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Abstract

In non-linear filtering, it is traditional to compare
non-linear architectures such as neural networks
to the standard linear Kalman Filter (KF). We ob-
serve that this methodology mixes the evaluation
of two separate components: the non-linear ar-
chitecture, and the numeric optimization method.
In particular, the non-linear model is often opti-
mized, whereas the reference KF model is not.
We argue that both should be optimized similarly.
We suggest the Optimized KF (OKF), which ad-
justs numeric optimization to the positive-definite
KF parameters. We demonstrate how a significant
advantage of a neural network over the KF may
entirely vanish once the KF is optimized using
OKF. This implies that experimental conclusions
of certain previous studies were derived from a
flawed process. The benefits of OKF over the
non-optimized KF are further studied theoretically
and empirically, where OKF demonstrates consis-
tently improved accuracy in a variety of problems.
Our experiments are published on Github, and the
OKF on PyPI.

1. Introduction
The Kalman Filter (KF) (Kalman, 1960) is a celebrated
method for linear filtering and prediction, with applications
in many fields including tracking, guidance, navigation and
control (Zarchan and Musoff, 2000; Kirubarajan, 2002).
The KF provides optimal predictions under certain assump-
tions (namely, linear models with i.i.d noise). In practical
problems, these assumptions are often violated, rendering
the KF sub-optimal and motivating the growing field of non-
linear filtering. Many studies demonstrated the benefits of
non-linear models over the KF (Revach et al., 2022; Coskun
et al., 2017).
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Originally, we sought to join this line of works. Motivated
by a real-world Doppler radar problem, we developed a
dedicated non-linear Neural KF (NKF) based on the LSTM
sequential model. NKF achieved significantly better accu-
racy than the linear KF.

Then, during ablation tests, we noticed that the KF and NKF
differ in both architecture and optimization. Specifically,
the KF depends on the noise parameters, which are tradition-
ally determined by noise estimation (Odelson et al., 2006);
whereas NKF’s parameters are optimized using supervised
learning methods. To fairly evaluate the two architectures,
we wished to apply the same optimization to both. To that
end, we devised an Optimized KF (OKF, Section 3). KF and
OKF have the same linear architecture: OKF only changes
the noise parameters values. Yet, OKF outperformed NKF,
reversed the whole experimental conclusion, and made NKF
unnecessary for this problem (Section 4).

Our original erroneous methodology compared two different
model architectures (KF and NKF) that were not optimized
similarly. A review of the non-linear filtering literature re-
veals that this methodology is used in many studies. Specif-
ically, for a baseline KF model, the parameters are often
tuned by noise estimation (fa Dai et al., 2020; Aydogmus
and Aydogmus, 2015; Revach et al., 2022); by heuristics
(Jamil et al., 2020; Coskun et al., 2017; Ullah et al., 2019);
or are simply ignored (Gao et al., 2019; Bai et al., 2020;
Zheng et al., 2019), often without public code for examina-
tion. In all these studies, the complex, non-linear model may
be beneficial; however, this conclusion cannot be inferred
from the experimental evidence. Hussein (2014) even dis-
cusses the (Extended-)KF sensitivity to its parameters, and
suggests to use a neural network with supervised learning –
yet never considers the same supervised learning for the KF
itself.

So far, OKF is presented as a methodological contribution
for non-linear filtering: it is closer than KF to standard
non-linear methods, and can be used as a reliable baseline
for comparison. In addition, OKF also provides a practi-
cal contribution for linear filtering: it outperforms the
KF, and can be used for more accurate filtering. This is
demonstrated extensively in Section 5 and Appendix B – in
different domains, over different problem variations, using
different KF baselines, with different data sizes, and even
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under distributional shifts.

Notice that OKF outperforms KF using the same linear
architecture. This may come as a surprise: for this architec-
ture, the standard KF tuning method is known to be already
optimal. However, this optimality depends on restrictive
assumptions which are commonly violated, leaving room
for optimization by OKF. Section 5 analyzes two violations
– non-linear dynamics and non-i.i.d noise – and theoretically
explains the KF’s sub-optimality. Disturbingly, such viola-
tions may even cause the KF errors to deteriorate with the
train data size (Appendix B.2).

Scope: We focus on the supervised filtering setting, where
training data includes both observations and the true system
states (whose prediction is usually the objective). Such data
is available in many practical applications. For example, the
states may be provided by external accurate sensors such
as GPS fa Dai et al. (2020); by manual object labeling in
computer vision (Wojke et al., 2017); by controlled experi-
ments of radar targets; or by simulations of known dynamic
systems.

As demonstrated in the studies cited above, this supervised
setting is common in non-linear filtering. However, it is
quite overlooked in linear Kalman filtering – possibly be-
cause the KF noise parameters can be estimated directly in
this setting. Instead, the KF literature focuses on other set-
tings, e.g., learning from observations alone. Nevertheless,
we argue that even in the supervised setting, optimization
of the KF parameters is vital whenever the KF assumptions
are not strictly guaranteed.

Contribution: (a) We point to a common methodological
error – comparing an optimized filtering model to a non-
optimized KF. (b) We introduce the Optimized KF (OKF)
as a remedy: as demonstrated, using OKF as a baseline for
comparison may reverse the entire experimental conclusion.
OKF is further motivated as a filtering algorithm, by (c) the-
oretical analysis of the KF sub-optimality, and (d) extensive
demonstration of the superior accuracy of OKF over the KF.

2. Preliminaries
Consider the KF model for a dynamic system with no con-
trol signal (Kalman, 1960):

Xt+1 = FtXt + ωt (ωt ∼ N (0, Q))

Zt = HtXt + νt (νt ∼ N (0, R)).
(1)

Xt is the system state at time t, and its estimation is usually
the goal. Its dynamics are modeled by the linear operator
Ft, with random noise ωt whose covariance is Q. Zt is
the observation, modeled by the operator Ht with noise νt
whose covariance is R. The notation may be simplified to
F,H in the stationary case.

Figure 1: The KF algorithm. The prediction step is based on the
motion model F̃t with noise Q̂, whereas the update step is based
on the observation model H̃t with noise R̂.

The KF represents Xt via estimation of the mean x̂t and
covariance P̂t. As shown in Fig. 1, the KF alternately pre-
dicts the next state (prediction step), and processes new
information from incoming observations (update or filtering
step). The KF relies on the matrices F̃t, H̃t, Q̂, R̂, intended
to represent Ft, Ht, Q,R of Eq. (1). Whenever Ft, Ht are
known and stationary, we may simplify the notation to
F̃t = F, H̃t = H .

The KF estimator x̂t is optimal in terms of mean square
errors (MSE) – but only under a restrictive set of assump-
tions (Kalman, 1960):

Assumption 1 (KF assumptions). F̃t = Ft, H̃t = Ht are
known and independent of Xt (linear models); each se-
quence {ωt}, {νt} is i.i.d; the covariances Q̂ = Q, R̂ = R
are known; and x̂0, P̂0 correspond to the mean and covari-
ance of the initial X0.

Theorem 1 (KF optimality; e.g., see Jazwinski (2007);
Humpherys et al. (2012)). Under Assumption 1, the KF
estimator x̂t minimizes the MSE w.r.t. Xt.

The KF accuracy strongly depends on its parameters Q̂
and R̂ (Formentin and Bittanti, 2014). As motivated by
Theorem 1, these parameters are usually identified with
the noise covariance Q,R and are set accordingly: “the
systematic and preferable approach to determine the filter
gain is to estimate the covariances from data” (Odelson
et al., 2006). In absence of system state data {xt} (the
“ground truth”), many methods were suggested to estimate
the covariances from observations {zt} alone (Mehra, 1970;
Zanni et al., 2017; Park et al., 2019; Feng et al., 2014). We
focus on the supervised setting, where the states {xt} are
available in the training-data (but not in inference).

Definition 1 (Supervised data). Consider K trajectories of
a dynamic system, with lengths {Tk}Kk=1. We define their
supervised data as the sequences of true system states xk,t ∈
Rdx and observations zk,t ∈ Rdz : {{(xk,t, zk,t)}Tk

t=1}Kk=1.
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If Ft, Ht are known, the supervised setting permits a di-
rect calculation of the sample covariance matrices of the
noise (Lacey, 1998):

Q̂ := Cov({xk,t+1 − Ftxk,t}k,t)
R̂ := Cov({zk,t −Htxk,t}k,t).

(2)

Since Theorem 1 guarantees optimality when Q̂ = Q, R̂ =
R, and Eq. (2) provides a simple estimator for Q and R,
Algorithm 1 has become the gold-standard tuning method
for KF from supervised data.

Algorithm 1 (KF noise estimation). Given supervised data
{(xk,t, zk,t)}, return Q̂ and R̂ of Eq. (2).

While Algorithm 1 is indeed trivial to apply in the super-
vised setting, we show below that when Assumption 1 is
violated, it no longer provides optimal predictions.

Violation of Assumption 1 can be partially handled by cer-
tain variations of the KF. The Extended KF (EKF) (Soren-
son, 1985) replaces the linear models F̃t, H̃t with local
linear approximations. The Unscented KF (UKF) (Wan
and Van Der Merwe, 2000) applies the filtering through
sigma-points sampled from the estimated distribution.

3. Optimized Kalman Filter
In this section, we propose to determine the noise parameters
Q̂, R̂ of Fig. 1 by optimizing the filtering errors directly –
instead of estimating Q,R by Algorithm 1. This might
seem equivalent: according to Theorem 1, Q̂ = Q, R̂ = R
already minimize the MSE! For this reason, as mentioned
above, Algorithm 1 is indeed preferred in the supervised
settings (Odelson et al., 2006), and other methods are only
left for settings without supervised data (where Algorithm 1
cannot be applied).

However, the equivalence between MSE minimization and
Algorithm 1 only holds under Assumption 1. As demon-
strated below, Assumption 1 is violated in many problems –
from real-world applications to simple toy problems – of-
ten in ways that are hard to even notice. This motivates
replacing Algorithm 1 with explicit optimization – even if
supervised data is available.

Formally, we consider the KF (Fig. 1) as a prediction model
x̂k,t({zk,τ}tτ=1; Q̂, R̂), which estimates xk,t given the ob-
servations {zk,τ}tτ=1 and parameters Q̂, R̂. We define the
KF optimization problem:

argmin
Q′,R′

K∑
k=1

Tk∑
t=1

loss
(
x̂k,t

(
{zk,τ}tτ=1; Q

′, R′) , xk,t

)
s.t. Q′ ∈ Sdx

++, R
′ ∈ Sdz

++,

(3)

where Sd
++ ⊂ Rd×d is the space of Symmetric and Positive

Definite matrices (SPD), and loss is the objective function
(e.g., loss(x̂, x) = ||x̂ − x||2 for MSE). Note that the esti-
mation problem may be modified to prediction, by changing
the observed input from {zk,τ}tτ=1 to {zk,τ}t−1

τ=1.

A significant challenge in solving Eq. (3) is the SPD con-
straint. While standard numeric optimization methods (e.g.,
Adam (Diederik P. Kingma, 2014)) can optimize sequential
prediction models, they may violate the constraint. In other
settings, the SPD constraint is often bypassed using diag-
onal restriction (Li et al., 2019), as pointed by Formentin
and Bittanti (2014): “since both the covariance matrices
must be constrained to be positive semi-definite, Q and R
are often parameterized as diagonal matrices”. To maintain
the complete expressiveness of Q̂ and R̂ throughout the
optimization, we instead use the Cholesky parameterization
(Pinheiro and Bates, 1996).

The parameterization relies on Cholesky decomposition:
any SPD matrix A ∈ Rd×d can be written as A = LL⊤,
where L is lower-triangular with positive entries along its
diagonal. Reversely, for any lower-triangular L with pos-
itive diagonal, LL⊤ is SPD. Thus, to represent an SPD
A ∈ Rd×d, we define A(L) := LL⊤ and parameterize
L(θ) to be lower-triangular, have positive diagonal, and be
differentiable in the parameters θ:

(L(θ))ij :=


0 if i < j,

eθd(d−1)/2+i if i = j,

θ(i−2)(i−1)/2+j if i > j,

(4)

where θ ∈ Rd(d+1)/2.
Both Cholesky parameterization and sequential optimization
methods are well known tools. Yet, for KF optimization
from supervised data, we are not aware of any previous
attempts to apply them together, as noise estimation (Algo-
rithm 1) is typically preferred.

We wrap the optimization process in the Optimized KF
(OKF) in Algorithm 2, which outputs optimized parameters
Q̂, R̂ for Fig. 1. Note that Algorithm 2 optimizes the state
estimation at current time t. By switching Line 12 and
Line 13, the optimization will instead be shifted to state
prediction at the next time-step (as x̂ becomes oblivious to
the current observation zk,t).

Note that global optimality is guaranteed by neither noise
estimation (Algorithm 1) nor OKF (Algorithm 2) – if As-
sumption 1 cannot be trusted. However, OKF at least ad-
dresses the desired objective – while noise estimation suffers
from goal-misalignment and significant sub-optimality, as
analyzed below. Furthermore, gradient-based optimization
achieved remarkable results in many non-convex problems
with local-minima (Zhong et al., 2020) and millions of pa-
rameters (Devlin et al., 2019).
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Algorithm 2: Optimized Kalman Filter (OKF)

1 Input: training data {(xk,t, zk,t)} (Definition 1); batch
size b; loss function (e.g., MSE); optimization step
function (e.g., Adam)

2 dx ← len(x1,1), dz ← len(z1,1)

3 Initialize θQ ∈ R 1
2dx(dx+1), θR ∈ R 1

2dz(dz+1)

4 while training not finished do
// Get Q,R using Eq. (4)

5 Q̂← L(θQ)L(θQ)
⊤, R̂← L(θR)L(θR)

⊤

6 K ← sample({1, ...,K}, size=b)
7 C ← 0
8 for k in K do
9 Initialize x̂ ∈ Rdx

10 for t in 1 : Tk do
// KF steps (Fig. 1)

11 x̂← KF predict(x̂; Q̂)

12 x̂← KF update(x̂, zk,t; R̂)
13 C ← C + loss(x̂, xk,t)

14 θQ, θR ← optimization step(C, (θQ, θR))

15 Return Q̂, R̂

4. Neural KF: Is Non-Linearity Helpful?
In this section, we demonstrate that comparing an optimized
neural network to a non-optimized baseline may lead to
incorrect conclusions: the neural network may seem supe-
rior to the baseline, even if the complicated architecture has
no added value to the problem. For the demonstration, we
use the problem of Doppler radar tracking, and devise a
dedicated Neural KF model.

The Doppler radar problem: We consider a variant of
the classic Doppler radar problem (Barton, 1988; Roy and
Mitra, 2016), where targets with various trajectories are
tracked in a homogeneous 3D space, given regular ob-
servations of a Doppler radar. The system state X =
(xx, xy, xz, xux, xuy, xuz)

⊤ ∈ R6 consists of 3D location
and velocity. The goal is to minimize the MSE over the 3
location coordinates. While the true underlying dynamics
F are unknown to the KF, a constant-velocity model F̃ can
be used:

F̃ =

 1 1
1 1
1 1
1
1
1

 . (5)

An observation Z ∈ R4 consists of the location in spherical
coordinates (range, azimuth, elevation) and the radial ve-
locity (the Doppler signal), with an additive i.i.d Gaussian
noise. After transformation to Cartesian coordinates, the
observation model can be written as:

H = H(X) =

(
1
1
1

xx
r

xy
r

xz
r

)
, (6)

(a) Free-motion benchmark (b) No-turns benchmark

(c) Sample trajectory

Figure 2: (a-b) Test errors over targets with different accelera-
tions. The middle acceleration range coincides with the training
accelerations (24-48 in (a) and 8-16 in (b)), and the other ranges
correspond to out-of-distribution generalization. The error-bars
correspond to 95% confidence intervals. (c) A sample trajectory
and the corresponding predictions (projected onto XY plane). The
standard KF provides inaccurate predictions in certain turns.

where r =
√
x2
x + x2

y + x2
z . Since H = H(X) relies on

the unknown location (xx, xy, xz), we instead substitute
H̃ := H(Z) in the KF update step in Fig. 1.

Neural Kalman Filter: We introduce the Neural Kalman
Filter (NKF), which incorporates an LSTM model into the
KF framework. The KF framework provides a probabilistic
representation (rather than point estimate) and a separation
between the prediction and update steps; whereas the LSTM
provides a non-linear motion model. The full architecture
and implementation details are specified in Appendix C.

We originally designed NKF to improve sequential predic-
tion under non-linear dynamics of highly-maneuvering tar-
gets, and made honest efforts to engineer a well-motivated
architecture for the problem. Regardless, we stress that
this section demonstrates a methodological flaw when com-
paring any filtering method to the KF; this methodological
argument stands regardless of the technical quality of NKF.
In addition, Appendix C presents similar experimental re-
sults for other variants of NKF.

Experiments: We train NKF and OKF on a dataset of sim-
ulated trajectories, representing realistic targets with free
motion (as displayed in Fig. 2c). As a second benchmark, we
also train on a dataset of simplified trajectories, with speed
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changes but with no turns. The two benchmarks are spec-
ified in detail in Appendix B.1, and correspond to Fig. 9d
and Fig. 9e. We tune the KF from the same datasets using
Algorithm 1. In addition to out-of-sample test trajectories,
we also test generalization to out-of-distribution trajecto-
ries, generated using different ranges of target accelerations
(affecting both speed changes and turns radiuses).

Fig. 2 summarizes the test results. Compared to KF, NKF
reduces the errors in both benchmarks, suggesting that the
non-linear architecture pays off. However, optimization of
the KF (using OKF) reduces the errors even further, and
thus reverses the conclusion. That is, the advantage of NKF
in this problem comes exclusively from optimization, and
not at all from the expressive architecture. Of course, this
experiment does not evaluate neural networks in general;
yet, in this example, without optimizing the KF, the over-
complicated NKF architecture would be preferred unjustifi-
ably.

5. OKF vs. KF
Section 4 presents the methodological contribution of OKF
for non-linear filtering, as an optimized baseline for compar-
ison, instead of the standard KF. In this section, we study
the advantage of OKF over the KF more generally. We
demonstrate that OKF consistently outperforms the KF in a
variety of scenarios from 3 different domains. This result
carries high practical significance, since shifting from KF to
OKF in real-world deployed systems only requires change
of the parameters Q̂, R̂.

Recall that by Theorem 1, the KF may provide inferior accu-
racy only if Assumption 1 is violated. Thus, the violations
are discussed in depth, and the effects of certain violations
are analyzed theoretically.

5.1. Doppler Radar Tracking

Theorem 1 guarantees the optimality of the KF parameters
estimated by Algorithm 1. Yet, in Section 4, OKF outper-
forms the KF. This result is made possible by the violation of
Assumption 1: while the Doppler radar problem of Section 4
may not seem complex, the trajectories follow a non-linear
motion model (as displayed in Fig. 2c).

Imagine that we simplified the problem from Section 4 by
only simulating constant-velocity targets, making the true
motion model F linear. Would this recover Assumption 1
and make OKF unnecessary? The answer is no; the adven-
turous reader may attempt to list all the remaining violations
before reading on.

The simulated targets move mostly horizontally, with lim-
ited elevation changes. This is not expressed by the KF’s
initial state distribution (x̂0, P̂0). To remedy this, one may

Figure 3: The toy benchmark is simplified with linear motion,
isotropic flying directions and physically-impossible radar. After
all the simplifications, Assumption 1 still does not hold, thus
Algorithm 1 is still sub-optimal and outperformed by OKF.

simulate motion uniformly in all directions. A third viola-
tion comes from the observation noise. While the radar noise
is i.i.d in spherical coordinates (as mentioned in Section 4),
it is not i.i.d in Cartesian coordinates (see discussion in
Appendix A.2). To overcome this, one may simulate a radar
with (physically-impossible) Cartesian i.i.d noise. This re-
sults in the unrealistically-simplified problem visualized in
Fig. 3.

Despite the simplifications, it turns out that Assumption 1
is still not met, as the observation model in Eq. (6) is still
not linear (i.e., H = H(X) is not constant). As shown by
Proposition 1, this single violation alone results in a signifi-
cant deviation of Algorithm 1 from the optimal parameters.

We first define the simplified problem.

Problem 1 (The toy Doppler problem). The toy Doppler
problem is the filtering problem modeled by Eq. (1), with
constant-velocity dynamics F (Eq. (5)), Doppler observa-
tion H (Eq. (6)), and

Q = 000 ∈ R6×6, R =

 σ2
x

σ2
y

σ2
z

σ2
D

 ,

where σx, σy, σz, σD > 0.

Recall that H = H(X) in Eq. (6) depends on the state X ,
which is unknown to the model. Thus, we assume that H̃ =
H(X̃) is used in the KF update step (Fig. 1), with some
estimator X̃ ≈ X (e.g., H̃ = H(Z) in Section 4). Hence,
the effective noise is R̃ := Cov(Z − H̃X) ̸= Cov(Z −
HX) = R. Proposition 1 analyzes the difference between
R̃ and R. To simplify the analysis, we further assume that
the error X̃ −X within H̃ (e.g., Z −X) is independent of
the target velocity.
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Proposition 1. In the toy Doppler Problem 1 with the esti-
mated observation model H̃ , the effective observation noise
R̃ = Cov(Z − H̃X) is:

R̃ =

 σ2
x

σ2
y

σ2
z

σ2
D+C

 = R+

(
0
0
0
C

)
, (7)

where C = Ω(E[||u||2]) is the asymptotic lower bound (“big
omega”) of the expected square velocity u. In particular,
C > 0 and is unbounded as the typical velocity grows.

Proof sketch (see complete proof in Appendix A.1). We
have Cov(Z − H̃X) = Cov(Z −HX + (H − H̃)X) =
R+Cov((H − H̃)X), where the last equality relies on the
independence between the target velocity and the estimation
error X̃ −X . We then calculate Cov((H − H̃)X).

Proposition 1 has an intuitive interpretation: when mea-
suring the velocity, Algorithm 1 only considers the inher-
ent Doppler signal noise σD. However, the effective noise
σD+C also includes the transformation error from Doppler
to the Cartesian coordinates, caused by the uncertainty in
H(X) itself. Notice that heuristic solutions such as inflation
of R would not recover the effective noise R̃, which only
differs from R in one specific entry. Yet, as demonstrated be-
low, while Algorithm 1 learns to use R̂ ≈ R, OKF captures
the effective noise R̃ successfully.

Experiments: We test KF and OKF on the toy Problem 1
using the same methodology as in Section 4. In accordance
with Proposition 1, OKF adapts the Doppler noise parameter:
as shown in Fig. 4, it increases σD in proportion to the
location noise by a factor of ≈ 13. Note that we refer to the
proportion instead of absolute values due to scale-invariance
in the toy problem, as discussed in Appendix A.1. Following
the optimization, OKF reduces the test MSE from 152 to
84 – a reduction of 44%.

In this toy problem, the optimal parameters could in fact
be derived analytically from Proposition 1. In practical
problems, however, analytical solution is often infeasible. In
fact, as discussed above, even specifying the model itself is
not always trivial. Clearly, analytical solution of the wrong
model would result in unaware sub-optimality. Instead, OKF
optimizes the prediction errors directly from data, without
any prior knowledge of the model.

Extended experiments: This section and Section 4 test
OKF against KF in three specific variants of the Doppler
problem. One may wonder if OKF’s advantage generalizes
to other scenarios, such as:

• Different subsets of violations of Assumption 1;

• Other baseline models than KF, e.g., the Extended KF;

(a) KF / R (b) OKF / R

Figure 4: The parameters R̂ learned by KF and OKF in the toy
Doppler problem. In each matrix axis, the entries correspond to the
location (x, y, z) and the radial velocity (Doppler). The simulated
noise variance is 1002 for the positional dimensions and 52 for
velocity, and is estimated accurately by the KF. However, OKF
increases the noise associated with velocity, in accordance with
Proposition 1. The decrease in the positional variance comes from
scale-invariance in the toy problem, as discussed in Appendix A.1.

• Small training datasets;

• Generalization to out-of-distribution test data.

The extended experiments in Appendix B address all of
the concerns above by examining a wide range of problem
variations in the Doppler radar domain. In addition, other
domains are experimented below. In all of these experi-
ments, OKF outperforms Algorithm 1 in terms of MSE.

Finally, recall that if Assumption 1 is violated, Algorithm 1
is not aligned with the MSE objective. Interestingly, Ap-
pendix B.2 shows that this may cause Algorithm 1 to dete-
riorate with the data size.

5.2. Video Tracking

The MOT20 dataset (Dendorfer et al., 2020) contains videos
of real-world targets (mostly pedestrians, as shown in Fig. 5),
along with their true location and size in every frame. For
our experimental setup, since object detection is out of the
scope, we assume that the true locations are known in real-
time. The objective is to predict of the target location in
the next frame. The state space corresponds to the 2D
location, size and velocity, and the observations include
only the location and size. The underlying dynamics F
of the pedestrians are naturally unknown, and the standard
constant-velocity model is used for F̃ . This results in the
following model:

F̃ =

 1 1
1 1
1
1
1
1

 , H̃ = H =

(
1 0 0
1 0 0
1 0 0
1 0 0

)
.

Notice that the known observation model H̃ = H is lin-
ear (H is independent of X), hence poses a substantial
difference from Section 5.1 in terms of violations of As-
sumption 1.
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Figure 5: A sample of 2 trajectories in the first frame of MOT20
test video, along with the predictions of KF and OKF.

(a) Video tracking (b) Lidar-based state estimation

Figure 6: Summary of test errors. The dashed lines correspond
to MSE. Both z-values correspond to p-value < 10−6. Each z-
value is calculated over the N test trajectories as follows: z =
mean({∆i})
std({∆i})

√
N , where ∆i = erri(KF )2 − erri(OKF )2 is the

square-error difference on trajectory 1 ≤ i ≤ N .

The first three videos with 1117 trajectories are used for
training, and the last video with 1208 trajectories for testing.
As shown in Fig. 6a, OKF reduces the test MSE by 18%
with high statistical significance.

5.3. Lidar-based State Estimation in Self Driving

Consider the problem of state-estimation in self-driving,
based on lidar measurements with respect to known land-
marks (Moreira et al., 2020). The objective is to estimate
the current vehicle location. We assume a single landmark
(since the landmark matching problem is out of scope). We
simulate driving trajectories consisting of multiple segments,
with different accelerations and turn radiuses (Fig. 7a). The
state is the vehicle’s 2D location and velocity, and F̃ is mod-
eled according to constant-velocity. The observation (both
true H and modeled H̃) corresponds to the location, with
an additive Gaussian i.i.d noise in polar coordinates. This
results in the following model:

F̃ =

(
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

)
, H̃ = H = ( 1 0 0 0

0 1 0 0 ) .

We train KF and OKF over 1400 trajectories and test them
on 600 trajectories. As shown in Fig. 6b, OKF reduces the

(a) (b)

Figure 7: (a) A sample of simulated self-driving trajectories. (b)
Segments of turns within a sample trajectory, and the correspond-
ing lidar-based estimations.

test MSE by 10% with high statistical significance.

Notice that the lidar problem differs from Section 5.1 in
the linear observation model H , and from Section 5.2 in
the additive noise. Both properties have a major impact
on the problem, as analyzed in Proposition 1 and below,
respectively.

Theoretical analysis: As mentioned in Section 5.1 and
discussed in Appendix A.2, the i.i.d noise in polar coordi-
nates is not i.i.d in Cartesian coordinates. In contrast to
Section 5.1, the observation model is linear this time. We
seize the opportunity to isolate the i.i.d violation and study
its effect. First, we define a simplified toy model – with sim-
plified states, no-motion model F , isotropic motion noise Q
and only radial observation noise.

Problem 2 (The toy lidar problem). The toy lidar problem is
the filtering problem modeled by Eq. (1) with the following
parameters:

F = H =

(
1 0
0 1

)
, Q =

(
q 0
0 q

)
, Rpolar =

(
r0 0
0 0

)
,

for some unknown q, r0 > 0, with observation noise drawn
i.i.d from N (0, Rpolar) in polar coordinates. The initial
state X0 follows a radial distribution (i.e., with a PDF of the
form f(||x0||)).
Proposition 2. As the number N of train trajectories in
Problem 2 grows, the noise parameter R̂N (KF ) estimated
by Algorithm 1 converges almost surely:

R̂N (KF )
a.s.−−→ R̂est =

(
r0/2 0
0 r0/2

)
.

On the other hand, under regularity assumptions, the MSE is
minimized by the parameter R̂opt = ( r 0

0 r ), where r < r0/2.

Proof sketch (see complete proof in Appendix A.2). For
R̂est, we calculate E[R̂N (KF )] and use the law of large
numbers. For the calculation, we transform Rpolar to
Cartesian coordinates using the random direction variable θ,
and take the expectation over θ ∼ U([0, 2π)). The uniform
distribution of θ comes from the radial symmetry of the
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(a) KF / R (b) OKF / R

Figure 8: The parameters R̂ learned by KF and OKF in the lidar
problem.

problem. For R̂opt, we calculate and minimize the expected
square error directly.

Intuitively, Proposition 2 shows that the non-i.i.d nature
of the noise in Cartesian coordinates reduces the effective
noise. Note that the analysis only holds for the unrealistic
toy Problem 2. The empirical setting in this section is less
simplistic, and the generalization of Proposition 2 is not
trivial. Fortunately, OKF optimizes the noise parameters
directly from the data, and does not require such theoretical
analysis. Fig. 8 shows that indeed, in accordance with the
intuition of Proposition 2, OKF learns to reduce the values
of R̂ in comparison to KF. This results in reduced test errors
as specified above.

6. Related Work
Noise estimation: Estimation of the KF noise parameters
from observations alone has been studied for decades, as
supervised data (Definition 1) is often unavailable. Various
methods were studied, based on autocorrelation (Mehra,
1970; Carew and Belanger, 1973), EM (Shumway and Stof-
fer, 2005) and others (Odelson et al., 2006; Feng et al., 2014;
Park et al., 2019). When supervised data is available, noise
estimation reduces to Eq. (2) and is considered a solved
problem (Odelson et al., 2006). We show that while noise
estimation is indeed easy from supervised data, it is often
not the right objective to pursue.

Many works addressed the problem of non-stationary noise
estimation (Zanni et al., 2017; Akhlaghi et al., 2017). How-
ever, as demonstrated in Section 4, stationary methods may
be highly competitive if tuned correctly – even in problems
with complicated dynamics.

Optimization: We apply gradient-based optimization to
the KF with respect to its errors. In absence of supervised
data, gradient-based optimization was suggested for other
losses, such as smoothness (Barratt and Boyd, 2020). In the
supervised setting, noise estimation is typically preferred
(Odelson et al., 2006), although optimization without gra-
dients was suggested in Abbeel et al. (2005). In practice,
“optimization” of KF is sometimes handled by trial and error
(Jamil et al., 2020) or grid search (Formentin and Bittanti,
2014; Coskun et al., 2017). In other cases, Q and R are
restricted to be diagonal (Li et al., 2019; Formentin and

Bittanti, 2014). However, such heuristics may not suffice
when the optimal parameters take a non-trivial form (such
as their form in Proposition 1).

Neural Networks (NNs) in filtering: The NKF in Section 4
relies on a recurrent NN. NNs are widely used in non-linear
filtering, e.g., for online prediction (Gao et al., 2019; Iter
et al., 2016; Coskun et al., 2017; fa Dai et al., 2020; Belo-
golovsky et al., 2022), near-online prediction (Kim et al.,
2018), and offline prediction (Liu et al., 2019b). Learn-
ing visual features for tracking via a NN was suggested by
Wojke et al. (2017). NNs were also considered for related
problems such as data association (Liu et al., 2019a), model
switching (Deng et al., 2020), and sensors fusion (Sengupta
et al., 2019).

In addition, all the 10 studies cited in Section 1 used a
NN model for non-linear filtering, with either KF or EKF
as a baseline for comparison. As discussed above, none
has optimized the baseline model to a similar extent as
the NN. As demonstrated in Section 4, such experimental
methodology could lead to unjustified conclusions.

7. Summary
In non-linear filtering, it is common to evaluate an opti-
mized model against a non-optimized KF baseline. We
demonstrated that such “apples and oranges” comparison
may produce misleading conclusions. To prevent this, we in-
troduced the Optimized KF (OKF), which can serve as a fair
baseline for comparison. OKF can also be used as a linear
filtering algorithm in its own right, and was shown to consis-
tently outperform the standard KF in a variety of scenarios
– despite their identical architecture. The optimization ap-
proach of OKF was further motivated by theoretical analysis
of the KF sub-optimality. From a practical point of view,
OKF is available on PyPI and is easily applicable to new
problems. Since its architecture is identical to the KF, the
learned model causes neither inference-time delays nor de-
ployment overhead. Together, all these properties make
OKF a powerful practical tool for both linear and non-linear
filtering problems.

https://pypi.org/project/Optimized-Kalman-Filter/
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A. Theoretical Analysis
A.1. Non-linear Observation

In this section, we discuss the relation between the theoretical analysis of Proposition 1 and the empirical results shown in
Fig. 4. Then, we provide the proof of Proposition 1.

Fig. 4 vs. Proposition 1: Fig. 4 displays the noise parameters R̂ learned by OKF in the toy problem. In accordance with
Proposition 1, the noise σD associated with Doppler is increased compared to the true measurement noise R. In fact,
not only σD is increased, but also the positional variances are decreased, which is not explained by Proposition 1. This
phenomenon origins in the absence of dynamics noise in this toy problem (Q ≡ 0), which leads to scale-invariance w.r.t. the
absolute values of R̂. That is, if we multiply the whole matrix R̂ by a constant factor, the filtering errors are unaffected.
Specifically, if we multiply R̂ of Fig. 4b by a factor of ≈ 3, the positional variances become aligned with those of Fig. 4a,
and σD is increased by a factor of ≈ 13 – in accordance with Proposition 1. We repeated the tests with this modified R̂, and
indeed, the results were indistinguishable from the original OKF.

Proof of Proposition 1. Recall that in this problem, the KF applies the update step using an estimated observation model
H̃ = H(X̃):

H̃ =


1

1
1

x̃x/r̃ x̃y/r̃ x̃z/r̃

 .

Denoting the normalized estimation error dx′ = x̃
r̃ −

x
r , we can rewrite H̃ as

H̃ = H +

(
0
0
0
dx′

x dx′
y dx′

z

)
.

By shifting the observation model in Eq. (1) from H to H̃ , and denoting the noise by ν = (νx, νy, νz, νD)⊤, we receive

Z =HX + ν = H̃X +

(
νx
νy
νz

νD−dx′
xux−dx′

yuy−dx′
zuz

)
= H̃X +

( νx
νy
νz

νD−dx′·u

)
,

where u denotes the current target velocity. We see that the effective observation noise is ν̃ = Z − H̃X = (νx, νy, νz, νD −
dx′ · u)⊤.

To show that all the off-diagonal entries of R̃ = Cov(ν̃) vanish, recall that the estimation error dx′ is assumed to
be independent of the velocity u. According to Eq. (1), ν is also independent of u. Hence, Cov(dx′

x · ux, νx) =
E(dx′

x · ux · νx) = E(dx′
xνx)E(ux) which vanishes by symmetry (E(ux) = 0). The same result holds for coordinates y, z.

Thus, R̃ is diagonal. Finally, by denoting C = V ar(dx′ · u) > 0 we have Cov(ν̃) = R̃ as required.

Relying again on symmetry E(u), E(dx′) = 0, we can further calculate C = V ar(dx′ · u) = E(||dx′||2)E(||u||2) =
Ω(E(||u||2)), where Ω (“big-omega”) corresponds to an asymptotic lower bound.

A.2. Non-i.i.d Noise

The assumption of i.i.d noise in Assumption 1 is violated in many practical scenarios. Certain models with non-i.i.d noise
can be solved analytically, if modeled correctly. For example, if the noise is auto-regressive with a known order p, an
adjusted KF model may consider the last p values of the noise itself as part of the system state (Geist and Pietquin, 2011).
However, the actual noise model is often unknown or infeasible to solve analytically.

Furthermore, the violation of the i.i.d assumption may even go unnoticed. We discuss a potential example in Section 5,
where the noise is i.i.d in spherical coordinates – but is not so after the transformation to Cartesian coordinates. To see that,
consider a radar with noiseless angular estimation (i.e., only radial noise), and a low target (xz ≈ 0). Clearly, most of the
noise concentrates on the XY plane – both in the current time-step and in the following ones (until the target moves away
from the plane). Hence, the noise is statistically-dependent over time-steps.
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We may formalize this intuition for the toy Problem 2. Denote the system state at time t by Xt = ((Xt)1, (Xt)2)
⊤, and

denote tan θt =
(Xt)2
(Xt)1

. By transforming Rpolar of Problem 2 to Cartesian coordinates, the observation noise is drawn from
the distribution νt ∼ N (0, R(θt)), where

R(θ) =

(
r0 cos

2(θ) r0 cos(θ) sin(θ)
r0 cos(θ) sin(θ) r0 sin

2(θ)

)
. (8)

Since consecutive time steps are likely to have similar values of θt, the noise νt is no longer independent across time steps.

The effect of this violation of the i.i.d assumption is analyzed in Proposition 2, whose proof is provided below.

Proof of Proposition 2.

Noise estimation: First, notice that the whole setting of Problem 2 is invariant to the target direction θ: the initial state
distribution is radial, and the motion noise Q is isotropic. Hence, for any target at any time-step, θt ∼ [0, 2π) is uniformly
distributed. By direct calculation,

Eθ

[
R̂N (KF )11

]
= Eθ

[
r0 cos

2 θ
]
=

∫ 2π

0

r0
2π

cos2 θdθ =
r0
2

Eθ

[
R̂N (KF )22

]
= Eθ

[
r0 sin

2 θ
]
=

∫ 2π

0

r0
2π

sin2 θdθ =
r0
2

Eθ

[
R̂N (KF )12

]
= Eθ

[
R̂N (KF )21

]
= Eθ [r0 cos θ sin θ] = 0.

Since the targets in the data are i.i.d, the noise estimation of Algorithm 1 converges almost surely according to the law of
large numbers, as required:

R̂N (KF )
a.s.−−→ R̂est =

(
r0/2 0
0 r0/2

)
.

Optimization: We use again the radial symmetry and invariance to rotations in the problem: w.l.o.g, we assume that the
optimal noise covariance parameter is diagonal, i.e., R̂opt(r) = ( r 0

0 r ) for some r > 0. Our goal is to find r, and in particular
to compare it to r0/2.

At a certain time t, where the system state is Xt, denote E[Xt] = x0 = (x1, x2)
⊤ and Cov(Xt) = P0 =

( p 0
0 p

)
(where

p > 0). Denote the observation received at time t by z = (x1 + dx1, x2 + dx2)
⊤. We are interested in the point-estimate x̂

of the KF following the update step (Fig. 1). By substituting x0, P0, the observation z and the noise parameter R̂opt(r) in
the update step, we have

x̂ = x0 + P0H
⊤(HP0H

⊤ + R̂opt(r))
−1(z −Hx0) = x0 + P0(P0 + R̂opt(r))

−1(z − x0)

= x0 +

( p
p+r 0

0 p
p+r

)(
dx1

dx2

)
=

(
x1 +

p
p+rdx1

x2 +
p

p+rdx2

)
.

On the other hand, the true observation noise covariance at time t is R(θt) of Eq. (8) (for the random variable θt). If we add
the assumption that the state Xt is normally distributed (Xt ∼ N (x0, P0)), and use the true noise covariance R(θt), then
the update step of Fig. 1 gives us the true posterior expected state:

xtrue = x0 + P0(P0 +R(θt))
−1(z − x0)

= x0 +

(
r0 sin2 θ+p

p+r0
− r0 cos θ sin θ

p+r0

− r0 cos θ sin θ
p+r0

r0 cos2 θ+p
p+r0

)(
dx1

dx2

)

=

(
x1 +

(r0 sin2 θ+p)dx1−(r0 cos θ sin θ)dx2

p+r0

x2 +
(r0 cos2 θ+p)dx2−(r0 cos θ sin θ)dx1

p+r0

)
.

We can use the standard MSE decomposition for the point-estimate x, into the bias term of x and the variance term of
the state distribution: MSE = MSEvar(Ptrue) + MSEbias(x, xtrue). Notice that MSEvar(Ptrue) is independent of
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our estimator, as it corresponds to the inherent uncertainty Ptrue (defined by applying to P0 the update step with the true
covariance R(θt)). Thus, our objective is to minimize MSEbias(x̂, xtrue) = E[||x̂− xtrue||2].

For the calculation below, we denote a(r) := p/(p+ r) and use the identity sin 2θ = 2 cos θ sin θ. In addition, from radial
symmetry of dx = z − x0 we have E[dx2

1] = E[dx2
2] and E[dxi] = 0, thus we can denote v := V ar(dxi) = E[dx2

i ].

MSEbias(x̂(a), xtrue) = E||x̂(a)− xtrue||2

=E

[(
(a− r0 sin

2 θ + p

p+ r0
)dx1 +

r0 sin(2θ)/2

p+ r0
dx2

)2

+

(
(a− r0 cos

2 θ + p

p+ r0
)dx2 +

r0 sin(2θ)/2

p+ r0
dx1

)2
]

=E

[
dx2

1

(
a2 − 2a

r0 sin
2 θ + p

p+ r0
+ C1

)
+

r20 sin
2(2θ)/4

(p+ r0)2
dx2

2 +A1dx1dx2

+ dx2
2

(
a2 − 2a

r0 cos
2 θ + p

p+ r0
+ C2

)
+

r20 sin
2(2θ)/4

(p+ r0)2
dx2

1 +A2dx1dx2

]
=2va2 − 2va

r0 + 2p

p+ r0
+ v(C1 + C2) + v

r20 sin
2(2θ)/2

(p+ r0)2
,

where C1,2 are independent of a, and A1,2 are multiplied by E[dx1dx2] = 0 and vanish. To minimize we calculate

0 =
∂MSEbias(x̂(a), xtrue)

∂a
= 4v · a− 2v

2p+ r0
p+ r0

,

which gives us

a =
p+ r0/2

p+ r0
.

Notice that MSEbias clearly diverges as |a| → ∞, hence the only critical point necessarily corresponds to a minimum of
the MSE. Hence, the optimal MSE is given when substituting the following r in R̂opt:

r = p/a− p =
p2 + pr0 − (p2 + pr0/2)

p+ r0/2
=

pr0
2p+ r0

.

Finally, recall that (R̂est)ii = r0/2 and compare to r directly:

(R̂est)ii − (R̂opt)ii = r0/2− r =
r20/2

2p+ r0
> 0.

B. OKF: Extended Experiments
B.1. Additional Scenarios and Baselines: A Case Study

In this section, we extend the experiments of Section 5.1 with a detailed case study. The case study considers 5 types of
tracking scenarios (benchmarks) and 4 variants of the KF (baselines) – 20 experiments in total. In each experiment, we
compare the test MSE of OKF against the standard KF. The experiments in Section 4 and Section 5.1 are 3 particular cases.
For each benchmark, we simulate 1500 targets for training and 1000 targets for testing.

Benchmarks (scenarios): Section 5 discusses the sensitivity of Algorithm 1 to violations of Assumption 1. In this case
study, we consider 5 benchmarks with different subsets of violations of Assumption 1. The Free Motion benchmark is
intended to represent a realistic Doppler radar problem, with targets and observations simulated as in Section 4: each target
trajectory consists of multiple segments of different turns and accelerations. On the other extreme, the Toy benchmark
(Problem 1) introduces multiple simplifications (as visualized in Fig. 3). In the Toy benchmark, the only violation of
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Table 1: Benchmarks and the properties that define them. “V” means that the benchmark satisfies the property.

Benchmark
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Toy O O O O O
Close V V O O O

Const v V V V O O
Const a V V V V O

Free V V V V V

(a) Toy (b) Close (c) Const v (d) Const a (e) Free motion

Figure 9: Samples of targets trajectories in the various benchmarks, projected onto the XY plane.

Assumption 1 is the non-linear observation H , as discussed in Section 5.1. Note that Section 5.2 and Section 5.3 experiment
with settings of a linear observation model.

We design 5 benchmarks within the spectrum of complexity between Toy and Free Motion. Each benchmark is defined as a
subset of the following properties, as specified in Table 1 and visualized in Fig. 9:

• anisotropic: horizontal motion is more likely than vertical (otherwise direction is distributed uniformly).

• polar: radar noise is generated i.i.d in spherical coordinates (otherwise noise is Cartesian i.i.d).

• uncentered: targets are dispersed in different locations far from the radar (otherwise they are concentrated in the center).

• acceleration: speed change is allowed (through intervals of constant acceleration).

• turns: non-straight motion is allowed.

Baselines (KF variants): All the experiments above compare OKF to the standard KF baseline. In practice, other variants
of the KF are often in use. Here we define 4 such variants as different baselines to the experiments. In each experiment, we
compare the baseline tuned by Algorithm 1 to its Optimized version trained by Algorithm 2 (denoted with the prefix “O” in
its name). For Algorithm 2, we use the Adam optimizer with a single training epoch over the 1500 training trajectories, 10
trajectories per training batch, and learning rate of 0.01.

The different baselines are designed as follows. EKF baselines use the non-linear Extended KF model (Sorenson, 1985).
The EKF replaces the approximation H ≈ H(z) of Section 4 with H ≈ ∇xh(x̂), where h(x) = H(x) · x and x̃ is the
current state estimate. Polar baselines (denoted with “p”) represent the observation noise R with spherical coordinates, in
which the polar radar noise is i.i.d.

Results: Table 2 summarizes the test errors (MSE) in all the experiments. In each cell, the left column corresponds to the
baseline Algorithm 1, and the right to Algorithm 2. In the model names, “O” stands for optimized, “E” for EKF and “p”
for polar (or spherical). The same results are also shown with confidence intervals in Fig. 10. Below we discuss the main
findings.

Choosing the KF configuration is not trivial: Consider the non-optimized KF baselines (left column in every cell in
Table 2). In each benchmark, the results are sensitive to the baseline, i.e., to the choice of KF configuration – R’s coordinates
and whether to use EKF. For example, in the Toy benchmark, EKF is the best design, since the observation model H is
non-linear. In other benchmarks, however, the winning baselines may come as a surprise:
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Table 2: Test MSE results of Algorithm 1 and Algorithm 2 over 5 benchmarks (scenarios) and 4 baselines (variants of KF). For KFp we
also consider an “oracle” baseline with perfect knowledge of the noise.

Benchmark KF OKF KFp KFp (oracle) OKFp EKF OEKF EKFp OEKFp
Toy 151.7 84.2 269.6 – 116.4 92.8 79.4 123.0 109.1

Close 25.0 24.8 22.6 22.5 22.5 26.4 26.1 24.5 24.1
Const v 90.2 90.0 102.3 102.3 89.2 102.5 99.7 112.7 102.1
Const a 107.5 101.6 118.4 118.3 100.3 110.0 107.0 126.0 108.7

Free 125.9 118.8 145.6 139.3 117.9 135.8 121.9 149.3 120.0

(a)

(b)

Figure 10: Summary of the test MSE of Algorithm 1 and Algorithm 2 in different benchmarks (scenarios) and baselines. This is a
different presentation of the results of Table 2. (a) also includes 95% confidence intervals. (b) shows, for each of the 20 experiments (5
benchmarks × 4 baselines), the MSE ratio between Algorithm 1 and Algorithm 2. We see that Algorithm 2 wins in all the experiments
(ratio is always larger than 1) – in some cases by large margins. The dashed line represents the average MSE ratio over over all the
experiments, showing an average advantage of 20% to OKF.
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1. Under non-isotropic motion direction (all benchmarks except Toy), EKF is worse than KF despite the non-linearity. It
is possible that the horizontal prior reduces the stochasticity of H , making the derivative-based approximation unstable.

2. Even when the observation noise is spherical i.i.d, spherical representation of R is not beneficial when targets are
scattered far from the radar (last 3 benchmarks). It is possible that with distant targets, Cartesian coordinates have a
more important role in expressing the horizontal prior of the motion.

Since the best KF variant per benchmark seems hard to predict in advance, a practical system cannot rely on choosing the
KF variant optimally – and should rather be robust to this choice.

OKF is more accurate and more baseline-robust: For every benchmark and every baseline (20 experiments in total), OKF
(right column) outperformed noise estimation (left column). In addition, the variance between the baselines reduces under
optimization, i.e., OKF makes the KF more robust to the selected configuration.

OKF outperform an oracle baseline: We designed an “oracle” KF baseline – with perfect knowledge of the observation
noise covariance R in spherical coordinates. We used it for all benchmarks except for Toy (in which the radar noise is
not generated in spherical coordinates). Note that in the constant-speed benchmarks (Close and Const v), Q = 0 and
is estimated quite accurately; hence, in these benchmarks the oracle has a practically perfect knowledge of both noise
covariances. Nevertheless, the oracle yields very similar results to Algorithm 1. This indicates that the benefit of OKF is
not in a better estimation accuracy of Q and R, but rather in optimizing the desired objective.

B.2. Sensitivity to Train Dataset Size

Each benchmark in the case-study of Appendix B.1 has 1500 targets in its train data. One may argue that numeric
optimization may be more sensitive to smaller datasets than noise estimation; and even more so, when taking into account
that the optimization procedure ”wastes” a portion of the train data as a validation set.

In this section we test this concern empirically, by repeating some of the experiments of Appendix B.1 with smaller subsets
of the train datasets – beginning from as few as 20 training trajectories. Fig. 11 shows that the advantage of OKF over
KF holds consistently for all sizes of train datasets, although it is indeed increases with the size. Interestingly, in the Free
Motion benchmark, the test MSE of KF and KFp increases with the amount of train data!

Figure 11: The advantage of OKF over KF holds consistently for all sizes of train datasets – including as small datasets as 20 trajectories.
The shadowed areas correspond to 95% confidence intervals.

B.3. Generalization: Sensitivity to Distributional Shifts

In Appendix B.1, we demonstrate the robustness of OKF in different tracking scenarios: in every benchmark, OKF
outperformed the standard KF over out-of-sample test data. This means that OKF did not overfit the noise in the training
data. What about out-of-distribution test data? OKF learns patterns from the specific distribution of the train data – how
well will it generalize to different distributions?

Section 4 already addresses this question to some extent, as OKF outperformes both KF and NFK over out-of-distribution
target accelerations (affecting both speed changes and turns radius). In terms of Eq. (1), the modified acceleration corresponds
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(a) MSE ratio = MSE(KF )/MSE(OKF ) for every KF-baseline (KF,KFp,EKF,EKFp defined in Appendix B.1), and for every pair
of train-scenario and test-scenario. The colormap scale is logarithmic (∝ log(MSE ratio)), where red values represent advantage to
OKF (MSE ratio > 1).

(b) For every train-scenario, MSE ratio is averaged over all the
test-scenarios and is shown in a logarithmic scale. Positive values
indicate advantage to OKF.

Figure 12: Generalization tests: OKF vs. KF under distributional shifts between scenarios.

to different magnitudes of motion noise Q; that is, we change the noise after OKF optimized the noise parameters. Yet,
OKF adapted to the change without further optimization, with better accuracy than the standard KF. Thus, the results of
Section 4 already provide a significant evidence for the robustness of OKF to certain distributional shifts.

In this section, we present a yet stronger evidence for the robustness of OKF – not over a parametric distributional shift,
but over entirely different benchmarks. Specifically, we consider the 5 benchmarks (or scenarios) of Appendix B.1. For
every pair (train-scenario, test-scenario), we train both KF and OKF on data of the train-scenario, then test them on data
of the test-scenario. For every such pair of scenarios, we measure the generalization advantage of OKF over KF through
MSE ratio = MSE(KF )/MSE(OKF ) (where MSE ratio > 1 indicates advantage to OKF). To measure the total
generalization advantage of a model trained on a certain scenario, we calculate the geometric mean of MSE ratio over
all the test-scenarios (or equivalently, the standard mean over the logs of the ratios). The logarithmic scale guarantees a
symmetric view of this metric of ratio between two scores.

This test is quite noisy, since a model optimized for a certain scenario may legitimately be inferior in other scenarios. Yet,
considering all the results together in Fig. 12, it is evident that OKF provides more robust models: it generalizes better in
most cases, sometimes by a large margin; and loses only in a few cases, always by a small margin.

C. Neural KF: Extended Discussion and Experiments
Preliminaries – RNN and LSTM: Recurrent neural networks (RNN) (Rumelhart et al., 1986) are neural networks that are
intended to be iteratively fed with sequential data samples, and that pass information (the hidden state) over iterations. Every
iteration, the hidden state is fed to the next copy of the network as part of its input, along with the new data sample. Long
Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is an architecture of RNN that is particularly popular
due to the linear flow of the hidden state over iterations, which allows to capture memory for relatively long term. The
parameters of a RNN are usually optimized in a supervised manner with respect to a training dataset of input-output pairs.

Neural Kalman Filter: We introduce the Neural Kalman Filter (NKF), which incorporates an LSTM model into the KF
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framework. The framework provides a probabilistic representation (rather than point estimate) and a separation between the
prediction and update steps. The LSTM is an architecture of recurrent neural networks, and is a key component in many
SOTA algorithms for non-linear sequential prediction (Neu et al., 2021). We use it for the non-linear motion prediction.

As shown in Fig. 13, NKF uses separate LSTM networks for prediction and update steps. In the prediction step, the
target acceleration is predicted on top of the linear motion model, instead of predicting the state directly. This regularized
formulation is intended to express our domain knowledge about the kinematic motion of physical targets.

Figure 13: The Neural Kalman Filter (NKF). Differences from Fig. 1 are highlighted. ∆t is constant; G,Q are the outputs of an LSTM
network with hidden state ha; and R is the output of an LSTM with hidden state hr .

Extended experiments: We extend the experiments of Section 4 with additional versions of NKF:

• Predicted-acceleration KF (aKF): a variant of NKF that predicts the acceleration but not the covariances Q and R.

• Neural KF (NKF): the model used in Section 4 and illustrated in Fig. 13.

• Neural KF with H-prediction (NKFH): a variant of NKF that also predicts the observation model H in every step.

In addition, while we still train with MSE loss, we add the test metric of Negative-Log-Likelihood (NLL) – of the true state
w.r.t the estimated distribution. Note that the NLL has an important role in the multi-target matching problem (which is out
of the scope of this work).

For each benchmark and each model, we train the model on train data with a certain range of targets acceleration (note
that acceleration affects both speed changes and turns sharpness), and tested it on targets with different acceleration ranges,
some of them account for distributional shifts. For each model we train two variants – one with Cartesian representation of
the observation noise R, and one with spherical representation (as in the baselines of Appendix B.1) – and we select the one
with the higher validation MSE (where the validation data is a portion of the data assigned for training).

Fig. 14a shows that in the free-motion benchmark, all the 3 neural models improve the MSE in comparison to the standard
KF, yet are outperformed by OKF. Furthermore, while OKF has the best NLL, the more complicated models NKF and
NKFH increase the NLL in orders of magnitude. Note that the instability of NKFH is expressed in poor generalization to
lower accelerations in addition to the extremely high NLL score.

Fig. 14b shows that in Const a benchmark, all the 3 neural models improve the MSE in comparison to the standard KF, but
only NKFH improves in comparison to OKF as well. On the other hand, NKFH still suffers from very high NLL.

In summary, all 3 variants of NKF outperform the standard KF in both benchmarks in terms of MSE. However, when
comparing to OKF instead, aKF and NKF become inferior, and the comparison between NKFH and OKF depends on the
selected benchmark and metric.
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(a) Free-motion benchmark

(b) Const a benchmark (no turns)

Figure 14: The relative MSE and NLL results of various models in comparison to the standard KF model. The textual labels specify the
absolute MSE and NLL. Note that certain bars of NLL are of entirely different scale and thus are cropped in the figure (their values can be
seen in the labels). In each benchmark, the models were trained with relation to MSE loss, on train data of the middle acceleration-range:
the two other acceleration ranges in each benchmark correspond to generalization over distributional shifts.
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