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(a) User motion tracking in VR setting (b) Synthesized motion

Figure 1. EgoMDM : Egocentric Motion Diffusion Model. In this paper, we aim to synthesize the three-dimensional (3D) motion of users
wearing a Virtual Reality (VR) headset and two hand controllers. (a) Given the six degree-of-freedom (6-DoF) poses of the VR devices, (b)
EgoMDM can synthesize 3D human motion of the full body.

Abstract

Accurate three-dimensional (3D) human motion track-
ing is essential for immersive augmented reality (AR) and
virtual reality (VR) applications, allowing users to engage
with virtual environments through realistic full-body avatars.
Achieving this level of detail, however, is challenging when
the driving signals are sparse, typically coming only from
upper-body sensors, such as head-mounted devices and
hand controllers. To address this challenge, we propose
EgoMDM (Egocentric Motion Diffusion Model), an end-
to-end diffusion-based framework designed to reconstruct
full-body motion from sparse tracking signals. EgoMDM
models human motion in a conditional autoregressive man-
ner using a unidirectional recurrent neural network, mak-
ing it well-suited for real-time applications. By embedding
local-to-global translation, forward and inverse kinemat-
ics, and foot-contact detection within the diffusion frame-
work, EgoMDM achieves seamless, end-to-end motion syn-
thesis, effectively reducing artifacts like foot sliding and

∗Work done while the author was an intern at Meta.

ground penetration. Additionally, EgoMDM is conditioned
on the user’s body scale, allowing it to generalize across
a diverse population and produce consistent avatar shapes
over time. In our extensive experiments on the AMASS mo-
tion capture dataset, EgoMDM achieves state-of-the-art per-
formance in both motion tracking accuracy and synthesis
quality, demonstrating its robustness and adaptability across
various human motion scenarios. Furthermore, EgoMDM
significantly outperforms the existing models when tested on
real signal inputs, highlighting its robustness and applicabil-
ity to the real-world data. See the project page at: https:
//yohanshin.github.io/egomdm.github.io/

1. Introduction

In mixed reality (MR) and virtual reality (VR) applications,
accurate tracking of three-dimensional (3D) human motion
is essential for enhancing user experience, enabling natural
interactions, and improving immersion. In a typical MR
system, only the user’s head and hands are tracked using
head-mounted displays (HMD) and hand controllers. This
under-constrained problem of resolving full-body motion
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when tracking is restricted to the user’s head and hands is a
grand challenge in realizing truly immersive experiences.

Various data-driven approaches have relied on neural net-
work regressors to learn a direct mapping from sparse ob-
servations to full-body human motion [4, 16, 18, 52]. While
these methods perform well for simple motions, such as
walking or running, where upper- and lower-body dynamics
are closely correlated, they struggle with more ambiguous
activities, where a particular upper-body observation can cor-
respond to multiple possible lower-body motions. Previous
work [3, 6, 7, 9, 45] has attempted to address this challenge
through the use of conditional generative networks, including
diffusion models. However, these models are generally de-
signed within sequence-to-sequence non-causal frameworks,
which have high computational demands and lead to reduced
performance in real-time applications.

Existing methods also encounter difficulties with global-
space realism, often producing unrealistic effects such as
foot sliding, floor penetration, and floating. These failure
modes stem from two main limitations. First, prior methods
estimate local joint rotations in a pelvis-centered coordinate
system and later translate it to global space. This sequential
approach makes the model sensitive to sensor noise and error
accumulation, and it also prevents the model from learning
how the human interacts with the floor at different body
poses. Second, most methods assume a mean human body
shape, limiting adaptability across individuals of varying
body scales. While recent work [4, 18] estimates body shape
on a frame-by-frame basis, it often results in inconsistent
avatar shapes throughout the sequence. In contrast, our
method learns a motion representation tailored for analytical
IK, enabling smooth, scale-consistent motion reconstruction.

To address these challenges, we propose EgoMDM (Ego-
centric Motion Diffusion Model), the first framework to learn
a human motion representation that couples 3D joint posi-
tions with limb twist angles, enabling analytical IK without
jitter and across diverse body scales. Built on an autoregres-
sive diffusion process with unidirectional RNNs, EgoMDM
is well suited for real-time application. Unlike methods that
assume a mean body shape or estimate it frame-by-frame,
our model is conditioned on body shape—calibrated from a
T-pose or user measurements like height and wingspan—to
decode motion that accurately aligns with each user’s unique
body scale. Our model learns the distribution of human
motion decomposed into foot-ground contact probability, po-
sition and twist angle of limb joints, and torso joint rotation.
The full-body motion is then analytically computed through
a differentiable inverse kinematics (IK) solver. This motion
representation allows diverse synthesis of human motion,
while maintaining controllability to minimize foot sliding
artifacts. While an analytical IK often introduces jittery mo-
tion when enforcing limb-length constraints, EgoMDM iter-
atively denoises motion representation, resulting in smooth

motion while satisfying the constraints. In addition, by em-
bedding local-to-global coordinate transformation into a dif-
fusion framework, our model efficiently learns global space
human motion.

Our main contributions are as follows. (1) We present
an autoregressive conditional diffusion framework that syn-
thesizes 3D human motion from sparse signals, achieving
accurate and realistic full-body motion in real-time. (2) By
learning human motion in global coordinates and incorporat-
ing foot contact detection, EgoMDM attains state-of-the-art
performance in both tracking accuracy and synthesis quality.
(3) Because EgoMDM is conditioned on individual body
shape, it generalizes seamlessly across users with diverse
body scales, ensuring consistent and personalized motion.
(4) We introduce a novel motion representation, decoupling
full-body kinematics into limb joint positions, twist angle,
and torso angles to enable seamless motion reconstruction
with analytical IK. (5) Despite being fully-trained on syn-
thetic data, EgoMDM demonstrates remarkable robustness
to real-world data, underscoring its practical effectiveness
for real-life scenarios.

2. Related Work
Human motion tracking from wearables. Human motion
tracking from sparse wearable sensors has garnered attention
in recent years [2, 4, 6, 7, 14, 16–19, 21, 22, 40, 41, 44, 45,
47, 48, 52]. Previous work [14, 19, 40, 41, 47, 48] used six
body-worn IMUs attached to the head, pelvis, arms, and legs
to capture full-body motion. Following initial optimization-
based approaches [41], DIP [14] introduced a training frame-
work that used synthetic IMU data generated from mocap
datasets [27]. Follow-up learning-based approaches have
used RNN [46] and Transformer [19] architectures, and
some even incorporated physics-based simulations [47, 48].

More recently, tremendous progress [2, 4, 6, 7, 9, 16–
18, 22, 44, 45, 52] has been made on tracking full-body
movements from AR/VR equipment: HMD and two hand
controllers. The initial body of work in this area used physics
simulators to leverage physics priors for human motion track-
ing. For example, QuestSim [44] and QuestEnvSim [22]
utilized NVIDIA’s IsaacGym [28] as the physics engine and
reinforcement learning to train the model. Physics simula-
tors, however, require significant computational resources
and therefore can be challenging to deploy on mobile hard-
ware. In contrast, another line of work directly learns a
regressor that maps sparse signals to the full-body human
motion. For example, AvatarPoser [16] uses a Transformer
architecture to extract the temporal correlation between the
three-point signals and full-body human motion, whereas
AvatarJLM [52] uses a spatio-temporal Transformer to ex-
plicitly model joint-level features. HMD_Poser [4], on the
other hand, introduced a unidirectional RNN-based architec-
ture and built a lightweight system suitable for deployment.
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Recently, EgoPoser [18] modeled tracking errors of hand
controllers using the field of view of the HMD to improve
the generalizability of the system to real-world data capture
settings. MANIKIN [17] introduces an inverse kinematics
operation that reconstructs 3D joint rotations while maintain-
ing end-effector positions. However, these methods typically
perceive the task as a one-to-one mapping problem, assum-
ing a deterministic relationship between sparse input signals
and full-body motion. This assumption limits their ability to
overcome the inherent ill-posed nature of the problem.
Conditional human motion synthesis. Recent advance-
ments in generative models have enabled the synthesis of
human motion across a wide range of conditions. One body
of work focuses on generating full-body human motion from
text descriptions [11, 15, 32, 38, 49] or action labels [10, 31],
aiming to produce movements that align closely with the
provided prompts. Another line of research [5, 42, 43, 51]
synthesizes motion based on scene environments or object
interactions, with the goal of creating natural, context-aware
motions that seamlessly integrate with the surrounding envi-
ronment.

Similarly, synthesizing human motion from sparse track-
ing signals presents challenges that generative models are
well-suited to address. Early work leverages flow-based ar-
chitectures [2], a variational autoencoder (VAE) framework
[6], or latent space codebook matching [37] to learn a con-
ditional distribution of human motion. More recent studies
[3, 7] capture the conditional probabilistic distribution of full-
body motion using the diffusion model [12, 36]. SAGE [9]
decomposes human motion into upper and lower body com-
ponents, reconstructing full-body motion from upper-body
sensor observations using a hierarchical approach. Most of
these methods rely on a sequence-to-sequence framework
for human motion modeling, which can impose significant
computational demands or lead to reduced performance in
real-time scenarios. In contrast, we develop an autoregres-
sive conditional diffusion model with a causal structure,
optimized for efficiency and real-time use.

3. Preliminaries
SMPL [25] is a differentiable function M(θ, β, γ), repre-
senting a human body mesh M with 6,890 vertices through
a set of low-dimensional parameters. Pose parameter θ is
a set of 3D rotations of 23 body joints and the root joint’s
global orientation. The shape parameter β represents the 16
principle components of human-body shape learned from
thousands of body scan data [20]. Finally, the translation γ
is the root-joint position in the world coordinate system.
Conditional diffusion model. Following prior work [33,
39, 50] in human motion synthesis, we adopt the Denoising
Diffusion Probabilistic Models (DDPMs) formulation [12].
Let x0 = {x(n)

0 }n=1:N be the full-body human motion with
N frames, that follows the distribution x0 ∼ q(x0). The

forward diffusion process is a Markov chain adding Gaussian
noise with the variance βt ∈ (0, 1) at each diffusion step
t ∈ {1, ..., T} according to a pre-defined schedule:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

where I is the identity matrix. Ho et al. [12] show that we can
directly sample xt from x0 using the properties of Gaussian
distribution:

xt =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I),

where αt = 1 − βt. The reverse diffusion process is an
iterative denoising to reconstruct x0 from Gaussian noise
xT over T diffusion steps. In practice, we follow prior
work [39, 50] to train a denoiser neural network D that
removes the added Gaussian noise based on a condition
signal, sparse tracking signals s in our case, and a diffusion
step t: x̂t−1 = D(xt, t, s), which iteratively produces x̂0

from random noise x̂T .

4. Methods
4.1. Problem formulation

Given the sequence of sparse tracking signals S =
{s(n)}Nn=0 of N frames from HMD and hand controllers, we
aim to synthesize the 3D full-body motion X = {X(n)}Ni=0

of the subject with body scale b. The input signal s(n) at
each time contains the sensor orientation so, position sp,
angular velocity sȯ, and linear velocity sṗ of the head and
hand controllers. Note that we use 6D representation for the
sensor orientation so to avoid discontinuity in the input sig-
nal. Our model’s final output, X, is the set of full-body joint
rotations θ and root translation γ. However, the denoising
network learns the distribution of motion representation x
that contains 1) pelvis-centered limb joint position Jlimb, 2)
torso joint rotation θtorso, 3) joint twist angles θtwist, and 4)
foot-ground contact probability f :

s ∈ R45 = {so, sp, sȯ, sṗ},
x ∈ R120 = {Jlimb, θtorso, θtwist, f}.

Then, the full-body motion X can be computed determin-
istically from Jlimb, θtorso, and θtwist using an analytical
IK solver: X = IK(Jlimb, θtorso, θtwist). Leveraging the
one-to-one mapping property of the IK solver, the diffu-
sion model can effectively learn an equivalent representation
space as X, while maintaining a more controllable and inter-
pretable motion decomposition.

4.2. Network overview

The overview of the proposed diffusion model architecture
is shown in Fig. 2. At each time n, we denoise the motion
representation x

(n)
t conditioned on the subject body scale
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Figure 2. Framework Overview. Given the tracking signals of the headset and two hand controllers, we first denoise the partially
represented motion and construct the full-body motion using an analytical IK solver. The denoiser network first estimates the foot-ground
contact probability, limb joint twists and positions, and torso joint angles. Followed by local-to-global translation, we construct the initial
global-space human motion the use a residual refinement network to update motion. Finally, full-body mesh motion is analytically computed.

b, diffusion timestep t, input signal s(n) , and the motion
context propagated from the previous frame h

(n−1)
DL,t . Then,

the full-body SMPL parameters are computed from a differ-
entiable IK solver. In the following subsections, we explain
the forward step of the diffusion model in three subsequent
steps: local motion estimation (Section 4.3), contact-aware
global motion refinement (Section 4.4), and analytical limb
IK (Section 4.5).

4.3. Local motion estimation

In this stage, given the human body scale b, noisy motion
x
(n)
t at diffusion timestep t, and sensor signal s(n) at time

n, we synthesize human motion in the pelvis-centered co-
ordinates. The body scale is defined as the joint position
configuration of the subject in T-Pose. Local coordinate de-
noiser DL is combined with the projection layers that embed
each input into the latent space and the RNN-based local
motion decoder. The outputs of this module include the foot-
ground contact probability f (n), torso joint rotation θ

(n)
torso,

twist angle θ
(n)
twist, and the positions of limb joints J (n)

limb:

f (n), θ
(n)
torso, θ

(n)
twist, J

(n)
limb = DL

(
x
(n)
t , s(n), t, b|h(n−1)

DL

)
.

Here, h(n−1)
DL,t is the RNN hidden state propagated from the

previous time n − 1. We construct local motion J
(n)
L by

concatenating the limb joints with the torso (Fig. 2). The
network is designed autoregressively that the prediction at
frame n− 1 is fed into the network at frame n. At the first
frame, where we do not have the previous frame prediction,
we estimate h

(0)
DL

and the pseudo 0th frame prediction using

the first frame sensor signal [47].
Human body decomposition into limb joints and torso is

designed to address foot skating, a common artifact in MR
systems. Representing motion in the joint-rotation space
poses challenges in controlling this artifact, since foot posi-
tions are computed as the cumulative SO(3) matrix multi-
plication along the kinematic tree, combined with root joint
translation. By contrast, our approach directly represents hu-
man motion with the limb joint positions, enabling more pre-
cise control of limb positions and effectively mitigating foot
skating artifacts. While the recently introduced MANIKIN
[17] also decomposes the torso and limb joints, our approach
diverges in two significant ways. First, MANIKIN assumes
a clean input signal and defines hand position based on the
direct hand controller measurement, making it susceptible to
noise; our method predicts hand position, improving robust-
ness. Second, MANIKIN works under the mean body-shape
assumption, limiting scalability across individuals; in con-
trast, we adapt to diverse body sizes by conditioning the
network on each subject’s body scale using joint configura-
tions from a neutral T-pose.

4.4. Global motion refinement

The pelvis-centered motion JL can subsequently be trans-
lated to the global space using the tracking signals measured
in the global coordinate system [4, 7, 9, 16, 52]. However,
this approach often leads to artifacts, such as foot skating,
ground penetration, and floating, as the local motion network
DL is limited in its ability to learn human motion distribu-
tions in a global coordinate system. To address theses is-
sues, we propose a straightforward, yet effective, refinement
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scheme. First, similar to prior approaches, we translate the
predicted local motion JL into the global coordinate system
using the HMD position, sp,head:

JG = JL + sp,head − P2H(JL),

where P2H(·) is an operation to compute the head posi-
tion relative to the pelvis. We then introduce a refinement
network DG that processes this roughly translated global
motion JG and outputs a residual correction. Inspired by
recent work [34], we further condition this refinement on the
weighted foot velocity vf computed from global motion JG
and contact probability f :

v
(n)
f = f (n) ⊗ (∆JG,f/∆n) ,

∆J
(n)
G = DG

(
J
(n)
G , v

(n)
f , h

(n)
DL,t | h

(n−1)
DG

)
,

where ⊗ denotes element-wise product, JG,f is the global
foot position. We initialize ∆J

(0)
G and h

(0)
DG

with zeros. This
refinement step enables the network to efficiently address
artifacts by directly refining the global-space motion, im-
proving stability and realism in the generated motion. We
obtain the motion representation x by integrating f , θtwist

and ĴG = JG +∆JG.

4.5. Analytical limb IK

Following HybrIK [23, 24], we reconstruct joint angles ana-
lytically from the global joint positions (ĴG) and twist angles
(θtwist). However, directly solving IK from the pelvis out-
ward, as in HybrIK, can cause cumulative positional errors
due to minor limb-length mismatches. To mitigate this, we
first refine mid-joint positions (knees, elbows) using a bone-
length constraint. Specifically, with fixed parent and child
joint positions (e.g., hips and ankles), mid-joint positions
must lie on an orbit defined by these fixed joint positions
and the corresponding bone lengths. We select the refined
position closest to the initial prediction while maintaining
the constraints. After refinement, limb segment rotations
are computed analytically following HybrIK’s approach, de-
composing the rotation into swing and twist angles. For full
derivation, please refer to the Sup. Mat.

4.6. Losses

We train our diffusion denoiser network using the integrated
loss defined as:

L = Lsimple + λJ3DLJ3D + λθLθ +

λskateLskate + λreconLrecon.

The simple diffusion objective Lsimple is defined by com-
paring ground-truth motion x0 and denoised motion x̂0:

Lsimple = Ex0∼q(x0),t∼[1,T ]

[
||x0 − x̂0||22

]
.

LJ3D and θ are the losses enforcing consistency of estimated
3D joint position Ĵ3D and joint angles θ̂ with the ground
truth data:

LJ3D = ||J − Ĵ ||22, Lθ = ||θ − θ̂||22.

Lskate penalizes the displacement of the foot keypoints when
the estimated contact probability f is high:

Lskate = ||f0.5 ◦ vf ||22,

where f0.5 denotes the binary contact mask based on thresh-
old of 0.5, and ◦ is the masking operation. Finally, we use
a tracking-signal reconstruction loss Lrecon to enforce the
synthesized motion to generate a virtual-tracking signal that
is consistent with the input:

Lrecon = ||s− S (x̂) ||22,

where S(·) is the function that synthesizes virtual tracking
signals from the full-body motion.

4.7. Implementation details

We implement the temporal network using a unidirectional
Long Short-Term Memory (LSTM) network [13]. The local
motion decoder consists of three LSTM layers, while the
global motion refinement model uses two layers. Follow-
ing the autoregressive design of recent video-based human
motion estimation models [34], EgoMDM’s LSTM layers
take in the previous frame’s estimation, with the initial RNN
hidden state and the prediction for the zeroth frame derived
from the sensor signals in the first frame. For body scale
representation, we use the pelvis-centered resting pose joint
positions. The input signals are split into three components:
left controller position, right controller position, and the
remaining signals (head position along with the sensors’ ori-
entation, linear velocity, and angular velocity), which are
then independently projected into the embedding space. This
design choice allows for random masking of the left and right
hand controller position signals, enhancing the system’s ro-
bustness to sensor noise. Please see Sup. Mat. for more
detail.

During training, we crop the motion sequences to 81
frames and apply random-rotation augmentation around the
vertical axis to the ground plane. We use T = 1000 and
uniformly sample diffusion timestep t ∈ [1, . . . , 1000]. At
inference, we start with the pure Gaussian noise and follow 5
DDIM sampling [36] steps. We used the AdamW optimizer
[26] with a learning rate of 3e− 4, batch size of 1024, and
then reduced the learning rate to 1/10 after 225,000 and
350,000 steps. Experiments were performed on a single
NVIDIA A100 GPU, using PyTorch framework [30].

5. Experiments
Datasets. We train and evaluate our method on AMASS
[27], a large-scale public dataset that integrates multiple
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Protocol 1 Protocol 2

Models MPJPE MPJVE Jitter UPE LPE HPE RPE MPJPE MPJVE Jitter UPE LPE HPE RPE

Ground Truth 0 0 1.28 0 0 0 0 0 0 1.15 0 0 0 0
AGRoL† [7] 3.71 19.08 1.86 1.55 6.84 1.31 3.36 6.17 24.14 1.79 2.42 12.36 1.69 5.61
AvatarJLM† [52] 3.35 20.91 2.45 1.54 6.56 0.66 2.96 4.93 27.50 2.46 2.09 9.86 0.93 4.46
SAGE† [9] 3.28 20.62 1.81 1.39 6.01 1.18 2.95 5.86 33.54 2.82 2.40 12.07 1.99 5.00
MANIKIN† [17] 3.19 20.10 – 1.43 6.27 0.01 – – – – – – – –
EgoMDM† (Ours) 3.13 15.18 1.46 1.70 5.63 1.55 2.87 4.62 20.73 1.52 2.24 8.79 2.04 4.09

HMD-Poser [4] 3.19 17.47 1.83 1.67 6.27 1.65 3.21 5.44 30.15 2.59 2.44 9.77 2.56 4.83
EgoMDM (Ours) 3.63 15.41 1.46 2.24 6.05 1.51 3.34 4.89 20.74 1.51 2.51 9.05 1.86 4.23

Table 1. Quantitative comparison of geometric accuracies with state-of-the-art models on AMASS dataset. The best results are shown in
bold. † denote the model assumes the known body shape of the subjects.

error < 1 cm

error > 20 cm

Ground truth HMD-Poser EgoMDM (Ours)

Figure 3. Qualitative Assessment of Overall Performance. A comparison of motion-tracking accuracy between HMD-Poser [4] (second
column) and EgoMDM (ours, third column). Ground-truth is derived from the AMASS mocap dataset (first column). Vertices are colored
differently based on the per-vertex distance to the ground-truth motion (red indicates worse performance). The motion synthesized by
EgoMDM shows larger similarity to the reference ground-truth motion than the state-of-the-art method in various movement scenarios.

Mocap datasets and represents human motion in terms of
SMPL [25] body model parameters. Following prior work
[4, 7, 9, 52], we split training and testing sets using two
distinct protocols. The first protocol (P1) uses 3 subsets
within the AMASS dataset: specifically, CMU [1], BMLr
[8], and HDM05 [29]. In this protocol, we randomly split
the data into 90% training and 10% testing data. The second
protocol (P2) uses 12 entire subsets for training and 2 left-
over subsets for evaluation. Transitions [27] and HumanEva
[35] are the evaluation subsets. As a result, while P1 includes
more testing subjects, it has overlap between subjects in the
training and testing sets, whereas P2 ensures no such overlap.
We use the original body shape parameters of the subjects to
construct the ground-truth motion and input signals.

Additionally, we assess the real-world applicability of
our method by evaluating it on the recently published PICO-
FreeDancing dataset [4]. Unlike P1 and P2, which are syn-

thetically generated, PICO-FreeDancing contains real-world
HMD signals alongside corresponding ground-truth motions
captured through Mocap systems.

Evaluation metrics. We compare our model against state-
of-the-art methods in two categories. First, we evaluate the
tracking accuracy of each method using Position Error (PE,
in cm) across whole body (MPJPE), upper–body (UPE),
lower-body (LPE), hands (HPE), and root joint (RPE). We
also assess the temporal coherence to the ground truth mo-
tion using joint velocity (MPJVE in cm/s) and the jitter
(Jitter in 102 m/s) that measures the third-order derivative
of joint positions. Second, we evaluate the feasibility and
realism of the generated motion. We quantify the average
displacement of the foot joints during contact (Skate) and the
mean of absolute ground penetration and floating (Ground).
In addition, we compute the FID score that measures the dis-
similarity between the synthesized and ground truth motion
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Models Skate Ground FID Diversity

Pr
ot

oc
ol

1

AGRoL† [7] 0.21 2.07 0.29 7.30
AvatarJLM† [52] 0.22 1.74 0.27 –
SAGE† [9] 0.28 1.81 0.26 0.03
EgoMDM† (Ours) 0.10 1.48 0.10 11.66

HMD-Poser [4] 0.24 1.51 0.26 –
EgoMDM (Ours) 0.10 1.43 0.25 11.99

Pr
ot

oc
ol

2

AGRoL† [7] 0.32 2.58 0.95 19.26
AvatarJLM† [52] 0.34 1.53 0.41 –
SAGE† [9] 0.51 1.74 0.55 0.03
EgoMDM† (Ours) 0.19 1.29 0.40 20.98

HMD-Poser [4] 0.24 1.51 0.61 –
EgoMDM (Ours) 0.19 1.26 0.37 20.93

Table 2. Quantitative comparison of motion synthesis quality. †
denote the model assumes the known body shape of the subjects.

distribution in latent space. Last, we use Diversity metric to
quantify the variation in lower-body joint positions between
motion samples synthesized from the same sensor input.

During the evaluation, we compare our model with HMD-
Poser, which predicts body shapes, by using the predicted
shape parameters derived from the T-pose (i.e. height and
wingspan measurements). In contrast, methods such as
AGRoL [7], AvatarJLM [52], SAGE [9], and MANIKIN
[17] assume a mean body shape and are trained and tested
on shape-normalized data, where the model directly lever-
ages the known body scale of test subjects. To ensure a fair
comparison in terms of available body-scale information, we
additionally evaluate our model with the ground-truth body
shape parameters of test subjects, thus aligning the experi-
mental conditions with those of prior methods. Except for
the Diversity assessment, we generate 16 distinct noise sam-
ples for each input tracking signal and average the motion
at every denoising step. Additional details on the evaluation
protocols can be found in the Sup. Mat.

5.1. 3D Human Motion Synthesis.

Motion tracking accuracy. To demonstrate the effective-
ness of our method in synthesizing accurate and temporally
coherent motion from partial input data, Table 1 compares
EgoMDM to state-of-the-art approaches [4, 7, 9, 52] under
two distinct evaluation protocols (P1 and P2). Notably, Proto-
col 2 involves separating training and testing data by subject,
with no subject-level overlap, making it a strong indicator of
each method’s ability to generalize to new subjects. Under
both known/unknown shape scenarios, EgoMDM outper-
forms existing methods in the tracking accuracy, particularly
in MPJVE, Jitter and LPE, showing that EgoMDM can accu-
rately synthesize lower body from upper-body sensors while
preserving temporal coherence. Moreover, the proposed
model demonstrates a significant improvement over state-of-

Ground truth HMD-Poser EgoMDM (Ours)AvatarJLM

Figure 4. Qualitative Assessment of Realism. A comparison of
motion-synthesis quality between AvatarJLM [52] (second column),
HMD-Poser [4] (third column), and EgoMDM (fourth). Ground-
truth is based on mocap AMASS data (first column). EgoMDM
shows less foot skating (first row), floating (second row), and floor
penetration (third row) compared to the other methods.

the-art methods under Protocol 2, highlighting EgoMDM’s
enhanced generalizability to unseen subjects. Figure 3 shows
qualitative examples of how EgoMDM outperforms the cur-
rent state-of-the-art method [4] in diverse and challenging
motions.
Motion synthesis quality. Beyond tracking accuracy, real-
istic motion synthesis should be physically plausible, dis-
tributionally similar to real motion data, and sufficiently
diverse. Thus, we evaluate our method using three cate-
gories of metrics: (1) physical plausibility (Skate, Ground),
(2) distributional similarity (FID), and (3) motion diversity
(Diversity) (Table 2). EgoMDM achieves significantly lower
foot skating, ground penetration, and floating artifacts com-
pared to existing methods, highlighting our model’s effective
integration of contact detection for superior foot positioning
control. Figure 4 demonstrates the superior performance
of our model over the state-of-the-art methods [4, 52] in
synthesizing human motion with less foot skating, floating,
and ground penetration. Additionally, despite employing a
simple and computationally efficient network architecture,
EgoMDM produces more realistic results (FID) than com-
petitors that rely on computationally intensive Transformer
architectures. Finally, our model generates more diverse mo-
tion samples than existing conditional generative approaches
[7, 9], without sacrificing accuracy or plausibility.
Real-world data evaluation. Since the previous experi-
ments leveraged synthetic datasets with idealized input sig-
nals, they do not reflect the noisy conditions typical of real-
world sensor data. To verify our method’s robustness and
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PICO-FreeDancing

Models MPJPE HPE MPJVE Jitter Skate Ground

Ground Truth 0 0 0 1.48 0.07 0.82
AGRoL [7] 10.49 12.91 30.60 2.88 0.48 1.65
AvatarJLM [52] 9.02 8.71 32.72 4.55 0.51 1.62
SAGE [9] 10.04 10.07 41.61 4.08 0.87 1.85
HMD-Poser [4] 9.71 8.53 38.69 3.79 0.76 1.93

EgoMDM (Ours) 7.88 6.20 25.15 2.39 0.28 1.01

Table 3. Quantitative results on real data, PICO-FreeDancing [4].

Protocol 2

Models MPJPE MPJVE Jitter Skate Ground

w/o Analytical IK 5.89 28.00 1.24 0.23 1.45
w/o Shape cond. 5.21 23.51 1.77 0.22 1.26
w/o Refinement 4.88 21.74 1.62 0.24 1.28
w/o Diffusion 5.20 24.16 1.67 0.28 1.66
w/o Lskate 4.90 21.29 1.52 0.24 1.59

EgoMDM (Ours) 4.89 20.74 1.51 0.19 1.27

Table 4. Ablation experiments under the AMASS protocol 2. The
best and second-best results are in bold and underline.

applicability in practical scenarios, we further evaluate per-
formance on the real-world PICO-FreeDancing dataset (Ta-
ble 3). We observed consistent superiority of EgoMDM
across all metrics, confirming its robustness and suitability
for practical applications. A particularly noteworthy im-
provement is observed in hand tracking accuracy (HPE).
Unlike synthetic datasets where controllers perfectly align
with hand positions—conditions under which prior methods
excel—real-world signals often contain noise and misalign-
ments between controllers and hands. In these realistic con-
ditions, EgoMDM achieves substantial improvements, with
over 15% higher accuracy in motion tracking and approxi-
mately 60% fewer artifacts in motion feasibility compared
to previous state-of-the-art methods. These results highlight
EgoMDM’s superior robustness and ability to handle noisy
sensor inputs effectively.

5.2. Ablation Study

Our entire system outperforms the different variants of
EgoMDM that ablate each component (Table 4). Specifically,
we observe that the direct full-body joint angle regression
(vs. w/o Analytical IK) enhances both tracking accuracy
and motion synthesis quality, though it comes at the cost of
reduced smoothness in the motion. The ablation of shape
conditioning exhibits not only higher tracking error but also
larger Jitter, inferring the Analytical IK can provide smooth
motion when the body scale of the subject is provided. In
addition, EgoMDM significantly outperforms the version
without global motion refinement network DG (w/o Refine-

ment) in Skate and Jitter metrics. This indicates that the
refinement process conditioned on the feet velocity effec-
tively reduces the foot skating artifacts, as well as smooth the
motion in the world coordinate system. We further observe
that the proposed diffusion framework provides more accu-
rate and feasible motion synthesis performance throughout
iterative diffuse-denoise process compared to the one used
deterministic regressor (w/o Diffusion). Last, the addition
of foot skating error Lskate allows EgoMDM to synthesize
human motion with less foot skating (Skate) and ground
penetration and floating (Ground).

5.3. Inference Speed

To evaluate real-time feasibility, we conducted an inference
speed analysis on both a GPU (NVIDIA RTX 3090) and
a CPU (Macbook M1 Pro). Our method achieved 123.4
FPS on the GPU and 80.8 FPS on the CPU, utilizing 5-step
DDIM sampling for the diffusion process. These results
demonstrate that our model runs effectively in real-time on
standard consumer hardware, highlighting its potential for
practical, on-device deployment.

6. Conclusion
We introduced EgoMDM, an efficient diffusion-based frame-
work for synthesizing 3D human motion from sparse track-
ing inputs in VR settings. By leveraging conditional dif-
fusion on body shape and integrating foot-ground-contact
detection with global motion refinement, EgoMDM over-
comes common challenges such as foot sliding and ground
penetration, producing realistic and stable full-body mo-
tion. The proposed framework achieves state-of-the-art re-
sults in both geometric accuracy and feasibility, even with
a lightweight, unidirectional RNN-based architecture suit-
able for real-time applications. Our evaluations on standard
benchmarks highlight EgoMDM’s robust generalizability to
unseen subjects and significant improvements over existing
methods. This work makes it possible to use avatars be-
yond coarse motion-tracking by more realistically modeling
contact dynamics, improving human-scene interaction, and
expanding the application of VR systems to rehabilitation,
among other applications where contact dynamics are of
interest.
Limitations and future directions: Our diffusion-based
framework, trained with random hand-controller masking,
demonstrates robustness to real-world data. However, as
the network is trained exclusively on synthetic data, it may
be susceptible to sensor noise that falls outside the training
distribution. Additionally, our model only addresses human
interaction with a flat ground plane, which may limit its
generalizability to more complex human-scene interactions.
Future work could focus on integrating physics-based priors
and enhancing adaptability to improve motion realism across
a wider range of VR environments.
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