
Penetrative AI: Making LLMs Comprehend the Physical World

Anonymous ACL submission

Abstract

Recent developments in Large Language Mod-001
els (LLMs) have demonstrated their remarkable002
capabilities across a range of tasks. Questions,003
however, persist about the nature of LLMs and004
their potential to integrate common-sense hu-005
man knowledge when performing tasks involv-006
ing information about the real physical world.007
This paper delves into these questions by ex-008
ploring how LLMs can be extended to inter-009
act with and reason about the physical world010
through IoT sensors and actuators, a concept011
that we term "Penetrative AI". The paper ex-012
plores such an extension at two levels of LLMs’013
ability to penetrate into the physical world via014
the processing of sensory signals. Our pre-015
liminary findings indicate that LLMs, with016
ChatGPT being the representative example in017
our exploration, have considerable and unique018
proficiency in employing the embedded world019
knowledge for interpreting IoT sensor data and020
reasoning over them about tasks in the physical021
realm. Not only this opens up new applications022
for LLMs beyond traditional text-based tasks,023
but also enables new ways of incorporating hu-024
man knowledge in cyber-physical systems.025

1 Introduction026

Large Language Models (LLMs) have made re-027

markable strides (Brown et al., 2020; Scao et al.,028

2022; Zeng et al., 2022). A particularly revolution-029

ary milestone is ChatGPT (OpenAI, 2023b), which030

excels in fluid, human-like conversations, mark-031

ing a new era in human-AI interactions. These032

latest LLMs cultivated on extensive text datasets033

have showcased remarkable capabilities across di-034

verse tasks, including coding and logical problem-035

solving (Creswell et al., 2022). These out-of-the-036

box capabilities have demonstrated that they al-037

ready comprise enormous amounts of world knowl-038

edge 1.039

1Some studies referred to it as a world model (LeCun,
2022) of how the world works.

Figure 1: Overview of Penetrative AI.

This paper is motivated by an essential and in- 040

triguing question: can we enable LLMs to complete 041

tasks in the real physical world? We delve into this 042

inquiry and explore extending the boundaries of 043

LLMs’ capabilities by directly letting them interact 044

with the physical world through Internet of Things 045

(IoT) sensors. A basic example of this process is 046

depicted in Figure 1, where different from the con- 047

ventional way of LLMs, an LLM is expected to 048

analyze sensor data which are indeed projections 049

from the physical world. We conjecture that LLMs, 050

having been trained on vast amounts of human 051

knowledge, learned the physical world which can 052

be directly harnessed for analysis of such sensory 053

information to derive deep insights that tradition- 054

ally require background knowledge from human 055

experts and/or bespoke machine learning models 056

trained with large amounts of labeled sensor data. 057

As illustrated in Figure 1, we formulate such a 058

problem from a signal processing’s point of view, 059

and specifically explore the LLMs’ penetration into 060

the physical world at two signal processing lev- 061

els with the sensor data: i) with the textualized 062

signals derived from underlying sensor data, and 063

ii) with the digitized signals, essentially numeri- 064

cal sequences of raw sensor readings. We term 065
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Figure 2: Overview of user activity sensing with LLMs.

this endeavor "Penetrative AI" – where the embed-066

ded world knowledge in LLMs serves as a founda-067

tion model, seamlessly integrated with the Cyber-068

Physical Systems (CPS) for perceiving and inter-069

vening in the physical world.070

Our methodology is exemplified through two071

illustrative applications at two different levels, re-072

spectively - user activity sensing where textualized073

signals from smartphone accelerometer, satellite,074

and WiFi data are analyzed to discern user motion075

and environment conditions, and human heartbeat076

detection where digitized electrocardiogram (ECG)077

data are utilized to derive the heartbeat rate. Prelim-078

inary findings are encouraging, showcasing LLMs’079

proficiency in interpreting IoT sensor data and per-080

forming perception tasks in the physical world. Our081

exploration also underscores that existing LLMs082

like ChatGPT-4 may already possess the capabil-083

ity to establish intricate connections among world084

knowledge and can be guided to tackle CPS tasks.085

Section 2 and Section 3 will elaborate on the de-086

sign and experiment results of these two illustrative087

applications. Section 4 sets the scope of penetrative088

AI and shares our insights on the foreseeable chal-089

lenges to advance this burgeoning research frontier.090

We present related works in Section 5 and conclude091

this paper in Section 6.092

2 Penetrative LLM with Textualized093

Signals094

This section describes tasking LLMs to compre-095

hend sensor data at the textualized signal level.096

2.1 An Illustrative Example097

We take activity sensing as an illustrative example,098

where LLMs interpret sensor data collected from099

smartphones to derive user activities. The input100

sensor data encompass smartphone accelerometer, 101

satellite, and WiFi signals, and the desired output is 102

to discern the user motion and environment context. 103

Figure 2 presents the overview of this LLM-based 104

design – the sensor data are pre-processed by in- 105

dividual sensing components and the textualized 106

sensor states are supplied to the LLM with a fixed 107

prompt for activity inference. 108

Objective and Rationale. We convey a clear 109

task to LLMs – "determine a user’s motion and sur- 110

rounding conditions by analyzing sensor data from 111

their smartphones". The basic idea is that when the 112

user conducts different activities in different envi- 113

ronments, the collected sensor data would exhibit 114

varied patterns, which reveal the users’ activities. 115

Data Preparation. To facilitate LLMs compre- 116

hension of the sensor data, we undertake a prepro- 117

cessing step where raw data from different sensing 118

modules are separately converted into textualized 119

states that are expected interpretable by LLMs. Fig- 120

ure 2 illustrates such a step. 121

To pre-process long accelerometer readings 122

(6,000 samples from 10 seconds of triaxial acceler- 123

ations sampled at 200 Hz), we employ the Android 124

step detector, which is a built-in step-counting im- 125

plementation (Developers, 2023b) and can trans- 126

form the 6,000 raw data points into a single textu- 127

ally expressed state, e.g., "step count: 5/min". 128

The Android system also offers a comprehensive 129

set of Global Navigation Satellite System (GNSS) 130

satellite measurements (Developers, 2023a), includ- 131

ing information like Pseudo-Random Noise as a 132

satellite identifier, Signal-to-Noise Ratio (SNR), 133

and many others. To streamline the data for LLMs 134

interpretation, we filter and distill the satellite data 135

into two key attributes: the number of detected 136

satellites and their average SNR. 137
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Figure 3: Response examples of ChatGPT-4 for activity sensing.

The Android system supports scanning for138

nearby APs and provides comprehensive informa-139

tion about scanned APs (Developers, 2023c). Simi-140

lar to satellite data, we disregard less relevant de-141

tails and focus on critical information – Service142

Set Identifier (SSID) and Received Signal Strength143

Indicator (RSSI). To streamline the data and reduce144

text length, we further filter APs with an RSSI145

lower than -70 and instruct LLMs to analyze the146

SSIDs to capture useful location information.147

Expert Knowledge. We guide LLMs by in-148

cluding explicit text-based descriptions of the re-149

lationship between sensor patterns and user activ-150

ity states in the prompts, as illustrated in Figure151

2. For instance, a high satellite count and carrier-152

to-noise density indicate an outdoor setting with153

strong satellite signals.154

Reasoning Examples. Following expert knowl-155

edge, we can provide reasoning examples to en-156

hance the proficiency of LLMs. Each example157

includes the data for processing, a step-by-step rea-158

soning process, and a brief summary of the ground159

truth context, which adopts the chain of thought160

(CoT) (Wei et al., 2022) prompting. Figure 2 illus-161

trates this with the reasoning example section.162

Complete Prompt. A full prompt includes a163

defined objective and expert knowledge of the sen-164

sor data, all in natural language as demonstrated165

in Figure 2. Essentially, the way we construct the166

prompt serves as a means to educate and instruct167

LLMs to interpret sensor data and formulate its an-168

swers into a concise format. We thereafter present169

the prompt with succinct textualized sensor data170

of novel queries to LLMs as shown in Figure 2, 171

which we expect to generate the inference results 172

as a concise description of the user’s activity. Note 173

that the prompt, once completed, is frozen and we 174

simply supply new textualized sensor data for new 175

inferences without altering the prompt any further. 176

2.2 Experiment Results 177

We conduct experiments in various scenarios – on 178

university campuses, commercial buildings, sub- 179

way stations, outdoor spaces, and across different 180

cities. All sensor data are collected using a Sam- 181

sung Galaxy S8 Android smartphone. Accelerome- 182

ter data are sampled at 100 Hz, while the satellite 183

and WiFi data are sampled at 0.2 Hz. Sensor data 184

are gathered from time windows spanning dura- 185

tions of 10 to 60 seconds and the latest satellite 186

and WiFi scanning results are adopted. The eval- 187

uation is carried out using PaLM 2 (Anil et al., 188

2023), ChatGPT-3.5 (gpt-3.5-turbo-0613) and 189

ChatGPT-4 (gpt-4-0613) (OpenAI, 2023b), acces- 190

sible through the official API with default parame- 191

ter settings. 192

Figure 3 shows several example answers of 193

ChatGPT-4 together with ground-truth contexts. 194

Due to space limits, we only show the detailed 195

response for the first case. The results suggest 196

ChatGPT-4’s ability to identify user motion and 197

indoor/outdoor states with the provided textualized 198

sensor data. Additionally, it demonstrates an im- 199

pressive capacity to deduce intricate details about 200

the user’s surroundings, e.g., it reasons that the user 201

is likely inside a shopping mall by analyzing the 202
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Table 1: Overall performance of LLMs in activity sensing. ’e.k.’ indicates the expert knowledge and ’exam.’
indicates a reasoning example.

Task
Metric Failure Rate (↓) Classification Accuracy (↑)

Prompt plain w/ e.k. w/ e.k. +1 exam. plain w/ e.k. w/ e.k. +1 exam.

Motion
Detection

PaLM 2 0% 0% 0% 1.00 1.00 1.00
ChatGPT-3.5 3% 0% 0% 0.97 1.00 1.00
ChatGPT-4 0% 0% 0% 1.00 1.00 1.00

Indoor/outdoor
Detection

PaLM 2 0% 0% 0% 0.79 0.88 0.91
ChatGPT-3.5 15% 0% 3% 0.70 0.82 0.88
ChatGPT-4 0% 0% 0% 0.88 0.91 0.94

scanned WiFi SSIDs in the first case.203

To quantitatively assess the efficacy of such an204

approach, we tasked LLMs to explicitly provide205

the states of motion (between "stationary" and "mo-206

tion") and environment (between "indoors" and207

"outdoors"). We experiment with varied settings208

– plain, with additional expert knowledge, as well209

as with the additional reasoning example in the210

prompt. To assess the performance of the penetra-211

tive LLMs, we utilize two key metrics: the failure212

rate and classification accuracy. In our cases, "fail-213

ure" refers to instances where the LLMs are unable214

to generate valid states relevant to the task. The215

failure rate is thus calculated as the proportion of216

such instances to the total number of cases.217

Table 1 summarizes the overall performance of218

different LLMs on the two tasks. ChatGPT-3.5219

occasionally outputs ’unknown’ states leading to220

higher failure rates in the two tasks. This rate can221

be effectively reduced to 0% by incorporating ex-222

pert knowledge. The results show three models223

perform reasonably well in the motion detection224

task. The task of discerning indoor/outdoor is more225

challenging, largely due to its reliance on the fu-226

sion of multimodal sensor data. Nevertheless, a227

notable enhancement is achieved when prompts are228

enriched with expert knowledge and one reasoning229

example. PaLM 2 and ChatGPT-4 achieve above230

90% accuracy with the best prompt scheme.231

Overall, the above experiment results suggest232

LLMs can be effective in analyzing sensor signals233

when properly abstracted into textual representa-234

tions.235

3 Penetrative LLM with Digitized Signals236

This section describes our effort that goes beyond237

the general expectations of the textualized signal238

processing ability of LLMs. We specifically study239

the potential of LLMs in comprehending digitized 240

sensor signals. 241

3.1 An Illustrative Example 242

We take human heart rate detection as an illustrative 243

example, where we task LLMs with the input of 244

ECG waveforms to identify the R-peaks, based on 245

which we can then derive the heartbeat rate. Fun- 246

damentally different from the previous example, 247

all sensor data in this application are expressed as 248

sequences of digitized samples. Figure 4 provides 249

an overview of the design. 250

Objective and Rationale. The sensor data con- 251

sist of a numerical sequence representing an ECG 252

waveform. Our objective for LLMs is to identify 253

the "R-peaks" (Yanowitz, 2010), which are tall up- 254

ward deflections in ECG data and correspond to 255

the red dots in Figure 4. The objective part of the 256

prompt succinctly states: "Find the R-peaks in an 257

ECG waveform". An interesting and challenging 258

job in this application is, we incorporate expert 259

knowledge directly into the prompts, delegating 260

the signal processing task to LLMs. 261

Data Preparation. The original ECG data are 262

collected at a high sampling rate, e.g., 360Hz. In 263

our design, raw ECG readings are down-sampled to 264

72 Hz and quantized to their integer parts to reduce 265

the length and complexity of the sequence. 266

Expert Knowledge. To assist the LLMs, we try 267

to give a detailed description of R-peaks with the 268

context of QRS complex (Kadambe et al., 1999) in 269

the prompt, i.e., "The QRS complex, a recurring 270

feature in ECG data, signifies the ventricles’ consis- 271

tent depolarization in the heart. It comprises the Q, 272

R, and S waves, where the Q wave shows a down- 273

ward deflection, followed by an upward-moving R 274

wave, and then the S wave, which deflects down- 275

ward after the R wave. The maximum amplitude 276
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Figure 4: Overview of heart rate detection with LLMs.

Figure 5: Overview of heart rate detection with VLMs.

of the R wave is known as the R-peak.".277

Our experiments show that it remains challeng-278

ing for LLMs to perform the task for a long se-279

quence of ECG digits with only descriptions of280

R-peaks. By observing the patterns of R-peaks, we281

instead design a procedure that LLMs understand282

to guide the selection of R-peaks. As depicted in283

Figure 4, three steps are included: 1) assessing the284

overall range of ECG numbers, 2) identifying sub-285

sequences characterized by an initial lower value,286

a subsequent significant increase, and a return to287

the overall range, and 3) selecting the highest value288

from each such subsequence as the R-peak. We ex-289

amine whether LLMs like ChatGPT can effectively290

execute such a fuzzy logic (without explicit thresh-291

olding) when processing the digitized signals.292

Reasoning Examples. We also furnish LLMs293

with illustrative examples as shown in Figure 4,294

which encompasses the digitized ECG data, a295

reasoning procedure, and a summary of R-peaks296

(check more details in Appendix A).297

3.2 Digitized Data as Figures298

Following the concept of Penetrative AI, we further299

test using Vision-Language Models (VLMs) (Rad-300

ford et al., 2021; Jia et al., 2021; Lu et al., 2019; 301

Tan and Bansal, 2019), which are vision interfaced 302

LLMs, to "see" digitized sensor data as figures and 303

accordingly execute real-world tasks. Figure 5 il- 304

lustrates the design with VLM to process the same 305

R-peak detection example. 306

In this exploration, ECG data are visualized in 307

the figures and fed to VLMs, which are tasked with 308

locating the coordinates of R-peaks in such figures. 309

Figure 5 illustrates the process. The objective is 310

to count the R-peaks in the ECG data and only a 311

general description of R-peaks is provided as ex- 312

pert knowledge. Different prompt schemes are also 313

tested where a more detailed procedure to detect 314

R-peaks with one or more reasoning examples con- 315

taining reference ECG figures (see Appendix A for 316

detailed illustration). We investigate the efficacy of 317

VLMs, GPT-4V (OpenAI, 2023a) in this study, in 318

performing perceptual tasks. 319

3.3 Experiment Results 320

We conduct experiments with the MIT-BIH Ar- 321

rhythmia Database (Goldberger et al., 2000), which 322

is an ECG dataset with ground truth annotations 323

for R-peaks. We downsampled the raw ECG signal 324

to 72 Hz and each ECG query is from a 5-second 325

window comprising 360 numerical values by de- 326

fault. The evaluation is carried out using the three 327

models, i.e., PaLM 2, ChatGPT-3.5, and ChatGPT- 328

4 with default parameters. The experiment is also 329

performed with digitized ECG figures using GPT- 330

4V (OpenAI, 2023a) (gpt-4-vision-preview). 331

For comparison, we also test the performance of 332

classical signal processing approaches (Porr et al., 333

2023), including Pan-Tompkins (Pan and Tomp- 334

kins, 1985), Hamilton (Hamilton, 2002), Christov 335

(Christov, 2004), Two Moving Average (abbrevi- 336

ated as TMA) (Elgendi et al., 2010), and Stationary 337
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Table 2: Performance comparison in heart rate detection. The upper part shows the MAE (↓) of conventional
signal processing methods while the lower part includes the hallucination rates (↓) and MAEs (↓) of penetrative
LLMs/VLMs. "description" means the description of R-peaks, "proc." indicates the inclusion of detailed processing
procedure, and "exam." indicates the inclusion of reasoning examples.

Window Size Pan–Tompkins Hamilton Christov TMA SWT

5 seconds 5.76 3.60 7.08 9.24 4.20

30 seconds 1.06 0.76 1.30 1.64 0.37

LLM/VLM
Prompt Scheme (5-second window size)

w/ description w/ proc. w/ proc. + 1 exam. w/ proc. + 2 exam. one-shot

PaLM 2 95%, 816.00 95%, 148.80 58%, 30.29 50%, 82.32 97%, 84.00
ChatGPT-3.5 22%, 329.92 14%, 187.95 10%, 64.27 2%, 20.96 27%, 579.12
ChatGPT-4 0%, 81.84 0%, 92.40 0%, 1.56 0%, 4.80 0%, 142.68

GPT-4V 0%, 9.60 0%, 12.61 0%, 8.16 0%, 11.16 0%, 12.48

Wavelet Transform (abbreviated as SWT) (Kalidas338

and Tamil, 2017). We use the Mean Absolute Error339

(MAE) to measure the error in beats per minute340

between the detected and actual heart rates.341

The experiments with LLMs/VLMs are con-342

ducted with different prompt schemes, including343

(i) containing only general descriptions of R-peaks,344

(ii) containing a detailed detection procedure, (iii)345

containing the procedure as well as varied numbers346

of reasoning examples, and (iv) one-shot prompt-347

ing (Liu et al., 2023b) containing the one example348

of ECG data and actual R-peak values. In our eval-349

uation, "hallucination" is defined as cases where350

the LLMs/VLMs are unable to proceed or generate351

R-peak outputs. The MAE is averaged across cases352

where models can produce R-peak outputs.353

Overall Performance. Table 2 summarizes the354

performance of various baseline methods along-355

side four penetrative LLM/VLMs in the task. We356

observe that conventional signal processing base-357

lines give high MAEs when the window size of358

query data is 5 seconds, which can be signifi-359

cantly improved when the window size increases360

to 30 seconds. However, the performance of LLMs361

varies a lot. PaLM 2, for instance, frequently re-362

peats the query sensor data in the response, leading363

to high hallucination rates and significant MAEs.364

ChatGPT-3.5 shows a reduction in hallucination365

rates but tends to produce extended sequences of366

R-peaks, resulting in significant errors.367

Remarkably, ChatGPT-4 completely avoids hal-368

lucinations and yields an impressive MAE of 1.56369

when the prompt is incorporated with a dedicated370

procedure and one reasoning example. This per-371

formance is noteworthy, as it surpasses all conven-372
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Figure 6: Impact of window size of query sensor data.

tional signal processing baselines with 5-second 373

data. It is noteworthy, however, that ChatGPT-4 374

does not record the lowest MAE when provided 375

with two reasoning examples. This phenomenon 376

may be attributed to the increased task complex- 377

ity due to additional examples. One more reason- 378

ing example encompasses an ECG sequence and a 379

reasoning procedure, which occupies about 2,200 380

tokens for ChatGPT. 381

GPT-4V exhibits commendable efficacy and it 382

outperforms all LLMs when only a general descrip- 383

tion of R-peaks is provided in the prompt, demon- 384

strating its potential for general adoptions where 385

its usage is completely independent of any signal 386

processing knowledge. 387

In conclusion, our findings indicate that LLMs 388

exemplified by ChatGPT-4 can exhibit remarkable 389

proficiency in analyzing physical digitized signals 390

when provided with proper guidance. 391

Impact of Window Size. We investigate how 392

the window size of ECG query data impacts the 393

end performance of LLM/VLMs. We adopt the 394

prompt scheme encompassing the procedure and 395

one reasoning example. As shown in Figure 6, 396

we vary the window size from 2.5 to 10 seconds, 397
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adjusting the reasoning example correspondingly398

for each window size. The stability of PaLM 2’s399

performance is inconsistent, and a reduction in hal-400

lucination rates does not translate to lower MAEs.401

The hallucination rates for both ChatGPT-3.5 and402

ChatGPT-4 escalate with the increase in window403

size. A plausible explanation for such a trend is404

ChatGPT’s inherent limitation in processing exten-405

sive lengths of digitized sequences. For instance,406

a 10-second window of query sensor data contains407

720 numerical values, resulting in approximately408

5,100 tokens. These findings suggest the inefficacy409

of existing LLMs like ChatGPT when tasked to410

process long digitized signals. The GPT-4V keeps411

a zero hallucination rate but exhibits a similar trend412

of MAE increase with bigger window sizes.413

4 Penetrative AI414

While not achieving perfect accuracy, LLMs ex-415

hibit surprisingly encouraging performance, even416

when dealing with pure digital signals. This417

presents an enticing opportunity to leverage LLMs’418

world knowledge as a foundation model to derive419

insights from sensory information while requiring420

no or little additional task knowledge or data, i.e.,421

in zero or few-shot settings. Such a capability may422

be equipped with IoT sensors and actuators to build423

intelligence into cyber-physical systems – a con-424

cept we term "Penetrative AI".425

4.1 Scope426

"Penetrative AI" is concerned with exploring the427

foundation role of LLMs in completing tasks in428

the physical world. Two primary characteristics429

define its scope – i) the involvement of the em-430

bedded world knowledge in LLMs 2, and ii) the431

integration with IoT sensors and/or actuators for432

perceiving and intervening the physical world. It433

is important to distinguish the scope of Penetrative434

AI from existing practices where the LLMs are not435

engaged with their world knowledge in direct anal-436

ysis of sensor inputs or CPS control. Examples437

include classical NLP applications of LLMs, con-438

ventional machine learning adopted in CPS, and439

LLMs involved in the CPS loop but not applied to440

comprehending the physical world phenomena.441

As the example applications demonstrate, pene-442

trative AI may offer the following potentials. It sim-443

plifies solution deployment, allowing user-machine444

2or variations like Vision-Language Models (VLMs) (Ope-
nAI, 2023a) which adapt to other input modalities.

interaction in plain language and minimizing the 445

need for extensive programming skills. It also en- 446

hances data efficiency as LLMs embedded with 447

vast world knowledge can effectively generalize to 448

new tasks. LLMs adeptly handle fuzzy logic well, 449

drawing inferences from vague or disorganized in- 450

formation, and bypassing the need for precise logic. 451

Finally, the penetrative AI offers an innovative op- 452

portunity for multimodal fusion, where diverse data 453

types are transformed into a uniform text format, 454

facilitating seamless adaptation to various tasks 455

without extensive model re-engineering. 456

4.2 Challenges and Future Directions 457

Adopting LLMs in a penetrative way for CPS is 458

non-trivial since LLMs are typically trained with 459

extensive text corpora for NLP applications and 460

thus may lack expertise and domain knowledge for 461

CPS tasks. Unleashing its full potential necessitates 462

addressing the challenges as follows: 463

Understanding the knowledge boundaries of 464

LLMs. A fundamental challenge lies in system- 465

atically assessing LLMs’ capabilities for specific 466

CPS contexts. A pragmatic approach to this is 467

engaging LLMs in structured dialogues, tailored 468

to uncover their understanding and application of 469

relevant concepts at different levels, including con- 470

ceptual awareness where the LLMs’ fundamental 471

conceptual grasp can be gauged by questions like 472

"what is SSID in the context of WiFi?", and ap- 473

plication and understanding which delves deeper, 474

examining whether LLMs can aptly apply funda- 475

mental concepts in practical scenarios with exam- 476

ple questions like "what does it imply about the 477

users’ locations if their smartphones connect to 478

WiFi APs with certain SSIDs and RSSIs?". 479

Expanding LLMs’ capabilities. A subsequent 480

and essential challenge is to broaden the capabili- 481

ties of LLMs for CPS tasks based on the existing 482

knowledge. Such expansion can be approached 483

through several strategies. Task decomposition can 484

break down complex tasks into simpler sub-tasks, 485

which allows LLMs to develop more focused and 486

efficient problem-solvers. Signal transformation 487

and data preprocessing decides the form in which 488

sensor or actuator data shall be presented which is 489

a crucial challenge. While digitized signals offer 490

in-depth information, they require a deeper level of 491

physical world understanding from LLMs. Trans- 492

forming them into textualized data may be benefi- 493

cial and other preprocessing methods such as filter- 494

ing to remove irrelevant or redundant information 495
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may also enhance system efficacy. Effective prompt496

design is a major challenge, which may involve em-497

bedding domain-specific knowledge when LLMs’498

common knowledge is limited in certain tasks. De-499

veloping stateful prompts and effective algorithms500

with fuzzy logic (as demonstrated in Section 3.2)501

is another interesting future work. Interfacing with502

external tools also leads to an expansion of LLMs’503

capabilities. Examples include using code inter-504

preters for executing signal processing algorithms505

or leveraging procedure calls for accessing real-506

time information and/or controlling CPS.507

Enriching LLMs with expert knowledge. A508

pivotal approach is to develop specialized models509

tailored to embedding additional domain knowl-510

edge for CPS tasks. Such an approach however511

comes with special considerations and challenges:512

Dataset construction for multimodal datasets to513

train tailored LLMs is a challenge. Unlike stan-514

dard image-text pair datasets like those described515

in (Byeon et al., 2022), sensor-text datasets for CPS516

tasks shall include not only descriptive information517

but also expert knowledge and processing guidance,518

which necessitates a thoughtful approach to ensure519

the data are comprehensive, accurate, and reflective520

of real-world scenarios. Balancing specialization521

with generalizability is necessary. A critical risk522

in the fine-tuning LLMs is the potential disruption523

of the existing knowledge base of LLMs and a bal-524

anced fine-tuning process with both general and525

domain-specific data may be key to maintaining526

the robustness of LLMs. Integrating expert models527

presents another way to enrich expert knowledge of528

LLMs, e.g., integrating LLMs with an IMU founda-529

tion model like LIMU-BERT (Xu et al., 2021) may530

enable frontend features of sensor signals before531

LLM comprehensions.532

5 Related Work533

LLMs for Sensor Processing. With the scaling534

of model size and corpus size, LLMs demonstrate535

an emerging in-context learning (ICL) ability by536

learning directly from input prompts without addi-537

tional training (Min et al., 2021; Rubin et al., 2021;538

Min et al., 2022). This forward has broadened the539

application spectrum of LLMs, such as in Liu et540

al.’s study (Liu et al., 2023b), where LLMs analyze541

medical data for health-related tasks, e.g., recog-542

nizing activities with accelerometer data. LLMs in543

(Liu et al., 2023b) primarily rely on learning from544

question-answer pairs presented in prompts. Our545

work, however, extends this by applying LLMs to 546

signal-processing tasks, providing them with pro- 547

cessed sensor data and structured guidance. We be- 548

lieve this enriched interaction between LLMs and 549

sensor data can better exploit embedded common- 550

sense knowledge in LLMs and thus unlock their 551

potential to accomplish real-world tasks. 552

Embodied AI."Penetrative AI" is different from 553

"Embodied AI" (Duan et al., 2022), which pre- 554

dominantly aims at designing robotic agents and 555

is broadly defined with general AI models (rather 556

than the penetrative AI’s focus on LLMs’ foun- 557

dation roles). The penetrative AI focuses on the 558

exploration of integrating LLMs with IoT sensing. 559

It is not limited to the form of AI agents and sup- 560

ports AGI-in-the-loop perception or control mod- 561

ules for CPS. In various domains such as gaming 562

and robotics, there are many LLM-based agents 563

that leverage the embedded general knowledge to 564

generate actions or plans (Liang et al., 2023; Singh 565

et al., 2023; Wang et al., 2023; Yao et al., 2022; 566

Park et al., 2023). Many of these initiatives (Liang 567

et al., 2023; Singh et al., 2023) center around the 568

programming capabilities of LLMs, executing per- 569

ceptions and actions through predefined API inter- 570

faces. In contrast to these robot-focused endeavors, 571

this paper applies LLMs to directly comprehend 572

physical world signals in IoT scenarios. 573

Exploring Novel LLM Applications. Several 574

studies venture into novel LLM applications like 575

image editing (Wu et al., 2023), video understand- 576

ing (Li et al., 2023), constructing knowledge graph 577

(Sun et al., 2023; Carta et al., 2023), mental health 578

prediction (Xu et al., 2023), sequence completion 579

(Mirchandani et al., 2023), and developing recom- 580

mendation systems (Gao et al., 2023; Liu et al., 581

2023a). Different from all existing efforts, this 582

paper defines "Penetrative AI" which leverages 583

LLMs’ world knowledge in comprehending phys- 584

ical phenomena and completing real-world tasks. 585

We believe this is the first effort to explore the 586

boundaries of LLMs’ ability to interact with the 587

real physical world with IoT sensors. 588

6 Conclusion 589

We present penetrative AI and explore the potential 590

of leveraging large language models as world mod- 591

els to accomplish real-world tasks with IoT sensors. 592

Our findings illuminate a promising path for the in- 593

tegration of artificial intelligence and CPS, offering 594

insights into the future of AI-powered solutions. 595
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7 Limitations596

Our study is based on a key assumption that LLMs597

have integrated high-level common-sense human598

knowledge that can be adopted for processing sen-599

sor data. This assumption may not be universally600

applicable to all LLMs, particularly those with601

small size or trained in specific NLP text corpora.602

Furthermore, our evaluation was confined to a se-603

lect number of LLMs accessible through platforms604

such as OpenAI and Google API. This limited605

scope may not fully encompass the vast array of606

LLM capabilities currently available.607

Due to constraints in manuscript length, we fo-608

cused on two illustrative applications. While these609

were carefully chosen to represent distinct levels610

of signal processing within the Penetrative AI, they611

do not exhaust the full spectrum of potential ap-612

plications. Despite this, we believe that these ap-613

plications demonstrate the potential of LLMs in614

processing sensory signals. Future research could615

expand upon this groundwork by applying Penetra-616

tive AI to a wider array of applications.617

We also observed that when employed in a pen-618

etrative manner, LLMs might exhibit lower effi-619

ciency in processing extensive sequences of digi-620

tal data compared to traditional signal processing621

methods. This observation suggests a potential con-622

straint in the practical deployment of Penetrative623

AI solutions. It underscores the need for contin-624

ued research to enhance the efficiency of LLMs in625

handling long-digit sequences.626

8 Ethics Statement627

Labor Considerations. In constructing the dataset628

for activity sensing, authors and 7 volunteers from629

Southeast Asia engaged in tasks such as data col-630

lection and storage. Volunteers acknowledge the631

usage of data and collected sensor data are anony-632

mous. The dataset includes human annotations that633

are fact-based, such as identifying whether the sub-634

ject is indoors or outdoors during data collection.635

Thus, the sensor dataset maintains an objective and636

unbiased perspective.637

Misues Potential. In our experiments with ac-638

tivity sensing, some LLMs demonstrated the ca-639

pability to infer user activities from sensor data640

collected by smartphones. Despite these promising641

preliminary findings, there exists a potential risk642

of future misuse, such as unauthorized tracking of643

users’ daily activities and personal information. We644

emphasize the necessity for responsible application645

of these technologies, with a strong commitment 646

to protecting individual privacy and preventing ma- 647

licious uses. Additionally, while applying LLMs 648

such as ChatGPT-4 for heart rate detection holds 649

promise, it necessitates further experimentation and 650

studies to validate its effectiveness and reliability. 651

Continued research in this area is crucial to ensure 652

that LLMs can be confidently used for medical data 653

analysis. 654
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A Complete Prompt840

A.0.1 Activity Sensing841

In table 1, we evaluate three prompt schemes for ac-842

tivity sensing: (1) plain prompt, (2) prompt with ex-843

pert knowledge, and (3) prompt with expert knowl-844

edge and one reasoning example, which are shown845

in Figure 7 to Figure 9, respectively. All prompts846

include the objective, response format, and query847

sensor data. The response format is adopted to848

constrain the output of LLMs. We highlight place-849

holders for sensor data in blue and their detailed850

information is as follows:851

• $DATA_STEP$ represents the step count de- 852

rived from the step counter algorithms. 853

• $DATA_SATELLITE_COUNT$ indicates the 854

satellite count. 855

• $DATA_SATELLITE_SNR$ is the average SNR 856

of satellite signals. 857

• $DATA_WIFI_COUNT$ denotes the count of 858

WiFi APs with an RSSI above -70. 859

• $DATA_WIFI_LIST$ indicates the SSID list of 860

WiFi APs with RSSI over -70. 861

All placeholders are replaced with actual sen- 862

sor data for new inference. For instance, 863

"$DATA_STEP$" might be replaced by "5.2", result- 864

ing in the complete phrase "Step count: 5.2/min." 865

A.0.2 Heart Rate Detection 866

Figure 10 to Figure 12 present the prompt templates 867

to LLMs for the R-peak detection task. Similarly, 868

each prompt template incorporates a response for- 869

mat and a placeholder for ECG digits. Notably, a 870

special sentence - "Do not write codes" is inserted 871

in the prompt to prevent LMs from generating code 872

as a solution. Figure 13 demonstrates an example 873

of query ECG data, which can be used to replace 874

the placeholder in the prompt templates and get the 875

complete prompt. 876

Figure 14 presents the prompt template with de- 877

scriptions of R-peak for heart rate detection with 878

images, while Figure 15 displays prompt templates 879

incorporating a description or a reasoning example. 880

Since the digited ECG data are input as figures, we 881

omit the textual placeholder. In practice, we may 882

input multiple figures into VLMs, including a query 883

figure and reference images for reasoning exam- 884

ples. Figure 16 showcases examples of ECG data 885

figures, formatted in PNG and sized at 2000× 500. 886

11



Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 7: Prompt template (plain) for activity sensing.

Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Sensor Data and Expert Knowledge:
You will receive data from various sensors, including the accelerometer, satellite, and WiFi. Here’s how to interpret this
data:
1. Step Count per Minute:
Source: Accelerometer (measures user’s movement).
Interpretation: A high count signifies walking; a low count indicates the user is likely stationary.
2. Satellite Data:
Data: Number of satellites detected and average carrier-to-noise density (in dB).
Interpretation: High satellite count and carrier-to-noise density indicates an outdoor setting with strong satellite signals.
3. WiFi Data:
Data: Total count of WiFi Access Points (APs) detected and the list of their SSID.
Interpretation: A large total count of detected APs implies that the user is likely in close proximity to or inside a building,
given the prevalence of WiFi in modern buildings. Scanned APs indicate user’s proximity to them, and their SSIDs can
hint at specific locations. So analyze each SSID. For example, an SSID named ’Starbucks’ suggests the user is close to a
Starbucks. Note: Some SSIDs may be not meaningful.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 8: Prompt template (with expert knowledge) for activity sensing.
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Objective:
Determine a user’s activity by analyzing sensor data from their smartphone.

Sensor Data and Expert Knowledge:
You will receive data from various sensors, including the accelerometer, satellite, and WiFi. Here’s how to interpret this
data:
1. Step Count per Minute:
Source: Accelerometer (measures user’s movement).
Interpretation: A high count signifies walking; a low count indicates the user is likely stationary.
2. Satellite Data:
Data: Number of satellites detected and average carrier-to-noise density (in dB).
Interpretation: High satellite count and carrier-to-noise density indicates an outdoor setting with strong satellite signals.
3. WiFi Data:
Data: Total count of WiFi Access Points (APs) detected and the list of their SSID.
Interpretation: A large total count of detected APs implies that the user is likely in close proximity to or inside a building,
given the prevalence of WiFi in modern buildings. Scanned APs indicate user’s proximity to them, and their SSIDs can
hint at specific locations. So analyze each SSID. For example, an SSID named ’Starbucks’ suggests the user is close to a
Starbucks. Note: Some SSIDs may be not meaningful.

Response Format:
Reasoning: Provide a comprehensive analysis of the sensor data.
Summary: Conclude with a brief summary of your findings.
Motion: choose one from either ’stationary’ or ’walking’.
Environment: choose one from either ’indoors’ or ’outdoors’.

Reasoning Example:
Sensor Data:
1. Step count: 5/min.
2. Satellites detected: 16. Carrier-to-noise: 35.46dB.
3. Total WiFi APs scanned: 6. SSID list: [’McDonald’s Singapore’, ’xiaomi_5G’, ’McDonald’s Singapore’,
’Android_xx123’, ’OPPO 196’, ’link-B33’].
Reasoning:
1. The low step count indicates the user is stationary.
2. A high number of detected satellites and high carrier-to-noise suggest an outdoor environment.
3. WiFi data shows some WiFi Access Points (APs) detected, with SSIDs like ’McDonald’s Singapore’ hinting at a
location close to McDonald restaurant in Singapore.
Summary: The user is stationary, likely in an outdoor area near a McDonald restaurant in Singapore.
Motion: stationary.
Environment: indoors.

Now infer a user’s motion and surrounding conditions with the following sensor data:
Sensor data:
1. Step count: $DATA_STEP$/min.
2. Satellites detected: $DATA_SATELLITE_COUNT$. Carrier-to-noise: $DATA_SATELLITE_SNR$dB.
3. Total WiFi APs scanned: $DATA_WIFI_COUNT$. SSID list: $DATA_WIFI_LIST$.
Reasoning:
Summary:
Motion:
Environment:

Figure 9: Prompt template (with expert knowledge) for activity sensing.
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Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
The QRS complex, a recurring feature in ECG data, signifies the ventricles’ consistent depolarization in the heart. It com-
prises the Q, R, and S waves, where the Q wave shows a downward deflection, followed by an upward-moving R wave, and
then the S wave, which deflects downward after the R wave. The maximum amplitude of the R wave is known as the R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 10: Prompt template (with descriptions) for R-peak detection.

Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these steps:

1. Initial Observation: Begin by observing the rough overall range of ECG numbers in the provided data.

2. Identify Subsequences: Find subsequences of numbers that meet the following criteria:
2.1. The initial numbers are in the lower part of the overall range, even smaller than the range.
2.2. Subsequent numbers exhibit a significant increase, even exceeding the overall range.
2.3. Following the increase, subsequent numbers quickly return to the lower part of the overall range.

3. Select R-Peaks: After identifying these subsequences, select the largest number from each subsequence as an R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 11: Prompt template (with a procedure) for R-peak detection.
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Objective:
Find the R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these steps:

1. Initial Observation: Begin by observing the rough overall range of ECG numbers in the provided data.

2. Identify Subsequences: Find subsequences of numbers that meet the following criteria:
2.1. The initial numbers are in the lower part of the overall range, even smaller than the range.
2.2. Subsequent numbers exhibit a significant increase, even exceeding the overall range.
2.3. Following the increase, subsequent numbers quickly return to the lower part of the overall range.

3. Select R-Peaks: After identifying these subsequences, select the largest number from each subsequence as an R-peak.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the identified R-peak values in the format [R1, R2, R3], including duplicates as separate entries.

Reasoning Example:
ECG data: [978, 972, 976, 972, 974, 968, 969, 966, 968, 963, 966, 962, 963, 963, 966, 963, 966, 971, 977, 981, 986, 977,
979, 972, 960, 957, 955, 956, 956, 952, 925, 967, 1181, 1000, 926, 955, 940, 942, 940, 946, 940, 942, 939, 941, 942, 943,
944, 941, 935, 936, 934, 931, 936, 942, 952, 963, 965, 967, 968, 964, 965, 964, 963, 959, 960, 960, 962, 961, 961, 957,
962, 961, 965, 960, 973, 978, 987, 983, 983, 980, 970, 960, 963, 957, 964, 953, 957, 915, 1089, 1183, 939, 959, 946, 956,
947, 955, 947, 951, 948, 955, 949, 954, 949, 952, 948, 946, 942, 946, 952, 962, 972, 978, 978, 981, 979, 976, 975, 977,
974, 974, 970, 967, 970, 969, 968, 969, 971, 970, 971, 969, 977, 984, 991, 986, 984, 988, 974, 965, 965, 959, 965, 962,
956, 919, 1088, 1208, 955, 960, 953, 958, 950, 954, 949, 955, 950, 954, 950, 950, 948, 952, 948, 950, 946, 950, 947, 952,
958, 968, 970, 975, 975, 975, 974, 971, 969, 970, 966, 964, 961, 962, 962, 963, 962, 961, 962, 962, 962, 963, 975, 979,
983, 975, 980, 975, 960, 956, 957, 949, 954, 949, 939, 913, 1105, 1154, 925, 956, 938, 949, 937, 948, 938, 947, 939, 944,
938, 941, 938, 944, 939, 943, 938, 940, 933, 939, 938, 952, 954, 960, 957, 959, 960, 959, 954, 954, 950, 950, 947, 948,
943, 943, 940, 946, 944, 943, 944, 950, 954, 963, 959, 959, 958, 943, 935, 938, 934, 935, 934, 929, 898, 976, 1166, 972,
909, 934, 920, 930, 923, 928, 923, 925, 919, 925, 922, 926, 923, 926, 919, 923, 913, 918, 912, 919, 921, 936, 941, 953,
951, 954, 949, 954, 950, 955, 951, 956, 946, 950, 947, 955, 949, 955, 949, 957, 953, 959, 959, 972, 971, 979, 968, 980,
972, 963, 947, 958, 947, 959, 944, 936, 932, 1183, 1101, 915, 961, 938, 954, 943, 952, 943, 947, 943, 948, 945, 947, 943,
946, 946, 946, 944, 943, 941, 944, 948, 959, 969, 973, 977, 981, 979, 976, 979, 979, 977, 974, 974, 971, 974, 971, 973,
969, 970]
Reasoning:
Following the three steps by:
1. Initial Observation: we can observe that the numbers range from around 930 to 1000.
2. Identify Subsequences: we can identify several subsequences that start with numbers in the lower part of the range,
significantly increase to exceed the range, and then return to the range:
- [925, 967, 1181, 1000, 926]
- [915, 1089, 1183, 939]
- [919, 1088, 1208, 955]
- [913, 1105, 1154, 925]
- [898, 976, 1166, 972, 909]
- [932, 1183, 1101, 915]
3. Select R-Peaks: The largest number from those subsequences are [1181, 1183, 1208, 1154, 1166, 1183].
R-peaks: [1181, 1183, 1208, 1154, 1166, 1183].

Please identify the R-peaks in the provided ECG data. Do not write codes.
ECG data: $DATA$

Figure 12: Prompt template (with a procedure and a reasoning example) for R-peak detection.
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[968, 977, 981, 992, 985, 996, 985, 971, 959, 964, 956, 964, 950, 948, 918, 1143, 1164, 928, 965, 941, 956, 948, 958, 946,
955, 948, 952, 950, 953, 949, 953, 949, 952, 948, 951, 951, 957, 966, 976, 977, 977, 977, 979, 977, 975, 974, 972, 971,
970, 972, 968, 968, 966, 968, 969, 972, 971, 983, 987, 998, 992, 999, 996, 983, 968, 968, 959, 968, 956, 952, 915, 1118,
1160, 930, 967, 946, 962, 949, 961, 951, 958, 948, 958, 950, 956, 950, 957, 952, 952, 947, 949, 948, 955, 960, 971, 972,
978, 975, 978, 973, 971, 970, 970, 965, 968, 964, 963, 962, 964, 962, 966, 965, 962, 962, 971, 977, 984, 987, 986, 985,
986, 977, 959, 960, 951, 957, 949, 935, 935, 1175, 1056, 913, 962, 933, 954, 937, 950, 937, 949, 937, 947, 938, 947, 940,
947, 935, 939, 931, 937, 934, 949, 955, 967, 967, 977, 970, 977, 969, 975, 968, 974, 965, 967, 962, 968, 962, 969, 963,
969, 962, 972, 974, 986, 985, 995, 982, 997, 983, 971, 958, 964, 955, 964, 937, 924, 1004, 1231, 1037, 931, 961, 942, 952,
944, 951, 947, 948, 948, 950, 949, 949, 948, 949, 948, 947, 947, 945, 950, 953, 964, 971, 977, 975, 979, 975, 977, 975,
976, 969, 971, 966, 969, 966, 969, 962, 966, 962, 967, 963, 968, 970, 982, 982, 995, 988, 996, 991, 976, 962, 969, 958,
967, 954, 946, 935, 1179, 1119, 926, 971, 947, 961, 947, 960, 950, 957, 952, 958, 952, 956, 952, 956, 954, 956, 951, 954,
950, 956, 958, 969, 976, 983, 982, 985, 982, 984, 981, 981, 982, 979, 979, 978, 974, 975, 972, 974, 976, 976, 975, 975,
977, 977, 985, 989, 992, 1000, 998, 1000, 998, 981, 974, 971, 971, 965, 965, 956, 927, 1036, 1222, 1029, 924, 954, 953,
955, 953, 955, 954, 956, 953, 955, 954, 955, 957, 956, 952, 953, 950, 951, 945, 943, 949, 960, 970, 976, 979, 979, 979,
977, 977, 975, 974, 971, 969, 972, 971, 967, 968, 968, 968, 968, 966, 964, 966, 968, 969, 977, 981, 986, 988, 987, 991,
970]

Figure 13: Example query ECG data for R-peak detection.

Objective:
Find R-peaks in an ECG waveform.

Background Knowledge:
The QRS complex, a recurring feature in ECG data, signifies the ventricles’ consistent depolarization in the heart. It
comprises the Q, R, and S waves, where the Q wave shows a downward deflection, followed by an upward-moving R
wave, and then the S wave, which deflects downward after the R wave. The maximum amplitude of the R wave is known
as the R-peak.
Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the approximate indices of identified R-peak in the format [R1, R2, R3], including duplicates as separate
entries.

You should utilize the procedures described above, count R-peaks in the second image. In this task, the use of coding for
identification or counting of R-peaks is not permitted.

Figure 14: Vison prompt template (with a procedure and a reasoning example) for R-peak detection.
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Objective:
Find R-peaks in an ECG waveform.

Background Knowledge:
An R-peak within a sequence of ECG numbers refers to a pronounced upward deflection, typically representing the largest
and most conspicuous values within the sequence. To identify R-peaks, follow these procedures:
1.Identification of R-wave Spikes: Initially, identify the distinct sharp spikes in the ECG waveform that signify the R
waves.
2.Vertex Determination and Coordinate Extraction: Subsequently, determine the vertices of these identified spikes. Then
Extract the x-axis coordinates of these vertices.

Response Format:
Your response should strictly adhere to the format detailed below:
Reasoning: Provide a reasoned explanation based on the information mentioned above about how the R-peaks were
identified.
R-peaks: List the approximate indices of identified R-peak in the format [R1, R2, R3], including duplicates as separate
entries.

Reasoning Example:
For the first provided image, following the steps by:
1. There are six sharp spikes in total.
2. The coordinates are approximately [32,89,145,203,260,320].

You should utilize the procedures described above, count R-peaks in the second image. In this task, the use of coding for
identification or counting of R-peaks is not permitted.

Figure 15: Vison prompt template (with a procedure and a reasoning example) for R-peak detection.

(a) Reference figure for reasoning example.

(b) Query figure.

Figure 16: ECG Figure examples for VLMs.
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