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Abstract

Recently, the equivariance of models with respect to a group action has become an im-
portant topic of research in machine learning. Analysis of the built-in equivariance of
existing neural network architectures, as well as the study of methods for building model
architectures that explicitly “bake in” equivariance, have become significant research areas
in their own right. However, imbuing an architecture with a specific group equivariance
imposes a strong prior on the types of data transformations that the model expects to
see. While strictly-equivariant models enforce symmetries, such as those due to rotations
or translations, real-world data does not always follow such strict equivariances, be it due
to noise in the data or underlying physical laws that encode only approximate or partial
symmetries. In such cases, the prior of strict equivariance can actually prove too strong
and cause models to underperform on real-world data. Therefore, in this work we study a
closely related topic, that of almost equivariance. We give a practical method for encoding
almost equivariance in models by appealing to the Lie algebra of a Lie group and defin-
ing Lie algebra convolutions. We demonstrate that Lie algebra convolutions offer several
benefits over Lie group convolutions, including being computationally tractable and well-
defined for non-compact groups. Finally, we demonstrate the validity of our approach by
benchmarking against datasets in fully equivariant and almost equivariant settings.

Keywords: Equivariance, partial equivariance, approximate equivariance, almost equiv-
ariance, soft equivariance

1. Introduction

The past few years have shown a surge in interest in equivariant model architectures, those
that explicitly impose symmetry with respect to a particular group acting on the model
inputs. While it was long-believed that data augmentation strategies could take the place
of equivariant model architectures, recent work has demonstrated that this is not the case
(Gerken et al., 2022; Lafarge et al., 2020; Wang et al., 2022b). As such, developing methods
for building neural network layers that are equivariant to general group actions is of great
importance.

More recently, almost equivariance, also referred to variously as approximate, soft, or
partial equivariance, has become a rich topic of study. The idea is that the symmetry
constraints imposed by full equivariance are not always completely conformed to in real-
world systems. For example, the motion of a pendulum in a vacuum is fully symmetric about
the midpoint of its arc, but when outside forces such as wind resistance are introduced, only
partial equivariance is achieved on each pendulum swing. Accurately modeling real-world
physical systems therefore requires building model architectures that have a built-in notion
of symmetry but that are not so constrained by it as to be incapable of fully modeling the
underlying system dynamics.
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2. Related Work

2.1. Strict Equivariance

Much of the work in developing strictly-equivariant model architectures began with the
seminal paper of Cohen and Welling (2016), which introduced the group-equivariant con-
volutional neural network layer. Kondor and Trivedi (2018) generalized this notion of
equivariance and convolution to the action of an arbitrary compact group. Further gener-
alizations followed, with the creation of convolutions (Finzi et al., 2020) and efficient MLP
layers (Finzi et al., 2021a) equivariant to arbitrary Lie groups. Other neural network types
have also been studied through the lens of equivariance, for example, graph neural networks
(Satorras et al., 2021), (Batzner et al., 2022), transformers (Hutchinson et al., 2021), and
graph transformers (Liao and Smidt, 2023). Cohen et al. (2019) consolidated much of this
work into a general framework via which equivariant layers can be understood as maps
between spaces of sections of vector bundles. Similar to our work, Dehmamy et al. (2021)
devised a convolutional layer on the Lie algebra designed to approximate group convolu-
tional layers. However, their objective was to make the layer as close to equivariant as
possible whereas our layer is designed to be flexible so as to be capable of modelling almost
equivariances. Finally, rather than devising a new equivariant layer type, Gruver et al.
(2023) developed a method based on the Lie derivative which can be used to detect the
degree of equivariance learned by an arbitrary model architecture.

2.2. Almost Equivariance

One of the first works on almost equivariance was Finzi et al. (2021b), which introduced
the Residual Pathway Prior model. Their idea is to construct a neural network layer f that
is the sum of two components, A and B, where A is a strictly equivariant layer and B is a
more flexible, non-equivariant layer. Furthermore, they place priors on the sizes of A and
B such that a model trained using maximum a posteriori estimation is incentivized to favor
the strict equivariance of A while relying on B only to explain the difference between f and
the fully symmetric architecture determined by A. The priors on A and B can be defined
so as to weight the layer towards favoring the use of A.

The approach taken in Wang et al. (2022a) is somewhat different. They give an explicit
definition of approximate equivariance then model it via a relaxed group convolutional layer,
wherein the single kernel Ψ of a strictly equivariant group convolutional layer is replaced
with a set of kernels {Ψl}Ll=1. This introduces a specific, symmetry-breaking dependence
on a pair of group elements (g, h).

Romero and Lohit (2022) take an altogether different approach. They introduce a
model, which they call the Partial G-CNN, and show how to train it to learn layer-wise
levels of equivariance from data. A key differentiator in their approach is the learning of
a probability distribution over group elements at each group convolutional layer, allowing
them to sample group elements during group convolutions.

van der Ouderaa et al. (2022) relax equivariance constraints by defining a non-stationary
group convolution. They parameterize the kernel for the convolution by choosing a basis
for the Lie algebra, g, of G and defining elements g ∈ G as exponential maps of Lie algebra
elements.
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Finally, Petrache and Trivedi (2023) provide a take on approximate equivariance rooted
in statistical learning theory and provide generalization and error bounds on approximately
equivariant architectures.

3. Method

3.1. Equivariance & Almost Equivariance

We first give the definitions of equivariance and almost equivariance upon which this paper
is based. In defining almost equivariance of a model with respect to the action of some Lie
group, G, we seek a definition that offers both theoretical insight as well as practical signifi-
cance. We start by addressing the abstract case, in which we define almost equivariance for
general functions on a Riemannian manifold. We then drop to the level of practice and give
a method for encoding almost equivariance into a machine learning model taking inputs on
some data manifold.

Definition 1 (equivariant function) Let G be a Lie group acting smoothly on smooth
Riemannian manifolds (M, g) and (N,h) via the left actions G×M → M and G×N → N
given by (g, x) 7→ g · x. Furthermore, let f be a mapping of smooth manifolds, f : M → N .
Then we say f is equivariant with respect to the action of G if it commutes with the actions
of G on M and N , i.e.

g · f(x) = f(g · x)

Definition 2 (ε-almost equivariant function) Now, consider the same setup as in the
previous definition. We say a function f : M → N is ε-almost equivariant if the following
is satisfied

d(f(g · x), g · f(x)) < ε

for all g ∈ G and x ∈ M , where d is the distance metric on N . We can think of such a
function as commuting with the actions of G on M and N to within some ε.

3.2. Lie Algebra Convolutions

Similar to the approach taken in van der Ouderaa et al. (2022), we build an almost equivari-
ant neural network layer based on the Lie algebra, g, of a matrix Lie group, G ⩽ GLn(R).
However, our model makes use of a few, key differences. First, rather than parametrizing
our kernel in a finite-dimensional random Fourier features basis, we instead encode the Lie
algebra basis explicitly. For most matrix Lie groups, the corresponding Lie algebra basis
has an easily calculated set of generators, i.e. a set of basis elements, {xi}. Second, instead
of mapping elements of g directly to G via the exponential map, we train a neural network,
Nθ : g → Rn×n, to learn an approximation to this mapping directly from data. This confers
some key benefits over previous approaches. For one, the kernels used in past work are still
constrained to take as input only group elements, v ∈ G, which to some extent limits the
flexibility with which they can model partial equivariances. In contrast, our kernel can take
any x ∈ Rn×n as an input, allowing us to model a more flexible class of functions while still
maintaining the interpretability achieved by parameterizing this function class via elements
of the Lie algebra.
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Furthermore, whereas van der Ouderaa et al. (2022) relax equivariance constraints by
letting their kernel depend on an absolute group element, v, we define a simpler convolution
that still allows us to relax equivariance constraints.

Definition 3 (Almost Equivariant Lie Algebra Convolution) We construct an almost
equivariant Lie algebra convolution by letting u, x =

∑dim g
i=1 cixi ∈ g and defining

h(u) = (kω ⋆ f)(u) =

∫
x∈g

kω

(
Nθ(x)

−1 exp(u)
)
f(x)dµ(x)

Here, instead of integrating with respect to the Haar measure, as would be required if we
were integrating over the Lie group, G, we are able to instead integrate with respect to
the Lebesgue measure, µ, defined on Rn×n. This is because we are integrating over the Lie
algebra, g, which is a vector subspace of Rn×n. Furthermore, this allows us to generalize
beyond compact groups, because while the Haar measure is defined only for compact groups,
the Lesbegue measure is defined for the Lie algebra of any Lie group, compact or not. While
we still ultimately convolve with group elements (in the case of compact groups, for which
exp : g → G is surjective), our inputs, u, are taken from the Lie algebra, g, and then pushed
onto the Lie group, G, via the exp map.

Additionally, because the exp map is surjective only for compact Lie groups (Hall, 2015),
the approach of parameterizing Lie group elements by applying the exp map to elements of
the Lie algebra only works in the compact case. Because we model the mapping function,
Nθ : g → G, using a neural network (in our case, a single-layer MLP), our approach extends
to non-compact Lie groups.

Finally, our approach easily interpolates between full equivariance, partial equivariance,
and non-equivariance. When presented with fully equivariant training data, our neural
network over Lie algebra elements can learn the exponential map. When presented with
almost equivariant training data, this same neural network will learn an approximation to
the exponential map that is justified by said data. And finally, when presented with a task
for which equivariance is not beneficial, the neural network is free to learn an arbitrary
function over the Lie algebra that best models the training data.

4. Results

For each task, we benchmark against the Residual Pathway Prior model of Finzi et al.
(2021b), the Appoximately Equivariant GCNN of (Wang et al., 2022a), the E(2)-equivariant
E2CNN of (Weiler and Cesa, 2019), and a Standard CNN exhibiting only translational
equivariance.

4.1. Image Classification

We first test our model on an image classification task. We focus on the Rot-MNIST dataset.
The images in Rot-MNIST are taken from the MNIST dataset and subjected to random
rotations. We would expect rotational equivariance to be beneficial for classifying these
images. However, the dataset is not fully rotationally equivariant in the sense that applying
a 180 degree rotation to the digit 6 causes it to look like the digit 9 and vice versa. We find
that our model outperforms all baselines for this task.
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Group Num Samples Model Rot-MNIST Pendulum RMSE Pendulum Average RMSE

SE(2)
10

Almost Equivariant CNN 93.55 0.0350± 0.0001 0.5963± 2.1581
Residual Pathway Prior 85.20 0.0350± 0.0001 14.4018± 26.8171

N/A Approximate GCNN 85.51 0.0350± 0.0001 0.8241± 1.4568
T(2) N/A Standard CNN 92.05 0.0354± 0.0009 0.6573± 1.0565
E(2) 10 E2CNN 92.81 0.0350± 0.0000 3.5987± 2.8203

Table 1: Classification accuracies (%) for Rot-MNIST as well as RMSE values and average
RMSE across hyperparameter configurations for pendulum prediction. The first
column gives the Lie group with respect to which (almost) equivariance is imposed.
Our model is the Almost Equivariant CNN. The Num Samples column gives the
number of elements drawn from the Lie algebra when computing the convolution.

4.2. Damped Pendulum

The second task is to predict the angle, θ ∈ [0, π], made with the vertical at time t ∈ R+

of a pendulum undergoing simple harmonic motion and subjected to wind resistance. The
pendulum is modeled as a mass m connected to a massless rod of length L subjected to an
acceleration due to gravity of g = −9.8m/sec2 and position function θ(t). The differential

equation governing such motion is ∂2θ
∂t2

+ λ
m

∂θ
∂t +

g
Lθ = 0 where λ is the coefficient of friction

governing the wind resistance which is modeled as a force Fw = −λL∂θ
∂t . We simulate

the trajectory of the pendulum using the Runge-Kutta method to obtain an iterative,
approximate solution to the above, second-order differential equation. We sample θ(t) for
6000 values of t ∈ (0, 60) using a dt = 0.01 and setting m = L = 1, θ(0) = π/3, ∂θ

∂t (0) = 0,
and λ = 0.2. We partition this data into a 90%/10% train-test split and train using k-fold
cross validation a series of models to predict angular position from the time, t ∈ (0, 60). We
find that while all the models exhibit comparable performance on this task, ours exhibits
the lowest variance across different hyperparameter settings.

5. Discussion

In this work, we introduced a convolution on the elements of a Lie algebra, for which Lie
algebra elements are sampled using the Lebesgue measure on the algebra, that approxi-
mates a fully equivariant group convolution. We then showed that such a convolution can
model almost equivariance relative to any group action, even those of non-compact groups.
Finally, we validated our assumptions by testing our model on a 2D image classification
task having SO(2) almost equivariance and a 1D sequence regression task exhibiting full
SO(2) equivariance.
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Appendix A. Appendix

A.1. Mathematical Background

We give brief introductions to the subjects of representation theory, differential topology and
geometry, and Lie theory, stating only those definitions, propositions, and theorems needed
to understand the paper. For more comprehensive background, we encourage readers to
consult any of Fulton and Harris (2004); Etingof et al. (2011); Hall (2015) for representation
theory, any of Lee (2003, 2018) for differential topology and geometry, and Hall (2015) for
Lie theory.

A.1.1. Representation Theory

Definition 4 (Representation of an associative algebra) We define a representation
(ρ, V ) of an associative algebra A to be a vector space V with an associated homomorphism
ρ : A → End(V ) where End(V ) denotes the set of endomorphisms of V , i.e. linear operators
from V to itself.

Definition 5 (Lie group representation) A representation (ρ, V ) of a Lie group G is a
homomorphism ρ : G → GL(V ) where V is a vector space.
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Definition 6 (Lie algebra representation) A representation (ρ, V ) of a Lie algebra g
is a homomorphism ρ : g → gl(V ) where V is a vector space.

Definition 7 (Morphism of representations) A morphism of representations (ρ1, V ), (ρ2,W )
is a map ϕ : V → W satisfying

ϕ(ρ1(a)(v)) = ρ2(a)ϕ(v)

for all a ∈ A, v ∈ V .

We can view morphisms as the set of transformations on V that preserve equivariance with
respect to some pair of representations. ϕ is also sometimes called an intertwining map.
In other words, in equivariant deep learning we seek to learn neural networks N that are
morphisms of representations. In almost equivariant deep learning, we seek models N that
are almost morphisms in the sense described in the paper intro.

Definition 8 (Subrepresentation) A subrepresentation of (ρ, V ) is a subspace U ⊆ V
such that ρ(a)(u) ∈ U for all a ∈ A, u ∈ U .

A.1.2. Differential Topology & Geometry, Lie Groups, and Lie Algebras

Definition 9 (Smooth manifold) A smooth manifold is a Hausdorff, second countable,
locally Euclidean topological space, M , equipped with a smooth structure.

Definition 10 (Riemannian manifold) A Riemannian manifold is a pair (M, g) where
M is a smooth manifold and g is a choice of Riemannian metric on M .

Definition 11 (Riemannian metric) A Riemannian metric for a manifold M is a smoothly-
varying choice of inner product on the tangent space TpM . Equivalently, a Riemannian
metric on M is a smooth covariant 2-tensor field g ∈ T 2(M) whose value gp at each p ∈ M
is an inner product on TpM .

Proposition 12 Every smooth manifold admits a Riemannian metric.

Definition 13 (Isometry) An isometry of Riemannian manifolds (M, g) and (M̃, g̃) is a
diffeomorphism φ : M → M̃ such that φ∗g̃ = g. Equivalently, φ is a metric-preserving
diffeomorphism.

Definition 14 (Lie group) A Lie group is a smooth manifold with an algebraic group
structure such that the multiplication map m : G×G → G and the inversion map i : G → G
are both smooth.

Definition 15 (Lie algebra) A Lie algebra is a vector space g over a field F , equipped
with a map [·, ·] : g×g → g, called the bracket, which satisfies the following three properties:

1. Bilinearity

2. Antisymmetry
[X,Y ] = −[Y,X]
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3. The Jacobi Identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Theorem 16 (Ado’s Theorem) Every finite-dimensional real Lie algebra admits a faith-
ful finite-dimensional representation.

Definition 17 (Matrix exponential) Given A ∈ Rn×n, the matrix exponential is the
function exp : Rn×n → Rn×n given by

exp(A) = eA =
∞∑
k=0

Ak

k!

Definition 18 (Haar measure) Let G be a locally compact group. Then the (unique up
to scalars, nonzero, left-invariant) Haar measure on G is the Borel measure µ satisfying the
following

1. µ(xE) = µ(E) for all x ∈ G and all measurable E ⊆ G.

2. µ(U) > 0 for every non-empty open set U ⊆ G.

3. µ(K) < ∞ for every compact set K ⊆ G.

Proposition 19 Every Lie group is locally compact and thus comes equipped with a Haar
measure.

A.2. Model Training & Hyperparameter Tuning

A.2.1. Pendulum Trajectory Prediction

For the pendulum trajectory prediction task, we performed a grid search over the following
parameters across all models excluding, to some extent, the standard CNN. For the standard
CNN, we used a fixed architecture with three convolutional layers having a kernel size of 2
and having 32, 64, and 128 channels, respectively. This was followed by two linear layers
having weight matrices of sizes 128× 256 and 256× 2, respectively.

Each model was given a batch size of 16 and trained for 100 epochs. An 80%/10%/10%
train-validation-test split was used, with RMSE calculated on the test set after the final
epoch. The data was not shuffled due to this being a time series prediction task. Four
random seeds were used at each step of the grid search, with average test set RMSE and
standard deviations calculated with respect to the four random seeds.
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Learning Rate Optimizer Kernel Sizes Hidden Channels # Hidden Layers

1e-4, 1e-3, 1e-2, 1e-1 Adam, SGD 2, 3, 4, 5 16, 32 1, 2, 3, 4

Table 2: Model hyperparameters used in grid search for the pendulum trajectory prediction
task.

A.2.2. Rotated MNIST Classification

For the Rotated MNIST classification task, we performed a grid search over the following
parameters across all models excluding the standard CNN. For the standard CNN, we used
a fixed architecture with two convolutional layers having hidden channel counts of 32 and
64, respectively, and a kernel size of 3. The convolutional layers are followed by dropout
and two linear layers having weight matrices of sizes 9126× 128 and 128× 10, respectively.

Each model was trained for 200 epochs with a linear learning rate decay schedule.
The standard 10k/2k/50k train-validation-test split was used, with classification accuracy
calculated on the test set after the final epoch.

Learning Rate Optimizer Kernel Sizes Hidden Channels # Hidden Layers Batch Sizes

1e-4, 1e-3, 1e-2, 1e-1 Adam 3, 4, 5 16, 32 1, 2, 3, 4 16, 32, 64

Table 3: Model hyperparameters used in grid search for the Rot-MNIST classification task.

11


	Introduction
	Related Work
	Strict Equivariance
	Almost Equivariance

	Method
	Equivariance & Almost Equivariance
	Lie Algebra Convolutions

	Results
	Image Classification
	Damped Pendulum

	Discussion
	Appendix
	Mathematical Background
	Representation Theory
	Differential Topology & Geometry, Lie Groups, and Lie Algebras

	Model Training & Hyperparameter Tuning
	Pendulum Trajectory Prediction
	Rotated MNIST Classification



