

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNCOVERING CONCEPTUAL BLINDSPOTS IN GENERATIVE IMAGE MODELS USING SPARSE AUTOENCODERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts—e.g., human hands or objects appearing in groups of four—that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots"—concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts—the largest such SAE to date—enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts — instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.

1 INTRODUCTION

Generative image models trained on large scale datasets have achieved unprecedented capabilities, allowing their use in applications both within the vision domain OpenAI (2024); Peebles and Xie (2023); Ramesh et al. (2021); Saharia et al. (2022); Nichol et al. (2021); Wang et al. (2024); Poole et al. (2022); Richardson et al. (2023); Rombach et al. (2022) and well beyond that Ahn et al. (2022); Huang et al. (2022a;b); Rombach et al. (2022); Chen et al. (2024); Zhong et al. (2024); Siddiqui et al. (2024). Despite this success, several qualitative (Marcus et al., 2022; Cabrera et al., 2021; Heigl, 2025) and quantitative studies (Liu et al., 2023; Conwell et al., 2024) have shown that, at times, models can struggle to generate images with relatively simple concepts, e.g., human hands (Lu et al., 2024; Narasimhaswamy et al., 2024; Zhangli et al., 2024; Fallah et al., 2025), objects appearing in groups of four (Cao et al., 2025), and negations or object relations (Conwell and Ullman, 2022; Conwell et al., 2024). In fact, when prompted to generate images containing such concepts, models tend to produce outputs with related structures, but not precisely the ground truth concept—e.g., producing hands with six fingers. These failure modes, which we call “conceptual blindspots”¹, can be unintuitive, since one may reasonably expect models have had enough exposure to demonstrations accurately detailing such concepts. This raises the question whether such failures reflect intriguing quirks of certain specific concepts, or whether they are demonstration of a more systematic phenomenon under which, for a broad spectrum of concepts, models fail to or are overly likely to produce images containing them.

¹We borrow the term “blindspots” from psychology literature (Banaji and Greenwald, 2016), wherein it is used to refer to scenarios where an agent makes biased decisions despite exposure to observations that contradicts the rationale behind those decisions.

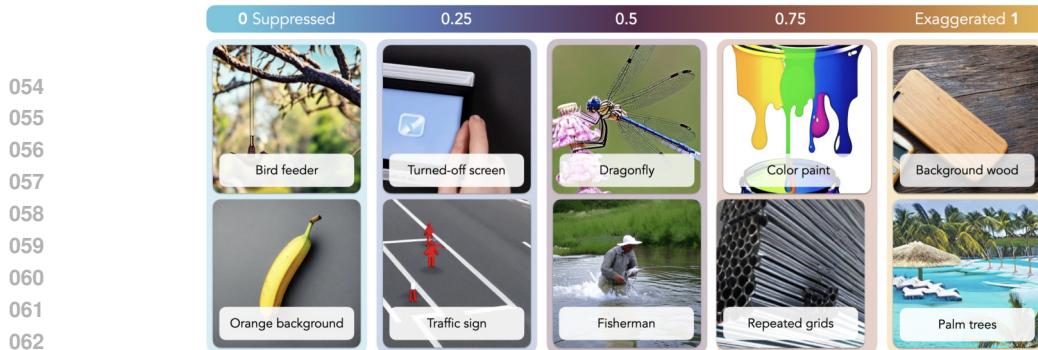


Figure 1: $\delta(k)$ quantifies a model’s tendency to over- or under-generate a concept c_k compared to its natural-data frequency. We deem concepts with $\delta(k) < 0.1$ as **suppressed conceptual blindspots** and concepts with $\delta(k) > 0.9$ as **exaggerated conceptual blindspots**. The depicted images, generated by four popular generative image models, show examples of conceptual blindspots as well as aligned concepts. The models are completely unable to generate suppressed blindspots (e.g., bird feeder), despite diverse prompting and steering strategies. For concepts with $\delta(k) \approx 0.25$ (e.g., traffic sign), the models exhibit substantial deficiencies. In contrast, exaggerated blindspots emerge unprompted, at rates far exceeding their distribution in natural images.

Answering this question remains infeasible with existing approaches for evaluating generative image models Stein et al. (2023); Wang et al. (2023a). Specifically, existing approaches generally rely on coarse-grained measures that are meant to assess image realism, e.g., FID (Heusel et al., 2017), and hence do not capture distributional failures. Methods like CLIPScore evaluate generation diversity or distribution-coverage statistics (Hessel et al., 2021; Dombrowski et al., 2024; Hwang et al., 2024), hence offering partial insights to our question, but not at the granularity of fine-grained features or concepts Theis et al. (2015); Naeem et al. (2020), making it difficult to identify conceptual blindspots. Finally, qualitative analyses for evaluating generative models, such as participant surveys (Cabrera et al., 2021; Nichol et al., 2021; Petsiuk et al., 2022; Xu et al., 2023; Wu et al., 2023a) or open-ended exploration (Bau et al., 2019), can identify failures in models’ ability to capture certain concepts, but do not offer a scalable methodology that can be easily repeated across model families and used for their comparison.

This work. Motivated by the above, we argue identifying and analyzing conceptual blindspots in a generative image model requires designing a methodology that, in an automated and unsupervised manner, can elicit concepts in the data distribution that have a mismatch between their odds of generation by the true data-generating process versus the trained model. Our contributions in this work are three-fold:

- **Formalizing Conceptual Blindspots in Generative Image Models.** We introduce a systematic framework for identifying and quantifying conceptual blindspots in generative image models compared to natural images (Section 2). This formalization moves beyond anecdotal or human-defined concept evaluations, offering a principled approach to understand the models’ limitations.
- **A Scalable, Unsupervised Approach for Identifying Conceptual Blindspots using Sparse Autoencoders.** We develop a structured methodology using sparse autoencoders (SAEs) to extract and compare concept distributions between natural and synthesized images (Section 3). To do so, we employ SAEs, which decompose the high-dimensional activation space of models into sparse, human-interpretable concepts. Concretely, SAEs are trained to reconstruct model activations using a sparse combination of learned feature directions (concepts). Each concept can then be assigned a human-interpretable label through *autointerpretability*: examining high-activating exemplars and prompting an LLM to describe the recurring pattern. To this end, we train and open-source an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts, the largest such RA-SAE to date.
- **Exploratory Tool and Analysis.** Our exploratory web tool enables both distribution- and datapoint-level analysis of blindspots across models (Sections 4.1-4.4). We apply our method to Kandinsky, PixArt, and Stable Diffusion (SD) 1.5/2.1 (Section 4). We identify specific instances of both suppressed conceptual blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated conceptual blindspots (e.g., wood background texture and palm trees), shown in Fig. 1.

108 The model, code, and web tool are available at <https://github.com/sae-diff/code-review>.
 109

110 2 FORMALIZING CONCEPTUAL BLINDSPOTS IN GENERATIVE MODELS

112 We begin by formalizing the notion of *conceptual blindspots*: systematic discrepancies between
 113 the conceptual content of natural images and that of model-generated outputs. This formulation
 114 enables us to derive principled, quantitative measures that characterize which concepts are under or
 115 over represented by a generative model relative to its data distribution. The process is illustrated in
 116 Fig. 2. While we rely on standard assumptions in this pursuit (Von Kugelgen et al., 2021; Locatello
 117 et al., 2019; Zimmermann et al., 2021; Gresel et al., 2020; 2021), empirically we find meaningful
 118 phenomenology is elicited even when these assumptions are violated.

119 **Definition 1 (Data-Generating Process).** Let $\mathcal{C} \subset \mathbb{R}^K$ denote a latent space with a Boltzmann prior
 120 $p(\mathbf{c}) = \exp(-E(\mathbf{c}))Z^{-1}$, where $E(\cdot)$ denotes an energy function that linearly decomposes over
 121 individual latents and Z is the corresponding partition function, i.e., $E(\mathbf{c}) = \sum_k E(c_k)$ and hence
 122 $p(\mathbf{c}) = \prod_k p_k(c_k)$. A data-generating process (DGP) is an invertible function $\mathbf{G} : \mathcal{C} \rightarrow \mathcal{X}$ that maps
 123 the latents $\mathbf{c} \in \mathcal{C}$ to observations $\mathbf{x} \in \mathcal{X}$, i.e., $\mathbf{x} = \mathbf{G}(\mathbf{c})$.

124 For notational simplicity, we use $p(\cdot)$ to denote both the latent density $p(\mathbf{c})$ and its push-
 125 forward to image space $p(\mathbf{x})$, where $\mathbf{x} = \mathbf{G}(\mathbf{c})$. This is justified by the invertibility
 126 of \mathbf{G} , which induces a valid distribution over \mathcal{X} via the change of variables formula.
 127 In essence, the individual dimensions of the
 128 latent space reflect the **Concepts** underlying
 129 the data-distribution $P_{\mathcal{X}}$, defined over some ob-
 130 servation space of images \mathcal{X} . For example,
 131 different latents may correspond to concepts
 132 like color, shape, size, location, and so
 133 on (Okawa et al., 2023; Park et al., 2024). We
 134 also let the data-generating process associate
 135 a text-description $\mathbf{t} \in \mathcal{T}$ with any image sam-
 136 pled from the data distribution, but do not ex-
 137 plicitly model it. These text descriptions can
 138 then be used to train a text-conditioned **Gen-
 139 erative image model** g_{θ} , with parameters θ , on
 140 a set of image-text pairs to map a noise signal
 141 $\eta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and a text-description of the scene
 142 \mathbf{t} to produce images \mathbf{x} illustrating the latter.

143 To define conceptual blindspots in the model g_{θ} ,
 144 we must assess the probability mass assigned to
 145 a concept by the data-generating process, com-
 146 paring it to the mass assigned by the model. To
 147 this end, we take an evaluation set of natural image-text pairs $(\mathcal{D}_{\mathcal{X}}, \mathcal{D}_{\mathcal{T}})$ and define a set of synthet-
 148 ically generated images $\mathcal{D}'_{\mathcal{X}}$ using the text descrip-
 149 tions. To estimate the probability of occurrence
 150 of a concept, we consider an **Energy model** $\xi : \mathcal{X} \rightarrow \mathbb{R}^d$ that maps images to a d -dimensional
 151 vector, where each dimension associates a scalar representing the energy in the k^{th} concept, i.e.,
 152 $\xi_k(\mathbf{x}) = E(c_k)$. These estimates are feasible because we assume the data-generating process is
 153 invertible. Correspondingly, the probability the data-generating process associates with the image
 154 \mathbf{x} can then be defined as $p_k(\mathbf{x}) \propto \exp(-\sum_k \xi_k(\mathbf{x}))$ (where Z_{ξ} is the partition function), hence
 155 yielding a population-level estimate $p_k(\mathcal{D}_{\mathcal{X}}) = \prod_{\mathbf{x} \in \mathcal{D}_{\mathcal{X}}} p_k(\mathbf{x})$. Using this and the sigmoid map $\sigma(\cdot)$,
 156 we define below the average energy difference in the k^{th} concept between the datasets $\mathcal{D}_{\mathcal{X}}, \mathcal{D}'_{\mathcal{X}}$.

157 **Definition 2 (Energy Difference).** Let $\mathbf{x} \in \mathcal{D}_{\mathcal{X}}$ denote a real image sampled from the data-
 158 generating process \mathbf{G} , and let $\mathbf{x}' \in \mathcal{D}'_{\mathcal{X}}$ be a synthetic image generated by the model g_{θ} . Let
 159 $\xi_k : \mathcal{X} \rightarrow \mathbb{R}$ denote the energy assigned to the k^{th} concept by the energy model ξ . We define the
 160 energy difference for concept k as:

$$\begin{aligned} \delta_{g_{\theta} \leftrightarrow \mathbf{G}}(k) &= \sigma(\mathbb{E}_{\mathbf{x}'}(\xi_k(\mathbf{x}')) - \mathbb{E}_{\mathbf{x}}(\xi_k(\mathbf{x}))) \\ &= \frac{p_k(\mathcal{D}'_{\mathcal{X}})}{p_k(\mathcal{D}_{\mathcal{X}}) + p_k(\mathcal{D}'_{\mathcal{X}})}, \end{aligned} \quad (1)$$

162 where the expectations are taken over $\mathcal{D}'_{\mathcal{X}}$ and $\mathcal{D}_{\mathcal{X}}$, respectively, and $p_k(\mathcal{D}) \propto \exp(-\sum_{\mathbf{x} \in \mathcal{D}} \xi_k(\mathbf{x}))$
 163 denotes the unnormalized conceptual probability mass of dataset \mathcal{D} under concept k .
 164

165 Thus, the energy difference in the k^{th} concept describes the ratio of the probability a concept occurs
 166 in a set of observations (here, $\mathcal{D}'_{\mathcal{X}}$) compared to a baseline dataset (here, $\mathcal{D}_{\mathcal{X}}$). Based on this measure,
 167 we can now define conceptual blindspots as follows.

168 **Definition 3 (Suppressed / Exaggerated Conceptual Blindspots).** *Given a generative image model*
 169 g_{θ} , *we say, compared to the data-generating process G , c_k is a suppressed conceptual blindspot in*
 170 *the model if $\delta_{g_{\theta} \leftrightarrow G}(k) < \lambda_{\min}$ and exaggerated if $\delta_{g_{\theta} \leftrightarrow G}(k) > \lambda_{\max}$.*

172 Overall, we define a conceptual blindspot as a concept whose likelihood of occurrence in generated
 173 images deviates markedly, either through suppression or exaggeration, from its prevalence under
 174 the data-generating process. Suppressed concepts exhibit disproportionately low activation (e.g.,
 175 $\delta(k) < \lambda_{\min}$), whereas exaggerated concepts are overrepresented (e.g., $\delta(k) > \lambda_{\max}$). Throughout
 176 our analysis, we adopt threshold values of $\lambda_{\min} = 0.1$ and $\lambda_{\max} = 0.9$ to isolate these regimes.

177 We also note this definition is related to the idea of “mode collapse” studied in past work (e.g., see
 178 Bau et al. (2019)): the difference is in the granularity at which the analysis is performed. Specifically,
 179 mode collapse focuses on exaggerated / suppressed odds of generating *entire images*, while we focus
 180 on changed odds of specific concepts. For example, if a model fails to produce images of an object
 181 with a white background, we say this concept is a suppressed conceptual blindspot.

182 3 METHOD: OPERATIONALIZING THE DEFINITION OF CONCEPTUAL 183 BLINDSPOTS

185 We next discuss our pipeline for identifying conceptual blindspots in a generative model g_{θ} . As
 186 per Sec. 2, the salient objects we need for this are (i) a set of images sampled from g_{θ} that allow
 187 comparison with the ground-truth generative process, and (ii) an energy model which enables said
 188 comparison. Below, we use $\|\cdot\|_F$ to denote the Frobenius norm and $\|\cdot\|_0$ to denote the number
 189 of non-zero entries (the ℓ_0 pseudo-norm). For a vector or matrix \mathbf{X} , $\mathbf{X} \geq 0$ implies element-wise
 190 non-negativity. For $n > 0$, we let $[n] := \{1, \dots, n\}$, and denote the i -th row of a matrix \mathbf{A} by \mathbf{A}_i .
 191

192 **From Prompts to Latent Representations.** To identify conceptual blindspots in a model g_{θ} , we
 193 compare a dataset $\mathcal{D}_{\mathcal{X}}$ of image-caption pairs (\mathbf{x}, \mathbf{t}) sampled from the data-generating process G and
 194 their synthetic counterparts sampled from the generative model g_{θ} using the text descriptions.

195 Specifically, given \mathbf{t} , we synthesize a counterpart image \mathbf{x}' using a pretrained text-to-image generator
 196 $g_{\theta} : \mathcal{T} \rightarrow \mathcal{X}$, implemented as a denoising diffusion probabilistic model (DDPM) (Razhigaev et al.,
 197 2023; Stability AI, 2022; Chen et al., 2023a). Sampling occurs in latent space via a reverse trajectory
 198 $(\gamma_t)_{t=0}^T$:

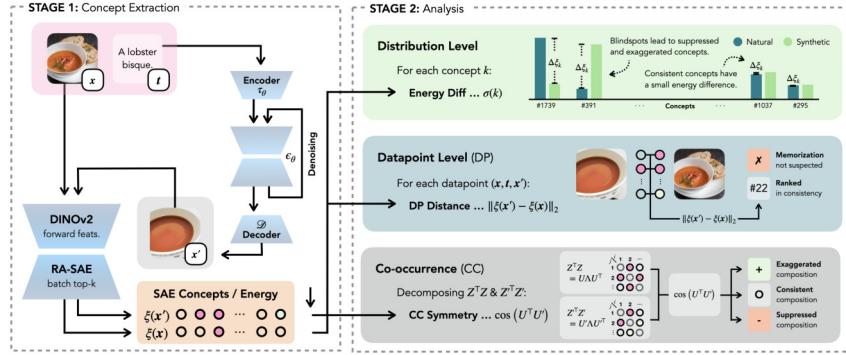
$$200 \quad \gamma_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \gamma_{t-1} = \frac{1}{\sqrt{\alpha_t}} (\gamma_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \varepsilon_{\theta}(\gamma_t, t, \mathbf{c})) + \sigma_t \eta_t, \quad \text{and} \quad \eta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

202 where $\alpha_t \in (0, 1)$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ follow the standard cosine noise schedule. The final latent γ_0
 203 is decoded via a pretrained VAE to yield the synthetic image $\mathbf{x}' = \text{VAE}(\gamma_0)$. For the remainder of
 204 the paper, we treat g_{θ} as a black box that maps prompts to images: $\mathbf{t} \mapsto \mathbf{x}'$.
 205

206 **Defining the Energy Model.** Building on prior work that shows the ability of self-supervised
 207 learning methods to invert the data-generating process and identify the energy function underlying it
 208 up to linear transformations (Zimmermann et al., 2021; Von Kugelgen et al., 2021; Khemakhem et al.,
 209 2020; Hyvarinen et al., 2019), we use DINOv2 (Oquab et al., 2023) for our analysis². Under the
 210 expectation that the number of concepts underlying the DGP is larger than the dimensionality of the
 211 model’s feature space (Elhage et al., 2022; Bricken et al., 2023), we train sparse autoencoders (SAEs)
 212 on its features to identify subspaces corresponding to these concepts (Fel et al., 2025; Cunningham

213 ²We use DINOv2 in our energy model because its self-supervised training on large-scale unlabeled data
 214 yields emergent, highly structured visual representations that capture broad semantic and geometric regularities
 215 without text supervision. These embeddings have proven robust across tasks (classification, segmentation, depth
 estimation, tracking) and domains (natural, medical, satellite imagery) Oquab et al. (2023); ?; ?; ?.

216
217
218
219
220
221
222
223
224



225 **Figure 3: Concept Extraction Pipeline.** For a triplet (x, t, x') , the concepts in x and t are extracted
226 by obtaining each image’s DINOv2 features, which are further processed by a RA-SAE into sparse
227 concept embeddings, yielding energy models $\xi(x)$ and $\xi(x')$, respectively. In particular, $\xi_k(x) =$
228 $E(c_k)$ holds the energy in the k^{th} concept.

229
230
231

232 et al., 2023; Gao et al., 2025; Templeton et al., 2024; Rajamanoharan et al., 2024). The intuition here
233 is that if the concepts underlying the generative process are modeled via approximately orthogonal
234 directions by DINOv2 (as assumed in our independence constraint in Def. 1), then an SAE should be
235 able to isolate these concepts along individual dimensions in its latent space (Elhage et al., 2022). The
236 activation associated by the SAE to a dimension will serve as our approximation of the ground-truth
237 energy function assigned to the concept modeled by that dimension.

238 Formally, using $f : \mathcal{X} \rightarrow \mathbb{R}^d$ to denote our feature extraction module (i.e., the DINOv2 model),
239 we extract features $a = f(x) \in \mathbb{R}^d$ from both natural and synthetic images from datasets $\mathcal{D}_X, \mathcal{D}'_X$.
240 Assuming the count of image-text pairs is n , we stack the real and generated features into matrices
241 $A, A' \in \mathbb{R}^{n \times d}$. We then decompose each feature vector into a sparse combination of learned concept
242 atoms using an SAE. Specifically, let $D \in \mathbb{R}^{d \times K'}$ denote a dictionary of K' concept vectors, and let
243 $\Psi : \mathbb{R}^d \rightarrow \mathbb{R}^{K'}$ be the SAE encoder that maps input features to sparse codes. Applying Ψ row-wise
244 yields the matrix of activations $Z = \Psi(A) \in \mathbb{R}^{n \times K'}$, where each row $z_i = \Psi(a_i)$ represents the
245 concept decomposition of an image. The decoder reconstructs features via ZD^\top , and the SAE is
246 trained to minimize the reconstruction error subject to sparsity and non-negativity:
247

$$\min_{\Psi, D} \|A - \Psi(A)D^\top\|_F^2 \quad \text{s.t.} \quad \Psi(A) \geq 0, \|\Psi(A)_i\|_0 \ll K' \quad \forall i \in [n]. \quad (2)$$

248
249

250 Vanilla SAEs often drift toward arbitrarily oriented dictionaries, making downstream analyses highly
251 sensitive to the random seed. To mitigate this instability and make our study reproducible and
252 independent of the seed, we employ the *Archetypal* SAE (RA-SAE) Fel et al. (2025) on a TOP-K
253 sparsity constraint Gao et al. (2025). RA-SAE constrains the dictionary D to be a convex combination
254 of training data. Specifically, we write $D = W A$ with $W \in \Omega_{K',n}$, the set of row-stochastic
255 matrices in $\mathbb{R}^{K' \times n}$:

$$\Omega_{K',n} := \left\{ W \in \mathbb{R}^{K' \times n} \mid W \geq 0, W\mathbf{1} = \mathbf{1} \right\}. \quad (3)$$

256
257
258
259
260
261
262
263
264
265
266

Thus every atom D_i lies in the convex hull of the data $\text{conv}(A)$, and any reconstruction ZD^\top resides
inside the conic hull of the data cone(A). This ensures learned concepts remain faithful to the
support of the data distribution (Fel et al., 2025). Once trained, the SAE provides a consistent set
of sparse codes: Z for real images and Z' for their generated counterparts. *These codes capture
the same prompt-conditioned visual semantics in terms of shared, interpretable concepts, with the
activation value of the concept serving as energy values for our analysis of conceptual blindspots.*
In summary then, our method defines a structured pipeline that, given a prompt and its associated real
image (t, x) , produces two sparse concept vectors (z, z') , enabling direct comparison of the real and
generated visual content in a common conceptual basis.

267
268
269

This summarizes our full pipeline: starting from a captioned image (t, x) , we synthesize a counterpart
 x' and map both images into a shared, sparse concept space via a vision encoder and a trained
SAE, yielding interpretable representations (z, z') that will serve as the foundation for evaluating
conceptual shifts induced by the generative process.

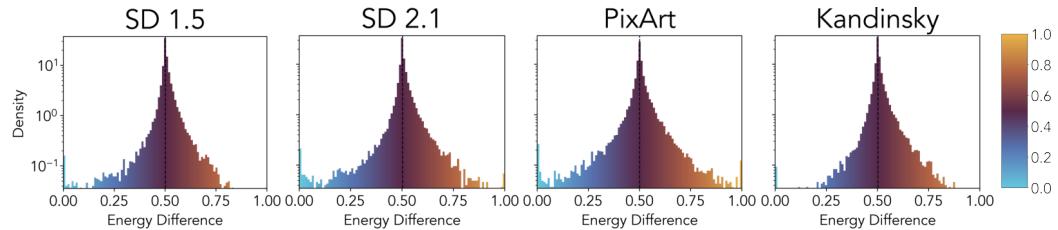
270

4 RESULTS

272 We analyze four generative image models trained on LAION-5B—SD 1.5, SD 2.1, PixArt, and
 273 Kandinsky—using $|\mathcal{X}| = 10,000$ image-text pairs and their corresponding generations (Appendix N).
 274 Our analysis spans three levels (Fig. 3): a ● **distribution-level** evaluation reveals suppressed and
 275 exaggerated concepts; a ● **datapoint-level** analysis surfaces failures tied to ambiguity, omission, and
 276 memorization; and a ● **compositional** analysis uncovers subtle distortions in concept co-occurrence
 277 geometry. Our core contribution is an interactive exploratory tool, shown in Appendix C, from which
 278 all subsequent analyses emerge. Rather than exhaustively studying one phenomenon, we present
 279 high-level findings that highlight the tool’s versatility and enable broader, customizable exploration.

280

4.1 THE HEAVY TAIL OF SUPPRESSED CONCEPTS



290 **Figure 4: ● Concept Energy Distribution.** Log-scale histograms of energy differences $\delta(k)$ across
 291 32,000 concepts, comparing the natural and synthesized distributions for each evaluated model.
 292 Values left of 0.5 represent suppressed concepts (under-represented); values right of 0.5 represent
 293 exaggerated concepts (over-represented).

294 To assess disparities between the generative models and the natural image distribution, we begin by
 295 analyzing the marginal energy difference $\delta(k)$ across 32,000 concepts learned using RA-SAE. As
 296 defined in Sec. 3, this quantity reflects the relative prevalence of each concept in the synthesized
 297 versus natural image sets. A value of $\delta(k) < 0.1$ indicates that concept k is under-represented
 298 (suppressed) in the generated images, while $\delta(k) > 0.9$ indicates over-representation (exaggerated).
 299 Fig. 4 presents the distribution of $\delta(k)$ for each of the four evaluated models. Across all models,
 300 we observe heavy-tailed histograms with substantial mass on both extremes, suggesting systematic
 301 discrepancies in concept coverage. Notably, the left tail—corresponding to suppressed concepts—is
 302 denser and longer than the right, indicating a consistent tendency of concept suppression. This
 303 asymmetry is reflected in the negative skewness of the distributions: Skewness = -0.54 for SD 2.1,
 304 -0.40 for both SD 1.5 and PixArt, and -0.23 for Kandinsky.

305 We also note that while all models exhibit both suppressed and exaggerated concepts, their specific
 306 profiles differ. For instance, PixArt shows a wider spread, suggesting a more suppressed concept
 307 distribution. Nevertheless, the consistent left-skew in all distributions underscores a common tendency
 308 toward concept omission, though the specific characteristics of this behavior require further analysis,
 309 which we explore in the next Sections.

311

4.2 STRUCTURE AND SPECIFICITY OF CONCEPTUAL BLINDSPOTS

313 While the previous section quantified marginal discrepancies in concept frequency, here we investigate
 314 their global structure by embedding the full set of 32,000 concepts into two dimensions using UMAP
 315 on the sparse codes, coloring the concepts by their $\delta(\cdot)$ values. As shown in Fig. 5, distinct clusters
 316 of concepts emerge across all models. These clusters often correspond to contiguous regions of
 317 conceptual blindspots, especially for suppressed (blue) concepts, suggesting that blindspots are quite
 318 structured—reflecting shared biases in either training distributions or architectural priors. To assess
 319 the consistency of these blindspot patterns across models, we further analyze both the magnitude and
 320 structure of concept-level $\delta(\cdot)$ values. Fig. 6 presents scatter plots and pairwise Pearson correlation
 321 coefficients between the $\delta(k)$ vectors of SD 1.5 and all other models. As expected, SD 1.5 and 2.1
 322 exhibit strong correlation ($r = 0.82$), reflecting their shared architectural and training pipelines.
 323 In contrast, their correlations with PixArt and Kandinsky are substantially lower— $r = 0.41$ and
 324 $r = 0.46$, respectively—indicating that these models emphasize different regions of the conceptual
 325 space.

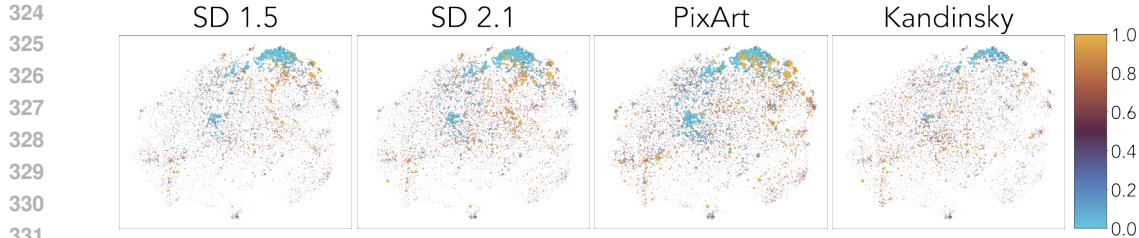


Figure 5: ● **Structure of Concept Energy Differences.** UMAP visualizations of 32,000 concepts, colored according to their energy difference $\delta(k)$ between the natural and synthesized distributions. Clusters reveal patterns of conceptual blindspots, with suppressed concepts on the blue end and exaggerated concepts on the orange end.

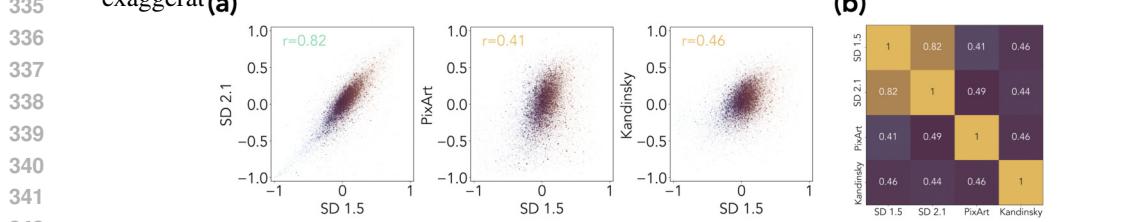


Figure 6: ● **Cross-Model Concept Energy Correlation.** Pairwise scatter plots of $\delta(k)$ across all four evaluated models, with Pearson correlation coefficients reported top left. Strong alignment between SD 1.5 and SD 2.1 contrasts with weaker correlations among other architectures, indicating model-specific blindspots. ● **Correlation Matrix of Conceptual Blindspots.** Heatmap of pairwise Pearson correlation coefficients for δ between all models, quantifying the degree of shared conceptual blindspots across these models.

Overall, the analysis above reveals that while some blindspots are universally shared—likely due to properties of the dataset—others are highly model-specific, emerging from idiosyncrasies in training dynamics or model capacity. This motivates the need to identify and study both blindspots that are shared across models and ones that are unique to specific models in subsequent sections.

4.3 QUALITATIVE BLINDSPOT EXAMPLES

We next visualize specific examples of both suppressed and exaggerated blindspots to gauge what concepts fall under these regimes. Specifically, in Fig. 8a we show an example of a conceptual blindspot suppressed by all models—we find all evaluated models fail to reproduce the concept solid white on documents. As can be seen in the figures, despite the caption explicitly referencing this concept, none of the generated images reflect the intended visual semantics, suggesting that this region of the concept space is systematically under-sampled across models. Meanwhile, Fig. 8b highlights a model-specific blindspot: the concept pan is accurately captured by three models, yet conspicuously missing from generations produced by Kandinsky. This reinforces the findings from Sec. 4.2, where cross-model agreement was found to be high in some cases but limited in others.

Conversely, in Fig. 7 we present a case of exaggeration, where the concept shadow under animal is overly emphasized in generated images. While shadows are mildly plausible, their consistent and pronounced rendering across models, relative to the more nuanced and variable occurrences in natural images, suggests an overactive prior. Interestingly, despite attempts at finding concepts that

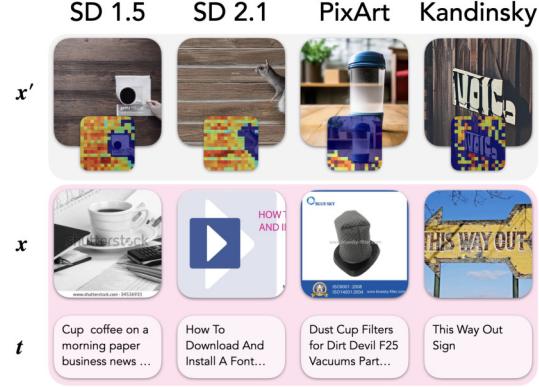


Figure 7: ● **Example of an Exaggerated Conceptual Blindspot.** Four synthesized images x' with the wooden surfaces and everyday objects concept are shown alongside the corresponding natural image x and text prompt t . As expected with exaggerated blindspots, the concept is prominent in x' but absent in x and t .

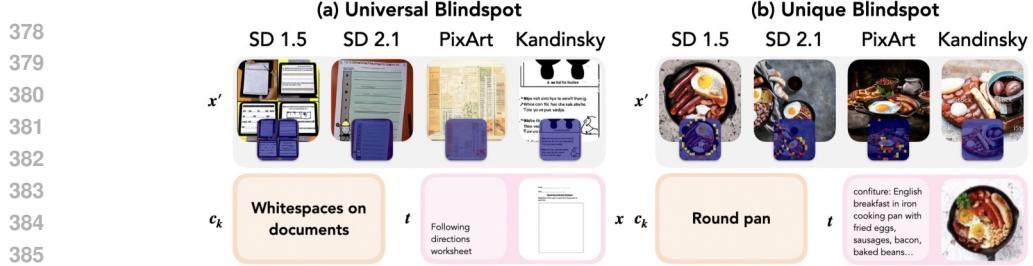


Figure 8: ● **Examples of Suppressed Conceptual Blindspots.** The natural images x , representative c_k and t , shown alongside four synthesized images x' , generated using S_θ . The universal blindspot is present in all evaluated models; the unique blindspot is only present in Kandinsky.

are uniquely exaggerated by a specific model, we did not find any clear examples—this suggests exaggerations are approximately universal.

Overall, the examples above concretely demonstrate how conceptual blindspots manifest in generated outputs, illustrating that our energy-based diagnostic can surface both shared and model-specific failure modes. Notably, it enables the identification of surprising model limitations—such as the consistent failure to reproduce clear or solid background elements, like whitespaces on documents, across all models. This raises the possibility that certain failure patterns may stem from architectural constraints or training data biases that transcend individual model idiosyncrasies.

While these aggregate-level analyses are informative, they invite a deeper question: do these blindspots emerge only in the aggregate across many samples, or do they manifest themselves even at the level of individual datapoints? This finer-grained perspective allows us to probe the mechanisms behind blindspots more directly—uncovering cases of prompt misinterpretation, latent memorization, or both.

4.4 DATAPoint-LEVEL ENERGY DIFFERENCE FROM INCONGRUENT TO MEMORIZED IMAGES

To move beyond population-level statistics, we examine individual natural vs. generated image pairs for which the $\delta(\cdot)$ values averaged across all concepts exhibit the largest and smallest differences. This analysis aids easy understanding of model success and failures, latter of which we find often arises from prompt ambiguity or memorization artifacts. For example, Fig. 9a shows instances with near-zero difference in average $\delta(\cdot)$ values. In these cases, the generated images are conceptually indistinguishable from the original. However, qualitative inspection clearly shows this happen not because the model faithfully captures the prompt semantics, but from pure replication of memorized templates: we see repetitive visual structures (e.g., outlines of clothing or object arrangements), indicating that the model may be copying from overly frequent patterns in the training data. By contrast, Fig. 9b illustrates samples that are among the largest $\delta(\cdot)$ values. These indicate significant conceptual divergence between the synthesized and natural image. While some of these discrepancies can be attributed to underspecified or noisy captions, others reveal genuine blindspots: the prompt describes a clear concept faithfully present in \mathcal{D}_X , yet the model fails to realize it in \mathcal{D}'_X . This failure suggests that even when language grounding is adequate, certain concepts fall outside the model’s generative abilities. To confirm that these distributional discrepancies reflect genuine failure cases rather than artifacts of poor data quality, we conduct a systematic VLM-based inspection of high-divergence samples, finding that the majority (56.3% of the 200 most diverging datapoints) constitute genuine blindspots where the caption is sufficient but the model fails to generate the concept (see Appendix I for details).

Figure 9: ● **Datapoint-level Conceptual Alignment.** (a) Examples with minimal energy differences where models appear to memorize training patterns. (b) Examples with large differences where significant concept divergences due to prompt ambiguity or model limitations occur.

the model may be copying from overly frequent patterns in the training data. By contrast, Fig. 9b illustrates samples that are among the largest $\delta(\cdot)$ values. These indicate significant conceptual divergence between the synthesized and natural image. While some of these discrepancies can be attributed to underspecified or noisy captions, others reveal genuine blindspots: the prompt describes a clear concept faithfully present in \mathcal{D}_X , yet the model fails to realize it in \mathcal{D}'_X . This failure suggests that even when language grounding is adequate, certain concepts fall outside the model’s generative abilities. To confirm that these distributional discrepancies reflect genuine failure cases rather than artifacts of poor data quality, we conduct a systematic VLM-based inspection of high-divergence samples, finding that the majority (56.3% of the 200 most diverging datapoints) constitute genuine blindspots where the caption is sufficient but the model fails to generate the concept (see Appendix I for details).

432
433

4.5 ANALYZING POST-TRAINING EFFECTS

434
435
436
437
438
439

Post-training protocols, e.g., safety fine-tuning, have been argued to reduce the diversity of model generations (Kirk et al., 2023). Given our pipeline’s ability to isolate interesting differences in a model’s generations and the ground-truth DGP, we next use it to understand the effects of DPO—a popular safety fine-tuning protocol (Rafailov et al., 2023). Specifically, we compare two variants of the SD 1.5 model: one trained with DPO, and one without.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

For each image pair $(\mathcal{D}_\mathcal{X}, \mathcal{D}'_\mathcal{X})$, we compute the ℓ_2 norm of the difference between their internal concept energy vectors, $\|\xi(\mathcal{D}'_\mathcal{X}) - \xi(\mathcal{D}_\mathcal{X})\|_2$. Fig. 10 presents a histogram of these datapoint-wise energy differences. The DPO-enhanced model exhibits both a lower median and a narrower spread, indicating more consistent distribution of generated concepts with the ground-truth DGP. This suggests that DPO may serve to regularize the model’s concept distribution, encouraging outputs that more closely reflect the semantic content of the seen inputs. While our analysis does not disentangle the specific inductive biases introduced by DPO, these results

provide empirical evidence that its optimization objective, which favors human-preferred generations, indirectly promotes better match with the training distribution. In particular, it reduces *both over and under* activation of individual concepts relative to the natural baseline. These findings highlight the utility of our pipeline in characterizing the downstream effects of post-training interventions: not merely in terms of output quality, but in how they reshape the conceptual geometry of the model’s output space.

458

459
460
461
462
463
464
465
466
467
468
469

4.6 CONCEPTUAL MISALIGNMENT AS A FUNCTION OF EMPIRICAL FREQUENCY

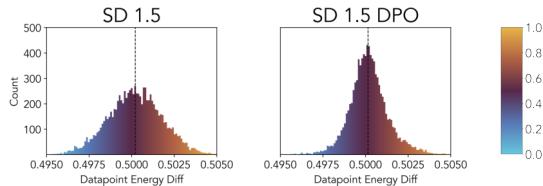


Figure 10: ● **Effect of DPO on Concept Fidelity.** Histogram of datapoint-wise energy differences between the synthesized and natural distribution of SD 1.5 models with and without DPO.

provide empirical evidence that its optimization objective, which favors human-preferred generations, indirectly promotes better match with the training distribution. In particular, it reduces *both over and under* activation of individual concepts relative to the natural baseline. These findings highlight the utility of our pipeline in characterizing the downstream effects of post-training interventions: not merely in terms of output quality, but in how they reshape the conceptual geometry of the model’s output space.

458

459
460
461
462
463
464
465
466
467
468
469

4.6 CONCEPTUAL MISALIGNMENT AS A FUNCTION OF EMPIRICAL FREQUENCY

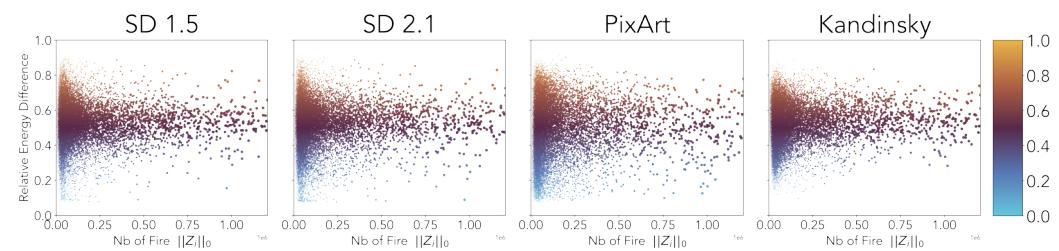


Figure 11: ● **Concept Fidelity Across Frequency Spectrum.** Scatter plots showing the relationship between concept frequency (x-axis) and the energy difference (y-axis) across four evaluated models. Each point represents a concept with size is proportional to its activation frequency.

470

We previously hypothesized that conceptual blindspots are not merely be architectural artifacts, but may also emerge as a direct consequence of distributional peculiarities of certain features. In this section, we empirically test this hypothesis by examining whether concepts that are rarely activated in natural images, i.e., those in the long tail of the data distribution, lead to blindspots in generative models. Specifically, we process the natural dataset $\mathcal{D}_\mathcal{X}$ through the trained SAE and compute, for each concept k , its empirical frequency $\|\mathbf{Z}_{:,k}\|_0$, where $\mathbf{Z}_{:,i}$ is the activations of concept i across all our images. We then correlate this with the absolute energy difference observed across generated outputs. Fig. 11 visualizes this relationship for all evaluated models. We find that concepts with higher frequency in natural data tend to show lower energy discrepancies, while rare concepts—especially suppressed ones ($\delta(k) < 0.5$)—exhibit significant alignment errors. This suggests that many blindspots stem not from randomness or model quirks, but from systematic effects tied to long-tail concept distributions. Addressing these issues may require not just architectural changes but also strategies like data reweighting or augmentation.

486 5 DISCUSSION

488 Our analysis reveals multiple conceptual blindspots in four popular generative image models. The
 489 results presented here, however, only scratch the surface: each individual finding could warrant
 490 its own dedicated investigation. Rather than delving deeply into any one of these questions, we
 491 instead showcase the versatility of our method and exploratory tool. Out of the box, they allow for
 492 a systematic identification of concepts that models struggle to generate, detection of memorization
 493 artifacts, discovery of datapoints with insufficient captions, quantification of post-training effects, and
 494 characterization of conceptual shifts across model architectures. We thus open space for follow-up
 495 work to extend the depth of analysis, scope of evaluated architectures, and inquiry into root causes
 496 of conceptual blindspots. Future work could also explore hierarchical representations of concepts
 497 in RA-SAE to allow for a more nuanced analysis. **The core methodology presented in this paper is**
 498 **modular and agnostic to the specific concept extraction model, and such an analysis would hence**
 499 **require minimal adjustment to the overall process.**

500 Beyond mere exploration and mapping of the conceptual space of existing models, our method could
 501 also serve as grounds for targeted intervention strategies employed during training of new models.
 502 Specifically, the energy profiles could inform prioritized sampling or reweighting, increasing the
 503 prevalence of suppressed concepts in the training distribution, and more. The energy profiles could
 504 also be employed into the training objective as a regularization term, explicitly penalizing deviations
 505 from the natural concept distribution.

506 **Limitations.** We wish to highlight several limitations of our work. By relying on DINOv2 and
 507 RA-SAE for concept extraction and representation, our approach is inherently constrained to the
 508 kinds of concepts these models capture; concepts poorly represented by them will escape our analysis.
 509 Additionally, while our sample size of 10,000 images is substantial, it may not fully capture the long
 510 tail of rare concepts, concept co-occurrence, or other compositional statistics (see Appendix K).

511 USE OF LLMs

513 Large language models (LLMs) were used in parts of the implementation and during the writing of
 514 the paper (e.g., paragraph shortening, transition refinement, etc.). AI-powered search engines were
 515 also used to help identify some references.

517 REPRODUCIBILITY STATEMENT

519 To maximize reproducibility of our work, our code is fully open-sourced at <https://github.com/sae-diff/code-review>.
 520 and the web exploratory web app is available at <https://sae-diff.github.io/>. This repository will also include the Conceptual Blindspots data extracted for the
 521 models/datasets used in this paper. Furthermore, our experimental setup is clearly outlined in
 522 Appendix D.

524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 OpenAI. Sora: Creating video from text, 2024. URL <https://openai.com/sora/>.

543

544 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
545 *the IEEE/CVF international conference on computer vision*, pages 4195–4205, 2023.

546 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
547 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
548 *learning*, pages 8821–8831. PMLR, 2021.

549

550 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
551 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
552 text-to-image diffusion models with deep language understanding. *Advances in neural information*
553 *processing systems*, 35:36479–36494, 2022.

554 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
555 Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with
556 text-guided diffusion models. *arXiv:2112.10741*, 2021.

557

558 Chen Wang, Jiatao Gu, Xiaoxiao Long, Yuan Liu, and Lingjie Liu. Geco: Generative image-to-3d
559 within a second. *arXiv preprint arXiv:2405.20327*, 2024.

560

561 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
562 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

563

564 Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. Texture: Text-guided
565 texturing of 3d shapes. In *ACM SIGGRAPH 2023 conference proceedings*, pages 1–11, 2023.

566

567 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
568 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
569 *ence on computer vision and pattern recognition*, pages 10684–10695, 2022.

570

571 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
572 Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
573 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

574

575 Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
576 Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
577 planning with language models. *arXiv preprint arXiv:2207.05608*, 2022a.

578

579 Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
580 planners: Extracting actionable knowledge for embodied agents. In *International Conference on*
581 *Machine Learning*, pages 9118–9147. PMLR, 2022b.

582

583 Yun-Chun Chen, Selena Ling, Zhiqin Chen, Vladimir G Kim, Matheus Gadelha, and Alec Jacobson.
584 Text-guided controllable mesh refinement for interactive 3d modeling. In *SIGGRAPH Asia 2024*
585 *Conference Papers*, pages 1–11, 2024.

586

587 Lei Zhong, Yiming Xie, Varun Jampani, Deqing Sun, and Huaiyu Jiang. Smoodi: Stylized motion
588 diffusion model. In *European Conference on Computer Vision*, pages 405–421. Springer, 2024.

589

590 Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
591 Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
592 only transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
593 *recognition*, pages 19615–19625, 2024.

594

595 Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. *arXiv*
596 *preprint arXiv:2204.13807*, 2022.

597

598 Ángel Alexander Cabrera, Abraham J Druck, Jason I Hong, and Adam Perer. Discovering and
599 validating ai errors with crowdsourced failure reports. *Proceedings of the ACM on Human-
600 Computer Interaction*, 5(CSCW2):1–22, 2021.

594 Rebecca Heigl. Generative artificial intelligence in creative contexts: a systematic review and future
 595 research agenda. *Management Review Quarterly*, pages 1–38, 2025.
 596

597 Qihao Liu, Adam Kortylewski, Yutong Bai, Song Bai, and Alan Yuille. Discovering failure modes of
 598 text-guided diffusion models via adversarial search. *arXiv preprint arXiv:2306.00974*, 2023.

599 Colin Conwell, Rupert Tawiah-Quashie, and Tomer Ullman. Relations, negations, and numbers:
 600 Looking for logic in generative text-to-image models. *arXiv preprint arXiv:2411.17066*, 2024.
 601

602 Wenquan Lu, Yufei Xu, Jing Zhang, Chaoyue Wang, and Dacheng Tao. HandRefiner: Refining
 603 malformed hands in generated images by diffusion-based conditional inpainting. In *Proceedings*
 604 of the 32nd ACM International Conference on Multimedia, pages 7085–7093, 2024.

605 Srepreeth Narasimhaswamy, Uttaran Bhattacharya, Xiang Chen, Ishita Dasgupta, Saayan Mitra,
 606 and Minh Hoai. HanDiffuser: Text-to-image generation with realistic hand appearances. In *Proceedings*
 607 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
 608 2468–2479, 2024.

609 Qilong Zhangli, Jindong Jiang, Di Liu, Licheng Yu, Xiaoliang Dai, Ankit Ramchandani, Guan Pang,
 610 Dimitris N Metaxas, and Praveen Krishnan. Layout-agnostic scene text image synthesis with
 611 diffusion models. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 612 (CVPR), pages 7496–7506. IEEE Computer Society, 2024.

613

614 Forouzan Fallah, Maitreya Patel, Agneet Chatterjee, Vlad I Morariu, Chitta Baral, and Yezhou
 615 Yang. TextInVision: Text and prompt complexity driven visual text generation benchmark.
 616 *arXiv:2503.13730*, 2025.

617 Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang, and
 618 Zhen Zhuang. Text-to-image diffusion models cannot count, and prompt refinement cannot help.
 619 *arXiv preprint arXiv:2503.06884*, 2025.

620

621 Colin Conwell and Tomer Ullman. Testing relational understanding in text-guided image generation.
 622 *arXiv preprint arXiv:2208.00005*, 2022.

623 Mahzarin R Banaji and Anthony G Greenwald. *Blindspot: Hidden biases of good people*. Bantam,
 624 2016.

625

626 George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
 627 Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
 628 generative model evaluation metrics and their unfair treatment of diffusion models. *Advances in*
 629 *Neural Information Processing Systems*, 36:3732–3784, 2023.

630 Boheng Wang, Yunhuai Zhu, Liuqing Chen, Jingcheng Liu, Lingyun Sun, and Peter Childs. A study
 631 of the evaluation metrics for generative images containing combinational creativity. *AI EDAM*, 37:
 632 e11, 2023a.

633

634 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 635 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 636 *information processing systems*, 30, 2017.

637 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
 638 free evaluation metric for image captioning. In *Proceedings of the 2021 Conference on Empirical*
 639 *Methods in Natural Language Processing*, pages 7514–7528, 2021.

640

641 Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, and Bernhard Kainz.
 642 Image generation diversity issues and how to tame them. *arXiv:2411.16171*, 2024.

643 Jaehui Hwang, Junghyuk Lee, and Jong-Seok Lee. Anomaly score: Evaluating generative models
 644 and individual generated images based on complexity and vulnerability. In *Proceedings of the*
 645 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8754–8763, 2024.

646

647 Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
 648 models. *arXiv:1511.01844*, 2015.

648 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 649 fidelity and diversity metrics for generative models. In *International conference on machine*
 650 *learning*, pages 7176–7185. PMLR, 2020.

651
 652 Vitali Petsiuk, Alexander E Siemenn, Saisamrit Surbehera, Zad Chin, Keith Tysor, Gregory Hunter,
 653 Arvind Raghavan, Yann Hicke, Bryan A Plummer, Ori Kerret, et al. Human evaluation of text-to-
 654 image models on a multi-task benchmark. *arXiv:2211.12112*, 2022.

655 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 656 Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances*
 657 *in Neural Information Processing Systems*, 36:15903–15935, 2023.

658 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 659 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
 660 synthesis. 2023a.

661
 662 David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio
 663 Torralba. Seeing what a GAN cannot generate. In *Proceedings of the IEEE/CVF international*
 664 *conference on computer vision*, pages 4502–4511, 2019.

665 Julius Von Kugelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Scholkopf, Michel
 666 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 667 isolates content from style. *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

668
 669 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Scholkopf,
 670 and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
 671 gled representations. *Proceedings of the International Conference on Machine Learning (ICML)*,
 672 2019.

673 Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Bren-
 674 del. Contrastive learning inverts the data generating process. *Proceedings of the International*
 675 *Conference on Machine Learning (ICML)*, 2021.

676 Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Scholkopf. The
 677 incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. *Uncertainty*
 678 *in Artificial Intelligence*, 2020.

679 Luigi Gresele, Julius Von Kugelgen, Vincent Stimper, Bernhard Scholkopf, and Michel Besserve.
 680 Independent mechanism analysis, a new concept? *Advances in Neural Information Processing*
 681 *Systems (NeurIPS)*, 2021.

682
 683 Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
 684 multiplicatively: Exploring diffusion models on a synthetic task. *Advances in Neural Information*
 685 *Processing Systems*, 36:50173–50195, 2023.

686 Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka. Emergence
 687 of hidden capabilities: Exploring learning dynamics in concept space. *Advances in Neural*
 688 *Information Processing Systems*, 37:84698–84729, 2024.

689
 690 Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov,
 691 Ilya Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov.
 692 Kandinsky: An improved text-to-image synthesis with image prior and latent diffusion. *arXiv*
 693 *preprint arXiv:2310.03502*, 2023.

694 Stability AI. Stable Diffusion 2.0 Release, 2022. URL <https://stability.ai/news/stable-diffusion-v2-release>.

695
 696 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
 697 James Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for
 698 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023a.

699
 700 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders
 701 and nonlinear ica: A unifying framework. *Proceedings of the International Conference on Machine*
 702 *Learning (ICML)*, 2020.

702 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using auxiliary variables and
 703 generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence
 704 and Statistics*, pages 859–868. PMLR, 2019.

705 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 706 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 707 robust visual features without supervision. *ArXiv e-print*, 2023.

708 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 709 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
 710 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
 711 superposition. *Transformer Circuits Thread*, 2022.

712 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
 713 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
 714 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
 715 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
 716 Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
 717 learning. *Transformer Circuits Thread*, 2023.

718 Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Papadimitriou,
 719 Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal SAE: Adaptive
 720 and stable dictionary learning for concept extraction in large vision models. 2025.

721 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
 722 coders find highly interpretable features in language models. *ArXiv e-print*, 2023.

723 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 724 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *Proceedings of the
 725 International Conference on Learning Representations (ICLR)*, 2025.

726 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
 727 Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
 728 Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward
 729 Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling
 730 monosemanticity: Extracting interpretable features from claude 3 sonnet. *Transformer Circuits
 731 Thread*, 2024.

732 Senthoothan Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
 733 Kramar, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 734 autoencoders. *ArXiv e-print*, 2024.

735 Robert Kirk, Ishita Mediratta, Christoforos Nalpantis, Jelena Luketina, Eric Hambro, Edward
 736 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 737 diversity. *arXiv preprint arXiv:2310.06452*, 2023.

738 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 739 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 740 in Neural Information Processing Systems*, 36:53728–53741, 2023.

741 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 742 Visualising image classification models and saliency maps. *Proceedings of the International
 743 Conference on Learning Representations (ICLR)*, 2013.

744 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. *Proceed-
 745 ings of the International Conference on Machine Learning (ICML)*, 2017.

746 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 747 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
 748 tion. *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2017.

749 Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity
 750 checks for saliency maps. *Advances in Neural Information Processing Systems (NIPS)*, 2018.

756 Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
 757 *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2017.
 758

759 Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations help users
 760 predict model behavior? *Proceedings of the Annual Meeting of the Association for Computational*
 761 *Linguistics (ACL)*, 2020.

762 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
 763 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
 764 (tcav). *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.
 765

766 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
 767 Quantifying interpretability of deep visual representations. *Proceedings of the IEEE Conference*
 768 *on Computer Vision and Pattern Recognition (CVPR)*, 2017.

769 Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
 770 Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
 771 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023a.

772 Matthew Kowal, Achal Dave, Rares Ambrus, Adrien Gaidon, Konstantinos G Derpanis, and Pavel
 773 Tokmakov. Understanding video transformers via universal concept discovery. *Proceedings of the*
 774 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
 775

776 Thomas Fel, Victor Boutin, Mazda Moayeri, Remi Cadene, Louis Bethune, Mathieu Chalvidal,
 777 and Thomas Serre. A holistic approach to unifying automatic concept extraction and concept
 778 importance estimation. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023b.

779 David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, and Joseph Bloom. A is for
 780 absorption: Studying feature splitting and absorption in sparse autoencoders. *ArXiv e-print*, 2024.
 781

782 Martin Wattenberg and Fernanda B Viegas. Relational composition in neural networks: A survey and
 783 call to action. *ArXiv e-print*, 2024.

784 Usha Bhalla, Suraj Srinivas, Asma Ghandeharioun, and Himabindu Lakkaraju. Towards unifying
 785 interpretability and control: Evaluation via intervention. *ArXiv e-print*, 2024.
 786

787 Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
 788 with matryoshka sparse autoencoders. *arXiv preprint arXiv:2503.17547*, 2025.

789 Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting CLIP with hierarchical
 790 sparse autoencoders. *arXiv:2502.20578*, 2025.
 791

792 Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. *ArXiv e-print*, 2024.

793 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *Proceedings of the International*
 794 *Conference on Learning Representations (ICLR)*, 2014.
 795

796 Arpita Chowdhury, Dipanjyoti Paul, Zheda Mai, Jianyang Gu, Ziheng Zhang, Kazi Sajeed Mehrab,
 797 Elizabeth G Campolongo, Daniel Rubenstein, Charles V Stewart, Anuj Karpatne, et al. Prompt-
 798 CAM: A simpler interpretable transformer for fine-grained analysis. *arXiv:2501.09333*, 2025.

799 David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T Freeman,
 800 and Antonio Torralba. GAN dissection: Visualizing and understanding generative adversarial
 801 networks. 2018.

802 Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Kumar, Pontus
 803 Stenetorp, Jimmy Lin, and Ferhan Ture. What the DAAM: Interpreting stable diffusion using cross
 804 attention. 2022.

805 Ali Borji. Qualitative failures of image generation models and their application in detecting deepfakes.
 806 *Image and Vision Computing*, 137:104771, 2023.
 807

808 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 809 conditional image generation with CLIP latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

810 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 811 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 812 *arXiv:2011.13456*, 2020a.

813

814 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

815 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 816 In *International conference on machine learning*, pages 8162–8171. PMLR, 2021.

817

818 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 819 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 820 2022.

821

822 Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, and Mingyu Ding.
 823 VDT: General-purpose video diffusion transformers via mask modeling. *arXiv preprint*
arXiv:2305.13311, 2023.

824

825 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. ModelScope
 826 text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023b.

827

828 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
 829 Dahua Lin, and Bo Dai. AnimateDiff: Animate your personalized text-to-image diffusion models
 830 without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

831

832 Shanchuan Lin and Xiao Yang. AnimateDiff-Lightning: Cross-model diffusion distillation. *arXiv*
preprint arXiv:2403.12706, 2024.

833

834 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. CogVideo: Large-scale
 835 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

836

837 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo
 838 Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. VideoCrafter1: Open diffusion models for
 839 high-quality video generation. *arXiv preprint arXiv:2310.19512*, 2023b.

840

841 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 842 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 843 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference on*
844 Computer Vision, pages 7623–7633, 2023b.

845

846 Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
 847 Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-resolution text-to-3d content
 848 creation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 849 pages 300–309, 2023.

850

851 Heewoo Jun and Alex Nichol. Shap-E: Generating conditional 3d implicit functions. *arXiv preprint*
arXiv:2305.02463, 2023.

852

853 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
 854 chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF*
855 conference on computer vision and pattern recognition, pages 12619–12629, 2023c.

856

857 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
858 neural information processing systems, 33:6840–6851, 2020.

859

860 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
861 preprint arXiv:2010.02502, 2020b.

862

863 Stability AI. Introducing Stable Diffusion 3, 2024. URL <https://stability.ai/news/stable-diffusion-3>.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

864 Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
 865 Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. StyleDrop: Text-to-image generation in any
 866 style. *arXiv preprint arXiv:2306.00983*, 2023.

867 Zhihong Pan, Xin Zhou, and Hao Tian. Arbitrary style guidance for enhanced diffusion-based
 868 text-to-image generation. In *Proceedings of the IEEE/CVF winter conference on applications of*
 869 *computer vision*, pages 4461–4471, 2023.

870 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 871 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 872 pages 3836–3847, 2023.

873 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 874 DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceed-
 875 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 22500–22510,
 876 2023.

877 Darian Tomavsevic, Fadi Boutros, Chenhao Lin, Naser Damer, Vitomir Struc, and Peter Peer. Id-
 878 booth: Identity-consistent face generation with diffusion models. *arXiv preprint arXiv:2504.07392*,
 879 2025.

880 Stability AI. DeepFloyd IF: A Powerful Open-Source Text-to-Image Model, 2023. URL <https://stability.ai/news/deepfloyd-if-text-to-image-model>.

881 Black Forest Labs. Announcing Black Forest Labs, 2024. URL <https://blackforestlabs.ai/announcing-black-forest-labs/>.

882 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 883 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 884 image is worth 16x16 words: Transformers for image recognition at scale. *Proceedings of the
 885 International Conference on Learning Representations (ICLR)*, 2020.

886 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 887 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
 888 rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.

889 Joel Hestness, Sharan Narang, Newshe Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 890 Md Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 891 empirically. *arXiv preprint arXiv:1712.00409*, 2017.

892 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 893 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. LAION-5B:
 894 An open large-scale dataset for training next generation image-text models. *Advances in neural
 895 information processing systems*, 35:25278–25294, 2022.

896 Common Crawl. Common crawl corpus. <https://commoncrawl.org>, 2017.

897 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
 898 COYO-700M: Image-text pair dataset, 2022.

899 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual Captions: A cleaned,
 900 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of ACL*, 2018.

901 Abeba Birhane, Sanghyun Han, Vishnu Boddeti, Sasha Luccioni, et al. Into the LAION’s den:
 902 Investigating hate in multimodal datasets. *Advances in neural information processing systems*, 36:
 903 21268–21284, 2023.

904 Abeba Birhane, Sepehr Dehdashtian, Vinay Prabhu, and Vishnu Boddeti. The dark side of dataset
 905 scaling: Evaluating racial classification in multimodal models. In *Proceedings of the 2024 ACM
 906 Conference on Fairness, Accountability, and Transparency*, pages 1229–1244, 2024.

907 Preethi Seshadri, Sameer Singh, and Yanai Elazar. The bias amplification paradox in text-to-image
 908 generation. *arXiv preprint arXiv:2308.00755*, 2023.

918 Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: Misogyny,
 919 pornography, and malignant stereotypes. *arXiv preprint arXiv:2110.01963*, 2021.
 920

921 David Thiel. Identifying and eliminating CSAM in generative ml training data and models. *Stanford*
 922 *Internet Observatory, Cyber Policy Center, December*, 23:3, 2023.

923 Ali Shirali and Moritz Hardt. What makes ImageNet look unlike LAION. *arXiv preprint*
 924 *arXiv:2306.15769*, 2023.

925

926 Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt. Improving
 927 multimodal datasets with image captioning. *Advances in Neural Information Processing Systems*,
 928 36:22047–22069, 2023.

929 Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
 930 a sparse code for natural images. *Nature*, 1996.

931

932 Michael Elad. Sparse and redundant representations: from theory to applications in signal and image
 933 processing. 2010.

934

935 Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing.
 936 *Foundations and Trends in Computer Graphics and Vision*, 2014.

937

938 David L Donoho. Compressed sensing. *IEEE Transactions on Information Theory*, 2006.

939

940 Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
 941 reconstruction from highly incomplete frequency information. *IEEE Transactions on Information*
 942 *Theory*, 2006.

943

944 Stuart Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 1982.

945

946 Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factoriza-
 947 tion. *Nature*, 1999.

948

949 Nicolas Gillis. Nonnegative matrix factorization. 2020.

950

951 Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. *Journal of*
 952 *Computational and Graphical Statistics*, 2006.

953

954 Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcom-
 955 plete dictionaries for sparse representation. *IEEE Transactions on Signal Processing*, 2006.

956

957 Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
 958 coding. *Proceedings of the International Conference on Machine Learning (ICML)*, 2009.

959

960 Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal component
 961 analysis. *International Conference on Artificial Intelligence and Statistics*, 2010.

962

963 Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. *The*
 964 *Journal of Machine Learning Research (JMLR)*, 2012.

965

966 Jean Barbier and Nicolas Macris. Statistical limits of dictionary learning: random matrix theory and
 967 the spectral replica method. *Physical Review E*, 2022.

968

969 Vardan Petyan, Yaniv Romano, and Michael Elad. Convolutional dictionary learning via local
 970 processing. *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2017.

971

972 Alex Tamkin, Mohammad Taufeeque, and Noah D Goodman. Codebook features: Sparse and discrete
 973 interpretability for neural networks. *ArXiv e-print*, 2023.

974

975 Berk Tinaz, Zalan Fabian, and Mahdi Soltanolkotabi. Emergence and evolution of interpretable
 976 concepts in diffusion models. *arXiv:2504.15473*, 2025.

977

978 Viacheslav Surkov, Chris Wendler, Mikhail Terekhov, Justin Deschenaux, Robert West, and Caglar
 979 Gulcehre. Unpacking SDXL turbo: Interpreting text-to-image models with sparse autoencoders.
 980 *ArXiv e-print*, 2024.

972 Akshay Kulkarni, Ge Yan, Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Interpretable
 973 generative models through post-hoc concept bottlenecks. *arXiv preprint arXiv:2503.19377*, 2025.
 974

975 Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. *arXiv
 976 preprint arXiv:2205.15480*, 2022.

977 Can Demircan, Tankred Saanum, Akshay K Jagadish, Marcel Binz, and Eric Schulz. Sparse
 978 autoencoders reveal temporal difference learning in large language models. *arXiv preprint
 979 arXiv:2410.01280*, 2024.

980 Matthew Lyle Olson, Musashi Hinck, Neale Ratzlaff, Changbai Li, Phillip Howard, Vasudev Lal, and
 981 Shao-Yen Tseng. Analyzing hierarchical structure in vision models with sparse autoencoders. In
 982 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 4835–4839, 2025.
 983

984 Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In *Proceedings of the
 985 27th international conference on international conference on machine learning*, pages 399–406,
 986 2010.

987 Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
 988 unfolded ista and its practical weights and thresholds. *Advances in Neural Information Processing
 989 Systems*, 31, 2018.

990 Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learning step sizes for
 991 unfolded sparse coding. *Advances in Neural Information Processing Systems*, 32, 2019.

992 Bahareh Tolooshams and Demba Ba. Stable and interpretable unrolled dictionary learning. *arXiv
 993 preprint arXiv:2106.00058*, 2021.

994 Benoît Malézieux, Thomas Moreau, and Matthieu Kowalski. Understanding approximate and unrolled
 995 dictionary learning for pattern recovery. *arXiv preprint arXiv:2106.06338*, 2021.

996 Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for
 997 sparse coding. In *Conference on learning theory*, pages 113–149. PMLR, 2015.

998 1000

1001 Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting assumptions:
 1002 The duality between sparse autoencoders and concept geometry. *arXiv preprint arXiv:2503.01822*,
 1003 2025.

1004 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 1005 precision and recall metric for assessing generative models. *Advances in neural information
 1006 processing systems*, 32, 2019.

1007

1008 Jingyi Xu, Hieu Le, and Dimitris Samaras. Assessing sample quality via the latent space of generative
 1009 models. In *European Conference on Computer Vision*, pages 449–464. Springer, 2024.

1010 Iro Laina, Yuki M Asano, and Andrea Vedaldi. Measuring the interpretability of unsupervised
 1011 representations via quantized reverse probing. *arXiv:2209.03268*, 2022.

1012

1013 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 1014 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 1015 models from natural language supervision. In *International conference on machine learning*, pages
 1016 8748–8763. PMLR, 2021.

1017 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 1018 Percy Liang. Concept bottleneck models. *Proceedings of the International Conference on Machine
 1019 Learning (ICML)*, 2020.

1020

1021 Chris Hamblin, Thomas Fel, Srijani Saha, Talia Konkle, and George Alvarez. Feature accentuation:
 1022 Revealing ‘what’ features respond to in natural images. *ArXiv e-print*, 2024.

1023

1024 Colin McDiarmid et al. On the method of bounded differences. *Surveys in combinatorics*, 141(1):
 1025 148–188, 1989.

1026	APPENDIX CONTENTS	
1027		
1028		
1029	A Related Work	22
1030	A.1 Explainability in Vision	22
1031	A.2 Generative Image Models	22
1032	A.3 Datasets for Generative Image Models	22
1033	A.4 Concept Discovery and Sparse Coding in Generative Image Models	23
1034		
1035		
1036	B Comparison with Existing Approaches	24
1037		
1038		
1039	C Exploratory Tool	25
1040		
1041	D Experimental Setup	26
1042	D.1 Observation Space	26
1043	D.2 Synthesized Images	26
1044	D.3 ● Distribution Level Analysis	26
1045	D.4 ● Datapoint Level Analysis	27
1046	D.5 ● Co-occurrence Analysis	27
1047		
1048		
1049		
1050		
1051	E Computational Resources	28
1052		
1053	F Custom RA-SAE	29
1054		
1055	F.1 Training Details	29
1056	F.2 Autointerpretability	30
1057	F.3 Examples of Learned Concepts	32
1058		
1059		
1060	G Additional Results: Qualitative Examples of Blindspots	36
1061	G.1 Model-Specific Blindspots	37
1062	G.2 Stress Testing	39
1063	G.2.1 Bird Feeder Blindspot in Kandinsky	39
1064	G.2.2 Glossy DVD Disc Blindspot in SD 1.5	40
1065		
1066		
1067		
1068	H Additional Results: Higher-order Blindspots with Compositional Discrepancy	41
1069		
1070	I Additional Results: Caption Noise in High Divergence	43
1071	I.1 Methodology	43
1072	I.2 Results	43
1073	I.3 Analysis	43
1074		
1075		
1076	J Additional Results: SAE Error Cases	44
1077	J.1 Methodology	44
1078	J.2 Results	44
1079		

1080	J.3 Analysis	45
1081	J.3.1 Error Cases: Natural Images	47
1082	J.3.2 Error Cases: AI-Generated Images	47
1083		
1084		
1085	K Concentration bounds for δ	48
1086		
1087	L Monotonicity and Calibration-Free Interpretation of δ	49
1088		
1089	M Stability of FID Under SAE Embeddings	50
1090		
1091	N Additional Examples of Synthesized Images	52
1092		
1093		
1094		
1095		
1096		
1097		
1098		
1099		
1100		
1101		
1102		
1103		
1104		
1105		
1106		
1107		
1108		
1109		
1110		
1111		
1112		
1113		
1114		
1115		
1116		
1117		
1118		
1119		
1120		
1121		
1122		
1123		
1124		
1125		
1126		
1127		
1128		
1129		
1130		
1131		
1132		
1133		

1134 **A RELATED WORK**
11351136 **A.1 EXPLAINABILITY IN VISION**
1137

1138 Early work in explainable AI, including computer vision, focused on methods for attribution of
1139 influential input regions Simonyan et al. (2013); Sundararajan et al. (2017); Selvaraju et al. (2017).
1140 However, these methods offered limited semantic information about learned representations and often
1141 produced incorrect explanations Adebayo et al. (2018); Ghorbani et al. (2017); Hase and Bansal
1142 (2020). To address these issues, concept-based interpretability Kim et al. (2018) emerged to identify
1143 semantically meaningful directions in neural networks, revealing not just where they look but what
1144 concepts and structures they employ Bau et al. (2017); Fel et al. (2023a); Kowal et al. (2024).

1145 Recent work demonstrates that popular concept-based interpretability methods—ACE Ghorbani et al.
1146 (2017), CRAFT Fel et al. (2023a), and Sparse Autoencoders (SAEs) Cunningham et al. (2023); Bricken
1147 et al. (2023)—essentially address the same dictionary learning task under different constraints Fel et al.
1148 (2023b). Out of these approaches, sparse autoencoders (SAEs) have emerged as particularly scalable
1149 for concept-based interpretability. While recent studies reveal some limitations of the original SAEs—
1150 including overly specific features Chanin et al. (2024), compositionality challenges Wattenberg and
1151 Viegas (2024), and limited intervention effects Bhalla et al. (2024)—improved SAE versions have
1152 emerged, including archetypal SAE (RA-SAE) Fel et al. (2025), hierarchical approaches Bussmann
1153 et al. (2025); Zaigrajew et al. (2025), and variants addressing specific architectural choices Bussmann
1154 et al. (2024); Makhzani and Frey (2014).

1155 Beyond SAEs, other interpretability methods include prompt-based probing Chowdhury et al. (2025),
1156 attention map or activation visualizations Bau et al. (2018); Tang et al. (2022), and dataset-level
1157 statistics Dombrowski et al. (2024); Hwang et al. (2024) (e.g., diversity or distribution coverage
1158 metrics) offer only partial insights to answer these questions. Crucially, they lack granularity, focusing
1159 on full images or prompts instead of fine-grained features and concepts Theis et al. (2015); Naeem
1160 et al. (2020). Furthermore, they depend on subjective interpretation and do not distinguish between
1161 various failure models Borji (2023). The existing methods and metrics are hence inadequate in
1162 systematically identifying feature- and concept-level weaknesses of generative image models Stein
1163 et al. (2023).

1164 **A.2 GENERATIVE IMAGE MODELS**
1165

1166 Diffusion-based methods have become dominant across various modalities in generative vision
1167 modeling, including image Saharia et al. (2022); Ramesh et al. (2022); Song et al. (2020a; 2023);
1168 Nichol and Dhariwal (2021), video Ho et al. (2022); Lu et al. (2023); Wang et al. (2023b); Guo
1169 et al. (2023); Lin and Yang (2024); Hong et al. (2022); Chen et al. (2023b); Wu et al. (2023b), and
1170 3D Poole et al. (2022); Lin et al. (2023); Jun and Nichol (2023); Wang et al. (2023c). In the domain
1171 of image generation, this can be traced back to denoising diffusion probabilistic models (DDPMs) Ho
1172 et al. (2020), which were later extended to non-Markov diffusion processes with denoising diffusion
1173 implicit models (DDIMs) Song et al. (2020b).

1174 The Stable Diffusion (SD) Rombach et al. (2022) model family made DDPMs highly accessible
1175 both in the research and open-source communities. The original SD was followed by several
1176 subsequent versions, including SD 2 Stability AI (2022), SD 3 Stability AI (2024), SD XL Podell
1177 et al. (2023). Many modifications and extensions of the SD architecture have emerged, enabling
1178 additional constraints for the diffusion process (e.g., style Sohn et al. (2023); Pan et al. (2023),
1179 pose Zhang et al. (2023), and identity Ruiz et al. (2023); Tomavsevic et al. (2025)) as well as different
1180 input modalities, such as image-to-image generation. Different Latent Diffusion Models built on top
1181 of SD—including Kandinsky Razzhigaev et al. (2023), PixArt Chen et al. (2023a), DeepFloyd Saharia
1182 et al. (2022); Stability AI (2023), and FLUX Black Forest Labs (2024)—have also emerged.

1183 **A.3 DATASETS FOR GENERATIVE IMAGE MODELS**
1184

1185 The recent success of generative vision models is largely attributed to the abundance of computational
1186 resources and large-scale internet datasets Dosovitskiy et al. (2020); Yu et al. (2022); Hestness et al.
1187 (2017). Specifically, LAION-5B Schuhmann et al. (2022) has played a key role in the training of
1188 open-source text-to-image models, including SD and its derivatives. This dataset, scraped from

1188 Common Crawl Common Crawl (2017), contains over 5B image-caption pairs, 2.3B of which are
 1189 in English. Other prominent datasets include COYO-700M Byeon et al. (2022) and Conceptual
 1190 Captions Sharma et al. (2018), with 700M and 3M image-caption pairs, respectively.

1191 As LAION-5B gained popularity, concerns grew over its biases Birhane et al. (2023; 2024); Seshadri
 1192 et al. (2023); Birhane et al. (2021); Thiel (2023). Despite filtering attempts, harmful content per-
 1193 sisted Birhane et al. (2023; 2024); Seshadri et al. (2023), including NSFW material Birhane et al.
 1194 (2021) and hundreds of CSAM instances Thiel (2023), prompting its temporary removal from official
 1195 channels. The dataset also suffers from low-quality images Shirali and Hardt (2023) and internet-style
 1196 captions (e.g., product descriptions) that misalign with how users prompt trained models Nguyen
 1197 et al. (2023).

1198

1199 A.4 CONCEPT DISCOVERY AND SPARSE CODING IN GENERATIVE IMAGE MODELS

1200

1201 Dictionary learning seeks to find sparse representations of input data, where each sample can be recon-
 1202 structed using a linear combination of few dictionary atoms Olshausen and Field (1996); Elad (2010);
 1203 Mairal et al. (2014). Built upon compressed sensing theory Donoho (2006); Candès et al. (2006),
 1204 the field evolved from early vector quantization methods Lloyd (1982) to sophisticated approaches
 1205 including Non-negative Matrix Factorization Lee and Seung (1999); Gillis (2020), Sparse PCA Zou
 1206 et al. (2006), and K-SVD Aharon et al. (2006). Recent advances include online methods Mairal et al.
 1207 (2009), structured sparsity Jenatton et al. (2010), and theoretical guarantees Spielman et al. (2012);
 1208 Barbier and Macris (2022), alongside growing connections to deep learning Popyan et al. (2017);
 1209 Tamkin et al. (2023).

1210

1211 Advances in sparse coding have also been leveraged to study the emergence of high-level concepts
 1212 inside diffusion models Tinaz et al. (2025); Surkov et al. (2024). Prior to diffusion models, concept-
 1213 grounded interpretability has been deployed to earlier generative architectures through concept-
 1214 bottleneck models, which require human intervention at training time Kulkarni et al. (2025), and
 1215 post-hoc detectors that retrofit concept supervision Yuksekgonul et al. (2022). However, both of
 1216 these approaches require human-defined concepts and hence inherently miss broader trends that the
 1217 user does not explicitly register. Recent work has also explored SAE applications to understanding
 1218 temporal dynamics in language models Demircan et al. (2024), hierarchical structure in vision
 1219 models Olson et al. (2025), and theoretical connections between autoencoders and sparse coding
 1220 through unrolled optimization approaches Gregor and LeCun (2010); Chen et al. (2018); Ablin et al.
 1221 (2019); Tolooshams and Ba (2021); Malézieux et al. (2021); Arora et al. (2015); Hindupur et al.
 1222 (2025).

1223

1224 Aggregate metrics (e.g., precision, recall, density, and coverage Kynkänniemi et al. (2019); Naeem
 1225 et al. (2020)) and latent density scores, which predict sample quality based on the model’s latent
 1226 space Xu et al. (2024), have emerged to evaluate generative image model capabilities. While these
 1227 effectively uncover distributional gaps, they offer little insight into specific concepts that are under-
 1228 or over-represented.

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242 B COMPARISON WITH EXISTING APPROACHES

1244 Table 1 summarizes the existing approaches for evaluating consistency and semantic coverage of
 1245 generative image models, and compares them to our method.

1247 **Fréchet Inception Distance (FID), Heusel et al. (2017).** This metric embeds images using
 1248 Inception-v3 and calculates the Wasserstein-2 distance between natural and generated distribu-
 1249 tions. While it is regularly used to encode the overall quality of a model, it aggregates many potential
 1250 failure modes into a single scalar. It is hence incapable of surfacing specific conceptual blindspots.

1251 **CLIPScore, Radford et al. (2021).** CLIPScore computes the cosine similarity between the em-
 1252 beddings of a text prompt and a generated image to assess their consistency. This method is bound
 1253 by the prompt itself; it cannot detect blindspots for concepts that are not explicitly included in the
 1254 evaluation prompt set.

1256 **Improved Precision and Recall, Kynkänniemi et al. (2019).** This evaluation framework esti-
 1257 mates the manifold of real and generated data using k-Nearest Neighbor (k-NN) radii to separately
 1258 quantify precision (fidelity) and recall (coverage). While a drop in recall implies the existence of
 1259 distributional blindspots (mode collapse), the metric cannot identify *which* concepts are missing.

1260 **GAN Dissection, Bau et al. (2018).** This method correlates the activation maps with semantic
 1261 segmentation masks to identify units responsible for specific concepts. Although it offers high granu-
 1262 larity, it is computationally intensive and limited to the fixed vocabulary of the external segmentation
 1263 network used for supervision.

1265 **Adversarial Search (SAGE), Liu et al. (2023).** SAGE treats the generative image model as an
 1266 adversary and optimizes over text tokens to discover prompts that maximize divergence from a surro-
 1267 gate classifier. While effective at identifying specific error cases, it lacks a structured representation
 1268 of the full conceptual space, and the iterative optimization makes it prohibitively expensive.

1269 **Concept Bottleneck Models (CBMs), Koh et al. (2020).** These architectures explicitly force the
 1270 neural network to compress information into a layer where neurons correspond to pre-defined human
 1271 concepts. This requires training models from scratch with concept-labeled data, making it unsuitable
 1272 for the post-hoc evaluation of pre-trained foundation models.

1274 **Table 1: Comparison of Approaches to Identifying Conceptual Blindspots in Image Models.**

1276 Method	1277 Specificity	1278 Unsupervised	1279 Scalability	1280 Exaggeration
1281 FID	✗	✓	~	✗
1282 Precision & Recall	✗	✓	~	✗
1283 CLIPScore	✗	✗	~	✗
1284 GAN Dissection	✓	✗	✗	✓
1285 SAGE	✓	✗	✗	✗
1286 CBMs	✓	✗	✗	✗
1287 Human Evaluation	✓	✓	✗	✓
1288 Our Method	✓	✓	✓	✓

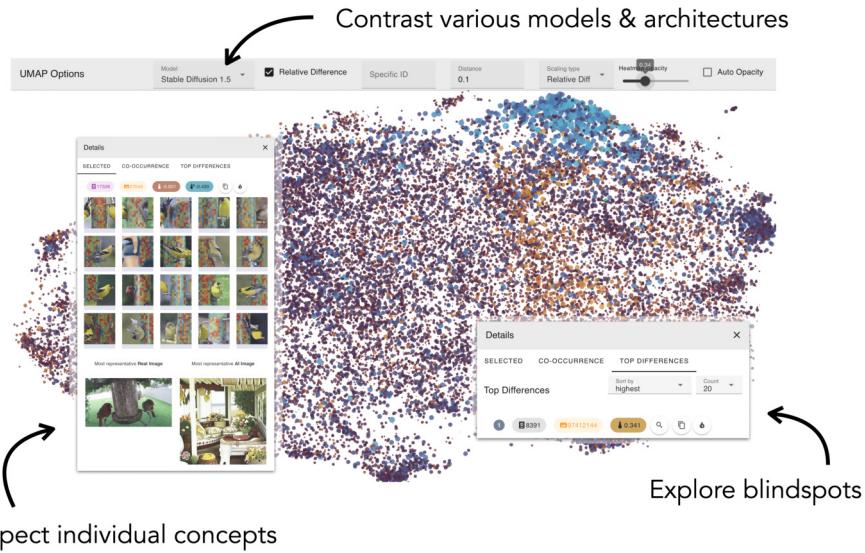
1286 **Evaluation Criteria**

- 1288 **Specificity.** The method supports a notion of discrete concepts (these may be defined in text,
 1289 via examples, a dictionary or otherwise; there may also exist a taxonomy/hierarchy).
- 1290 **Unsupervised.** For a specific concept to be deemed as a blindspot, the method does not
 1291 require for the user to explicitly define or describe it.
- 1292 **Scalability.** The complete conceptual space of the evaluated model, as conceptualized by
 1293 the framework, can be feasibly searched (given a conceptual space of $\geq 1,000$ concepts).
- 1294 **Exaggeration.** The method can detect *both* suppression and exaggeration.

1296 **C EXPLORATORY TOOL**
1297

1298 Shown in Figure 12 is an overview of the exploratory tool developed alongside this project to facilitate
1299 inspection and comparison of concept-level energy differences. The tool is a web-based interface
1300 built around a UMAP projection of concept representations, enabling visualization and comparison of
1301 concept-level energy differences. It is publicly available at <https://sae-diff.github.io/>, along
1302 with pre-computed energy difference data for the four models evaluated in this work (SD 1.5, SD 2.1,
1303 PixArt, and Kandinsky). All subsequent analyses in this paper are derived from insights enabled by
1304 this tool. Its primary functionalities, which support these analyses, include:

1305 • **Contrast different models and architectures.** For each evaluated model, the tool provides
1306 a UMAP visualization spanning all 32,000 concepts from the RA-SAE. Each scatter point
1307 represents an individual concept, color-coded by its energy difference.
1308 • **Inspect concepts.** Each concept has a card with key statistics, representative real and
1309 generated images (x, x'), and visualized co-occurrence patterns.
1310 • **Explore blindspots.** Beyond the UMAP and per-concept views, the tool features global
1311 rankings of suppressed and exaggerated blindspots, helping to highlight the most notable
1312 conceptual blindspots.



1313 **Figure 12: Overview of the Exploratory Tool.** The web interface displays a UMAP projection for
1314 each evaluated model, where each dot represents a concept, color-coded by its energy difference.
1315 When a concept is selected, a detail panel presents illustrative images, statistics, and the most
1316 representative natural and generated images x and x' . An ordered list of the concept's co-occurrences
1317 is shown alongside global rankings of blindspots.
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351

D EXPERIMENTAL SETUP

1352
1353
1354

This section details the experimental setup for our analysis of four popular generative image models: SD 1.5/2.1, Kandinsky, and PixArt, all trained on LAION-5B or its subsets/derivatives. The code is available at <https://github.com/sae-diff/code-review>.

1355

1356
1357

D.1 OBSERVATION SPACE

1358
1359
1360
1361
1362

The observation space is constructed by sampling 10,000 image-text pairs from the LAION-5B dataset Schuhmann et al. (2022), which serves as our domain of natural images. Due to concerns with CSAM and other unsafe content in the dataset, the original data release is no longer available. A substitute release of a subset of this dataset with additional filtering of the unsafe content, available at <https://huggingface.co/datasets/laion/relaion2B-en-research-safe>, is used.

1363
1364
1365
1366
1367
1368
1369

The sampling procedure consists of: (1) loading the full LAION dataset using the Hugging Face datasets library, (2) performing validation to ensure proper URL structure and resource availability via HTTP HEAD requests, and (3) employing random sampling with replacement until reaching the target count of 10,000 valid samples. This approach, yielding D_G with (x, t) tuples, ensures our observation space contains accessible image-text pairs for comparative analysis of a dataset of image URLs whose large portion has been made unavailable since original release. Additional examples of synthesized images are shown in Appendix N.

1370
1371

D.2 SYNTHESIZED IMAGES

1372
1373
1374

For each of the four evaluated models, we generate a synthetic dataset D_{g_θ} to have a one-to-one correspondence with D_G , yielding triplets (x, x', t) . Specifically, given the 10,000 image-text pairs (x, t) from D_G , we use t to synthesize counterpart images x' using each generative model g_θ .

1375
1376
1377
1378
1379

The synthesis process follows the standard text-to-image generation pipeline for each model architecture, implemented using the Hugging Face diffusers library, where the models are loaded at mixed precision (fp16). All synthetic images are generated at 512×512 pixel resolution with default parameters.

1380
1381
1382
1383

Stable Diffusion 1.5. The checkpoint from <https://huggingface.co/benjamin-paine/stable-diffusion-v1-5> (which is a mirror of the deprecated <https://huggingface.co/ruvnavyml/stable-diffusion-v1-5>) is used. Inference is performed using 50 inference steps, with the guidance scale fixed at 7.5.

1384

1385
1386
1387

Stable Diffusion 1.5 + DPO. The DPO variant of SD 1.5 (used in the analysis in Sec. 4.5) follows the baseline SD 1.5 implementation, but replaces the UNet component with a DPO-trained version from <https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1>.

1388
1389
1390
1391

Stable Diffusion 2.1. The checkpoint from <https://huggingface.co/stabilityai/stable-diffusion-2-1> is used. Inference is performed using 50 inference steps, with the guidance scale fixed at 7.5.

1392
1393
1394
1395

Kandinsky. The checkpoint from <https://huggingface.co/kandinsky-community/kandinsky-2-1> is used. Inference is performed using 100 inference steps, with the guidance scale fixed at 4.0.

1396
1397
1398
1399

PixArt. The checkpoint from <https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS> is used. Inference is performed using 50 inference steps, with the guidance scale fixed at 7.5.

1400
1401

D.3 ● DISTRIBUTION LEVEL ANALYSIS

1402
1403

Section 4.1. We compute energy differences $\delta(\cdot)$ across all 32,000 concepts for each evaluated model. The sigmoid transformation with temperature $T = 0.8$ is applied during normalization. The resulting values are visualized as log-scale density histograms with 100 bins spanning $[0, 1]$.

1404
 1405
 1406
 1407
 1408
 1409
 1410
Section 4.2. We embed the complete set of 32,000 concepts into two-dimensional space using
 1405 UMAP applied to the sparse concept codes. Each point in this UMAP represents an individual con-
 1406 cept, colored according to its energy difference $\delta(\cdot)$, emphasizing both suppressed and exag-
 1407 gerated blindspots. To quantify cross-model consistency, we compute pairwise Pearson correlation coeffi-
 1408 cients between $\delta(\cdot)$ vectors of all model pairs, producing both scatter plots and correlation matrices.
 1409 This analysis reveals whether blindspots cluster in conceptual space and identifies model-specific
 1410 versus universal patterns of conceptual blindspots.

1411
 1412
 1413
 1414
 1415
 1416
Section 4.3. We rank all 32,000 concepts by their energy difference $\delta(\cdot)$, and manually examine the
 1417 extrema (both suppressed and exaggerated blindspots). For suppressed blindspots, we select concepts
 1418 with $\delta(\cdot) < 0.1$; for exaggerated blindspots, we choose those with $\delta(\cdot) < 0.9$. Presented examples
 1419 are manually annotated with textual descriptions of the respective concepts through inspection of
 1420 their most activating images and spatial attention patterns. We outline ongoing efforts to automate
 1421 this concept interpretation in Appendix F.2.

1422
 1423
Section 4.5. We compare 1.5 with and without DPO in the following fashion: for each image
 1424 pair (x, x') , we compute the L2 norm of the difference between their concept energy vectors
 1425 $\|\xi(x') - \xi(x)\|_2$. We apply a sigmoid transformation with temperature $T = 0.8$ to the element-wise
 1426 differences before taking their mean. This yields datapoint-wise energy differences that quantify how
 1427 much each generated image deviates from its natural counterpart in concept space. Finally, these
 1428 differences are visualized as overlapping histograms, contrasting both model variants.

1429
 1430
Section 4.6. For each concept c_k , its empirical frequency $\|Z_{:,i}\|_0$ (the count of non-zero activations
 1431 across the natural dataset) is counted. A sigmoid normalization with temperature $T = 0.4$ is then
 1432 applied to the energy differences $\delta(\cdot)$. The analysis is visualized using scatter plots where the x-axis is
 1433 the empirical concept frequency and the y-axis is the sigmoid-transformed energy difference. The
 1434 point sizes are proportional to activation frequency and point colors are proportional to the magnitude
 1435 of energy differences.

1436 D.4 • DATAPoint LEVEL ANALYSIS

1437
 1438
Section 4.4. For each image pair (x, x') , we compute the L2 norm of the difference between their
 1439 concept energy vectors $\|\xi(x') - \xi(x)\|_2$. This yields a scalar measure of conceptual divergence for
 1440 each image pair. The samples are ranked by their energy differences. Minimal divergence indicate
 1441 potential memorization artifacts and maximal divergence point to significant conceptual failures. This
 1442 analysis enables qualitative inspection of specific failure modes.

1443 D.5 • CO-OCCURRENCE ANALYSIS

1444
 1445
Appendix H For both the natural and synthesized data D_G and D_{g_θ} , concept co-occurrence
 1446 patterns are analyzed through the co-activation matrix $Z^T Z$, which holds pair-wise correlations
 1447 in concept usage. Spectral analysis is performed to examine the dominant conceptual directions
 1448 using eigendecomposition. The alignment between natural and synthetic co-occurrence structures is
 1449 assessed using cosine similarity heatmaps between the top-100 eigenvectors of each co-occurrence
 1450 matrix. These 100×100 similarity matrices are visualized as square heatmaps where perfect diagonal
 1451 alignment would indicate identical principal concept axes, while off-diagonal patterns reveal would
 1452 revolve rotations and mismatches in compositional geometry.

1453
 1454
 1455
 1456
 1457

1458 E COMPUTATIONAL RESOURCES
14591460 This section summarizes the GPU resources used for training and experiments in support of this
1461 paper. In total, we used approximately 202 GPU-hours on NVIDIA H100s and H200s.1462
1463 **RA-SAE.** Trained for approximately 24 GPU-hours on three NVIDIA H100s.1464
1465 **Synthesized Images.** Generating the full D_{g_θ} (see Appendix D) took roughly 5 hours per generator
1466 when distributed across four NVIDIA H200 GPUs. With five generators, this totaled approximately
1467 100 GPU-hours on a NVIDIA H200.1468
1469 **● Distribution-Level Analysis.** Extracting energy differences at the distribution level took about 3
1470 hours per generator on a single NVIDIA H200 GPU (total ~ 15 GPU-hours).1471
1472 **● Datapoint-Level Analysis.** Computing datapoint-level energy differences, ranking concepts per
1473 datapoint, and ranking datapoints per concept also took approximately 3 hours per generator on one
H200 GPU (total ~ 15 GPU-hours).1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **F CUSTOM RA-SAE**
15131514 This section introduces our custom relaxed archetypal sparse autoencoder (RA-SAE), its training
1515 configuration, autointerpretability pipeline, and examples of learned concepts. The model is open-
1516 sourced at anonymized.1517 **Sparse Autoencoders.** SAEs decompose the high-dimensional activation space of models into
1518 sparse, human-interpretable concepts. Specifically, SAEs enforce a sparsity constraint so that each
1519 activation vector is reconstructed using only a small subset of learned feature directions (i.e. concepts),
1520 which helps disentangle overlapping information (superposition) into more separable parts. Once
1521 trained, each concept is assigned a human-interpretable label, either by human annotators or via
1522 autointerpretability pipelines (for example using a vision-language model). To assist with this labeling,
1523 high-activating exemplars (inputs that yield strong activation for that concept) are identified, and
1524 recurring visual or semantic patterns across those exemplars are described.
15251526 **Archetypal SAEs.** Regular SAEs suffer from instability: small changes in initialization, data,
1527 or training can lead to different learned dictionaries. Archetypal SAEs (A-SAEs) mitigate this by
1528 constraining dictionary atoms (feature directions) to lie within the convex hull of the data; that is,
1529 each concept vector must be expressible as a convex combination of actual activation vectors from
1530 the data. This geometric anchoring forces the learned features (atoms) to be more directly tied to the
1531 underlying data, improving stability. Relaxed Archetypal SAEs (RA-SAEs) loosen this constraint
1532 somewhat to allow more flexibility (better reconstruction ability) while retaining much of the stability
1533 benefits. Empirically, RA-SAEs have been found to match or outperform regular SAEs in benchmarks
1534 of plausibility (how well learned directions recover known classification or semantic directions) and
1535 identifiability (how well they disentangle synthetic mixtures of concepts), producing more stable and
1536 semantically meaningful concepts.1537 **Our Configuration.** Our custom RA-SAE was trained on top of DINOv2 representations using the
1538 Top-K sparsity constraint Gao et al. (2025). It has 32,000 concepts, making it largest RA-SAE to
1539 date. Training details are reported in App. F.1. We describe the autointerpretability pipeline to assign
1540 labels to concepts in App. F.2. Finally, examples of concepts learned by the RA-SAE are given in
1541 App. F.31542 **F.1 TRAINING DETAILS**
15431544 **Dataset.** The auto-encoder is trained on the complete ImageNet-1k training split, (≈ 1.28 M) RGB
1545 images. Each image is converted to 261 visual tokens using DINOv2 Oquab et al. (2023); tokens are
1546 fed to the SAE without class or position embeddings. The total number of training tokens is therefore
1547 $50 \times 1.28M \times 261 \approx 1.67 \times 10^{10}$.1548 **Dictionary.** The dictionary has 32,000 concept dimensions. For the sparse activation rule, top- k
1549 masking with $k = 5$, is used; activations outside the largest five per input are set to 0. The weights
1550 are initialized using Xavier/Glorot. The training is conducted at mixed precision (fp16), with the last
1551 ten epochs performed at full precision.
15521553 **Optimizer and Schedule.** The model is trained for 50 epochs using base AdamW ($\beta_1 = 0.9$,
1554 $\beta_2 = 0.999$) optimizer is employed with weight decay set to 10^{-5} . Linear warm-up is applied on the
1555 first 5% of steps, followed by cosine decay from $\eta_{\text{max}} = 5 \times 10^{-4}$ to $\eta_{\text{final}} = 10^{-6}$. MSE loss is used
1556 alongside an auxiliary term penalizing activations that never enter the top- k set, where $\lambda = 10^{-5}$.
15571558
1559
1560
1561
1562
1563
1564
1565

1566
1567

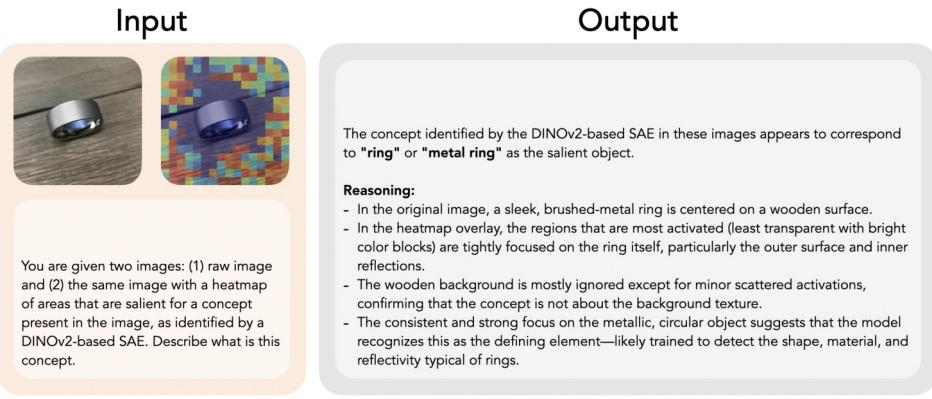
F.2 AUTOINTERPRETABILITY

1568
1569
1570
1571
1572
1573
1574

In an effort to automate the interpretation of concepts identified by the RA-SAE, we qualitatively evaluated the ability of Vision-Language Models (VLMs) to describe them. In particular, we queried ChatGPT 4o via the OpenAI API using various prompts and formats of an image x'' in which the given concept was salient, recording the description generated by the VLM. In this section, we highlight the findings from our exploration. For evaluation purposes, we allowed the VLM to provide its full reasoning; to make this a scalable solution, a simple modification of the prompt—asking the VLM to provide only the description—would filter out the reasoning.

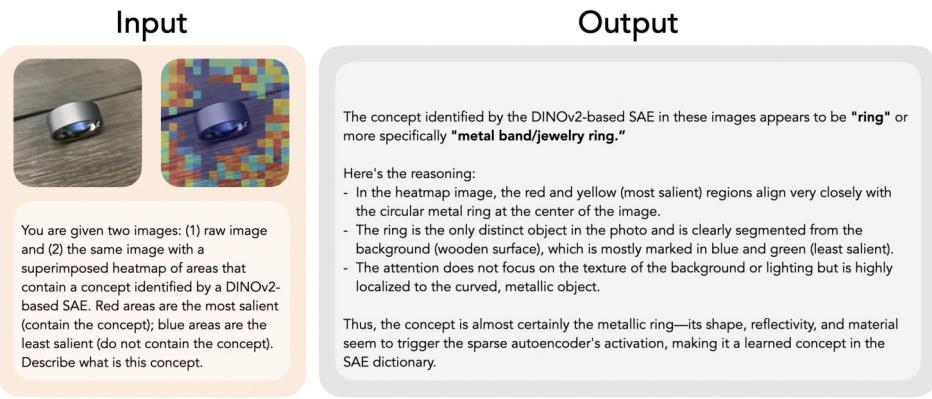
1575
1576
1577

First, we provided the VLM with two images: a raw version of x'' and x'' with a heatmap superimposed to localize the intensity of the concept:

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
15901591
1592
1593
1594
1595
1596

As seen in the example, the VLM did not interpret the heatmap visualization correctly. Instead of describing the wood texture in the background—the actual salient region—it described the ring in the foreground, which received no attention from the RA-SAE.

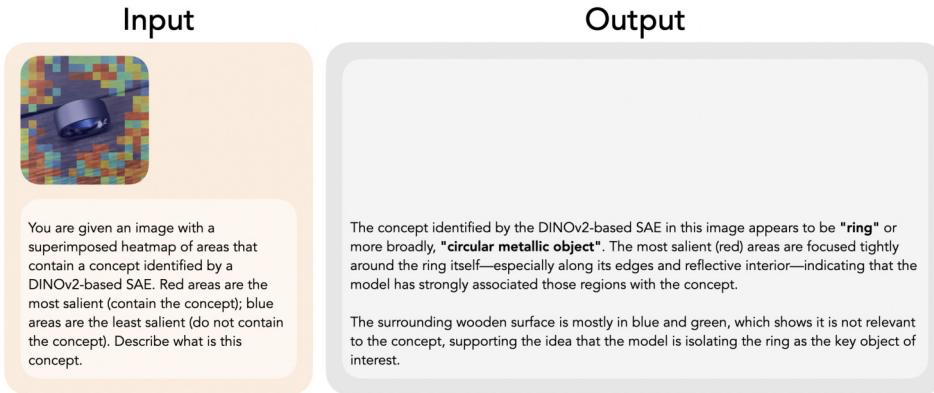
To determine whether this was a prompting issue, we tested the same scenario again—this time using an expanded prompt that explained the heatmap in greater detail:

1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
16101611
1612
1613
1614
1615
1616
1617
1618
1619

This prompt modification did not resolve the issue, as the VLM still identified the ring as the prominent concept in the image. Several other prompting techniques, including those describing the heatmap in even greater depth (e.g., by including the code used for its generation), were explored with similar results.

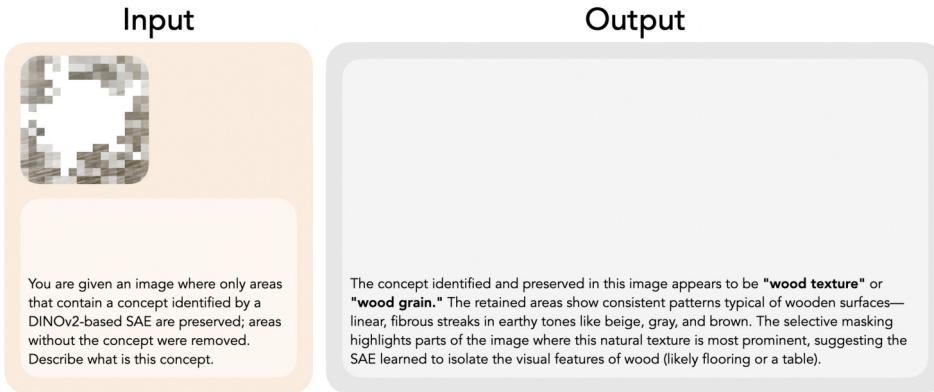
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

We next tested providing the VLM only with the heatmap-superimposed x'' and a similar prompt explaining how to interpret the heatmap:



Once again, the result failed to identify the wooden background as the prominent concept in the image and instead focused on the ring. As in the previous case, we experimented with various prompting strategies using this image format, but the results remained largely unchanged.

From these observations, we concluded that the heatmap alone is insufficient to guide the VLM’s attention to the salient areas. The presence of less relevant regions appears to distract the model. To address this, we replaced the heatmap-superimposed x'' with an alpha-masked version of x'' :



As shown in the example, the VLM was now able to correctly identify wood texture as the dominant concept. We observed consistent success across a range of concepts and images.

The formatting of x'' and the prompt shown above yielded the most reliable results in our qualitative evaluation. However, we note that this evaluation is limited by its qualitative nature (due to the absence of ground truth annotations) and its focus on a single VLM. We hope future work on the autointerpretability of SAE concepts can build on and expand this analysis.

1674
1675

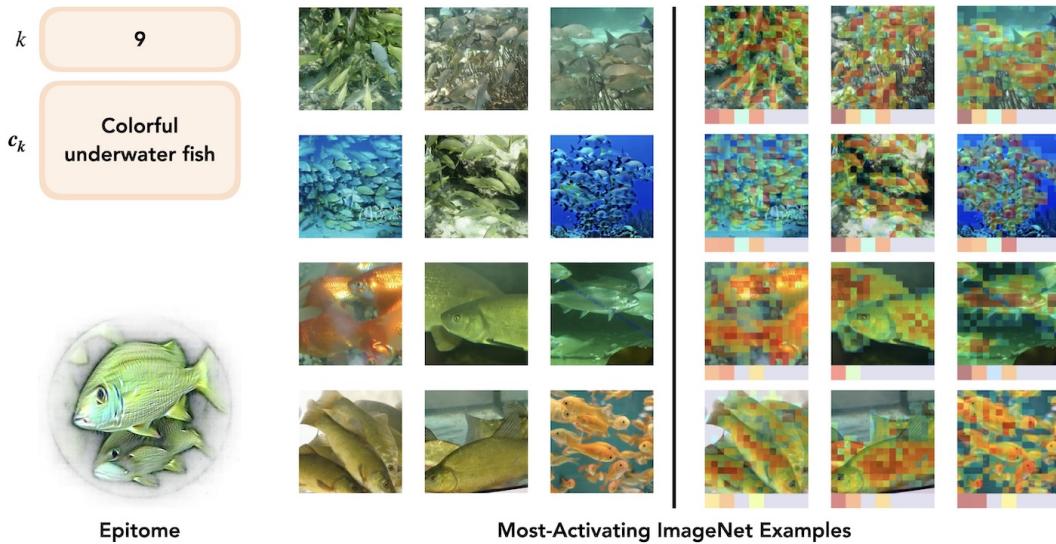
F.3 EXAMPLES OF LEARNED CONCEPTS

1676
1677
1678
1679
1680

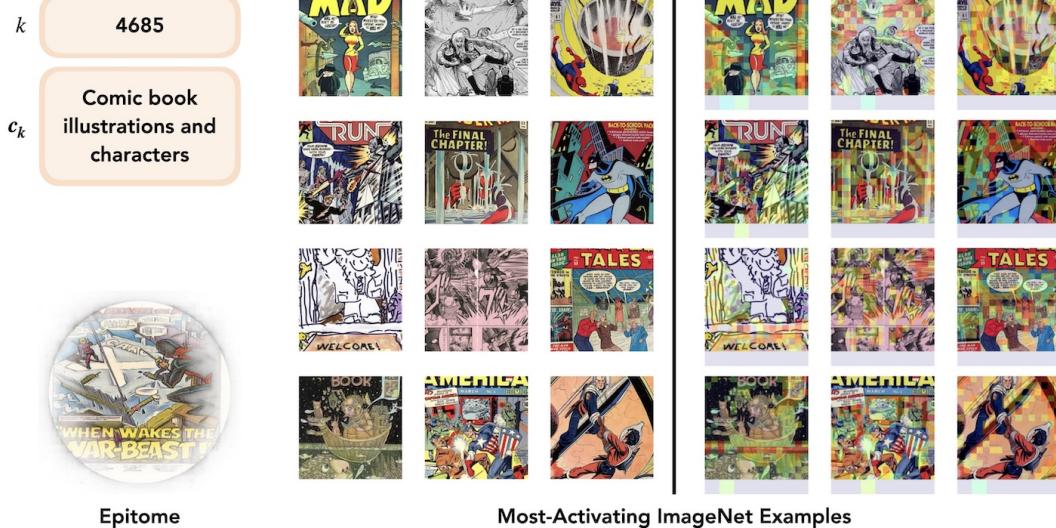
Shown below is a representative sample of concepts learned by our RA-SAE. For each concept, we present 12 images for which the concept had the highest activation in the ImageNet dataset (on the left) and a localization of the respective concept within those images (on the right). Additionally, an epitome constructed using the *Feature Accentuation* method from Hamblin et al. (2024) is shown bottom left.

1681
1682
1683
1684
1685
1686

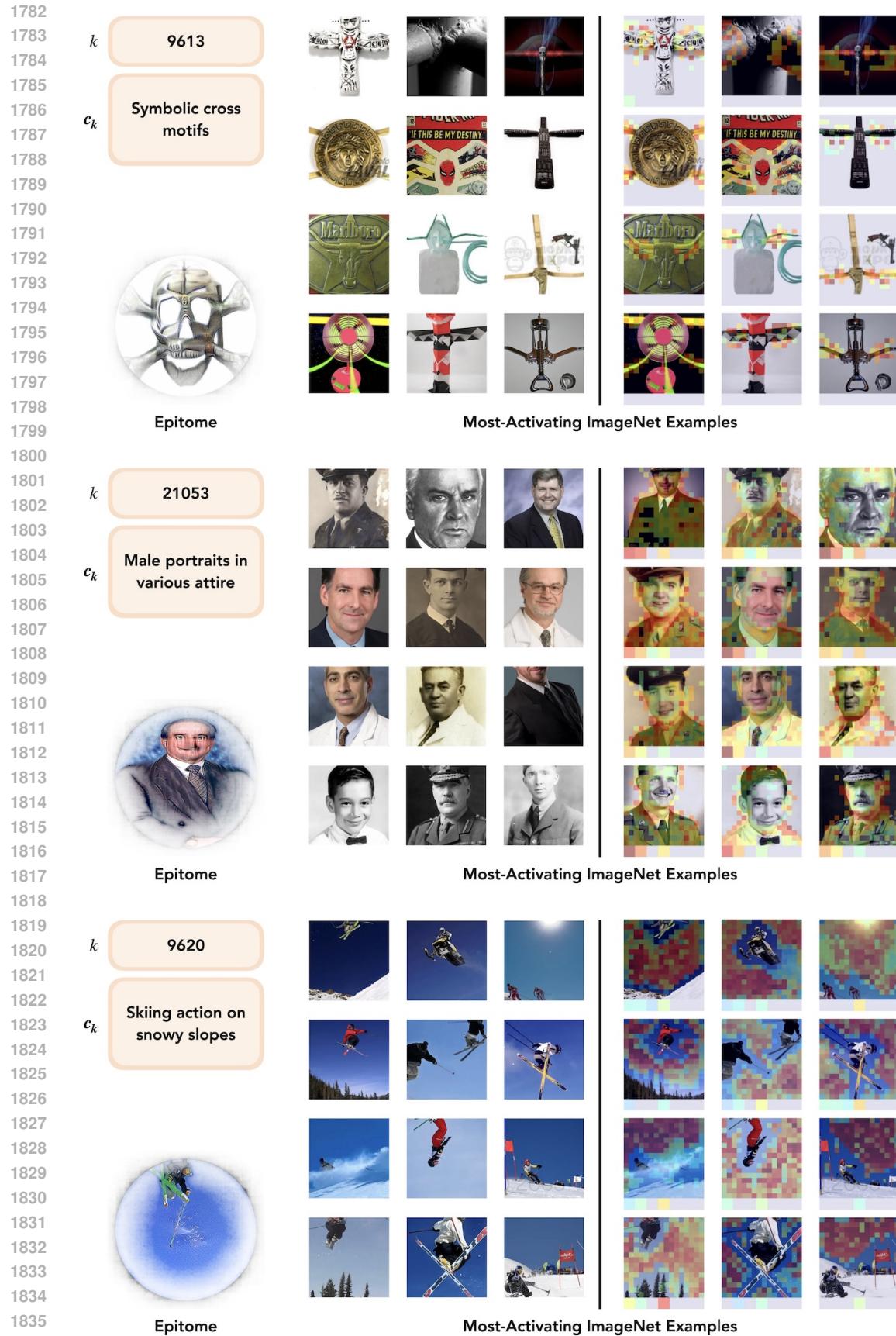
As can be seen from this sample, the granularity of concepts varies. We see concepts for objects (e.g., colorful underwater fish), textures and patterns (e.g., colorful polka dots pattern), composition (e.g., person on the right edge at social gatherings and bright colorful backgrounds), actions (e.g., skiing action on snowy slopes and gripping various tools and objects), types of images (e.g., comic book illustrations and characters and male portraits in various attire), and more.

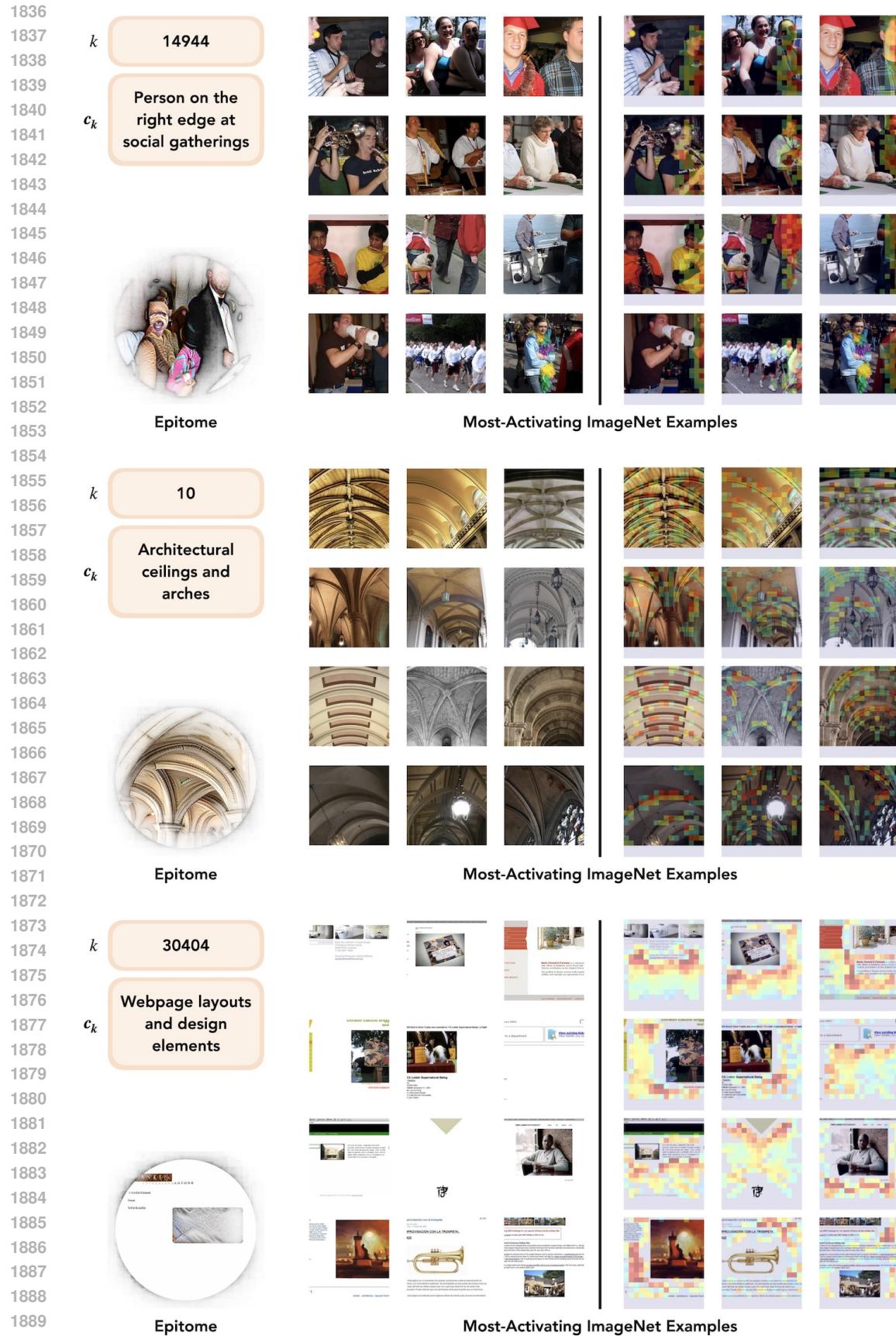
1687
1688
1689

1706

1725
1726
1727

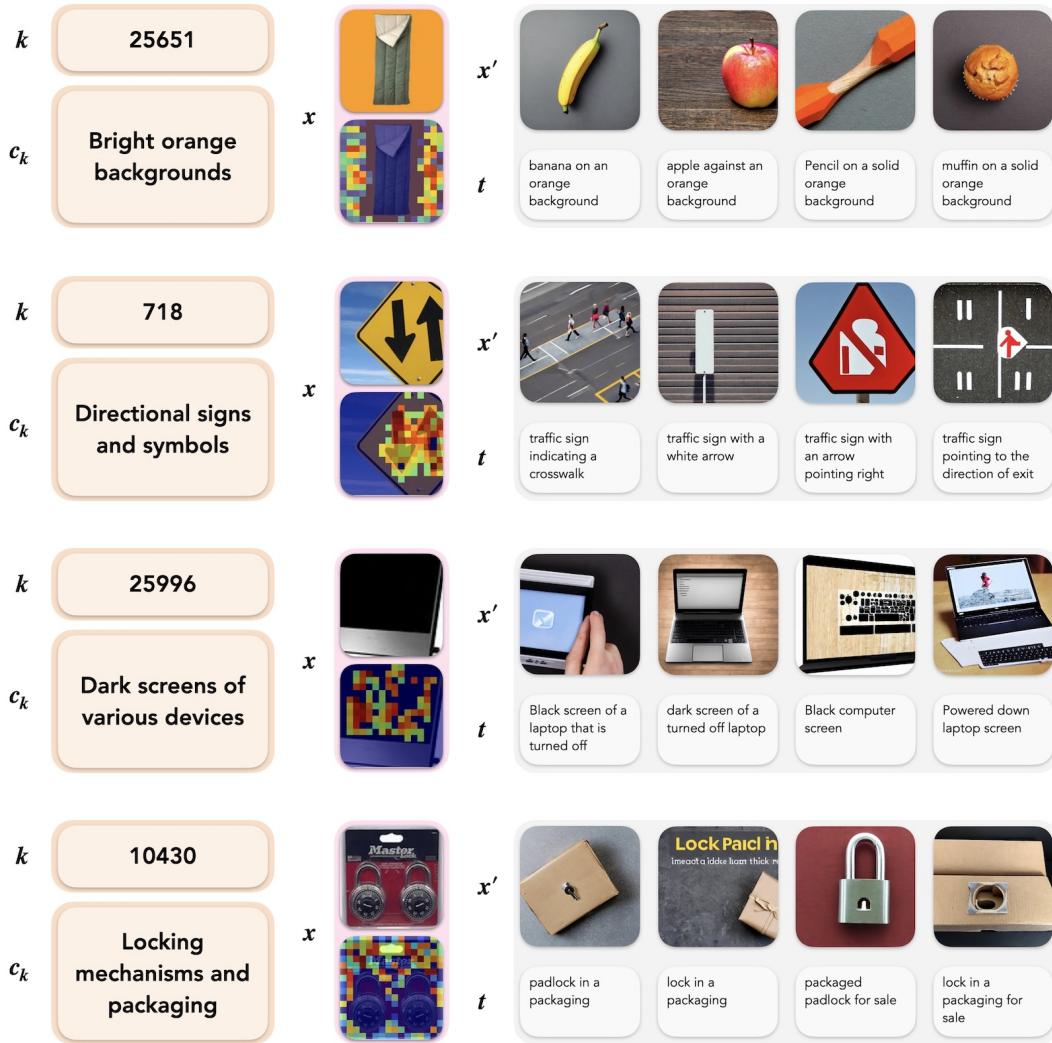
1728						
1729	k	6577				
1730						
1731						
1732	c_k	Bright colorful backgrounds				
1733						
1734						
1735						
1736						
1737						
1738						
1739						
1740						
1741						
1742						
1743						
1744						
1745						
1746						
1747	k	9606				
1748						
1749						
1750						
1751	c_k	Colorful polka dots pattern				
1752						
1753						
1754						
1755						
1756						
1757						
1758						
1759						
1760						
1761						
1762						
1763						
1764						
1765	k	20808				
1766						
1767						
1768						
1769	c_k	Gripping various tools and objects				
1770						
1771						
1772						
1773						
1774						
1775						
1776						
1777						
1778						
1779						
1780						
1781						





1890 **G ADDITIONAL RESULTS: QUALITATIVE EXAMPLES OF BLINDSPOTS**
1891

1892 Shown below are qualitative examples of suppressed conceptual blindspots in SD 1.5. For each
1893 concept, we include a representative image from the natural distribution to illustrate the desired visual
1894 depiction. To the right, we show four images generated by SD 1.5 using various prompts designed to
1895 elicit the concept. Despite using simple, clearly worded prompts, the model consistently struggles to
1896 generate these concepts, supporting their identification as suppressed conceptual blindspots.
1897
1898



1934 In the remainder of this section, we enumerate additional suppressed and exaggerated blindspots for
1935 each evaluated model (see App. G.1). We also describe our stress-testing procedure, in which we
1936 attempt to elicit the concepts identified as suppressed blindspots using many prompt variations, in
1937 order to validate that these are indeed true blindspots (see App. G.2).
1938
1939
1940
1941
1942
1943

1944

G.1 MODEL-SPECIFIC BLINDSPOTS

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

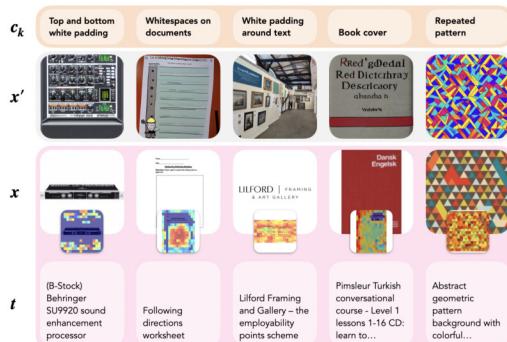
(a) Suppressed Blindspots

(b) Exaggerated Blindspots



Figure 13: Examples of conceptual blindspots in **Stable Diffusion 1.5**. For each concept, the prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.

(a) Suppressed Blindspots



(b) Exaggerated Blindspots

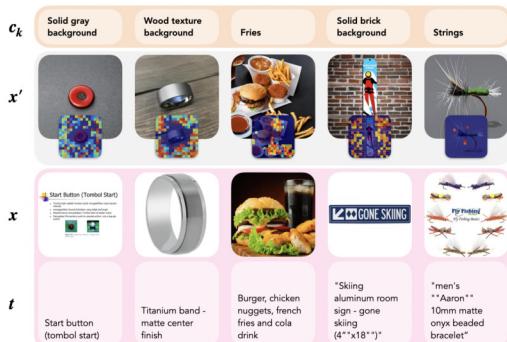


Figure 14: Examples of conceptual blindspots in **Stable Diffusion 2.1**. For each concept, the prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.

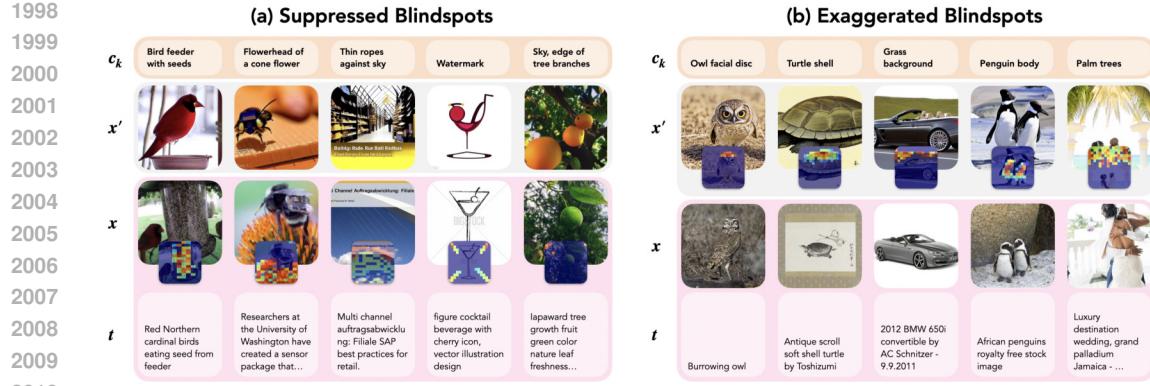


Figure 15: Examples of conceptual blindspots in **Kandinsky**. For each concept, the prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.

Figure 16: Examples of conceptual blindspots in **PixArt**. For each concept, the prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.

2052
2053

G.2 STRESS TESTING

2054
2055
2056

To stress-test the blindspots identified by our method, we gathered a range of prompts describing these blindspots and used them to generate many images. We then contrasted the outputs from models in which the concept was identified as a blindspot with those in which it was not.

2057
2058
2059
2060
2061
2062

Specifically, ChatGPT-4o was prompted as follows: *I want to generate an image of the following concept: "<blindspot>". Suggest 50 prompts highlighting this concept to be used as input for a text-to-image model. Return these as a list of strings in Python.* Five images were generated per prompt and analyzed using our custom RA-SAE model (see Appendix F.1), which ranked them by the intensity with which the desired concept appeared. All images were then manually reviewed to determine whether the blindspot was successfully depicted.

2063
2064
2065
2066
2067

As seen in the following examples of suppressed concepts, while some aspects of the target concept occasionally appeared (e.g., a holder or string for the bird feeder blindspot and a round hole for the glossy DVD disc blindspot), the models generally failed to generate the full concept. This aligns with our method's assessment and supports the validity of the stress test.

2068
2069

G.2.1 Bird Feeder BLINDSPOT IN KANDINSKY

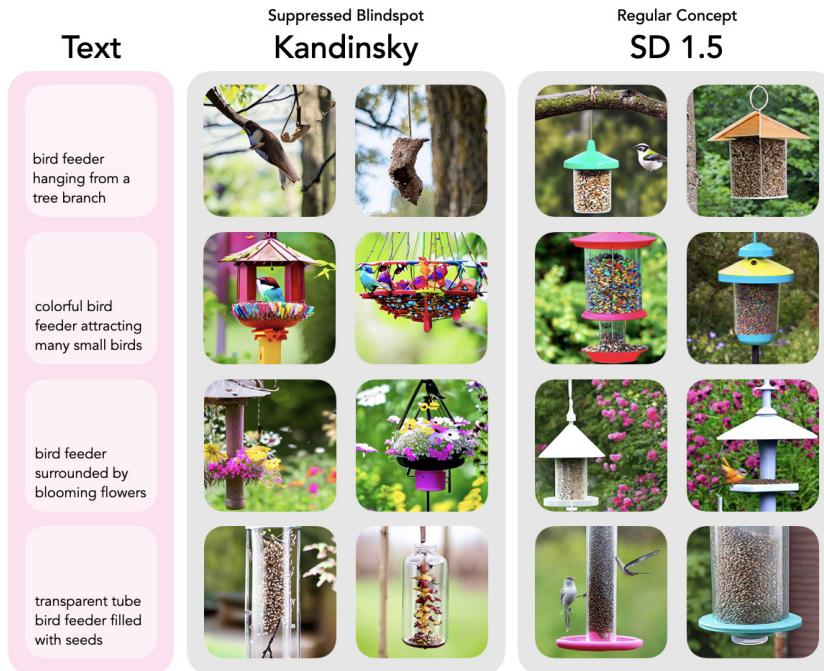
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092

Figure 17: Examples of images generated with various prompts involving the bird feeder concept as a part of the stress testing. In Kandinsky, our method identified this concept as a suppressed conceptual blindspot, which matches the observed behavior: the model is unable to generate a corresponding image. By contrast, SD 1.5, in which this concept was not identified as a blindspot, is able to generate this concept.

2098
2099
2100
2101
2102
2103
2104
2105

2106 G.2.2 Glossy DVD Disc BLINDSPOT IN SD 1.5
2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131 Figure 18: Examples of images generated with various prompts involving the glossy DVD disc
2132 concept as a part of the stress testing. In SD 1.5, our method identified this concept as a suppressed
2133 conceptual blindspot, which matches the observed behavior: the model is unable to generate a
2134 corresponding image. By contrast, Kandinsky, in which this concept was not identified as a blindspot,
2135 is able to generate this concept.

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

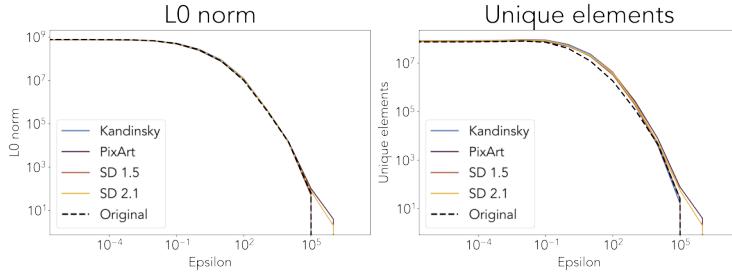
2157

2158

2159

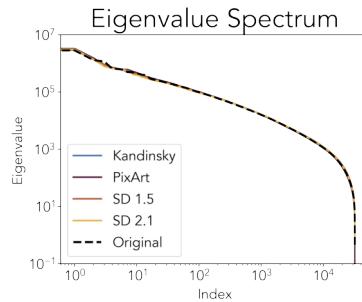
2160
 2161 **H ADDITIONAL RESULTS: HIGHER-ORDER BLINDSPOTS WITH**
 2162 **COMPOSITIONAL DISCREPANCY**

2163 Thus far, our analysis has centered on individual concept activations. Yet visual scenes are rarely
 2164 composed of isolated concepts; instead, they are structured through rich and structured co-occurrence
 2165 patterns that encode compositional semantics. We now examine whether generative models capture
 2166 this higher-order structure by analyzing the co-activation matrix $Z^T Z$, which reflects pairwise
 2167 correlations in concept usage.



2168
 2169 **Figure 19: Sparsity and Structural Divergence.** On the left: L0 norm of the co-occurrence matrix
 2170 ZZ^T as a function of ϵ (threshold), indicating how many entries remain active in each model. On the
 2171 right: Number of unique entries in the synthesized distribution relative to the natural distribution.
 2172 All evaluated models preserve global sparsity structure, but diverge in activation content.
 2173
 2174

2175 Surprisingly, when assessed at the level of binary structure, diffusion models approximate the global
 2176 sparsity of the natural co-occurrence matrix with high fidelity. As shown in Fig. 19 (left), the ℓ_0
 2177 norm of $Z^T Z$ – thresholded at varying ϵ values – tracks closely between the natural and synthesized
 2178 distributions across all models. This indicates that the gross connectivity of the conceptual graph,
 2179 i.e., which concepts tend to co-activate at all, is well preserved. Formally, one can deem $Z^T Z$ as
 2180 the adjacency matrix of a weighted, undirected graph over concepts, where edge weights reflect
 2181 co-activation strength across the dataset.



2182
 2183 **Figure 20: Spectral Structure of Co-occurrence.** Log-log plot of the eigenvalue spectra from
 2184 co-occurrence matrices ZZ^T across models and the natural distribution. All evaluated models match
 2185 the heavy-tailed decay of the natural distribution.
 2186
 2187

2188 However, as illustrated in Fig. 19 (right), the specific content of these co-activations diverges: a
 2189 substantial portion of entries in the model-generated $Z^T Z$ are not shared with the natural baseline.
 2190 This suggests that while the capacity for compositionality is retained, the identity of active pairings
 2191 may shift, potentially reflecting model specific inductive biases or training artifacts. To probe the
 2192 internal structure of these co-occurrence patterns, we turn to spectral analysis. Fig. 20 shows the
 2193 eigenvalue spectra of the co-occurrence matrices for each model and the natural distribution. All
 2194 spectra exhibit a heavy-tailed decay, consistent with power-law behavior, indicating that generative
 2195 models preserve the overall rank structure and variance allocation across conceptual dimensions.

2196 Further, we examine the alignment of dominant conceptual directions via cosine similarity heatmaps
 2197 between the top 100 eigenvectors of the synthesized and natural co-occurrence matrices (Fig. 21).

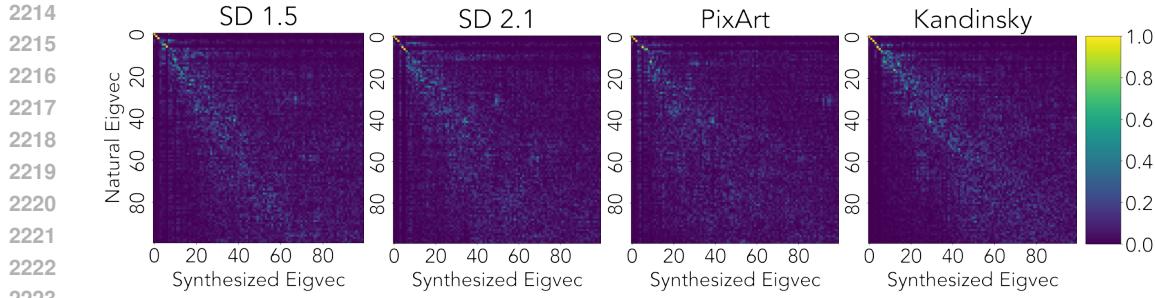


Figure 21: ● **Concept Basis Similarity.** Cosine similarity heatmaps between the top 100 eigenvectors of the natural and synthesized co-occurrence matrices ZZ^T . Diagonal structure shows alignment of dominant conceptual directors, with varying degrees of alignment across the four models.

While all models exhibit partial diagonal alignment—implying overlap in principal concept axes—the off-diagonal entries reveal rotations and mismatches in higher modes, reflecting evident deviations in compositional geometry.

Together, these findings reveal that diffusion models approximate the global shape of concept co-activation surprisingly well, yet deviate in subtle and structured ways when examined through the spectral lens. Such higher-order discrepancies may underpin failures in generating coherent, multi-object scenes or relational concepts.

2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

2268 I ADDITIONAL RESULTS: CAPTION NOISE IN HIGH DIVERGENCE

2269
 2270 We inspected datapoints with the highest datapoint-level energy differences to determine whether the
 2271 divergence stems from genuine blindspots or low-quality input data (specifically, noisy captions).

2272
 2273 I.1 METHODOLOGY

2274 We isolated the top k datapoints with the highest datapoint-level energy difference $\|\xi(\mathbf{x}') - \xi(\mathbf{x})\|_2$
 2275 (see Section 4.4). We analyzes these using a Vision-Language Model acting as an AutoRater (also
 2276 referred to as “LLM-as-a-judge”). The VLM was presented with the natural image \mathbf{x} and the text
 2277 prompt t , and tasked with classifying the caption quality into three categories:

2278

- 2279 1. **Noisy.** The caption is irrelevant, factual nonsense, or consists purely of meta-data (e.g.,
 2280 filenames, URLs).
- 2281 2. **Underspecified.** The caption is technically correct but too vague to identify the specific
 2282 concepts visible in the image.
- 2283 3. **Sufficient.** The caption provides enough semantic detail that a generative model should
 2284 reasonably be expected to reproduce the main concepts visible in the image.

2285 I.2 RESULTS

2286 We used ChatGPT-4o as the VLM and analyzed $k=199$ images. Out of these, 76 (38.2%) were
 2287 labeled as noisy, 1 (5.5%) as underspecified, and 112 (56.3%) as sufficient.

2288 I.3 ANALYSIS

2289 While a portion of the highest energy differences are indeed attributable to poor instruction quality,
 2290 inherent in web-scraped datasets like LAION-5B, the majority of cases have a sufficient caption. In
 2291 these instances, the prompt adequately describes the concept present in the natural image, yet the
 2292 generative model produces a high-energy difference output. This confirms that while dataset noise
 2293 is a contributing factor, the primary driver of high conceptual divergence remains structural model
 2294 limitations, supporting the findings in Section 4.4.

2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322 J ADDITIONAL RESULTS: SAE ERROR CASES

2324 To better understand the specificity and reliability of the SAE used in our experiments to give $\xi(\mathbf{x})$ and
 2325 $\xi(\mathbf{x}')$, we sought to quantify its misfires (false positives, FP) and missing concepts (false negatives,
 2326 FN).

2328 J.1 METHODOLOGY

2329 We randomly sampled n AI-generated and n natural images. We constructed the energy profile ($\xi(\mathbf{x})$
 2330 or $\xi(\mathbf{x}')$) of each image using the evaluated SAE, and filtered for the top- k concepts with the highest
 2331 activation values. Each concept was mapped to its autointerpretability label.

2333 We then employed a Vision-Language Model (VLM) as an AutoRater (also referred to as “LLM-as-
 2334 a-judge”). The VLM was presented with the image (\mathbf{x} or \mathbf{x}') and the list of top- k detected concept
 2335 descriptions (including their activation strengths), and tasked with two classification objectives:

- 2336 1. **Misfire (FP) Detection.** Identify concepts in the detected list that are *not* visually present in
 2337 the image.
- 2338 2. **Missing Concept (FN) Detection.** Identify critical visual concepts clearly present in the
 2339 image but *absent* from the detected concept list.

2340 The VLM was instructed to weigh activation strength when evaluating misfires, as concepts with very
 2341 low activations are more likely to be spurious detections.

2343 J.2 RESULTS

2345 We conducted the analysis on the top- $k=20$ concepts from $n=100$ natural images and $n=100$ AI-
 2346 generated images (namely generated using SD 1.5), using ChatGPT-4o as the VLM. The top misfires
 2347 for natural and AI-generated images are reported in Tables 2 and 3, respectively. Structural concepts
 2348 with incorrect autointerpretability labels (see Section J.3) are shown in italics.

#	Concept	Count
1	(<i>Striped marine creatures</i>)	98
2	(<i>Human interaction with surroundings</i>)	20
3	Natural textures and organic forms	17
4	Green apples and playful animals	9
5	Musical instruments and accessories	7
6	Objects and symbols representing time	6
7	Airships and vintage photography	5
8	Red curtains and theatrical elements	4
9	Airplanes and clothing textures	4
10	Elegant fashion models in glamorous...	4

2359 Table 2: **Top Misfires for Natural Images.** Concepts from the top- $k=20$ concepts of natural images,
 2360 labeled as misfires in a VLM AutoRater analysis (conducted using ChatGPT-4o). *Concepts in cursive* are structural concepts with in-
 2361 accurate autointerpretability labels.
 2362
 2363
 2364

#	Concept	Count
1	(<i>Striped marine creatures</i>)	100
2	(<i>Human interaction with surroundings</i>)	18
3	Natural textures and organic forms	13
4	Elegant fashion models in glamorous...	9
5	Musical instruments and everyday...	4
6	Airplanes and clothing textures	4
7	Bathroom fixtures and sinks	3
8	Leather couch and animals	3
9	Smoke and vapor emissions	3
10	Bookshelves and seating arrangements	3

2365 Table 3: **Top Misfires for AI Images.** Concepts from the top- $k=20$ concepts of AI-generated images (SD 1.5), labeled as misfires in a VLM Au-
 2366 toRater analysis (conducted using ChatGPT-4o). *Concepts in cursive* are structural concepts with in-
 2367 accurate autointerpretability labels.
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

Figures 22 and 23 show the cumulative misfire rate as a function of k . Figure 23 excludes structural concepts with incorrect autointerpretability labels, since these are not visibly present in the images and thus cannot be correctly annotated by the VLM; Figure 22 includes all top- k concepts.

Only 8.0% (AI-generated) and 11.1% (natural) of images had critical visual concepts missing from the top-20. The share of concepts that were misfires among the top-20 was 24.04% for natural images and 26.10% for AI-generated images.

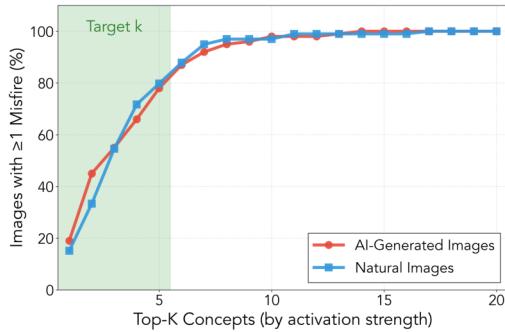


Figure 22: **Cumulative Concept Misfire (All).** Share of the $n=100$ images with at least one concept misfire, labeled in a VLM AutoRater analysis (conducted using ChatGPT-4o), as a function of k . All concepts are included, including structural ones which are not visible and where the autointerpretability description is inaccurate. The region highlighted as “Target k ” corresponds to the k hyperparameter of the SAE.

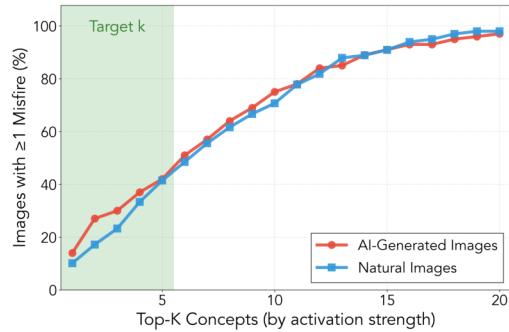


Figure 23: **Cumulative Concept Misfire (Visible Concepts Only).** Share of the $n=100$ images with at least one concept misfire, labeled in a VLM AutoRater analysis (conducted using ChatGPT-4o), as a function of k . Structural concepts that are not visible and where the autointerpretability description is inaccurate are not included. The region highlighted as “Target k ” corresponds to the k hyperparameter of the SAE.

J.3 ANALYSIS

Tables 2 and 3, listing the top misfires in natural and AI-generated images, point to a phenomenon where abstract concepts fire frequently without being tied to a clear semantic feature visible in the image. As shown in Figures 24 and 25, these concepts attend to abstract content near the left or right edges of the image, without any particular semantic attachment. Consequently, the autointerpretability descriptions assigned to these concepts by a VLM (e.g., Striped marine creatures and Human interaction with surroundings) are not truly descriptive. The VLM AutoRater then marks these concepts as misfires for almost every image because it relies purely on those textual descriptions (Figure 22).

After filtering out such concepts, the misfire profile in Figure 23 shows strong performance under the SAE configuration with $k=5$. Here, the SAE activates only five sparse concept codes per image, and these are the positions that should be primarily scrutinized. At $k=5$, for both natural and AI-generated images, the majority of datapoints exhibit no misfires. This rate increases approximately linearly until it plateaus around $k=20$. Furthermore, only 8.0% of AI-generated images and 11.1% of natural images had critical visual concepts missing from the top-20 concepts.

Specific examples of datapoints with misfires or missing concepts for both natural and AI-generated images are given in Sections J.3.1 and J.3.2, respectively.

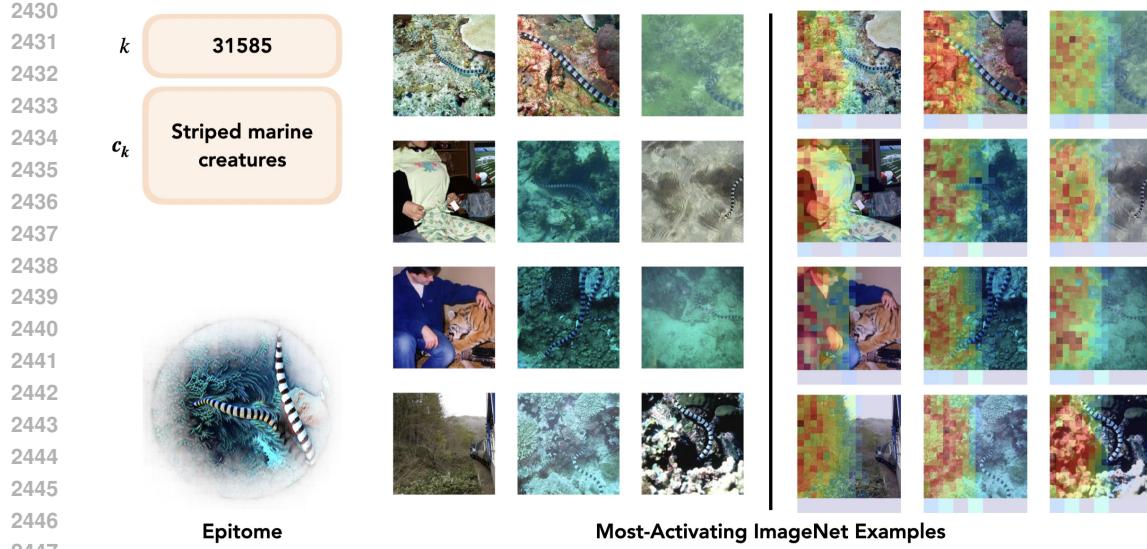


Figure 24: **Concept 31585 Detail.** Shown above are the autointerpretability description, exemplars, and epitome for the concept.

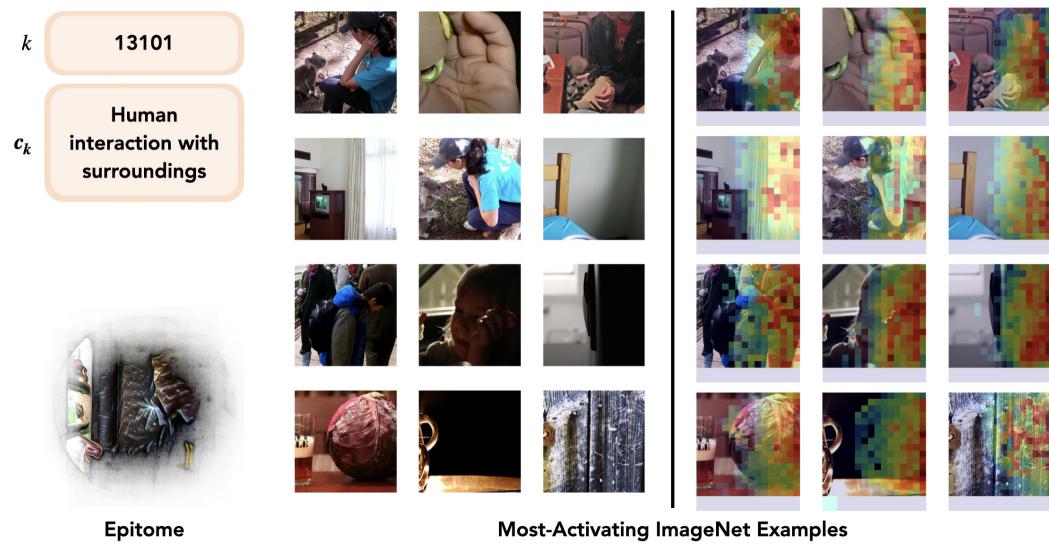


Figure 25: **Concept 13101 Detail.** Shown above are the autointerpretability description, exemplars, and epitome for the concept.

2484
2485
2486

J.3.1 ERROR CASES: NATURAL IMAGES

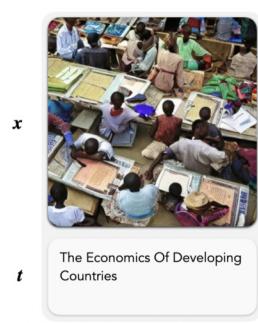
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497

Top Extracted Concepts (Misfires)

- Bowls of various foods
- Bell peppers, vibrant colors, cross-sections
- Striped marine creatures
- Gourmet food presentation
- Fresh vegetables and dips

Missing Concepts

N/A

2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508

Top Extracted Concepts (Misfires)

- Vibrant market scenes
- Seating arrangements in crowds
- Facial expressions and cultural diversity
- Human interaction with surroundings
- Back views of clothing and swimwear

Missing Concepts

- Children studying
- Books and educational materials

2509
2510

J.3.2 ERROR CASES: AI-GENERATED IMAGES

2511

Top Extracted Concepts (Misfires)

- Beds and mattresses
- Industrial tools and equipment
- Bedding pillows and blankets
- Natural textures and organic forms
- Bedding patterns and textures

Missing Concepts

N/A

2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Top Extracted Concepts (Misfires)

- Website layouts and designs
- Tools and equipment for various tasks
- Smoke and vapor emissions
- Bright orange backgrounds
- Textual labels and branding elements

Missing Concepts

- Underwater cleaning equipment
- Company branding and logos

2538 **K CONCENTRATION BOUNDS FOR δ**
 2539

2540 In our experiments, we estimate $\delta(k)$ using $n = 10,000$ paired samples for each concept. While this
 2541 budget is modest, it raises the natural question of whether it suffices to obtain reliable estimates. To
 2542 address this, we derive a concentration bound on the empirical estimator $\widehat{\delta}_n(k)$ using McDiarmid's
 2543 inequality McDiarmid et al. (1989). The resulting bound is tight and demonstrates that even with
 2544 relatively few samples, we can obtain fast and accurate estimates of concept bias.

2545 **Theorem 4** (Concentration of $\widehat{\delta}_n(k)$). *We assume that the concept score $\xi_k(\mathbf{x})$ takes values in $[a, b]$
 2546 almost surely for all images \mathbf{x} drawn from either $\mathcal{D}_\mathcal{X}$ or $\mathcal{D}'_\mathcal{X}$. Let n paired samples $(\mathbf{x}_i, \mathbf{x}'_i)_{i=1}^n$ be
 2547 drawn independently with $\mathbf{x}_i \sim \mathcal{D}_\mathcal{X}$ and $\mathbf{x}'_i \sim \mathcal{D}'_\mathcal{X}$, and define the empirical estimator*

$$2549 \quad 2550 \quad 2551 \quad \widehat{\delta}_n(k) := \sigma \left(\frac{1}{n} \sum_{i=1}^n \xi_k(\mathbf{x}_i) - \frac{1}{n} \sum_{i=1}^n \xi_k(\mathbf{x}'_i) \right).$$

2552 Let $M := b - a$ and $L := M/4$. Then for every $\varepsilon > 0$, the deviation satisfies

$$2554 \quad 2555 \quad \mathbb{P} \left(\left| \widehat{\delta}_n(k) - \delta(k) \right| > \varepsilon \right) \leq 2 \exp \left(-\frac{2n\varepsilon^2}{L^2} \right).$$

2556 *Proof.* The function $x \mapsto \sigma(x)$ is 1/4-Lipschitz, since $|\sigma'(x)| \leq 1/4$ for all x .

2558 Viewing $\widehat{\delta}_n(k)$ as a function of the $2n$ independent variables $(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}'_1, \dots, \mathbf{x}'_n)$, changing a
 2559 single argument alters the inner difference of means by at most M/n , and the outer sigmoid scales this
 2560 by at most 1/4. Hence, the bounded difference constant for each coordinate is $(M/n)(1/4) = L/n$.

2561 By McDiarmid's inequality (McDiarmid et al., 1989),

$$2563 \quad 2564 \quad 2565 \quad \mathbb{P} \left(\left| \widehat{\delta}_n(k) - \delta(k) \right| > \varepsilon \right) \leq 2 \exp \left(-\frac{2\varepsilon^2}{\sum_{j=1}^{2n} (L/n)^2} \right) = 2 \exp \left(-\frac{2n\varepsilon^2}{L^2} \right),$$

2566 which proves the claim. □

2568 Practically, most concept scores $\delta(k)$ are sparse, with the majority concentrated near zero and only
 2569 a few reaching values up to 10. The concentration bound shows that even for the largest observed
 2570 biases, a sample size of $n = 10,000$ yields estimates of $\widehat{\delta}_n(k)$ that deviate from the true value by
 2571 no more than a small ε with high probability. This justifies our sampling strategy and confirms that
 2572 accurate bias measurements are attainable with limited data.

2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

2592 **L MONOTONICITY AND CALIBRATION-FREE INTERPRETATION OF δ**
 2593

2594 Our goal when analyzing blind spots is to rank concepts by the severity of their generative bias. In
 2595 practice, we use the score $\delta(k)$ for this purpose. However, one may wonder whether such a score
 2596 introduces distortions relative to more direct quantities such as the energy gap or the odds ratio.
 2597 The following result establishes that $\delta(k)$ is a strictly increasing reparameterization of both, and
 2598 therefore inherits their ordering. This guarantees that no calibration is needed when using $\delta(k)$ to
 2599 rank concepts.

2600 **Theorem 5** (Monotonicity and Calibration of $\delta_{g_\theta \leftrightarrow G}$). *For every concept index k define the energy
 2601 gap*

$$2602 \Delta_k = \mathbb{E}_{\mathbf{x}' \sim \mathcal{D}'_{\mathcal{X}}} [\xi_k(\mathbf{x}')] - \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{\mathcal{X}}} [\xi_k(\mathbf{x})],$$

2603 *the associated odds ratio $\rho_k = \exp(\Delta_k)$, and the energy-difference score*

$$2604 \delta(k) = \frac{1}{1 + \exp(-\Delta_k)} = \frac{\rho_k}{1 + \rho_k}.$$

2605 *Then $\delta(k)$ is a strictly increasing bijection of both Δ_k and ρ_k , so ranking concepts by any one of
 2606 $\delta(k)$, Δ_k , or ρ_k produces exactly the same ordering.*

2607 *Proof.* The logistic sigmoid satisfies $\sigma'(x) = \sigma(x)(1 - \sigma(x)) > 0, \forall x \in \mathbb{R}$; hence σ and therefore
 2608 $\delta(k) = \sigma(\Delta_k)$ grow strictly with Δ_k . Because the exponential map is also strictly increasing and
 2609 bijective $\mathbb{R} \rightarrow (0, \infty)$, setting $\rho_k = \exp(\Delta_k)$ preserves order and gives $\Delta_k = \log \rho_k$. Substituting
 2610 this identity into σ yields $\delta(k) = \sigma(\log \rho_k) = \rho_k / (1 + \rho_k)$, which is the composition of two
 2611 strictly increasing bijections and is therefore itself strictly increasing and bijective in ρ_k . Since strict
 2612 monotonic functions never reverse inequalities, the three quantities share the same total order over
 2613 concepts.

2614 \square

2615 Thus, ranking concepts by $\delta(\cdot)$ is strictly equivalent to ranking them by energy gap or by conceptual
 2616 generation odds ρ_k . No calibration is necessary, and all three quantities preserve the same total
 2617 ordering over concepts.

2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645

2646 M STABILITY OF FID UNDER SAE EMBEDDINGS

2648 In this section we establish a quantitative relationship between the Fréchet Inception Distance
 2649 (FID) computed in the original activation space (of dimension d) and the FID after applying a
 2650 (potentially overcomplete) SAE dictionary $\mathbf{D} \in \mathbb{R}^{k \times d}$ with $k \gg d$. Throughout we assume that \mathbf{D}
 2651 has orthonormal columns but is not necessarily square, i.e.

$$2652 \quad \mathbf{D}^\top \mathbf{D} = \mathbf{I}_d, \quad \text{while} \quad \mathbf{D}\mathbf{D}^\top \neq \mathbf{I}_k.$$

2654 We start by recalling a simple fact: if \mathbf{D} is not overcomplete, orthogonal and $k = d$, then we have an
 2655 isometry between \mathbf{A} and \mathbf{Z} , implying that the FID is perfectly preserved. However, this case is not
 2656 realistic, we will then turn the overcomplete case, and show we can bound FID by the extreme
 2657 singular value of \mathbf{D} . We will work with the Wasserstein-2 metric \mathcal{W}_2 , noting that FID is just \mathcal{W}_2^2
 2658 specialised to Gaussians.

2659 For a probability measure μ on \mathbb{R}^d we write $\mathbf{D}_\#\mu$ for its push-forward under \mathbf{D} , i.e. $\mathbf{D}_\#\mu(\mathbf{z}) =$
 2660 $\mu(\mathbf{D}^{-1}\mathbf{z})$. Denote by σ_{\min} and σ_{\max} the minimal and maximal singular values of \mathbf{D} , equivalently
 2661 the square-roots of the extremal eigenvalues of $\mathbf{D}\mathbf{D}^\top$:

$$2662 \quad \sigma_{\min}^2 \mathbf{I}_k \preceq \mathbf{D}\mathbf{D}^\top \preceq \sigma_{\max}^2 \mathbf{I}_k.$$

2664 Empirically one usually finds $\sigma_{\min}, \sigma_{\max} \approx 1$, but the proof does not rely on that. We will start by a
 2665 simple lemma in the case where \mathbf{D} is not overcomplete.

2666 **Lemma 1** (Isometry under exact orthogonality). *Suppose $k = d$ and $\mathbf{D}^\top \mathbf{D} = \mathbf{D}\mathbf{D}^\top = \mathbf{I}_d$. Then
 2667 \mathbf{D} is an isometry: $\|\mathbf{D}\mathbf{v}\|_2 = \|\mathbf{v}\|_2$ for all $\mathbf{v} \in \mathbb{R}^d$. Consequently, for any probability measures μ, ν
 2668 on \mathbb{R}^d with finite second moment,*

$$2669 \quad \mathcal{W}_2(\mathbf{D}_\#\mu, \mathbf{D}_\#\nu) = \mathcal{W}_2(\mu, \nu).$$

2672 *Proof.* Orthogonality of \mathbf{D} implies preservation of the Euclidean norm, and push-forward commutes
 2673 with the map inside the \mathcal{W}_2 infimum; the integrand is unchanged, so the infimum value is identical. \square

2676 This case, however, is quite unrealistic as SAE usually rely on the overcompleteness to extract
 2677 meaningful and interpretable concepts. In the overcomplete case, \mathbf{D} is no longer orthonormal, but
 2678 we can still have column-orthonormal dictionary. We will use that to show that we can bound using
 2679 the extremal singular value of $\mathbf{D}^\top \mathbf{D}$.

2680 **Theorem 6** (FID under column orthogonal embeddings). *Let $\mathbf{D} \in \mathbb{R}^{k \times d}$ satisfy $\mathbf{D}^\top \mathbf{D} = \mathbf{I}_d$ and
 2681 denote by $0 < \sigma_{\min} \leq \sigma_{\max}$ the extreme singular values of $\mathbf{D}\mathbf{D}^\top$. Given two data matrices
 2682 $\mathbf{A}, \mathbf{A}' \in \mathbb{R}^{n \times d}$ (rows are sample vectors), set $\mathbf{Z} = \mathbf{A}\mathbf{D}^\top \in \mathbb{R}^{n \times k}$ and $\mathbf{Z}' = \mathbf{A}'\mathbf{D}^\top \in \mathbb{R}^{n \times k}$. Then*

$$2684 \quad \sigma_{\min}^2 \text{FID}(\mathbf{A}, \mathbf{A}') \leq \text{FID}(\mathbf{Z}, \mathbf{Z}') \leq \sigma_{\max}^2 \text{FID}(\mathbf{A}, \mathbf{A}').$$

2686 *Proof.* Write μ for the empirical measure of \mathbf{A} and ν for that of \mathbf{A}' , i.e.

$$2688 \quad \mu = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{A}_{i,:}}, \quad \nu = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{A}'_{i,:}}.$$

2691 For any coupling $\pi \in \Pi(\mu, \nu)$ (i.e. a probability measure on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ, ν) we have,
 2692 by the extremal singular value bound,

$$2693 \quad \sigma_{\min}^2 \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \|\mathbf{D}(\mathbf{x} - \mathbf{y})\|_2^2 \leq \sigma_{\max}^2 \|\mathbf{x} - \mathbf{y}\|_2^2, \quad \forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^d \times \mathbb{R}^d.$$

2695 Integrating with respect to an arbitrary coupling $\pi \in \Pi(\mu, \nu)$ yields

$$2696 \quad \sigma_{\min}^2 \int \|\mathbf{x} - \mathbf{y}\|_2^2 d\pi \leq \int \|\mathbf{D}(\mathbf{x} - \mathbf{y})\|_2^2 d\pi \leq \sigma_{\max}^2 \int \|\mathbf{x} - \mathbf{y}\|_2^2 d\pi.$$

2699 The middle integral is exactly the transport cost of the pushed-forward coupling $(\mathbf{D} \times \mathbf{D})_\#\pi$ between
 $\mu_D := \mathbf{D}_\#\mu$ and $\nu_D := \mathbf{D}_\#\nu$. Because the inequalities hold for *every* π , they hold in particular

2700 for the optimal couplings attaining $\mathcal{W}_2(\mu, \nu)$ and $\mathcal{W}_2(\mu_D, \nu_D)$, though these two optima need not
 2701 coincide. Taking the infimum over π term-wise makes this explicit:
 2702

$$2703 \quad \sigma_{\min}^2 \inf_{\pi \in \Pi(\mu, \nu)} \int \|\mathbf{x} - \mathbf{y}\|_2^2 d\pi \leq \inf_{\pi \in \Pi(\mu, \nu)} \int \|D(\mathbf{x} - \mathbf{y})\|_2^2 d\pi \leq \sigma_{\max}^2 \inf_{\pi \in \Pi(\mu, \nu)} \int \|\mathbf{x} - \mathbf{y}\|_2^2 d\pi.$$

2705 Hence

$$2706 \quad \sigma_{\min}^2 \mathcal{W}_2^2(\mu, \nu) \leq \mathcal{W}_2^2(\mu_D, \nu_D) \leq \sigma_{\max}^2 \mathcal{W}_2^2(\mu, \nu).$$

2707 Recognising $\text{FID}(\cdot, \cdot) = \mathcal{W}_2^2(\cdot, \cdot)$ for the Gaussian surrogate and plugging in $(\mathbf{A}, \mathbf{A}')$ (resp. $(\mathbf{Z}, \mathbf{Z}')$)
 2708 finishes the proof. \square
 2709

2710 Essentially, theorem 6 tells us that applying a column-orthogonal overcomplete SAE dictionary
 2711 cannot distort Fréchet Inception Distance by more than the square of its extremal singular values.
 2712 When D is nearly orthogonal – empirically we usually found that $\sigma_{\min}, \sigma_{\max} \approx 1$ – the result implies
 2713 that FID measured in the SAE feature space is essentially close to the canonical FID. \square
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753

N ADDITIONAL EXAMPLES OF SYNTHESIZED IMAGES

Figure 26: Additional image-caption pair examples from LAION-5B with matching images generated with the same prompt by SD 1.5, SD 2.1, PixArt, and Kandinsky.