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Abstract

The diffusion inversion problem seeks to recover the latent generative trajectory
of a diffusion model given a real image. Faithful inversion is critical for ensuring
consistency in diffusion-based image editing. Prior works formulate this task as
a fixed-point problem and solve it using numerical methods. However, achieving
both accuracy and efficiency remains challenging, especially for few-step models
and novel samples. In this paper, we propose Preciselnv, a general-purpose test-
time optimization framework that enables fast and faithful inversion in as few as
two inference steps. Unlike root-finding methods, we reformulate inversion as
a learning problem and introduce a dynamic programming-inspired strategy to
recursively estimate a parameterized sequence of noise embeddings. This design
leverages the smoothness of the diffusion latent space for accurate gradient-based
optimization and ensures memory efficiency via recursive subproblem construction.
We further provide a theoretical analysis of Preciselnyv’s convergence and derive a
provable upper bound on its reconstruction error. Extensive experiments on COCO
2017, DarkFace, and a stylized cartoon dataset show that Preciselnv achieves
state-of-the-art performance in both reconstruction quality and inference speed.
Improvements are especially notable for few-step models and under distribution
shifts. Moreover, precise inversion yields substantial gains in editing consistency
for text-driven image manipulation tasks. Code is available athttps://github.
com/panda7777777/Preciselnv

1 Introduction

Large-scale pre-trained diffusion models [10, 17, 132} [33]] have demonstrated strong generative
capabilities in producing high-quality and diverse images. Built upon these models, many recent
methods enable a wide range of image editing operations by guiding the generative process with
user inputs, such as text prompts [44 (9, [16, 21} 22} 29]], reference images [} 16, 23| 25]], and spatial
masks [8}28]]. To ensure consistency and controllability in such edits, faithful inversion of real images
into the diffusion process is essential [13]].

Since the sampling process of diffusion models is inherently irreversible, mapping a real image back
into the model domain remains a fundamental challenge. Existing methods on diffusion inversion can
be divided into three major categories: forward optimization, backward optimization, and invertible
samplers. Invertible samplers, such as EDICT [38]], BDIA [43]], and BELM [39], introduce explicit
constraints into the sampling procedure to enable bidirectional generation. Backward optimization
methods [21} 22, 29] fix the forward noising trajectory of a real image and optimize the reverse
diffusion process to match this trajectory. Both types of methods improve reconstruction quality by
modifying the denoising path, but often weaken the generative ability of the diffusion model. To
address this issue, forward optimization methods estimate a noising trajectory that can be faithfully

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/panda7777777/PreciseInv
https://github.com/panda7777777/PreciseInv

Input Image ReNoise EasyInv DDIM Inversion

~
W

-1,_,
>
L

Figure 1: Qualitative comparison of diffusion inversion methods using SD v1.4 on challenging cases:
novel sample (first row) and two-step inference (second row).

reversed by the diffusion model. For example, several methods [30} convert the problem
into a fixed-point equation and solve it via Anderson acceleration [2], while ReNoise refines an
iterative renoising mechanism. However, these methods suffer from slow convergence and limited
performance, especially under few-step inference or on novel samples, as illustrated in Fig.[T}

In this paper, we propose a general framework named Preciselnv that efficiently solves the diffusion
inversion problem by progressively learning a parameterized noising trajectory. Specifically, we refor-
mulate diffusion inversion as a learning problem and decompose it into 7" overlapping subproblems by
leveraging the Markov property of the diffusion process. We then introduce a dynamic programming-
inspired strategy [5]] to recursively solve these subproblems. In each subproblem, Preciselnv learns a
local noise embedding that approximates the optimal intermediate state along the inversion trajectory.
Benefiting from the smooth transitions in the latent space [44], this gradient-based optimization
converges more accurately than numerical solvers. Moreover, the recursive formulation is highly
memory-efficient: inversion on the SD v1.4 base model requires only 3.43 GB of GPU memory,
regardless of the number of inference steps. Extensive experiments show that Preciselnv achieves
state-of-the-art reconstruction performance in both quality and efficiency (Section .I). The im-
provements are especially pronounced under few-step inference (e.g., 7=2, 4) and on novel samples.
Furthermore, precise inversion yields more semantically continuous latent representations (Fig. [5)),
which substantially improve consistency and controllability in text-driven editing tasks (Section

Our main contributions are summarized as follows: (i) We propose Preciselnv, a general-purpose test-
time optimization framework for diffusion inversion that enables fast and faithful image reconstruction
under few-step inference and distribution shift. (ii) We reformalize diffusion inversion as a sequence
of non-overlapping learning subproblems and introduce a dynamic programming strategy to solve
them efficiently. (iii) We demonstrate that precise inversion yields smoother latent trajectories, which
in turn improve consistency and controllability in text-driven image editing.

2 Background

2.1 Diffusion Models

Given samples from the data distribution ¢(xg ), diffusion models define a generative process
by learning to reverse a fixed Markovian forward process that progressively corrupts data by adding
Gaussian noise. The forward process is formulated as:

T
Q(XlzT | Xo) = H(I(Xt | Xt71)7 (I(Xt | thl) = N(Xt; VO Xi—1, (1 - at)I)v (D
t=1

where xo ~ q(X), {x;}1_; are latent variables, and {c; }7_; € (0, 1]T is a predefined noise schedule.
The marginal distribution at an arbitrary timestep ¢ is given by:

q(x¢ | x0) = N (x¢; V@ %o, (1 — a)I), )



— t . . . .
where a; := [[,_; as. The generative process is modeled as a parameterized Markov chain:

T
po(x0.1) = p(xT) Hpe(xt—l | x¢), po(xe—1| %) := N(Xt—l;ue(xtat)vEe(xt’t))’ (€)]

t=1

where p(x7) = N (xr;0,I) and 6 denotes the model parameters. In practice, a denoising neural
network €y is trained to predict py(x¢, t), and 3g(x¢, t) is set to a constant o according to a;. The
training objective minimizes a simplified variational bound:

Limpte (0) 1= Egg{1,..., 7}, xo~a(xo), e~N(0,1) [ll6 — g (x4, 1)]%| 4)

where

Xt:\/@tX0+\/1—6ét€. (5)
Starting from x7 ~ A (x7; 0, 1), the DDPM sampling procedure [17] iteratively applies the reverse
step to generate x as follows:

Xi—1 =

1 (X _ Vi—o
Vet ! V91—

where z ~ N (z;0,I). To reduce the number of inference steps, the DDIM sampler [36] converts
Eq. (6) into a non-Markovian form:

_ 1 1
xt_1:1/at 1xt—|—<1/ —1—,/—1) €g(xy, t). @)
Qi Q1 Qi

To further enhance the inference efficiency, recent efforts have focused on training few-step diffusion
models, such as Consistency Models (CM) [37]], Latent Consistency Models (LCM) [27]], Adversarial
Diffusion Distillation (ADD) models [35]], Shortcut models [12]] and MeanFlow [14].

EO(Xtat)) + 0,2, (6)

2.2 Image Inversion in Diffusion Models

Inverting real images into the latent space of a pretrained diffusion model is critical for diffusion-
based image editing methods. Given a real image x(, our goal is to estimate a corresponding noisy
latent x7, such that x( can be reconstructed by applying the reversed denoising trajectory to xr.
Unfortunately, the neural network €y do not inherently predict noise direction € from x;_; to X;.
DDIM Inversion [8]] was among the earliest methods attempted to address this issue. Rewriting the
Eq. (7), we obtain:

1 1
Xy = 2 gy — <\/71,/ 1) €0 (x4, 1). (8)
Qp—1 1 Q1 Qi

DDIM Inversion assumes €g(x;—1,t — 1) &~ €9(x¢, t) and iteratively applies Eq. (8) from ¢t = 1 to
t = T. However, the denoising trajectory is nonlinear, resulting in discrepancies between predicted
X; and actual x;.

Subsequently, there are three main lines of work on diffusion inversion: modifying the reversed
denoising trajectory, designing invertible samplers or optimizing the initial noise latent x7. A common
practice of the former is to optimize the denoising process to better align with the trajectory obtained
by DDIM inversion. For example, Null-Text Inversion [29] optimizes unconditional text embeddings
to implicitly adjust the denoising trajectory, while Eta Inversion [22] uses a hyperparameter 7 to
control the trade-off between the stochastic denoising trajectory and the vanilla DDIM Inversion
trajectory. Moreover, a DDPM inversion method [21] was proposed, which rectifies the DDPM
denoising process using a forward trajectory constructed by independently applying Eq.(3) at each
timestep ¢. More recently, several invertible samplers 38,139, 43| have been proposed for bidirectional
generation. While, in general, manually modifying the denoising trajectory enhancing reconstruction
quality, it inevitably disrupts the original generative process of the diffusion model.

To preserve the original generative process, another line of methods has been proposed to estimate a
more accurate value of €y(xy, t) in Eq. . For example, ReNoise [[13]] ensembles multiple DDIM
Inversion results at each iteration. In addition, several methods reformulates the diffusion inversion



problem as a fixed-point problem and solves the problem by improving Anderson acceleration [2]
methods. Let the estimated value of €g(x¢, t) be denoted as €}, then we have:

€ = €g(xy,1). 9)
Substituting Eq. (9) into Eq. (8), we obtain:

[ 1 1
X, = g — 2 ( —1—,/—1>ej;. (10)
Qg1 Q1 Q1 O

By replacing x; in Eq. (9) with Eq. (I0), we deduce that:

/ / [ 1 /1
6::69< a Xt—1 — at ( —-1- —1) 6:,t>. (11)
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To effectively solve Fixed-Point Eq.(IT), AIDI[30] uniformly mixes the outputs from two adjacent
iterations in vanilla Anderson acceleration, while Easylnv [45] increases the influence of xq in
estimating x7. by directly predicting x; instead of €;. Despite recent progress, achieving precise and
efficient inversion remains challenging, especially under few-step inference or when the inputs are
novel, as illustrated in Fig. E}

3 Method

3.1 Reformulating Diffusion Inversion as a Learning Problem

Given a pretrained diffusion model that defines a mapping X : xp +— x7_1 +> - - - — X from latent
space to image space, we hypothesize that the inverse mapping X ! : x¢ ++ X; + - - - = X7 exhibits
a smooth optimization landscape, owing to the smoothness of transitions in the latent space [44].
Based on this observation, we reformulate diffusion inversion as a learning problem. Let xy be an
observed image, and let €7, denote a learnable noise embedding. The objective is defined as:

arg min || X' (x7) —X()H27 (12)
€r

where

x7 =+varxo+ V1 — arer. (13)
3.2 Progressive Denoising Trajectory Learning

Directly optimizing requires backpropagation through all 7" timesteps, which incurs prohibitive
memory and computational costs. To address this, we exploit the Markov property of the diffusion
process to decompose problem (I2)) into 7" subproblems and solve them efficiently using dynamic
programming principles.

Subproblem Decomposition Let {x;}/_; denote latent variables along the denoising trajectory
from xg to x7, as indicated by the spherical markers along the blue arrow in Fig.[2| Since only xg
is observed, we adopt a bottom-up dynamic programming strategy to sequentially estimate latent
states from x; to x7. To this end, we define a collection of subproblems {P(¢)}L_,, where each P (t)
corresponds to the estimation of x;. Specifically,

P(t) = argmin || X (x}) — x|, (14)
with
X; =+Varxo+ V1 —a €, (15)
where €] is the learnable noise embedding at timestep ¢ € {1,2,...,T}.

Optimal Substructure The inverse mapping X! : xg ++ X; — - - - — X7 inherits the Markov
structure of X', implying that the optimal solution to each subproblem P(t¢) depends only on the
solution to the previous subproblem P(¢ — 1) for all ¢ > 2. In particular, P (1) depends solely on
the known observation x. This recursive dependency establishes that the subproblems {P(¢)}~_,
exhibit the optimal substructure property.
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Figure 2: Overview of the proposed Preciselny.

Overlapping Subproblems Each subproblem P(¢) seeks a latent variable x; such that the denoising
trajectory from x; accurately reconstructs xo. As adjacent subproblems P(¢) and P(t — 1) share this
reconstruction objective and lie on successive steps of the trajectory, their optimization processes
overlap. Specifically, the solution to P (¢ — 1) influences and partially informs the optimization of
P(t), resulting in substantial overlap across subproblems.

Bottom-Up Computation Without loss of generality, we adopt the DDIM sampling strategy. For
convenience in the subsequent analysis, we reframe Eq. (7) as:

Substituting into Eq. (T4), the first subproblem becomes:

P(1) = argmin || X (x}) — %o
€1

. . , (17)
= argmin [|u(x7) — xo||” .
€1

Exploiting the optimal substructure of the subproblems {P(¢)}Z_,, we derive a recursive formulation
f that maps P(¢t — 1) to P(¢):

P(t) = argmin | X (x;) — xo

= argmin [[u(x;) = x;_, | (18)

fP(t=1)),

where x;_; denotes the optimized solution obtained from P(¢ — 1). Leveraging the recursive
formulation f, we solve the subproblems {P(t)}L_, iteratively from ¢t = 1 to t = T, as indicated
by the red dotted arrows in Fig.[2] We define a convergence threshold 7 for P(t), and stop the
optimization when ||u(x}) — x;_1||?> < 7. In practice, we set 7 in the range of 1072 to 10~°. 7
and the inference step number 7 jointly control the trade-off between reconstruction accuracy and
inference speed, as detailed in Table@

Optimization Procedure. The overall optimization algorithm of Preciselny is presented in Algo-
rithm[I} The procedure is memory-efficient since backpropagation is performed only over a single
timestep. Moreover, Preciselnyv is general and model-agnostic. We show its adaptability to different
diffusion backbones (e.g., rectified flow [26]]) and samplers (e.g., DDPM [17]) in Appendix [A] and
provide additional quantitative results in Appendix [D.1}



Algorithm 1 Preciselnv for Diffusion Models with DDIM Sampler

1: Input: Real image x, diffusion model €y, convergence threshold 7, number of inference steps T’
2: Output: Inverted latent X7,

3: fort =1to 7T do

4:  Initialize € ~ N(0,1)

5: if ¢ > 1 then

6: X —Vorixo+ /1 —ow_1 €,
7: else

8: X;_1 + Xo

9: end if

10: // Apply a single DDIM Inversion step

11: €« \/1%7@ (w(xj_1) — V@ixo) (u defined in Eq. )
12: X; — Varxo+ V1 — €

13: Liec ||/J(X2k) - X;tk71||2

14: while £... < 1 do

15: X:F\/@tX0+\/1—dt6I

16: Lrec < [lp(xy) — x4 17
17: € € — Vi

18: end while

19: end for

20: return X7,

3.3 Theoretical Analysis of Convergence

While the progressive optimization strategy above is conceptually appealing, its convergence has yet
to be formally established. Here, we provide a theoretical proof to establish its convergence. We
begin by stating two standard assumptions that are widely used in diffusion models [37].

Assumption 1. The diffusion model eg(x;,t) is Lipschitz continuous in x; with constant Ly, i.e.,
llea(x1,t) — €o(x2,t)[| < L [Ix1 — x2-

Assumption 2. Let £, := ||u(x¢) — x¢—1||%. The function L, has L-Lipschitz continuous gradients
with respect to Xy, i.e., |VLi(x¢) — VL(x})]] < L ||x¢ — x}]].

Under these assumptions, standard non-convex optimization results [[15] apply. With gradient descent
using a fixed step size v < 2/L for each subproblem P(t), the local loss £; decreases monotonically.
After K iterations,

; (k)2 « 1 1
JLoin VL I1? <O(%), (19)

indicating convergence to a stationary point d;. Since each step minimizes a local reconstruction
loss and the optimization proceeds recursively, the global loss £ is non-increasing. Given that p is
Lipschitz in x;, the accumulated reconstruction error satisfies:

T [t-1
1 (ee) = x> < Y| TTLS) | 6t (20)
=1\ j=1
If LY < L,, < 1 (satisfies due to Assumption and let 6 = max{dy,---,dr}, a geometric upper
bound follows:
T
12 (xr) = xol> <6 Lyt < = 21
=1

Theorem 1. Under Assumptionsand gradient descent on P (t) with step size v < 2/ L converges
monotonically to a stationary point of L;.

Theorem 2. Let T'(t) = ||X(x;) — Xo||%. Under Assumption [I|and Theorem|[l] T(T) admits a
geometric upper bound, i.e., T'(T) < §/(1 — Ly,).

Detailed proofs of Theorem I|and [2]are provided in Appendix [B]



3.4 Prompt-driven Image Editing

We apply Preciselnv to enable prompt-driven editing by replacing the inversion stage without
modifying the editing pipeline. Let xo denote the input image, and let ¢, and ¢; denote the source
and target prompts, respectively. We perform inversion conditioned on c,, following the progressive
optimization strategy in Eq. (I4). At each step ¢, we solve

Pean(t) = arg min ||, (x}) = x;_s ||, (22)

where 4.(+) generalizes Eq. to conditional generation. This yields a latent x7. that faithfully
reconstructs xg under the conditioning of the source prompt.

To generate the edited image, we reuse x7. and apply DDIM sampling under classifier-free guidance
(CFG) (18], where the target and source prompts act as positive and negative conditioning signals,
respectively. The conditional mean of the guided denoising process is:

[Op—1 | 1 / 1
/chm,c“eg (Xt) = o Xt+< o1 -1- OTt - 1) |:(1+w) 69(xt7 t? Cpos)fw EH(Xt7 ta Cneg):| )

(23)
where X ., denotes the deterministic denoising trajectory governed by Eq. @) This pipeline
procedure enables prompt-driven editing without task-specific designs and improves fidelity and

localization by aligning the initial latent more precisely with the structure of the input image.

4 Experiments

In this section, we present experimental results with the aim of (i) demonstrating the state-of-the-art
performance of Preciselnv for image reconstruction in terms of both quality and efficiency; (ii)
verifying that faithful inversion enhances consistency in prompt-guided image editing; and (iii)
providing insights into its local behaviors and interaction mechanisms.

4.1 Image Reconstruction

Datasets. We evaluate Preciselnv on three domains: LAION-aligned, low-light, and stylized. (i)
The COCO 2017 [24]] validation set contains 5,000 natural images with diverse everyday scenes.
It serves as a close proxy to the LAION distribution used in training most text-to-image diffusion
models. (ii) The DarkFace [41] validation set includes 6,089 nighttime images captured in real-world
low-light conditions, exhibiting extreme visibility degradation. (iii) The Cartoon dataset consists of
722 stylized images collected from the internet. These samples exhibit abstract shapes, exaggerated
structures, and vivid palettes, reflecting rare visual styles far from the training distribution.

Baselines. We compare our method with forward optimization methods, including DDIM Inver-
sion [8l], ReNoise [[13l], and Easylnv [43]]; and invertible samplers, including EDICT [38], BDIA [43],
and BELM [39]. Following prior work [45, [39], we don’t compare with backward optimization
methods, as they are not designed for recovering the original generative trajectory of diffusion models.
We carefully tune hyperparameters for all methods.

Metrics. We evaluate reconstruction quality using LPIPS, SSIM, and RSNR, which respectively
measure perceptual similarity, structural alignment, and signal fidelity. To assess efficiency, we also
report the average inference time per image.

Results and Analysis. Table E] reports quantitative results on COCO, DarkFace, and Cartoon
datasets using the SD v1.4 base model. With a tight convergence threshold (n=10"?), Preciselny
achieves the lowest LPIPS, highest SSIM, and best PSNR across all datasets. Despite the high quality,
its inference time remains competitive. With a relaxed threshold (n=10"2), Preciselny still surpasses
most methods in LPIPS, SSIM, and PSNR, while reducing inference time to 5.33 s. Among forward
optimization methods, Easylnv and ReNoise underperform the 1000-step DDIM Inversion, which
suggests that numerical or iterative methods suffer from a performance bottleneck. In contrast, our
method breaks through this bottleneck by a large margin. In particular, on the stylized Cartoon dataset,



Table 1: Quantitative comparison of diffusion inversion methods for image reconstruction using SD
v1.4 on COCO, DarkFace, and Cartoon datasets.

| | LPIPS ({) | SSIM (1) | PSNR (1) | Time (s, 1)
Method

| |COCO Dark. Cart. [COCO Dark. Cart. [COCO Dark. Cart.| Avg.
Invertible EDICT 0.430 0.329 0.032] 0.367 0.630 0.931| 14.04 20.42 29.87| 45.50
Samplers BDIA 0.431 0.329 0.033| 0.366 0.630 0.946| 14.04 20.42 30.89| 172.40
plers BELM 0.431 0.331 0.041| 0.366 0.617 0.947| 14.03 20.43 29.97 9.00
DDIM Inversion 0.118 0.073 0.145| 0.714 0.871 0.879| 24.67 30.89 23.50| 41.30
Forward ReNoise 0.120 0.086 0.323| 0.724 0.869 0.851| 25.00 30.84 22.21| 38.20
o tim{azrin EasyInv 0.210 0.210 0.165| 0.666 0.780 0.883| 23.13 27.60 21.95| 23.60
P €| Preciselnv (n=10"2)| 0.104 0.074 0.025| 0.737 0.861 0.952| 25.13 31.00 29.71 5.33
PreciseInv (n=10"%)| 0.078 0.052 0.018| 0.756 0.878 0.960 | 25.86 31.79 31.42| 23.29

Table 2: Quantitative comparison of diffusion inversion methods for image reconstruction using
LCM-SD v1.5 and SDXL on the COCO dataset.

| LCM-SD v1.5 | SDXL

| LPIPS () SSIM () PSNR(1) | Time (s, 4) | LPIPS (}) SSIM (1) PSNR (1) | Time (s, })
BELM 0.449 0.362 13.99 9.1 - - - -
DDIM Inversion 0.626 0.420 15.74 355 0.492 0.464 16.24 154.8
ReNoise 0.603 0.414 15.59 83.1 0.424 0.533 18.26 27.4
Easylnv - - - - 0.194 0.683 20.89 35.1
Preciselnv (7 = 107%) | 0.103 0.753 25.55 8.83 0.185 0.763 27.00 7.43
PreciseInv (7 = 1075) | 0.083 0.775 26.45 25.54 0.080 0.854 30.93 41.11

Table 3: Quantitative results of image reconstruction under the few-step inference setting for different
inversion methods using SD v1.4 on the COCO dataset.

\ T=2 \ T=4

| LPIPS (|) SSIM (1) PSNR (1) | LPIPS () SSIM (1) PSNR (1)
BELM 0.832 0.112 8.19 0.431 0.366 14.03
DDIM Inversion |  0.331 0.591 20.62 0.306 0.593 20.65
ReNoise 0.199 0.671 22.92 0.158 0.702 23.53
Easylnv 0.563 0.357 14.97 0.537 0.332 13.66
PreciseInv 0.077 0.766 25.93 0.084 0.762 25.65

the performance gains are more pronounced, yielding lower LPIPS (—0.127), higher SSIM (4-0.081),
and better PSNR (4-7.92 dB). Moreover, different invertible samplers exhibit similar reconstruction
quality. Compared to EDICT and BDIA, BELM significantly decreases inference time from 45.5 s to
9.00 s. Although they achieve remarkable success on the Cartoon dataset, their performance remains
limited on COCO and DarkFace. By comparison, our method shows robustness across data types and
further improves overall efficiency.

For generality, we also present the reconstruction results on the COCO dataset using the few-step
model LCM-SD v1.5 and the high-resolution model SDXL in Table 2] Preciselnv consistently
achieves the best reconstruction quality across the two base models. With n=10"2, it already
significantly outperforms all baselines while maintaining fast inference (8.83 s for LCM-SD v1.5 and
7.43 s for SDXL). When using a tighter threshold (n=10"?), the performance of Preciselny is further
improved. These results demonstrate that our method is general across different model architectures.

As shown in Table 3] we report the reconstruction performance of different inversion methods under
the challenging few-step setting (1" = 2, 4). ReNoise exhibits stronger few-step inference capability
compared to other baselines. Nevertheless, our method achieves substantially better reconstruction
quality across all metrics.

4.2 Prompt-driven Image Editing

Here, we present the results of Preciselnv on prompt-driven image editing, as shown in Fig.|3| and
compare its editing performance with existing methods in Fig.l] We demonstrate that Preciselnv
enables the preservation of fine-grained details that are irrelevant to the editing prompt across a wide
range of editing scenarios. For example, when editing a down jacket into a leather jacket, the original
fabric folds are well preserved (left example of the first row in Fig. [3). Furthermore, compared to
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"a sketch style dress"

Figure 3: Preciselnv enables consistent and controllable image editing across diverse scenarios.
From top left to bottom right: (1) texture editing (down — leather), (2) color editing (light — dark),
(3) object transition (fox — wolf), and (4) style transfer (photo — sketch). In each case, our method

preserves non-edited attributes such as identity, pose, or background, demonstrating high fidelity in
semantic consistency.
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Figure 4: Comparison of different image editing results on prompt-driven image editing task.



existing methods, Preciselnv enables more faithful and controllable prompt-based editing. As shown
in the first row of Fig.[d] our method better preserves both the tree structure and sky consistency
during the texture transformation from desert to grassland, while baseline methods introduce sky
artifacts (e.g., BELM) or distort tree details (e.g., ReNoise).

Notably, the purpose of these experiments is not to position Preciselnv as a state-of-the-art image
editing method. As a generic inversion method without editing-specific design, it is inherently
not comparable to advanced pipelines that involve domain-specific training (20} 40|, attention
manipulation [11] [T6] 472], or test-time optimization [7, [I9]. Rather, Preciselnv serves as a
foundation that can be integrated with such techniques. Incorporating precise inversion into editing-
oriented frameworks is a promising direction for future work.

F =N |

Ours

BELM

EasyInv

ReNoise

DDIM

Figure 5: Interpolating between leftmost and rightmost images with spherical linear interpolation.

To further explore why Preciselnv enables controllable and faithful editing, we perform an
interpolation-based diagnostic experiment, as shown in Fig. [5| Specifically, we first select two
similar real images and apply different inversion methods to recover their corresponding latents.
Then, we perform spherical linear interpolation (slerp) between the two inverted latents and re-
construct all intermediate states using the same diffusion model. As shown in Fig.[5] Preciselnv
produces a smooth and semantically meaningful transition, maintaining structural coherence and
identity consistency throughout the interpolation path. In contrast, DDIM and EasyInv often yield
abrupt domain shifts or introduce foreign objects, indicating a drift away from the correct semantic
manifold. BELM fails to preserve visual coherence due to accumulated noise artifacts, while ReNoise
partially retains structure but suffers from geometric degradation. These findings suggest that accurate
inversion leads to latents that better respect the geometry of the diffusion space, thereby enabling
more localized, stable, and prompt-aligned edits.

5 Conclusion

We propose Preciselnv, a general-purpose test-time optimization framework that enables fast and
faithful inversion for pre-trained diffusion models. Unlike prior fixed-point methods, we reformulate
diffusion inversion as a progressive learning problem and introduce a dynamic programming-inspired
strategy to solve it effectively. Theoretical analysis shows that Preciselnv converges under mild
assumptions. Extensive experiments across diverse data domains and model architectures demonstrate
that the proposed method achieves state-of-the-art performance in image reconstruction. Notably,
the performance gains are especially pronounced under few-step settings and on novel samples.
Moreover, we verify the effectiveness of Preciselnv in prompt-driven image editing tasks and further
analyze its underlying mechanism. In future, we attempt to integrate Preciselnv with diverse editing
techniques to explore a unified, controllable, and consistency-aware framework for image editing.
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A Formulations

In this section, we extend the formulation of Preciselnv to different combinations of base models and
samplers, highlighting the generality and adaptability of our approach.

A.1 Formulation of Stochastic Sampler: DDPM

We begin with the stochastic DDPM sampler [[17]]. For clarity, we first restate its sampling step:

1 1-— Qg
(x-S (ki . 24
Jar (Xt ki )> o -

The added noise term oz, in Eq. (24) complicates the inversion task, as deterministic reconstruction
from x; is no longer guaranteed. To overcome this, we treat z; as an additional learnable variable.
Specifically, we modify each subproblem P(t) (defined in Eq. ) to jointly optimize the noise
embedding €; and the stochastic component z;:

P(t) = arg mlzn | X (x},2;) —x0||27 (25)

t 7t

x; =Vayxo+V1—a €. (26)

This formulation preserves the dynamic programming structure of our method. In particular, the
optimal substructure property remains intact, with each subproblem P(t) dependent only on the
solution to the previous subproblem P (¢t — 1):

p(xe,2¢) =

where

arg H}lzl} ||,U,(XT,ZT)*X0H2, t=1,

P(t) = f(P(t—1)) = o 27)

. 2
arg Iplzrluu(xt*,z;‘)—xLl’ , t>1.
t 7t

By learning both the latent noise and the stochastic perturbations at each step, our method generalizes
to stochastic samplers and enables accurate inversion under the DDPM setting.

A.2 Formulation of Rectified Flow Models: SD3

Preliminary. Rectified Flow [26]] defines score-based diffusion modeling by learning a velocity
field over a linear interpolation path between the data distribution ¢(x() and the Gaussian prior
N(0,1). The forward process is formulated as:

x; = (1—t)xo +te, te]0,1]. (28)
A neural network learns a time-dependent velocity field vy(x;,t) by minimizing the following
training objective:
Lre(0) = Etnp(t), xo~a(x0), e~N'(0.1) [HE —vo(xi,1)|*] . (29)
The backward (generative) process recovers xq from a sample x; ~ N(0, I) by solving the following
ordinary differential equation (ODE) in reverse time:
d
== Volxi,t). (30)

Unlike discrete-time diffusion models such as DDPM and DDIM, Rectified Flow does not define an
explicit update rule. Instead, the reverse trajectory is obtained by numerically integrating Eq. (30),
typically via Euler discretization:

Xi— At R Xp — At - vo(xe, ). 3D

SD3 [10] refines Rectified Flow to enable large-scale pretraining for text-to-image generation. First,
instead of adopting a uniform timestep schedule, it samples timesteps from a logit-normal [3]]
distribution defined as:

1 1 (logit(t) — m)?
a(t;m,s) = ————— —_—— . 32
Mu(tim,s) = s exp< o (32)
This design allows SD3 to flexibly control the bias and width of the timestep distribution. It
further introduces a multimodal diffusion transformer that unifies cross-attention and self-attention
mechanisms. This results in improved alignment between text and image modalities.
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Preciselny for the SD3 Model We further extend Preciselnv to the continuous-time rectified
flow model, SD3. To construct a tractable denoising trajectory, we first sample a sequence of
timesteps {t1,t2,...,t7} from the logit-normal distribution 71, (¢; m, s) defined in Eq. (32). These
sampled timesteps discretize the continuous-time trajectory into a sequence of latent variables
{Xtgs Xty - - -, Xty }, Where each x;, is recursively approximated by Euler integration:

Xt =X¢, — (L —tiz1) - vo(Xe,, i), (33)

with x,, ~ N(0,I)andi € {T,T —1,...,2}.

Following Section we define 7" subproblems {P(t;)}L_,, each targeting a local reconstruction step
along the denoising path x4, +— -+ - = Xy, . For each ¢;, we parameterize the latent variable x; with
a learnable noise embedding €7, as:

X:i = (1 - ti)XO + ti 6;. (34)

Each subproblem P(¢;) seeks to minimize the reconstruction error between the estimated and true
signal:

(35)

P(t;) = argrléljn HX(X:) - XO‘ 27
t;

where X’ denotes the Euler-discretized backward trajectory from x;,. to x;,. For clarity, we rewrite
the Euler step in Eq. (31)) as:

p(Xps tiytion) = x¢ — (8 —tic1) - vo(xe, ti). (36)
With this notation, each subproblem can be reformulated recursively as:

argrgin”lu(xfl,tl,O)—x0||2, 7’:17
t

P(ti) = 1 2 (37)
arg min Hu(xz,thti,l) -x; |, i>1

By progressively solving these subproblems from P(¢1) to P(tr), Preciselnv achieves a precise
inversion of the image X into the SD3 latent space x; .

B Proofs

We provide formal proofs for the theoretical results presented in Section 3}

B.1 Proof of Theoremll]
Proof. For the function £;(x;) with L-Lipschitz continuous gradients (Assumption , we define the
gradient-based update as:

xFD = x W v, (k) (38)

where k denotes the iteration index and -y is the learning rate. By the smoothness lemma [15]], for any
x and x/,

fX) < fx) +(VI(x), ¥’ —x) + 5[Ix" —x]?, (39)

where f denotes any function with L-Lipschitz continuous gradients. Then, when v < 2/L, we
obtain

Lo ) < £2x(7) =y (1= B2) VL) (40)
After K iterations, we have
in |[VLM|? < 0(& 41
(i IVEEIP < O(%) (41)
which implies that £; converges to a stationary point ¢; during the optimization of P(t). O
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B.2 Proof of Theorem@]

Proof. Let the accumulated reconstruction error of P(t) be I'(¢) := ||X(x;) — xo||?, where x;
denotes the estimated latent representation and X is the ground-truth image. We define X' (xo) = 0.
From Theorem([l] forall ¢ € {1,..., T}, we have:

Hét > 0, £t(Xt) S (515. (42)
Considering Eq. (I8) and Assumption [T} we obtain:
Tft-1
v <> [ TIZ% |6 (43)
t=1\j=1

Under Assumption there exists a constant L,,, < 1 such that L%) < L,,. Hence,

I(t) < L, T(t—1)+6. (44)
Let § = max{dy, ..., d7}. By recursively applying Eq. from ¢ = 1 to T, we derive:
I'(1) <4,
T(2) < L + 6,
(45)
T
1-LT )
< k—1 . m <
N(T) <6y Li' =0 A
k=1
Thus, I'(T") is bounded by /(1 — Ly,). O

C Implementation Details

C.1 Training Details

We implement our method using PyTorch and the Hugging Face diffusers library. All diffusion
model weights are frozen during training, and only the per-timestep noise embeddings €; are
optimized via gradient descent. Following Easylnv, we initialize the value of €] by performing a
single step of DDIM Inversion. We use the AdamW optimizer with 5; = 0.9, 2 = 0.999, and a
weight decay of 0.01. The learning rate is set to 0.1 for SD v1.4, 0.05 for both LCM-SD v1.5 and
SDXL, and 0.025 for SD3. We use the DDIM sampler unless otherwise specified; for SD3, the Euler
discrete sampler is adopted due to architectural compatibility. We keep the number of inversion steps
equal to the number of sampling steps, denoted as 7'. All experiments are conducted under mixed
precision: £loat16 is used for SD v1.4, LCM-SD v1.5, and SDXL, while bfloat16 is used for SD3
to ensure numerical stability. We run all experiments on a single RTX 4090 24GB GPU, except for
SD3, which requires a single A100 40GB GPU due to its higher memory and compute demands.

C.2 Hyperparameters for Image Reconstruction

As described in Section[d we tune all methods for optimal reconstruction quality. We set the number
of inference steps T as follows: T'=1000 for DDIM Inversion, T=50 for ReNoise and BDIA, T=100
for Easylnv and BELM, and T'=2 for EDICT and our Preciselnv. For ReNoise, we disable the editing
loss by setting A=0 and sweep the renoising steps n € {1,2,...,9}. Easylnv, EDICT, BDIA, and
BELM are used with default configurations from their respective papers. For Preciselnv, we set
the convergence threshold 7 to 1072, 1072 and 10>, respectively. To eliminate the effect of text
conditioning, all methods are evaluated with empty prompts and guidance scale set to zero.

C.3 Pseudocode of Preciselny

We present the pseudocode of the proposed Preciselnv. Specifically, three cases are covered: diffusion
models using the DDIM sampler, diffusion models using the DDPM sampler, and rectified flow
models using the Euler discrete sampler, as shown in Algorithm [2] 3] and[4] respectively.
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Algorithm 2 Preciselnv for Diffusion Models with DDIM Sampler

1: Input: Real image x, diffusion model €y, convergence threshold 7, number of inference steps T’
2: Output: Inverted latent X7,
3: fort =1to 7T do

4:  Initialize € ~ N(0,1)

5: if ¢ > 1 then

6: X —Vorixo+ /1 —ow_1 €,
7: else

8: X;_1 + Xo

9: end if

10: // Apply a single DDIM Inversion step

11: €« \/1%7@ (w(xj_1) — V@ixo) (u defined in Eq .)
12: X; — Varxo+ V1 — €

13: Liec ||/J(X2k) - X;tkfl"z

14: while L. < n do

15: X:F\/@tX0+\/1—dt6I

16: Lrec < [lp(xy) — x4 17
17: € € — Vi

18: end while

19: end for

20: return X7,

Algorithm 3 Preciselny for Diffusion Models with DDPM Sampler

1: Input: Real image x, diffusion model €y, convergence threshold 7, number of inference steps T’
2: Output: Inverted latent x’-, additional noise terms {z%.,z%_,, -+ , 27}
3: fort =1toT do

4:  Initialize et ~ N(0,1)

5. Initialize z; ~ N(0,1)

6: if t > 1 then

7: X; 14— Vaaxo+ VI -6
8: else

9: X;_q1 + X0

10: end if

11: € +— \/11775“( (xj_1) — V/@ixo) (u defined in Eq. )
122 xf«auxo++V1—ac€

13: Liec ||:u(xt7zt) X;fk71||2

14: while L. < n do

15: X; — Vorxo+ 1 — €

16: Lrec < |lp(xt, 27) — x4 ]?
17: € — € — Vi

18: z} < 27 — Ve

19: end while

20: end for

21: return x5, {z%,z%_,,--- ,z}}

D Additional Results

D.1 Quantitative Results.

We provide additional quantitative results of our method on the image reconstruction task. Table
presents the performance of Preciselnv with different combinations of base models and samplers,
as described in Section[A] The experiments run on the COCO 2017 validation set [24]. We set the
number of inference steps to 7' = 3 for SD3 and 7' = 2 for the other models. The convergence
threshold 7 = 1073 is used for all models.
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Algorithm 4 Preciselny for Rectified Flow with Euler Discrete Sampler

1: Input: Real image x, rectified flow model €y, convergence threshold 7, number of inference
steps 7', scalars s, m

2: Output: Inverted latent x7,
// Initialize discrete timesteps

3: fori =1to1 do

4: t; < mn(i;8,m)

5: end for

6: fori =1to T do

7:  Initialize €], ~ N(0,1)

8: ift > 1 then

9: X;,l < (]. —tifl)Xo +ti_1 6;_71
10: else

11: X;,_, & Xo

12: end if

13: XI,; — (1 — tl) xo +t; 6;
14: Lree < ||p(x] tistiz1) — %5, ||*  (u defined in Eq. )
15: while £L... > 1 do

16: XZ — (1_ti)X0+ti6;§ki

17: Lrec + ||/1,(X;,,ti,ti,1) _X?FIHQ
18: GZ — Ezi — VL

19: end while

20: end for

21: X?T — (1 — tT) Xg + t7 G’tkT
22: return x7,

Table [d] shows that all models achieve comparable reconstruction quality. SD3 attains higher SSIM
and PSNR scores, while other models perform better on LPIPS. Compared to the results reported in
Tables [T|and 2] Preciselnv maintains state-of-the-art reconstruction performance, further demonstrat-
ing the generality and robustness of our method. However, SD3 exhibits lower inference efficiency
relative to other models, which can be attributed to its larger model size and the absence of an
effective initialization manner.

To address this, future work will explore a progressively decreasing timestep optimization strategy
for large models such as SD3. We believe that this strategy will result in a smoother optimization
landscape. Additionally, exploring better initialization techniques, such as using initial values derived
from existing flow-based inversion methods, would also be a promising direction.

Table 4: Additional quantitative results for image reconstruction, including: (i) Stable Diffusion 3.5
medium model with default Euler Discrete sampler, and (ii) Stable Diffusion v1.4, Latent Consistent
Model Stable Diffusion v1.5, and Stable Diffusion XL with DDPM sampler.

Model | Sampler | LPIPS (J) SSIM (1) PSNR (1) Time (s, })
SD3 Euler 0.104 0.896 30.12 403.31
SDvl4 DDPM 0.080 0.764 25.93 9.08
LCM-SDvl.5 | DDPM 0.076 0.784 26.84 12.07
SDXL DDPM 0.091 0.842 30.39 18.59

We also report reconstruction performance under varying convergence thresholds 7 and inference step
counts 7" in Table[5} We randomly sample 20 images from the COCO 2017 validation set and evaluate
using the Stable Diffusion v1.4 model with a DDIM sampler. The number of inference steps is varied
as T € 2,5,10, 20,50, 100 and the convergence threshold as 7 € 1072,1072,1075,107%,107". We
report metrics including LPIPS, SSIM, and PSNR, as well as inference time in seconds.

From Table E], we draw the following observations. First, for a fixed number of inference steps
T, decreasing the convergence threshold 7 consistently improves reconstruction quality across all
metrics—LPIPS decreases, while SSIM and PSNR increase. However, this comes at the cost of
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significantly longer inference time, especially as 77 drops below 10~°. Second, we observe diminishing
returns in reconstruction quality when 7 < 107, particularly for small-step regimes (e.g., T < 10).
This suggests that extremely strict convergence criteria may be unnecessary when the number of
inference steps is limited. Third, when 7 is fixed, increasing the number of inference steps 7" initially
degrades the reconstruction quality before improving it. This phenomenon results from a trade-
off: while smaller per-step initialization errors benefit from higher 7', the total accumulated error
at convergence (approximately 7" - i) also increases. Notably, due to the smooth structure of the
diffusion latent space, error accumulation is sublinear and does not dominate overall performance.
Fourth, inference time exhibits a non-monotonic trend with respect to 7. When 7 > 1075, increasing
T initially reduces inference time—Ilikely due to faster convergence from smaller per-step errors—but
then increases it again as the step count becomes the dominant factor. In contrast, for stricter
thresholds (n < 10~°), inference time generally decreases with larger T, implying that the time
saved through easier optimization outweighs the overhead introduced by additional steps. Finally,
when T' < 10, tightening the threshold from = 107° to = 107 yields negligible gains in
reconstruction quality. Moreover, for large-step configurations (7' > 10), using n = 107 achieves
reconstruction performance on par with small-step setups at 7 = 10~°. Taken together, these findings
suggest that setting 7 = 107° and T = 2 strikes a favorable balance between efficiency and quality.

Table 5: Image reconstruction results under varying convergence thresholds 7 and inference steps 7.
The table reports four metrics: LPIPS ({), SSIM (1), PSNR (1), and inference time in seconds ({.).

Metric | n |T=2 T=5 T=10 T=20 T=50 T=100

1072 | 0.069 0.205  0.138 0.095 0.044 0.036
1072 | 0.037 0.052  0.139 0.096 0.044 0.036
LPIPS 1075 | 0.031 0.031 0.034 0.074 0.044 0.036
10=¢ | 0.031 0.031 0.031 0.037 0.045 0.036
1077 - - - 0.031 0.036 0.032

1072 | 0.876 0.839  0.864 0.877 0.894 0.896
1073 | 0.894 0.886  0.867 0.877 0.894 0.896
SSIM 107° | 0.897 0.898  0.896 0.059 0.895 0.896
107¢ | 0.897 0.898  0.898 0.896 0.895 0.897
1077 - - - 0.898 0.897 0.898

1072 | 31.72 2675 2642 26.91 31.30 32.65
1073 | 3312  29.75  26.15 26.89 31.30 32.65
PSNR 107° | 3333 3333 3276 28.04 31.10 32.63
107¢ | 3333 3335 3337 33.03 30.62 32.63

1077 - - - 33.33 33.11 33.29
1072 | 4.05 2.27 1.50 242 5.18 9.56
1073 | 8.25 7.13 2.61 3.85 5.08 9.82

Time (s) | 107° | 23.76 24.82  37.77 21.44 7.16 12.23
1076 | 99.60 82.06 5577 68.18 62.99 26.68
1077 - - - 242.63  160.51 107.98

D.2 Qualitative Results.

Here, we present additional qualitative results on image reconstruction, prompt-based image editing,
and image interpolation.
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Figure 6: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using Stable Diffusion v1.4 on the Cartoon dataset.
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Figure 7: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using Stable Diffusion v1.4 on the DarkFace dataset.
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Figure 8: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using Stable Diffusion v1.4 on the COCO dataset.
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Figure 9: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Latent Consistency Model with Stable Diffusion v1.5 on the Cartoon dataset.
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Figure 10: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Latent Consistency Model with Stable Diffusion v1.5 on the DarkFace dataset.
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Figure 11: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Latent Consistency Model with Stable Diffusion v1.5 on the COCO dataset.
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Figure 12: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Stable Diffusion XL on the Cartoon dataset.
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Figure 13: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Stable Diffusion XL on the DarkFace dataset.
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Figure 14: Qualitative comparison of image reconstruction results from different diffusion inversion
methods using the Stable Diffusion XL on the COCO dataset.
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Figure 15: Qualitative comparison of prompt-driven image editing results from different diffusion
inversion methods using the Stable Diffusion v1.4.
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Figure 16: Qualitative comparison of prompt-driven image editing results from different diffusion
inversion methods using the Latent Consistency Model with Stable Diffusion v1.5.
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Figure 17: Qualitative comparison of prompt-driven image editing results from different diffusion
inversion methods using the Stable Diffusion SDXL.
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Figure 18: Qualitative comparison of image interpolation from different diffusion inversion methods
using the Stable Diffusion v1.4.
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Figure 19: Additional qualitative result of image interpolation from the proposed Preciselnv using
the Stable Diffusion v1.4.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims, and the experimental
results well support the claims.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See Section[3]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the necessary information to reproduce the main experimental
results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the source code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow similar recent work on diffusion inversion that doesn’t include
statistical significance of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This paper provides sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly adhere to the NeurIPS ethical NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section [l
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that provides the models or datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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