
Published in Transactions on Machine Learning Research (08/2024)

AdaFlood: Adaptive Flood Regularization

Wonho Bae whbae@cs.ubc.ca
University of British Columbia

Yi Ren renyi.joshua@gmail.com
University of British Columbia

Mohamed Osama Ahmed mohamed.o.ahmed@borealisai.com
Borealis AI

Frederick Tung frederick.tung@borealisai.com
Borealis AI

Danica J. Sutherland dsuth@cs.ubc.ca
University of British Columbia & Amii

Gabriel L. Oliveira gabriel.oliveira@borealisai.com
Borealis AI

Reviewed on OpenReview: https: // openreview. net/ forum? id= 2s5YU6CSEz

Abstract

Although neural networks are conventionally optimized towards zero training loss, it has
been recently learned that targeting a non-zero training loss threshold, referred to as a
flood level, often enables better test time generalization. Current approaches, however,
apply the same constant flood level to all training samples, which inherently assumes all
the samples have the same difficulty. We present AdaFlood, a novel flood regularization
method that adapts the flood level of each training sample according to the difficulty of the
sample. Intuitively, since training samples are not equal in difficulty, the target training
loss should be conditioned on the instance. Experiments on datasets covering four diverse
input modalities—text, images, asynchronous event sequences, and tabular—demonstrate
the versatility of AdaFlood across data domains and noise levels.

1 Introduction

Preventing overfitting is an important problem of great practical interest in training deep neural networks,
which often have the capacity to memorize entire training sets, even ones with incorrect labels (Neyshabur
et al., 2015; Zhang et al., 2021). Common strategies to reduce overfitting and improve generalization per-
formance include weight regularization (Krogh & Hertz, 1991; Tibshirani, 1996; Liu & Ye, 2010), dropout
(Wager et al., 2013; Srivastava et al., 2014; Liang et al., 2021), label smoothing (Yuan et al., 2020), and data
augmentation (Balestriero et al., 2022).

Although neural networks are conventionally optimized towards zero training loss, it has recently been
shown that targeting a non-zero training loss threshold, referred to as a flood level, provides a surprisingly
simple yet effective strategy to reduce overfitting (Ishida et al., 2020; Xie et al., 2022). The original Flood
regularizer (Ishida et al., 2020) drives the mean training loss towards a constant, non-zero flood level, while
the state-of-the-art iFlood regularizer (Xie et al., 2022) applies a constant, non-zero flood level to each
training instance.

Training samples are, however, not uniformly difficult: some instances have more irreducible uncertainty
than others (i.e. heteroskedastic noise), while some instances are simply easier to fit than others. It may

1

https://openreview.net/forum?id=2s5YU6CSEz

Published in Transactions on Machine Learning Research (08/2024)

not be beneficial to aggressively drive down the training loss for training samples that are outliers, noisy, or
mislabeled. We explore this difference in the difficulty of training samples further in Section 3.1. To address
this issue, we present Adaptive Flooding (AdaFlood), a novel flood regularizer that adapts the flood level of
each training sample according to the difficulty of the sample (Section 3.2). We present theoretical support
for AdaFlood in Section 3.4.

Like previous flood regularizers, AdaFlood is simple to implement and compatible with any optimizer.
AdaFlood determines the appropriate flood level for each sample using an auxiliary network that is trained
on a subset of the training dataset. Adaptive flood levels need to be computed for each instance only
once, in a pre-processing step prior to training the main network. The results of this pre-processing step
are not specific to the main network, and so can be shared across multiple hyper-parameter tuning runs.
Furthermore, we propose a significantly more efficient way to train an auxiliary model based on fine-tuning,
which saves substantially in memory and computation, especially for overparameterized neural networks
(Sections 3.3 and 4.6).

Our experiments (Section 4) demonstrate that AdaFlood generally outperforms previous flood methods on
a variety of tasks, including image and text classification, probability density estimation for asynchronous
event sequences, and regression for tabular datasets. Models trained with AdaFlood are also more robust to
noise (Section 4.3) and better-calibrated (Section 4.4) than those trained with other flood regularizers.

2 Related Work

Regularization techniques have been broadly explored in the machine learning community to improve the
generalization ability of neural networks. Regularizers augment or modify the training objective and are
typically compatible with different model architectures, base loss functions, and optimizers. They can be
used to achieve diverse purposes including reducing overfitting (Hanson & Pratt, 1988; Ioffe & Szegedy, 2015;
Krogh & Hertz, 1991; Liang et al., 2021; Lim et al., 2022; Srivastava et al., 2014; Szegedy et al., 2016; Verma
et al., 2019; Yuan et al., 2020; Zhang et al., 2018), addressing data imbalance (Cao et al., 2019; Gong et al.,
2022), and compressing models (Ding et al., 2019; Li et al., 2020; Zhuang et al., 2020).

AdaFlood is a regularization technique for reducing overfitting. Commonly adopted techniques for reducing
overfitting include weight decay (Hanson & Pratt, 1988; Krogh & Hertz, 1991), dropout (Liang et al., 2021;
Srivastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015), label smoothing (Szegedy et al., 2016;
Yuan et al., 2020), and data augmentation (Lim et al., 2022; Verma et al., 2019; Zhang et al., 2018). Inspired
by work on double descent (Belkin et al., 2019; Nakkiran et al., 2021), Ishida et al. (2020); Xie et al. (2022)
proposed Flood and iFlood, respectively, to prevent the training loss from reaching zero by maintaining a
small constant value. In contrast to the original flood regularizer, which encourages the overall training loss
towards a constant target, iFlood drives each training sample’s loss towards some constant b.

AdaFlood instead uses an auxiliary model trained on a heldout dataset to assign an adaptive flood level to
each training sample. Using a heldout dataset to condition the training of the primary model is an effective
strategy in machine learning, and is regularly seen in meta-learning (Bertinetto et al., 2019; Franceschi et al.,
2018), batch or data selection (Fan et al., 2018; Mindermann et al., 2022), and neural architecture search
(Liu et al., 2019; Wang et al., 2021), among other areas.

3 Adaptive Flooding

Adaptive Flooding (AdaFlood) is a general regularization method for training neural networks; it can ac-
commodate any typical loss function and optimizer.

3.1 Problem Statement

Background Given a labeled training dataset D = {(xi, yi)}N
i=1, where xi ∈ X are data samples and

yi ∈ Y are labels, we train a neural network f : X → Ŷ by minimizing a training loss ℓ : Y × Ŷ → R. In
supervised learning we usually have ℓ ≥ 0, but in settings such as density estimation it may be negative.

2

Published in Transactions on Machine Learning Research (08/2024)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Di±culty (Test Loss)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
D

en
si

ty
CIFAR10 – 0% Noise

CIFAR10 – 20% Noise

CIFAR10 – 40% Noise

CIFAR100 – 0% Noise

CIFAR100 – 20% Noise

CIFAR100 – 40% Noise

(a) Dispersion of difficulty

Easy

Wrong

Hard

0 50 100 150 200 250
Epoch

10°3

10°2

10°1

100

T
ra

in
in

g
L
os

s

iFlood Easy

AdaFlood Easy

iFlood Wrong

AdaFlood Wrong

iFlood Hard

AdaFlood Hard

(b) Training dynamics by difficulty

Figure 1: (a) Illustration of how difficulties of examples are dispersed with and without label noise (where
the relevant portion of examples have their label switched to a random other label). (b) Comparison of
training dynamics on some examples between iFlood and AdaFlood. The “Hard” example is labeled horse,
but models usually predict cow; the “Wrong” example is incorrectly labeled in the dataset as cat (there is
no rat class).

While conventional training procedures attempt to minimize the average training loss, this can lead to
overfitting on training samples.

The original flood regularizer (Ishida et al., 2020) defines a global flood level for the average training
loss, attempting to reduce the “incentive” to overfit. Denote the average training loss by L(f, B) =
1
B

∑B
i=1 ℓ(yi, f(xi)), where f(xi) denotes the model prediction and B = {(xi, yi)}B

i=1 is a mini-batch with
size of B. Instead of minimizing L, Flood (Ishida et al., 2020) regularizes the training by minimizing

LFlood(f, B, b) = |L(f, B) − b| + b , (1)

where the hyperparameter b is a fixed flood level. Individual Flood (iFlood) instead assigns a “local” flood
level, trying to avoid instability observed with Flood (Xie et al., 2022):

LiFlood(f, B, b) = 1
B

B∑
i=1

(
|ℓ(yi, f(xi)) − b| + b

)
. (2)

Motivation Training samples are, however, not uniformly difficult: some are inherently easier to fit than
others. Figure 1a shows the dispersion of difficulty on CIFAR10 and 100 with various levels of added label
noise, as measured by the heldout cross-entropy loss from cross-validated models. Although difficulties on
CIFAR10 without noise are concentrated around difficulty ≤ 0.5, as the noise increases, they vastly spread
out. CIFAR100 has a wide spread in difficulty, even without noise. A constant flood level as used in iFlood
may be reasonable for un-noised CIFAR10, but it seems less appropriate for CIFAR100 or noisy-label cases.

Moreover, it may not be beneficial to aggressively drive the training loss for training samples that are outliers,
noisy, or mislabeled. In Figure 1b, we show training dynamics on an easy, wrong, and a hard example from
the training set of CIFAR10. With iFlood, each example’s loss converges to the pre-determined flood level
(0.03); with AdaFlood, the easy example converges towards zero loss, while the wrong and hard examples
maintain higher loss.

3.2 Proposed Method: AdaFlood

Many advances in efficient neural network training and inference, such as batch or data selection (Coleman
et al., 2020; Fan et al., 2018; Mindermann et al., 2022) and dynamic neural networks (Li et al., 2021; Verelst
& Tuytelaars, 2020), stem from efforts to address the differences in per-sample difficulty. AdaFlood connects
this observation to flooding. Intuitively, easy training samples (e.g. a correctly-labeled image of a cat in

3

Published in Transactions on Machine Learning Research (08/2024)

𝑓!"#,%

𝑓!"#,%𝑓!"#,&

𝑓!"#,&

𝑓

Figure 2: AdaFlood for settings where training data is limited and acquiring additional data is impractical.
In the first stage, we partition the training set into two halves and train two auxiliary networks faux,1 and
faux,2: one on each half. In the second stage, we use each auxiliary network to set the adaptive flood level
of training samples from the half it has not seen, via equation 4. The main network f is then trained on
the entire training set, minimizing the AdaFlood-regularized loss, equation 3. Note that the flood levels are
fixed over the course of training f and need to be pre-computed once only.

a typical pose) can be driven more aggressively to zero training loss without overfitting the model, while
doing so for noisy, outlier, or incorrectly-labeled training samples may cause overfitting. These types of data
points behave differently during training (Ren et al., 2022), and so should probably not be treated the same.
AdaFlood differentiates training samples by setting a sample-specific flood level θ = {θi}B

i=1 in its objective:

LAdaFlood(f, B, θ) = 1
B

B∑
i=1

(|ℓ(yi, f(xi)) − θi| + θi) . (3)

Here the sample-specific parameters θi should be set according to the individual sample’s difficulty. AdaFlood
estimates this quantity according to

θi = ℓ(yi, ϕγ(faux,i(xi), yi)), (4)

where faux,i is an auxiliary model trained with cross-validation such that xi is in its heldout set, and ϕγ(·)
is a “correction” function explained in a moment. Figure 2 illustrates the training process using equation 3,
Section 3.5 gives further motivation, and Section 3.4 provides further theoretical support.

The flood targets θi are fixed over the course of training the main network f , and can be pre-computed for
each training sample prior to the first epoch of training f . We typically use five-fold cross-validation as a
reasonable trade-off between computational expense and good-enough models to estimate θi, but see further
discussion in Section 3.3. The cost of this pre-processing step can be further amortized over many training
runs of the main network f since different variations and configurations of f can reuse the adaptive flood
levels.

Correction function. Unfortunately, the predictions from auxiliary models are not always correct even
when trained on most of the training set—if they were, our model would be perfect already. In particular,
the adaptive flood levels θi can be arbitrarily large for any difficult examples where the auxiliary model is
incorrect; this could lead to strange behavior when we encourage the primary model f to be very incorrect.
We thus “correct” the predictions with the correction function ϕγ , which mixes between the dataset’s label
and the heldout model’s signal.

For regression tasks, the predictions f(xi) ∈ R should simply be close to the labels yi ∈ R. The correction
function linearly interpolates the predictions and labels as,

ϕγ(faux(xi), yi) = (1 − γ)faux(xi) + γyi. (5)

4

Published in Transactions on Machine Learning Research (08/2024)

Algorithm 1 Training of Auxiliary Network(s) and AdaFlood
1: Train a single auxiliary network faux on the entire training set D ▷ Fine-tuning method only
2: for Daux,i in {Daux,i}n

i=1 do
3: Train faux,i, either from scratch or by fine-tuning faux, on D \ Daux,i

4: Save the adaptive flood level θi for each xi ∈ Daux,i using faux,i on x ∈ Daux,i

5: end for
6: Train the main model f using Equation (3) and adaptive flood levels θ computed above

Here γ = 0 fully trusts the auxiliary models (no “correction”), while γ = 1 disables flooding.

For K-way classification tasks, f(xi) ∈ RK is a vector of output probabilities (following a softmax layer)
and the label is yi ∈ [0, 1]K , usually considered as a one-hot vector. Cross-entropy loss is then computed
as: ℓ(yi, f(xi)) = −

∑K
k=1 yi,k log f(xi)k. Similar to the regression tasks, we define the correction function

ϕγ(faux(xi), yi) for classification tasks as a linear interpolation between the predictions and labels as:

ϕγ(faux,i(xi), yi) = (1 − γ)faux,i(xi) + γyi . (6)

Again, for γ = 0 there is no “correction,” and for γ = 1 flooding is disabled, as θi = −
∑K

k=1 yi,k log yi,k is
the lower bound of the cross-entropy loss.

The hyperparameter γ ∈ [0, 1] is perhaps simpler to interpret and search for than directly identifying a flood
level as in Flood or iFlood; in those cases, the level is unbounded (in [0, ∞) for supervised tasks and all of
R for density estimation) and the choice is quite sensitive to the particular task.

3.3 Efficiently Training Auxiliary Networks

Although the losses from auxiliary networks can often be good measures for the difficulties of samples, this
is only true when the number of folds n is reasonably large; otherwise the training set of size about n−1

n |D|
may be too much smaller than D for the model to have comparable performance. The computational cost
scales roughly linearly with n, however, since we must train n auxiliary networks: if we do this in parallel it
requires n times the computational resources, or if we do it sequentially it takes n times as long as training
a single model.

To alleviate the computational overhead for training auxiliary networks, we sometimes instead approximate
the process by fine-tuning a single auxiliary network. More specifically, we first train a single base model
faux on the entire training set D. We then train each of the n auxiliary models by randomly re-initializing
the last few layers, then re-training with the relevant fold held out. The overall process is illustrated in
Algorithm 1 and n = 2 case is described in Figure 3.

Although this means that xi does slightly influence the final prediction faux,i(xi) (“training on the test set”),
it is worth remembering that we use θi only as a parameter in our model, not to evaluate its performance:
xi is in fact a training data point for the overall model f being trained. This procedure is justified by
recent understanding in the field that in typical settings, a single data point only loosely influence the early
layers of a network. In highly over-parameterized settings (the “kernel regime”) where neural tangent kernel
theory is a good approximation to the training of faux (Jacot et al., 2018), re-initializing the last layer would
completely remove the effect of xi on the model. Even in more realistic settings, although the mechanism is
not yet fully understood, last layer re-training seems to do an excellent job at retaining “core” features and
removing “spurious” ones that are more specific to individual data points (Kirichenko et al., 2023; LaBonte
et al., 2023).

For smaller models with fewer than a million parameters, we use 2- or 5-fold cross-validation, since training
multiple auxiliary models is not much of a computational burden. For larger models such as ResNet18,
however, we use the fine-tuning method. This substantially reduces training time, since each fine-tuning
gradient step is less expensive and the models converge much faster given strong features from lower levels
than they do starting from scratch; Section 4.6 gives a comparison.

5

Published in Transactions on Machine Learning Research (08/2024)

𝑓!"# 𝑓!"#

Randomly initialize last few layers

Fine-tune

Fine-tune

Figure 3: Efficient fine-tuning method for training a auxiliary network when held-out split is n = 2. First, a
single model faux is trained on the entire training set D. Then, the last few layers of each of the n auxiliary
models are randomly re-initialized and re-trained with the relevant fold held out.

To validate the quality of the flood levels from the fine-tuned auxiliary network, we compare them to the
flood levels from n = 50 auxiliary models using ResNet18 (He et al., 2016) on CIFAR10 (Krizhevsky et al.,
2009); with n = 50, each model is being trained on 98% of the full dataset, and thus should be a good
approximation to the best that this kind of method can achieve. The Spearman rank correlation between
the flood levels θi from the fine-tuned method and the full cross-validation is 0.63, a healthy indication that
this method provides substantial signal for the “correct” θi. Our experimental results also reinforce that this
procedure chooses a reasonable set of parameters.

3.4 Theoretical Intuition

For a deeper understanding of AdaFlood’s advantages, we now examine a somewhat stylized supervised
learning setting: an overparameterized regime where the θi are nonetheless optimal.
Proposition 1. Let F be a set of candidate models, and suppose there exists an optimal model fopt ∈
arg minf∈F Ex,yℓ(y, f(x)), where ℓ is a nonnegative loss function. Given a dataset D = {(xi, yi)}N

i=1, let
femp denote a minimizer of the empirical loss L(f, D) = 1

N

∑N
i=1 ℓ(yi, f(xi)); suppose that, as in an over-

parameterized setting, L(femp, D) = 0. Also, let fada be a minimizer of the AdaFlood loss equation 3 using
“perfect” flood levels θ = {θi}N

i=1 where θi = ℓ(yi, fopt(xi)). Then we have that

L(femp, D) = 0 ≤ L(fopt, D) = L(fada, D). (7)

Furthermore, we have that

LAdaFlood(femp, D, θ) = 2L(fopt, D) ≥ L(fopt, D) = LAdaFlood(fopt, D, θ) = LAdaFlood(fada, D, θ). (8)

Proof. We know that L(fopt, D) will be approximately the Bayes risk, the irreducible distributional error
achieved by fopt; this holds for instance by the law of large numbers, since fopt is independent of the
random sample D. Thus, if the Bayes risk is nonzero and the θi are optimal, we can see that empirical risk
minimization of overparametrized models will find femp, and disallow fopt; minimizing LAdaFlood, on the
other hand, will allow the solution fopt and disallow the empirical risk minimizer femp.

With this choice of θi, we have that

LAdaFlood(f, D, θ) = 1
N

N∑
i=1

(
|ℓ(yi, f(xi)) − ℓ(yi, fopt(xi))| + ℓ(yi, fopt(xi))

)
.

Since | · | is nonnegative, we have LAdaFlood(f, D, θ) ≥ L(fopt, D) for any f , and LAdaFlood(fopt, D, θ) =
L(fopt, D); this establishes that fopt minimizes LAdaFlood, and that any minimizer fada must achieve
ℓ(yi, fada(xi)) = θi for each i, so L(fada, D) = L(fopt, D). Using that ℓ(yi, femp(xi)) = 0 for each i, as
is necessary for ℓ ≥ 0 when L(femp, D) = 0, shows LAdaFlood(femp, D, θ) = 1

N

∑N
i=1 2θi = 2L(fopt, D).

In settings where θi is not perfect (and we would not expect the auxiliary models to obtain perfect estimates
of the loss) the comparison will still approximately hold. If θi consistently overestimates the fopt loss, fopt will

6

Published in Transactions on Machine Learning Research (08/2024)

TSNE of the toy data

Regular
Irregular
Wrong Label

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Loss of training samples

Regular
Irregular
Wrong Label

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Loss of valid samples

Figure 4: Left: the t-SNE (Van der Maaten & Hinton, 2008) of toy Gaussian example; middle: loss of
different samples in the training set; right: loss of different samples in the validation set.

still be preferred to femp: for instance, if θi = 2ℓ(yi, fopt(xi)), then LAdaFlood(femp, D, θ) = 4L(fopt, D) ≥
3L(fopt, D) = LAdaFlood(fopt, D, θ). On the other hand, if θi = 1

2 ℓ(yi, fopt(xi))—a not-unreasonable situation
when using a correction function—then LAdaFlood(femp, D, θ) = L(fopt, D) = LAdaFlood(fopt, D, θ). When
θi is random, the situation is more complex, but we can expect that noisy θi which somewhat overestimate
the loss of fopt will still prefer fopt to femp.

3.5 Discussion: Why We Calculate θ Using Held-out Data

In Section 3.2, we estimate θi for each training sample using the output of an auxiliary network faux(xi) that
is trained on a held-out dataset. In fact, this adaptive flood level θi can be considered as the sample difficulty
when training the main network. Hence, it is reasonable to consider existing difficulty measurements based
on learning dynamics, like C-score (Jiang et al., 2021) or forgetting score (Maini et al., 2022). However, we
find these methods are not robust when wrong labels exist in the training data, because the network will
learn to remember the wrong label of xi, and hence provide a low θi for the wrong sample, which is harmful
to our method. That is why we propose to split the whole training set into n parts and train faux(xi) for n
times (each with different n − 1 parts).

Dataset and implementation To verify this, we conduct experiments on a toy Gaussian dataset, as
illustrated in the first panel in Figure 4. Assume we have N samples, each sample in 2-tuple (x, y). To draw
a sample, we first select the label y = k following a uniform distribution over all K classes. After that, we
sample the input signal x | (y = k) ∼ N (µk, σ2I), where σ is the noise level for all the samples. µk is the
mean vector for all the samples in class k. Each µk is a 10-dim vector, in which each dimension is randomly
selected from {−δµ, 0, δµ}. Such a process is similar to selecting 10 different features for each class. We
consider 3 types of samples for each class: regular samples, the typical or easy samples in our training set,
have a small σ; irregular samples have a larger σ; mislabeled samples have a small σ, but with a flipped
label. We generate two datasets following this same procedure (call them datasets A and B). Then, we
randomly initialize a 2-layer MLP with ReLU layers and train it on dataset A. At the end of every epoch,
we record the loss of each sample in dataset A.

Result The learning paths are illustrated in the second panel in Figure 4. The model is clearly able
remember all the wrong labels, as all the curves converge to a small value. If we calculate θi in this way, all
θi would have similar values. However, if we instead train the model using dataset B, which comes from the
same distribution but is different from dataset A, the learning curves of samples in dataset A will behave
like the last panel in Figure 4. The mislabeled and some irregular samples can be clearly identified from the
figure. Calculating θi in this way gives different samples more distinct flood values, which makes our method
more robust to sample noise, as our experiments on various scenarios show.

7

Published in Transactions on Machine Learning Research (08/2024)

NTPP Method Uber Reddit Stack Overflow
RMSE NLL RMSE NLL ACC RMSE NLL ACC

Intensity-free

Unreg. 75.83 3.86 0.25 1.28 55.26 6.69 3.66 45.52
(6.12) (0.05) (0.01) (0.07) (0.57) (0.98) (0.12) (0.07)

Flood 64.34 4.01 0.25 1.17 57.46 4.12 3.46 45.76
(3.85) (0.02) (0.01) (0.06) (0.84) (0.23) (0.03) (0.03)

iFlood 67.07 3.97 0.23 1.11 56.59 4.12 3.46 45.76
(3.12) (0.06) (0.01) (0.12) (0.92) (0.23) (0.03) (0.03)

AdaFlood 59.69 3.75 0.26 1.09 59.02 3.26 3.45 45.67
(1.49) (0.01) (0.02) (0.13) (0.91) (0.25) (0.04) (0.03)

THP+

Unreg. 71.01 3.73 0.28 0.82 58.63 1.46 2.82 46.24
(6.12) (0.05) (0.01) (0.07) (0.57) (0.98) (0.12) (0.07)

Flood 68.61 3.70 0.26 1.02 58.05 1.39 2.79 46.31
(3.85) (0.02) (0.01) (0.06) (0.84) (0.23) (0.03) (0.03)

iFlood 68.61 3.70 0.25 0.92 58.93 1.46 2.82 46.24
(4.76) (0.17) (0.01) (0.23) (1.26) (0.06) (0.04) (0.08)

AdaFlood 54.85 3.55 0.25 0.80 61.34 1.38 2.77 46.41
(1.49) (0.01) (0.02) (0.13) (0.91) (0.25) (0.04) (0.03)

Table 1: Comparison of flooding methods on asynchronous event sequence datasets. The numbers are the
means and standard errors (in parentheses) over three runs.

4 Experiments

We demonstrate the effectiveness of AdaFlood on three tasks (probability density estimation, classification
and regression) in four domains (asynchronous event sequences, image, text and tabular). We compare
flooding methods on asynchronous event time in Section 4.1 and image classification tasks in Section 4.2.
We also demonstrate that AdaFlood is more robust to various noisy settings in Section 4.3, and that it yields
better-calibrated models in Section 4.4. Some ablation studies are provided in Sections 4.5 and 4.6.

4.1 Results on Asynchronous Event Sequences

We compare flooding methods on asynchronous event sequence datasets of which goal is to estimate the
probability distribution of the next event time given the previous event times. Each event may have a class
label. Asynchronous event sequences are often modeled as temporal point processes (TPPs).

Datasets We use two popular benchmark datasets, Stack Overflow (predicting the times at which users
receive badges) and Reddit (predicting posting times). Following Bae et al. (2023), we also benchmark our
method on a dataset with stronger periodic patterns: Uber (predicting pick-up times). We split each training
dataset into train (80%) and validation (20%) sets. Details are provided in Appendix A.

Following the literature in TPPs, we use two metrics to evaluate models: root mean squared error (RMSE)
and negative log-likelihood (NLL). As NLL can be misleadingly low if the probability density is mostly focused
on the correct event time, RMSE is also considered a complementary metric. However, RMSE has its own
limitation: if a baseline is directly trained on the ground truth event times as point estimation, the stochastic
components of TPPs are ignored. Therefore, we train our TPP models on NLL and use RMSE at test time
to ensure that we do not rely too heavily on RMSE scores and account for the stochastic nature of TPPs.
When class labels for events are available, we also report the accuracy of class predictions.

Implementation For TPP models to predict the asynchronous event times, we employ Intensity-free mod-
els (Shchur et al., 2020) based on GRU (Chung et al., 2014), and Transformer Hawkes Processes (THP) (Zuo
et al., 2020) based on Transformer (Vaswani et al., 2017). THP predicts intensities to compute log-likelihood
and expected event times, but this approach can be computationally expensive due to the need to compute
integrals, particularly double integrals to calculate the expected event times. To overcome this challenge

8

Published in Transactions on Machine Learning Research (08/2024)

Method SVHN CIFAR10 CIFAR100
w/o L2 reg. w/ L2 reg. w/o L2 reg. w/ L2 reg. w/o L2 reg. w/ L2 reg.

Unreg. 95.65 ± 0.05 96.07 ± 0.01 87.80 ± 0.31 90.35 ± 0.21 56.59 ± 0.32 61.49 ± 0.16
Flood 95.63 ± 0.02 96.13 ± 0.02 87.57 ± 0.16 90.09 ± 0.20 55.88 ± 0.18 60.96 ± 0.03
iFlood 95.63 ± 0.08 96.05 ± 0.02 87.96 ± 0.07 90.57 ± 0.12 56.32 ± 0.05 61.63 ± 0.12

KD 95.69 ± 0.02 96.08 ± 0.10 88.06 ± 0.23 90.65 ± 0.03 56.67 ± 0.15 61.29 ± 0.03
AdaFlood 95.72 ± 0.01 96.16 ± 0.02 88.38 ± 0.18 90.82 ± 0.08 57.25 ± 0.14 62.31 ± 0.14

Table 2: Comparison of flooding methods on image classification datasets with and without L2 regularization.
The numbers are the means and standard errors over three runs.

while maintaining performance, we follow Bae et al. (2023) in using a mixture of log-normal distributions,
proposed in Shchur et al. (2020), for the decoder; we call this THP+.

For each dataset, we conduct hyper-parameter tuning for learning rate and the weight for L2 regularization
with the unregularized baseline (we still apply early stopping and L2 regularization by default). Once
learning rate and weight decay parameters are fixed, we search for the optimal flood levels. The optimal
flood levels are selected via a grid search on {−50, −45, −40 . . . , 0, 5}∪{−4, −3 . . . , 3, 4} for Flood and iFlood,
and optimal γ on {0.0, 0.1 . . . , 0.9} for AdaFlood using the validation set. We use five auxiliary models.

Results In order to evaluate the effectiveness of various regularization methods, we present the results of
our experiments in Table 1 (showing means and standard errors from three runs). This is the first time we
know of where flooding methods have been applied in this domain; we see that all flooding methods improve
the generalization performance here, sometimes substantially. Furthermore, AdaFlood often outperforms
other flooding methods on various datasets, suggesting that instance-wise flooding level adaptation using
auxiliary models can effectively enhance the generalization capabilities of TPP models. However, there are
instances where AdaFlood’s performance is comparable to or slightly worse than other methods, indicating
that its effectiveness may vary depending on the specific context. Despite this variability, AdaFlood generally
appears to be the best choice for training TPP models.

4.2 Results on Image Classification

Datasets We use SVHN (Netzer et al., 2011), CIFAR-10, and 100 (Krizhevsky et al., 2009) for image
classification with random crop and horizontal flip as augmentation. Unlike Xie et al. (2022), we split each
training dataset into train (80%) and validation (20%) sets for hyperparameter search; thus our numbers are
generally somewhat worse than what they reported, as we do not directly tune on the test set.

Implementation Following Ishida et al. (2020) and similar to Xie et al. (2022), we consider training
ResNet18 (He et al., 2016) with and without L2 regularization (with a weight of 10−4). All methods are
trained with SGD for 300 epochs, with early stopping. We use a multi-step learning rate scheduler with an
initial learning rate of 0.1 and decay coefficient of 0.2, applied at every 60 epochs. The optimal flood levels
are selected based on validation performance with a grid search on {0.01, 0.02 . . . , 0.1, 0.15, 0.2 . . . , 1.0} for
Flood and iFlood, and {0.05, 0.1 . . . , 0.95} for AdaFlood. We use a single ResNet18 auxiliary network where
its layer 3 and 4 are randomly initialized and fine-tuned on held-out sets with n = 10 splits.

Furthermore, we compare with knowledge distillation (KD) baselines following Hinton et al. (2014) for the
implementation of its loss. For a mini-batch B, the KD loss is defined as:

LKD(fs, ft, B, τ, α) = αLCE(fs, B) + (1 − α)LDistll(fs, ft, B, τ), (9)

where τ denotes a temperature scale, which is an additional input to a student model fs and teacher model
ft. Also, LCE and LDistill are defined as:

LCE(f, B) = 1
B

B∑
i=1

ℓ(yi, f(xi)), LDistll(fs, ft, B, τ) = 1
τ2B

B∑
i=1

ℓ(ft(xi, τ), fs(xi, τ)). (10)

9

Published in Transactions on Machine Learning Research (08/2024)

We set α = 0.5 following one of the experiments in Hinton et al. (2014) so that all the methods have only
one hyperparameter to tune. We tune the temperature scale τ with a grid search on {1, 2, 3, · · · , 9, 10}.

Results The results are presented in Table 2. We report the means and standard errors of accuracies over
three runs. We can observe that KD and flooding methods, including AdaFlood, are not significantly better
than the unregularized baseline on SVHN. However, AdaFlood noticeably improves the performance over
the other methods on harder datasets like CIFAR10 and CIFAR100, whereas iFlood is not obviously better
than the baseline and Flood is worse than the baseline on CIFAR100. The gap between AdaFlood and KD
is more noticeable on CIFAR100, particularly with L2 regularization.

Discussion While iFlood is closely related to label smoothing, AdaFlood shares similarities with KD as
both utilize auxiliary networks. However, a motivation behind two algorithms are fundamentally different.
KD relies on predictions made on already-seen training examples, whereas AdaFlood leverages predictions on
intentionally forgotten (or unseen) examples. Since the predictions of teacher networks in KD are based on
already-seen examples, they do not serve as meaningful measures of uncertainty. In contrast, the predictions
from an auxiliary network in AdaFlood can effectively measure uncertainty, and flood levels computed from
these predictions can function as uncertainty regularizations. A disadvantage of AdaFlood, however, is the
additional fine-tuning step required to forget already-seen examples, which is not necessary in KD.

4.3 Noisy Labels

Datasets In addition to CIFAR10 for image classification, we also use the tabular datasets Brazilian
Houses and Wine Quality from OpenML (Vanschoren et al., 2013), following Grinsztajn et al. (2022), for
regression tasks. We further employ Stanford Sentiment Treebank (SST-2) for the text classification task,
following Xie et al. (2022). Details of datasets are provided in Appendix A.

We report accuracy for classification tasks. For regression tasks, we report mean squared error (MSE) in the
main body, as well as mean absolute error (MAE) and R2 score in Figure 8 (Appendix C).

Implementation We inject noise for both image and text classification by changing the label to a uniformly
randomly selected wrong class, following Xie et al. (2022). More specifically, for α% of the training data,
we change the label to a uniformly random class other than the original label. For the regression tasks, we
add errors sampled from a skewed normal distribution, with skewness parameter ranging from 0.0 to 3.0.
Similar to the previous experiments, we tune learning rate and the weight for L2 regularization with the
unregularized baseline (with early stopping and L2 regularization by default except for Figure 5c). Then,
we tune the flood levels with the fixed learning rate and L2 regularization.

Results Figure 5 compares the flooding methods for noisy settings. We report the mean and standard
error over three runs for CIFAR10, and five and seven runs for tabular datasets and SST-2, respectively.
We provide ∆Acc (%) for CIFAR10 and SST-2 compared to the unregularized model: that is, we plot the
accuracy of each method minus the accuracy of the unregularized method, to display the gaps between
methods more clearly. The mean accuracies of the unregularized method are displayed below the zero line.

• Wine Quality, Figure 5a: AdaFlood slightly outperforms the other methods at first, but the gap
significantly increases as the noise level increases.

• Brazilian Houses, Figure 5b: There is no significant difference between the methods for small noise
level, e.g. noise ≤ 1.5, but MSE for AdaFlood becomes significantly lower as the noise level increases.

• CIFAR10, Figure 5c: iFlood and AdaFlood significantly outperform Flood and unregularized.
AdaFlood also outperforms iFlood when the noise level is high (e.g. ≥ 50%).

• SST-2, Figure 5d: Flooding methods outperform the unregularized method. AdaFlood is comparable
to iFlood up to the noise level of 30%, but noticeably outperforms it as the noise level increases.

10

Published in Transactions on Machine Learning Research (08/2024)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.7

0.8

0.9

1.0

1.1

M
S

E

Unreg.

Flood

iFlood

AdaFlood

(a) Wine Quality

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
S

E

Unreg.

Flood

iFlood

AdaFlood

(b) Brazilian Houses

10 20 30 40 50 60

Noise Level (%)

−1

0

1

2

∆
A

cc
(%

)

82.0 79.0 76.0 72.0 66.0 59.0(%)

Flood iFlood AdaFlood

(c) CIFAR10

10 20 30 40 50

Noise Level (%)

0

2

4

6

8

∆
A

cc
(%

)

90.0 89.0 84.0 78.0 50.0(%)

Flood iFlood AdaFlood

(d) SST-2

Figure 5: Comparison of flooding methods on tabular and image datasets with noise and bias.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 18.31 ± 0.24

(a) Unregularized

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 13.96 ± 1.6

(b) Flood

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 19.82 ± 2.27

(c) iFlood

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 5.49 ± 0.33

(d) AdaFlood

Figure 6: Calibration results of flooding methods with 10 bins on CIFAR100. The bars and errors are the
means and standard errors over three runs, respectively.

Overall, AdaFlood is more robust to noise than other flooding methods, since the model pays less attention
to samples with high losses.

4.4 Calibration

Datasets and implementation Miscalibration—neural networks being over or under-confident—has
been a well-known issue in deep learning. We thus evaluate the quality of calibration with different flooding
methods on CIFAR100, as measured by the Expected Calibration Error (ECE) metric. (Figure 9 does the
same for CIFAR10, but since model predictions are usually quite confident, this becomes difficult to mea-
sure.) We use a ResNet18 with L2 regularization with the optimal hyperparameters for the baseline and
flooding methods. The optimal hyperparameter varies by seed for each run.

Result Figure 6 provides the calibration quality in ECE metric as well as a visualization over three runs,
compared to perfect calibration (dotted red lines). We can observe that AdaFlood significantly improves the
calibration, both in ECE and visually. Note that iFlood significantly miscalibrates at the bins corresponding
to high probability e.g. bin ≥ 0.7, compared to the other methods, and also has high standard errors. This
behavior is expected, since iFlood encourages the model not to predict higher than a probability of exp(−b),
where b denotes the flood level used in iFlood.

4.5 Ablation study: Relationship with Other Regularization

In this ablation study, we design an experiment that shows how different regularization methods interact with
flooding methods. We conduct the experiment on CIFAR100 with ResNet18, gradually adding regularization
methods in the order of early stopping, L2 regularization, dropout and CutMix (Yun et al., 2019), a popular
data augmentation method, as shown in Table 3. Please note that the second row with early stopping and
the third row with early stopping + L2 regularization are the same as what we report in Table 2.

Similar to the results in Table 2, Flood is comparable to or slightly worse than the unregularized baseline
for the case with dropout and with both dropout and CutMix. Although iFlood is generally better than the

11

Published in Transactions on Machine Learning Research (08/2024)

Regularization Flooding
Early Stopping L2 Dropout CutMix Unreg. Flood iFlood AdaFlood

56.39 ± 0.25 56.07 ± 0.19 56.07 ± 0.06 56.89 ± 0.19
✓ 56.59 ± 0.32 55.88 ± 0.18 56.32 ± 0.05 57.25 ± 0.14
✓ ✓ 61.49 ± 0.16 60.96 ± 0.03 61.63 ± 0.12 62.31 ± 0.14
✓ ✓ ✓ 62.04 ± 0.17 61.73 ± 0.13 62.19 ± 0.27 63.15 ± 0.10
✓ ✓ ✓ ✓ 67.08 ± 0.28 67.11 ± 0.26 67.09 ± 0.08 67.50 ± 0.16

Table 3: Comparison between flooding methods with and without various regularization methods on CI-
FAR100. We report the means and standard errors of three runs.

unregularized baseline as shown in the third to fifth rows, the gap is limited. Compared to Flood or iFlood,
AdaFlood shows more consistently larger improvement.

4.6 Ablation study: Fine-tuning vs. Multiple Auxiliaries

10 Auxiliaries Layer 3∼4 + FC Layer 4 + FC FC only
0

1

2

3

4

5

6

7

8

w
al

l-
cl

oc
k

ti
m

e
(h

ou
rs

)

90.81±0.07%

90.82±0.08%
90.92±0.05%

90.93±0.08%

Figure 7: Comparison of aux. training

Figure 7 compares training of ten ResNet18 auxiliary net-
works (original proposal) to the single fine-tuned auxiliary
network (efficient variant) in terms of wall-clock time for
training the auxiliary network(s), and performance of the
corresponding main model, on the test set of CIFAR10.
For the efficient variant, we fine-tune different layers to
show insensitivity to the choice of layers: Layer3, 4 + FC,
Layer3 + FC, and FC, where Layer3 and 4 are the 3rd, 4th
layers in ResNet18 and FC denotes the last fully connected
layer. For example, Layer4 + FC means we only fine-tune
Layer4 and FC layers, freezing all the previous layers. Results show that training multiple auxiliary net-
works yields the same-quality model as fine-tuning, though training time is 3 to 4 times longer. There is also
little difference in performance between different fine-tuning methods: it seems that fine-tuning only the FC
layer is sufficient to forget the samples, with early-stopping regularizing well enough for similar generalization
ability. We also compare AdaFlood with various architectures for auxiliary networks in Appendix F.

5 Conclusion

In this paper, we introduced the Adaptive Flooding (AdaFlood) regularizer, a novel reguralization technique
that adaptively regularizes a loss for each sample based on the difficulty of the sample. Each flood level
is computed only once through an auxiliary training procedure with held-out splitting, which we can make
more efficient by fine-tuning the last few layers on held-out sets. Experimental results on various domains
and tasks: density estimation for asynchronous event sequences, image and text classification tasks as well
as regression tasks on tabular datasets, with and without noise, demonstrated that our approach is more
robustly applicable to a varied range of tasks including calibration.

Limitation Although AdaFlood is a robust and effective regularizer on many different tasks, particularly
in high-noise settings, an open question that we leave for future work is how to best apply AdaFlood in
long-tailed learning. For long-tailed data, it is expected that samples from the rare classes will tend to have
higher losses. During the training of the main model, AdaFlood will direct the model to keep the higher
losses for rare classes and lower losses for common classes, which may not be desirable. One potential solution
could be to adaptively adjust γ for different classes. Alternatively, imbalanced learning techniques such as
resampling, reweighting, or two-stage training could be adopted.

Reproducibility For each experiment, we listed implementation details such as model, regularization, and
search space for hyperparameters. We also specified datasets we used for each experiment, and how they
were split and augmented, along with the description of metrics. The code is released with the final version.

12

Published in Transactions on Machine Learning Research (08/2024)

References
Wonho Bae, Mohamed Osama Ahmed, Frederick Tung, and Gabriel L Oliveira. Meta temporal point pro-

cesses. In ICLR, 2023.

Randall Balestriero, Leon Bottou, and Yann LeCun. The effects of regularization and data augmentation
are class dependent. In NeurIPS, 2022.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–
15854, 2019.

Luca Bertinetto, João Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In ICLR, 2019.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done
with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with
label-distribution-aware margin loss. In NeurIPS, 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NeurIPS, 2014.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In ICLR,
2020.

Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation distribution for
training binarized deep networks. In CVPR, 2019.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. Recur-
rent marked temporal point processes: Embedding event history to vector. In KDD, 2016.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. In ICLR, 2018.

Luca Franceschi, Paolo Frasconi, Saverio Salvo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel program-
ming for hyperparameter optimization and meta-learning. In ICML, 2018.

Yu Gong, Greg Mori, and Frederick Tung. RankSim: Ranking similarity regularization for deep imbalanced
regression. In ICML, 2022.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In NeurIPS, 2022.

Stephen Hanson and Lorien Pratt. Comparing biases for minimal network construction with back-
propagation. In NeurIPS, 1988.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. NIPSW, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Do we need zero training
loss after achieving zero training error? In ICML, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In NeurIPS, 2018.

13

Published in Transactions on Machine Learning Research (08/2024)

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural regularities
of labeled data in overparameterized models. In ICML, 2021.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for
robustness to spurious correlations. In ICLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In NeurIPS, 1991.

Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Towards last-layer retraining for group robustness
with fewer annotations. In NeurIPS, 2023.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
NeurIPS, 2019.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In CVPR, 2021.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge
between filter pruning and decomposition for network compression. In CVPR, 2020.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie-Yan Liu.
R-Drop: Regularized dropout for neural networks. In NeurIPS, 2021.

Soon Hoe Lim, N. Benjamin Erichson, Francisco Utrera, Winnie Xu, and Michael W. Mahoney. Noisy feature
mixup. In ICLR, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In ICLR,
2019.

Jun Liu and Jieping Ye. Efficient l1/lq norm regularization. arXiv preprint arXiv:1009.4766, 2010.

Pratyush Maini, Saurabh Garg, Zachary Lipton, and J Zico Kolter. Characterizing datapoints via second-
split forgetting. In NeurIPS, volume 35, pp. 30044–30057, 2022.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin Gal. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In ICML, 2022.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J Sutherland. A fast, well-founded approximation to
the empirical neural tangent kernel. In ICML, 2023.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. In ICLR Workshop, 2015.

Yi Ren, Shangmin Guo, and Danica J. Sutherland. Better supervisory signals by observing learning paths.
In ICLR, 2022.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point processes.
In ICLR, 2020.

14

Published in Transactions on Machine Learning Research (08/2024)

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. JMLR, pp. 1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
Inception architecture for computer vision. In CVPR, 2016.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, 2020.

Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288, 1996.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in machine
learning. SIGKDD Explorations, pp. 49–60, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions: Exploiting spatial sparsity for faster inference.
In CVPR, 2020.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In ICML, 2019.

Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In NeurIPS,
2013.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking architec-
ture selection in differentiable NAS. In ICLR, 2021.

Yuexiang Xie, WANG Zhen, Yaliang Li, Ce Zhang, Jingren Zhou, and Bolin Ding. iFlood: A stable and
effective regularizer. In ICLR, 2022.

Li Yuan, Francis E. H. Tay, Guilin Li, Tao Wang, and Jiashi Feng. Revisiting knowledge distillation via
label smoothing regularization. In CVPR, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In ICLR, 2018.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level struc-
tured pruning using polarization regularizer. In NeurIPS, 2020.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes process. In
ICML, 2020.

15

Published in Transactions on Machine Learning Research (08/2024)

A Details about Datasets

Stack Overflow It contains 6,633 sequences with 480,414 events where an event is the acquisition of
badges received by users. The maximum number of sequence length is 736 and the number of marks is 22.
The dataset is provided by Du et al. (2016); we use the first folder, following Shchur et al. (2020) and Bae
et al. (2023).

Reddit It contains 10,000 sequences with 532,026 events where an event is posting in Reddit. The maxi-
mum number of sequence length is 736 and the number of marks is 22. Marks represent sub-reddit categories.

Uber It contains 791 sequences with 701,579 events where an event is pick-up of customers. The maximum
number of sequence length is 2,977 and there is no marks. It is processed and provided by Bae et al. (2023).

Brazilian Houses It contains information of 10,962 houses to rent in Brazil in 2020 with 13 features. The
target is the rent price for each house in Brazilian Real. According to OpenML (Vanschoren et al., 2013)
where we obtained this dataset, since the data is web-scrapped, there are some values in the dataset that
can be considered outliers.

Wine Quality It contains 6,497 samples with 11 features and the quality of wine is numerically labeled
as targets. This dataset is also obtained from OpenML (Vanschoren et al., 2013).

SST-2 The Stanford Sentiment Treebank (SST-2) is a dataset containing fully annotated parse trees,
enabling a comprehensive exploration of how sentiment influences language composition. Comprising 11,855
individual sentences extracted from film reviews, this dataset underwent parsing using the Stanford parser,
resulting in a collection of 215,154 distinct phrases.

B Additional Results on Image Classification

Datasets We use ImageNet100 (Tian et al., 2020) for image classification with random crop, horizontal
flip, and color jitter as augmentation. We also add 30% of label noise as done in Section 4.3.

Implementation We train ResNet34 (He et al., 2016) on the dataset with L2 regularization (with a
weight of 0.0001). All methods are trained for 200 epochs with early stopping using SGD. We use a multi-
step learning rate scheduler with an initial learning rate of 0.1 and decay coefficient of 0.5, applied at every
25 epochs. The optimal flood levels are selected based on validation performance with a grid search on
{0.01, 0.02..., 0.1, 0.15, 0.2..., 0.3} for Flood and iFlood, and {0.05, 0.1..., 0.95} for AdaFlood. We use a single
ResNet34 auxiliary network where its last FC layer is randomly initialized and fine-tuned on held-out sets
with n = 10 splits.

Results Table 4 (Left) compares flooding methods on ImageNet100 dataset with and without 30% of
label noise. We report test accuracies along with expected calibration error (ECE) on the right. Although
Flood and iFlood do not improve the performance over the unregularized model, AdaFlood improves the
performance by about 0.80% over the unregularized baseline. Given the size of the dataset, the gap is not
marginal. This gap is even larger than that we observed in SVHN and CIFAR datasets Table 2. We conjecture
it is because ImageNet contains more noisy samples. It is well-known that there are many ImageNet images
containing multiple objects although the label says there is only one object (Beyer et al., 2020).

C Additional Results on Tabular Regression

Datasets We use NYC Taxi Tip dataset from OpenML (Vanschoren et al., 2013), one of the largest tabular
dataset used in Grinsztajn et al. (2022), for regression tasks. NYC Taxi Tip dataset contains 581, 835 rows
and 9 features. As the name of the dataset implies the target variable is “tip amount". To increase the
importance of other features, the creator of the dataset deliberately ignores “fare amount" or “trip distance".

16

Published in Transactions on Machine Learning Research (08/2024)

Method Mislabled Sample Rate
0% 30%

Unreg. 81.00 / 6.64 68.12 (17.23)
Flood 81.18 (6.44) 68.19 (17.71)
iFlood 81.04 (6.86) 68.24 (20.67)

AdaFlood 81.79(4.81) 69.22(17.45)

Method Noise Level
0.0 1.5 3.0

Unreg. 0.2373(0.3335) 0.3707 (-0.0409) 0.3910 (-0.0978)
Flood 0.2373(0.3335) 0.3707 (-0.0409) 0.3904 (-0.0980)
iFlood 0.2370(0.3374) 0.3652 (-0.0255) 0.3902 (-0.0986)

AdaFlood 0.2369(0.3348) 0.3520(0.0250) 0.3465(0.0119)

Table 4: Comparison of flooding methods on ImageNet100 (Left) and NYC Taxi Tip (Right) datasets with
and without label noise. The numbers on the right on ImageNet100 represents ECE metric whereas on NYC
Taxi Tip, they are R2 scores.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
A

E

Unreg.

Flood

iFlood

AdaFlood

(a) Brazilian House (MAE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

−0.4

−0.2

0.0

0.2

0.4

R
2

Unreg.

Flood

iFlood

AdaFlood

(b) Brazilian House (R2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

0.70

0.75

0.80

0.85

M
A

E

Unreg.

Flood

iFlood

AdaFlood

(c) Wine Quality (MAE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise Level

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

R
2

Unreg.

Flood

iFlood

AdaFlood

(d) Wine Quality (R2)

Figure 8: Additional results in various metrics on tabular datasets with noise and bias

Implementation As with Section 4.3, we use a model tailored for tabular dataset proposed by (Grinsztajn
et al., 2022) and add errors sampled from a skewed normal distribution, with skewness parameter ranging
from 0.0 to 3.0.

Results Table 4 (Right) compares flooding methods on NYC Taxi Tip dataset (Grinsztajn et al., 2022)
with and without noises. We report mean square error (MSE) and R2 score on the right. Note that R2 score
is usually in between 0 and 1 but when predictions are bad, it can go below 0.

From the table, we can observe that all flooding methods perform similar to the unregularized baseline
when there is no noise. Although it continues for Flood and iFlood even under noisy settings, AdaFlood
significantly outperforms (lower MSE and higher R2 scores) the other methods when noise level is 1.5 and
3.0. In particular, while R2 scores of other methods go below 0, it does not happen with AdaFlood, which
demonstrates the robustness of AdaFlood even for the large-scale dataset like NYC Taxi Tip. It is consistent
with the results we provided in Section 4.3.

For additional information, in Figure 8, we also provide experiment results in MAE and R2 on Brazilian
House and Wine Quality datasets of which results in MSE is provided in Figures 5a and 5b.

D Additional Results on Calibration

We provide calibration results on CIFAR10 in Figure 9. As briefly mentioned in Section 4.4, since model pre-
dictions are generally accurate and quite confident, the gap between different methods are not as significant
as on CIFAR100 shown in Figure 6.

E Initialization of the Main Model using an Auxiliary Network

Even though we efficiently fine-tune an auxiliary network to compute flood levels, it may be still too expensive
to train both the auxiliary network faux and main model f . To reduce computation further, we may utilize a
pre-trained auxiliary network when we use the same architecture for the auxiliary and main model. Instead of
randomly initialize the main model, we can initialize the parameters of the main model using the parameters
from the pre-trained auxiliary network (before fine-tuning).

17

Published in Transactions on Machine Learning Research (08/2024)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 5.9 ± 1.06

(a) Unregularized

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 4.06 ± 1.3

(b) Flood

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 4.5 ± 0.57

(c) iFlood

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ECE: 4.23 ± 0.85

(d) AdaFlood

Figure 9: Calibration results of flooding methods with 10 bins on CIFAR10.

Random Init
Freezing first k layers

k = 0 k = 1 k = 2 k = 3

90.83 / 3.52 91.30 / 2.50 90.90 / 3.44 90.68 / 3.96 89.99 / 4.69

Table 5: Comparison between random initialization and initialization with the pre-trained auxiliary network.
ECE metrics are reported on the right.

We conduct an experiment to validate if it actually saves computation without hurting performance on
CIFAR10 with ResNet18. We first trained an auxiliary network on the whole training set. The pre-trained
auxiliary network is then used for both computing θ through the fine-tuning step described in Section 3.3
and initializing the main model. When we “fine-tune” the main model, we freeze the first k layers (among
four layers of ResNet18) to save computation, and randomly initialize the last fully connected layer to have
the model forget some information.

Table 5 shows that if we initialize the parameters of the main model with those of the pre-trained auxiliary
model without freezing any layers, it performs better than random initialization. As we freeze more layers
to save computation, the performance gradually goes down compared to that of random initialization but it
is still comparable up to k = 2 case.

F Ablation study: Various Architectures for Auxiliary Networks

VGG11 VGG19 ResNet18 Small ResNet18

of params 9.8 M 21.6 M 2.8 M 11.2 M
AdaFlood 90.74 ± 0.13 91.09 ± 0.06 90.73 ± 0.12 90.82 ± 0.08

Table 6: Comparison of various architectures for auxiliary networks in AdaFlood.

To investigate the robustness of AdaFlood in terms of the choice of architectures for auxiliary networks, we
conduct an ablation study on AdaFlood with various architectures for auxiliary networks: VGG11, VGG19,
ResNet18 small and ResNet18. Here, we use a ResNet18 for the main model, and utilize the efficient fine-
tuning method to train auxiliary networks. We report the mean and standard error of three runs in Table 6.

With VGG11 where its number of parameters is slightly less than ResNet18, the mean test accuracy of the
main model is lower but the gap is marginal. With VGG19 which is larger than ResNet18, the performance
slightly improves. We also try with a smaller variant of ResNet18 for the auxiliary network where its number
of parameters is a quarter of the original ResNet18. Even with this significantly smaller architecture, the
mean test accuracy of the main model is only slightly worse than much larger models e.g. VGG11 and
ResNet18, which implies that what is important from the auxiliary network is the relative magnitude of
losses (or flood levels) not the absolute values of losses.

18

Published in Transactions on Machine Learning Research (08/2024)

NTPP Method Uber Reddit Stack Overflow

Intensity-free
Flood {4.0, 4.0, 3.0} {-1.0, -5.0, -3.0} {0.0, 3.0, 1.0}
iFlood {4.0, 0.0, 1.0} {-2.0, -3.0, -4.0} {2.0, 2.0, 3.0}

AdaFlood {0.2, 0.0, 0.3} {0.0, 0.1, 0.1} {0.1, 0.4, 0.2}

THP+
Flood {0.0, -5.0, 0.0} {-1.0, -2.0, -15.0} {0.0, 2.0, 1.0}
iFlood {-1.0, 4.0, 3.0} {-4.0, -4.0, -5.0} {0.0, 0.0, -1.0}

AdaFlood {0.0, 0.1, 0.3} {0.0, 0.0, 0.1} {0.3, 0.3, 0.3}

Table 7: Choice of flood levels for (i)Flood, and γ for AdaFlood on TPP datasets with three seeds.

Method SVHN CIFAR10 CIFAR100
w/o L2 reg. w/ L2 reg. w/o L2 reg. w/ L2 reg. w/o L2 reg. w/ L2 reg.

Flood {0.04, 0.02, 0.03} {0.02, 0.03, 0.04} {0.02, 0.04, 0.05} {0.07, 0.02, 0.01} {0.01, 0.01, 0.01} {0.01, 0.01, 0.05}
iFlood {0.05, 0.09, 0.02} {0.05, 0.06, 0.06} {0.07, 0.04, 0.07} {0.07, 0.03, 0.01} {0.45, 0.35, 0.30} {0.30, 0.40, 0.65}

AdaFlood {0.75, 0.85, 0.70} {0.35, 0.50, 0.65} {0.95, 0.70, 0.65} {0.75, 0.95, 0.65} {0.40, 0.50, 0.45} {0.50, 0.50, 0.55}

Table 8: Choice of flood levels for (i)Flood, and γ for AdaFlood on image classification with three seeds.

G Theoretic Intuition for Efficient Training of Auxiliary Networks

In this section, we provide theoretic intuition for efficient training of auxiliary networks. Following (Lee
et al., 2019), we approximate the predictions of a neural network f on a test sample xi

f(xi) ≈
n∑

j=1
αjeNTK(xi, xj) (11)

where eNTK stands for empirical neural tangent kernel (NTK) following (Mohamadi et al., 2023) and
{xj}n

j=1 denotes data from a training set. Equation (11) says we can approximate a prediction on xi as an
interpolation of eNTK(xi, ·) with some weights α.

Suppose f(x) = V ϕ(x) where ϕ(x) ∈ Rh denotes a feature from the penultimate layer and V ∈ Rk×h denotes
the weights of the last fully connected layer (k being the number of classes), consisting of vj ∈ Rh for j-th
row. If vj,i, i-th entry of vj , is from N(0, σ2), then Mohamadi et al. (2023) haven shown that,

eNTKw(x1, x2)jj′ = vT
j eNTKϕ

w\V (x1, x2)vj′ + 1(j = j′)ϕ(x1)T ϕ(x2) (12)

where w denotes a set of all the model parameters and w \ V means a set of all the parameters except the
last fully connected layer.

With this frame, we can approximate the predictions from the efficiently trained auxiliary network denoted
as ftune, as follows,

ftune(xi) ≈
∑
j ̸=i

αtune
j

(
vT eNTKϕ,trained

w\V (xj , xi)v + ϕtrained(xj)T
ϕtrained(xi)

)
. (13)

Here, superscript “trained” means the model parameters are pre-trained on the whole training set.

On the other hand, the original “direct” training algorithm of auxiliary networks trains an auxiliary network
from scratch, on the training set excluding the samples that we measure the difficulty on. Similarly, the
predictions of a single auxiliary network denoted as fdirect is approximated as,

fdirect(xi) ≈
∑
j ̸=i

αdirect
j

(
vT eNTKϕ,untrained

w\V (xj , xi)v + ϕuntrained(xj)T
ϕuntrained(xi)

)
(14)

where superscript “untrained” means the model parameters are randomly initialized.

In NTK regime where a neural network has infinite-width, the terms in the parentheses (the term except
α’s) are the same for Equation (13) and Equation (14). Therefore, the difficulty measures from the efficient
training of a single auxiliary network and direct training of multiple auxiliary networks are equivalent in
highly-overparameterized regime.

19

Published in Transactions on Machine Learning Research (08/2024)

H Choice of Flood Levels

In Table 7 and Table 8, we report the choice of flood levels for Flood and iFlood, and γ for AdaFlood
(recall that γ is the hyperparameter for correct function adjusting interpolation level) on TPP and image
classification tasks with three different random seeds.

One interesting observation is that flood levels for iFlood on CIFAR100 is significantly larger than on the
other datasets. It is because CIFAR100 is particularly harder than the other two datasets. However, even
though a flood level is sometimes high e.g. 0.65, it is still a reasonable choice because 0.65 flood level implies
that the model’s highest predicted probabilities do not deviate much from 0.52 ∼ exp(−0.65). With this
high regularization, the model is not too overconfident for its predictions.

20

	Introduction
	Related Work
	Adaptive Flooding
	Problem Statement
	Proposed Method: AdaFlood
	Efficiently Training Auxiliary Networks
	Theoretical Intuition
	Discussion: Why We Calculate Using Held-out Data

	Experiments
	Results on Asynchronous Event Sequences
	Results on Image Classification
	Noisy Labels
	Calibration
	Ablation study: Relationship with Other Regularization
	Ablation study: Fine-tuning vs. Multiple Auxiliaries

	Conclusion
	Details about Datasets
	Additional Results on Image Classification
	Additional Results on Tabular Regression
	Additional Results on Calibration
	Initialization of the Main Model using an Auxiliary Network
	Ablation study: Various Architectures for Auxiliary Networks
	Theoretic Intuition for Efficient Training of Auxiliary Networks
	Choice of Flood Levels

