv.org/abs/1912.01603. arXiv: 1912.01603.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep Learning for Planning under Partial
Observability. arXiv:1703.06692 [cs, stat], November 2017. URL http://arxiv.org/
abs/1703.06692. arXiv: 1703.06692.

Steven M. LaValle. Planning Algorithms. Cambridge University Press, May 2006. ISBN 978-1-
139-45517-6.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
Path Planning Networks. arXiv:1806.06408 [cs, stat], June 2018. URL http://arxiv.org/
abs/1806.06408. arXiv: 1806.06408.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-
Oriented Model-Based Reinforcement Learning with Implicit Differentiation. Technical Re-
port arXiv:2106.03273, arXiv, June 2021. URL http://arxiv.org/abs/2106.03273.
arXiv:2106.03273 [cs, stat] type: article.

Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa C. Smith, and Jelena Kovaevi.
Generalized Value Iteration Networks: Life Beyond Lattices. arXiv:1706.02416 [cs], October
2017. URL http://arxiv.org/abs/1706.02416. arXiv: 1706.02416.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value Prediction Network. arXiv:1707.03497 [cs],
November 2017. URL http://arxiv.org/abs/1707.03497. arXiv: 1707.03497.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal Difference Models:
Model-Free Deep RL for Model-Based Control. arXiv:1802.09081 [cs], February 2018. URL
http://arxiv.org/abs/1802.09081. arXiv: 1802.09081.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/
1505.04597.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lill-
icrap, and David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model. arXiv:1911.08265 [cs, stat], November 2019. URL http://arxiv.org/abs/
1911.08265. arXiv: 1911.08265.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal Planning
Networks. arXiv:1804.00645 [cs, stat], April 2018. URL http://arxiv.org/abs/1804.
00645. arXiv: 1804.00645.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive com-
putation and machine learning series. The MIT Press, Cambridge, Massachusetts, second edition
edition, 2018. ISBN 978-0-262-03924-6.

12

http://arxiv.org/abs/2011.03506
http://arxiv.org/abs/2106.10316
http://arxiv.org/abs/1901.03559
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1703.06692
http://arxiv.org/abs/1806.06408
http://arxiv.org/abs/2106.03273
http://arxiv.org/abs/1706.02416
http://arxiv.org/abs/1707.03497
http://arxiv.org/abs/1802.09081
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1804.00645

NeurIPS 2022 Deep Reinforcement Learning Workshop

Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value Iteration Net-
works. In Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
c21002f464c5fc5bee3b98ced83963b8-Abstract.html.

Tingwu Wang and Jimmy Ba. Exploring Model-based Planning with Policy Networks. June 2019.
URL https://arxiv.org/abs/1906.08649v1.

Thophane Weber, Sbastien Racanire, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez
Rezende, Adria Puigdomnech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu,
Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra. Imagination-Augmented
Agents for Deep Reinforcement Learning. arXiv:1707.06203 [cs, stat], February 2018. URL
http://arxiv.org/abs/1707.06203. arXiv: 1707.06203.

Maurice Weiler and Gabriele Cesa. General $E(2)$-Equivariant Steerable CNNs. arXiv:1911.08251
[cs, eess], April 2021. URL http://arxiv.org/abs/1911.08251. arXiv: 1911.08251.

Ezra Winston and J. Zico Kolter. Monotone operator equilibrium networks. arXiv:2006.08591 [cs,
stat], May 2021. URL http://arxiv.org/abs/2006.08591. arXiv: 2006.08591.

Linfeng Zhao, Xupeng Zhu, Lingzhi Kong, Robin Walters, and Lawson L. S. Wong. Integrating
Symmetry into Differentiable Planning. Technical Report arXiv:2206.03674, arXiv, June 2022.
URL http://arxiv.org/abs/2206.03674. arXiv:2206.03674 [cs] type: article.

13

https://proceedings.neurips.cc/paper/2016/hash/c21002f464c5fc5bee3b98ced83963b8-Abstract.html
https://arxiv.org/abs/1906.08649v1
http://arxiv.org/abs/1707.06203
http://arxiv.org/abs/1911.08251
http://arxiv.org/abs/2006.08591
http://arxiv.org/abs/2206.03674

NeurIPS 2022 Deep Reinforcement Learning Workshop

CONTENTS

A Outline 14

B Extended Discussion 14

B.1 Computational Similarity . 14

C Implementation Details 15

C.1 Implementation of ID-SPT . 15

C.2 Optimization of Implicit Planners . 15

D Experiment Details 15

D.1 Building Mapper Networks . 15

D.2 Training Setup . 16

E Additional Results 16

E.1 Generalization to Larger Maps . 16

E.2 Runtime of Implicit Planners . 17

E.3 Performance on More Tasks: Complete Results . 17

E.4 Jacobian Regularization . 18

A OUTLINE

We provide additional discussion, extended details of implementation and experiments, and addi-
tional results in the appendix. The table of content is available above.

B EXTENDED DISCUSSION

B.1 COMPUTATIONAL SIMILARITY

In value iteration, we iteratively apply f until convergence: f(vk, r,θ) = vk+1, then the outer
loop optimizes one step on updating the model θ. We can generalize to time-varying optimization
problem with equality constraint (Bacon et al., 2019): ft(vt, r,θt) = vt+1, and we assume a
mapping φt gives the inner optimization of VI: φt = ft−1 ◦ . . . ◦ f0,φt : θ0:t 󰀁→ vt. We

∂ℓ

∂θt
=

∂ℓ

∂vT

∂φT

∂θt
=

∂ℓ

∂vT
λ⊤
T (7)

=
∂ℓ

∂vT

∂fT−1 (vT−1,θT−1)

∂vT−1

∂φT−1 (θT−1)

∂θt
(8)

=
∂ℓ

∂vT

∂fT−1

∂vT−1

∂fT−2

∂vT−2
· · · ∂φt (θt)

∂θt
(9)

The recursion is then given by

λ⊤
T =

∂φT (θT)

∂θT
, λ⊤

k+1 =
∂fk

∂vk
· λ⊤

k . (10)

The vector λ⊤
t is the adjoint vector, or costate, in control theory. The recursive update is the adjoint

equation. The computation is exactly the vector-Jacobian product used in automatic differentiation
(Griewank & Walther, 2008).

14

NeurIPS 2022 Deep Reinforcement Learning Workshop

This shows close connection between Equation 6 on the fixed-point solving for backward pass of
implicit differentiation and 10 on the recursive computation for explicit differentiation.

C IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF ID-SPT

Beyond VIN, SymVIN and ConvGPPN, we also tried implementing an implicit differentiation ver-
sion of Spatial Planning Transformers (SPT) (Chaplot et al., 2021). However, we find the reimple-
mentation of SPT and also the implicit version both do not work well enough. We first introduce
how we implemented it and discuss our hypotheses on its failure.

Implementation. ID-SPT is based on a Transformer architecture, SPT. SPT is proposed to facilitate
global value propagation using the global receptive field of self-attention layers in Transformers.
Different from other variants, SPT uses heavier global self-attention layer and does not scale up
the number of layers with map size, although the number of weights increases quadratically with
size. We also implement an implicit version by using individual self-attention layer, where f(V) =
SelfAtt(V ; θ). Even SPT fits into our pipeline, we empirically find SPT behaves unlike other
planners since it does not inject reward R as input.

Discussion of performance. In our experiments, we find the modified ID-SPT cannot outperform
SPT.

Since SPT uses multiple Transformer (self-attention) layers, it is computationally expensive Thus,
we use much smaller number of iterations for ID-SPT: K = 3, 5, 10, 15, because the original paper
uses K = 5 layers across all map sizes.

However, we plot the convergence curve for its forward and backward pass. We find that the forward
pass can only convert to around 100 = 1 to 10−1 level (relative residual) and cannot further decrease,
while other planners have their forward pass converged around at least 10−2. We find this may affect
the backward pass, as the Jacobian at the solved equilibrium is used in solving the backward fixed-
point iteration.

Considering these, we think the reason might come from the fact that SPT uses Transformer layers,
which is too expressive and tends to learn an arbitrary output as it needs.

C.2 OPTIMIZATION OF IMPLICIT PLANNERS

To optimize the performance of implicit planners, we also implemented other techniques. We tried
Jacobian regularization from (Bai et al., 2021), which estimates the Jacobian

󰀐󰀐󰀐∂fθ(v
󰂏;x)

∂v󰂏

󰀐󰀐󰀐
F

at the
equilibrium.

We experiment it on ID-VIN, since other methods have more memory use and Jacobian loss would
cause out of memory. However, it does not perform as we expected and rather decreases the success
rate. We provide additional results on this in the later result section.

D EXPERIMENT DETAILS

D.1 BUILDING MAPPER NETWORKS

For visual navigation. For navigation, we follow the setting in GPPN (Lee et al., 2018). The input
is m×m panoramic egocentric RGB images in 4 directions of resolution 32×32×3, which forms a
tensor of m×m×4×32×32×3. A mapper network converts every image into a 256-dimensional
embedding and results in a tensor in shape m×m×4×256 and then predicts map layout m×m×1.

For the first image encoding part, we use a CNN with the first layer of 32 filters of size 8 × 8 and
stride of 4 × 4, and the second layer with 64 filters of size 4 × 4 and stride of 2 × 2, with a final
linear layer of size 256.

In the second obstacle prediction part, the first layer has 64 filters and the second layer has 1 filter,
all with filter size 3× 3 and stride 1× 1.

15

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 8: The U-net architecture we used as manipulation mapper.

Figure 9: Generalization to larger maps.

For workspace manipulation. For workspace manipulation, we use U-net Ronneberger et al.
(2015) with residual-connection He et al. (2015) as a mapper, see Figure.8. The input is 96 ×
96 top-down occupancy grid of the workspace with obstacles, and the target is to output 18 × 18
configuration space as the maps for planning.

During training, we pre-train the mapper and the planner separately for 15 epochs. Where the map-
per takes manipulator workspace and outputs configuration space. The mapper is trained to mini-
mize the binary cross entropy between output and ground truth configurations space. The planner
is trained in the same way as described in Section ??. After pre-training, we switch the input to the
planner from ground truth configuration space to the one from the mapper. During testing, we fol-
low the pipeline in Chaplot et al. (2021) that the mapper-planner only have access to the manipulator
workspace.

D.2 TRAINING SETUP

We try to mimic the setup in VIN and GPPN (Lee et al., 2018).

For non-SymPlan related parameters, we use learning rate of 10−3, batch size of 32 if possible
(GPPN variants need smaller), RMSprop optimizer.

For SymPlan parameters, we use 150 hidden channels (or 150 trivial representations for SymPlan
methods) to process the input map. We use 100 hidden channels for Q-value for VIN (or 100 regular
representations for SymVIN), and use 40 hidden channels for Q-value for GPPN and ConvGPPN
(or 40 regular representations for SymGPPN on 15×15, and 20 for larger maps because of memory
constraint).

E ADDITIONAL RESULTS

E.1 GENERALIZATION TO LARGER MAPS

Setup. In other experiments, we train the planners on the same map size with training case, while
this experiment aims for generalization to larger maps to examine its potential. All methods are
trained on 15×15 maps and tested on larger maps. We chose explicit planners with Klayer = 50 (for

16

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 10: Backward pass iterations vs. backward runtime.

stability concern) and implicit planners with Kfwd = 80. All methods are tested on six sampled map
sizes in 15×15 through 99×99, averaging over 5 seeds (5 model checkpoints) for each method and
1000 unseen maps for each map size. At test time, we keep the same iteration numbers as training
and do not increase them. The results are shown in Figure 9.

Results. VIN and ID-VIN both suffer from generalizing to larger maps and perform pretty sim-
ilar. ID-SymVIN is much better than ID-VIN, and outperform the explicit counterpart SymVIN.
ID-ConvGPPN generalizes fine, but is worse than ConvGPPN. We find that although ConvGPPN
suffers from training on large tasks (backward pass), since here we chose the best hyperparameter
for ConvGPPN on 15× 15, its inference (only forward pass) is pretty reliable as long as it can suc-
cessfully train. As expected, the success rate of all methods drops with increasing test map sizes.
While in general, both implicit and explicit planners generalize similarly well. This is expected
because implicit differentiation majorly improves scalability of the backward pass, while the main
bottleneck for generalization is the forward pass, where they do not have major difference.

E.2 RUNTIME OF IMPLICIT PLANNERS

Backward runtime. We visualize the runtime of backward pass of implicit planners for using
forward solver and Anderson solver in Figure 10. The experiment is done on 15× 15 maps.

As expected, using more backward pass iterations would increase the backward pass runtime. How-
ever, we also find that the backward pass has already converged at around 10 iterations, so increasing
the iteration will not help the training. Instead, the iterations of the forward pass are the main bot-
tleneck for scalability on larger maps. We show the results in the next paragraph.

Choice of fixed-point solver. We show the performance difference when using different solvers
on all implicit differentiable planners in Figure 11. For backward passes, the Anderson solver is
clearly better than the forward iteration solver. In terms of the forward passes, ID-SymVIN is not
compatible with the original Anderson solver, since SymVIN needs to keep the equivariance of
the intermediate variables by ordering them in a specific way. However, the Anderson solver has
reshaping operations that would break it.

E.3 PERFORMANCE ON MORE TASKS: COMPLETE RESULTS

In the main paper, we average over 30/50/80 forward iterations / layers. We here show the complete
results for each forward iteration / layer number for manipulation in Figure 12 and for visual navi-
gation in Figure 13. The results still follow the trends in the paper, where implicit planners tend to
converge more stably for larger iterations.

17

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 11: Success rate vs. different forward and backward solver and different backward pass
iterations.

Figure 12: Manipulation complete results.

E.4 JACOBIAN REGULARIZATION

We tune the Jacobian regularization from (Bai et al., 2021). We focus on tuning the Jacobian regu-
larization weight and frequency on 15 × 15 maps. The x-axis is a hyperparameter of the Anderson
solver for backward pass.

The results are in Figure 14. Each column corresponds to the frequency = 0%, 20%, 40%. Each
row is the weight = 2, 4, 8. However, the top left panel performs the best, which means zero
regularization.

18

NeurIPS 2022 Deep Reinforcement Learning Workshop

Figure 13: Visual navigation complete reuslts.

Figure 14: Tuning Jacobian regularization.

19

