
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

UNCOVERING CONCEPTUAL BLINDSPOTS IN GENERA-
TIVE IMAGE MODELS USING SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite their impressive performance, generative image models trained on large-
scale datasets frequently fail to produce images with seemingly simple con-
cepts—e.g., human hands or objects appearing in groups of four—that are
reasonably expected to appear in the training data. These failure modes have largely
been documented anecdotally, leaving open the question of whether they reflect
idiosyncratic anomalies or more structural limitations of these models. To address
this, we introduce a systematic approach for identifying and characterizing "concep-
tual blindspots"—concepts present in the training data but absent or misrepresented
in a model’s generations. Our method leverages sparse autoencoders (SAEs) to
extract interpretable concept embeddings, enabling a quantitative comparison of
concept prevalence between real and generated images. We train an archetypal
SAE (RA-SAE) on DINOv2 features with 32, 000 concepts—the largest such
SAE to date—enabling fine-grained analysis of conceptual disparities. Applied to
four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky),
our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD
discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood
background texture and palm trees). At the individual datapoint level, we
further isolate memorization artifacts — instances where models reproduce highly
specific visual templates seen during training. Overall, we propose a theoretically
grounded framework for systematically identifying conceptual blindspots in gener-
ative models by assessing their conceptual fidelity with respect to the underlying
data-generating process.

1 INTRODUCTION

Generative image models trained on large scale datasets have achieved unprecedented capabilities,
allowing their use in applications both within the vision domain OpenAI (2024); Peebles and Xie
(2023); Ramesh et al. (2021); Saharia et al. (2022); Nichol et al. (2021); Wang et al. (2024); Poole
et al. (2022); Richardson et al. (2023); Rombach et al. (2022) and well beyond that Ahn et al. (2022);
Huang et al. (2022a;b); Rombach et al. (2022); Chen et al. (2024); Zhong et al. (2024); Siddiqui et al.
(2024). Despite this success, several qualitative (Marcus et al., 2022; Cabrera et al., 2021; Heigl,
2025) and quantitative studies (Liu et al., 2023; Conwell et al., 2024) have shown that, at times,
models can struggle to generate images with relatively simple concepts, e.g., human hands (Lu et al.,
2024; Narasimhaswamy et al., 2024; Zhangli et al., 2024; Fallah et al., 2025), objects appearing

in groups of four (Cao et al., 2025), and negations or object relations (Conwell and
Ullman, 2022; Conwell et al., 2024). In fact, when prompted to generate images containing such
concepts, models tend to produce outputs with related structures, but not precisely the ground truth
concept—e.g., producing hands with six fingers. These failure modes, which we call “conceptual
blindspots”1, can be unintuitive, since one may reasonably expect models have had enough exposure
to demonstrations accurately detailing such concepts. This raises the question whether such failures
reflect intriguing quirks of certain specific concepts, or whether they are demonstration of a more
systematic phenomenon under which, for a broad spectrum of concepts, models fail to or are overly
likely to produce images containing them.

1We borrow the term “blindspots” from psychology literature (Banaji and Greenwald, 2016), wherein it is
used to refer to scenarios where an agent makes biased decisions despite exposure to observations that contradicts
the rationale behind those decisions.
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Figure 1: δ(k) quantifies a model’s tendency to over- or under-generate a concept ck compared
to its natural-data frequency. We deem concepts with δ(k) < 0.1 as suppressed conceptual
blindspots and concepts with δ(k) > 0.9 as exaggerated conceptual blindspots. The depicted
images, generated by four popular generative image models, show examples of conceptual blindspots
as well as aligned concepts. The models are completely unable to generate suppressed blindspots (e.g.,
bird feeder), despite diverse prompting and steering strategies. For concepts with δ(k) ≈ 0.25
(e.g., traffic sign), the models exhibit substantial deficiencies. In contrast, exaggerated blindspots
emerge unprompted, at rates far exceeding their distribution in natural images.

Answering this question remains infeasible with existing approaches for evaluating generative image
models Stein et al. (2023); Wang et al. (2023a). Specifically, existing approaches generally rely on
coarse-grained measures that are meant to assess image realism, e.g., FID (Heusel et al., 2017), and
hence do not capture distributional failures. Methods like CLIPScore evaluate generation diversity or
distribution-coverage statistics (Hessel et al., 2021; Dombrowski et al., 2024; Hwang et al., 2024),
hence offering partial insights to our question, but not at the granularity of fine-grained features or
concepts Theis et al. (2015); Naeem et al. (2020), making it difficult to identify conceptual blindspots.
Finally, qualitative analyses for evaluating generative models, such as participant surveys (Cabrera
et al., 2021; Nichol et al., 2021; Petsiuk et al., 2022; Xu et al., 2023; Wu et al., 2023a) or open-ended
exploration (Bau et al., 2019), can identify failures in models’ ability to capture certain concepts, but
do not offer a scalable methodology that can be easily repeated across model families and used for
their comparison.

This work. Motivated by the above, we argue identifying and analyzing conceptual blindspots in a
generative image model requires designing a methodology that, in an automated and unsupervised
manner, can elicit concepts in the data distribution that have a mismatch between their odds of
generation by the true data-generating process versus the trained model. Our contributions in this
work are three-fold:

• Formalizing Conceptual Blindspots in Generative Image Models. We introduce a systematic
framework for identifying and quantifying conceptual blindspots in generative image models
compared to natural images (Section 2). This formalization moves beyond anecdotal or human-
defined concept evaluations, offering a principled approach to understand the models’ limitations.

• A Scalable, Unsupervised Approach for Identifying Conceptual Blindspots using Sparse
Autoencoders. We develop a structured methodology using sparse autoencoders (SAEs) to extract
and compare concept distributions between natural and synthesized images (Section 3). To do so,
we employ SAEs, which decompose the high-dimensional activation space of models into sparse,
human-interpretable concepts. Concretely, SAEs are trained to reconstruct model activations
using a sparse combination of learned feature directions (concepts). Each concept can then be
assigned a human-interpretable label through autointerpretability: examining high-activating
exemplars and prompting an LLM to describe the recurring pattern. To this end, we train and
open-source an archetypal SAE (RA-SAE) on DINOv2 features with 32, 000 concepts, the largest
such RA-SAE to date.

• Exploratory Tool and Analysis. Our exploratory web tool enables both distribution- and
datapoint-level analysis of blindspots across models (Sections 4.1-4.4). We apply our method to
Kandinsky, PixArt, and Stable Diffusion (SD) 1.5/2.1 (Section 4). We identify specific instances
of both suppressed conceptual blindspots (e.g., bird feeders, DVD discs, and whitespaces

on documents) and exaggerated conceptual blindspots (e.g., wood background texture and
palm trees), shown in Fig. 1.
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The model, code, and web tool are available at https://github.com/sae-diff/code-review.

2 FORMALIZING CONCEPTUAL BLINDSPOTS IN GENERATIVE MODELS

We begin by formalizing the notion of conceptual blindspots: systematic discrepancies between
the conceptual content of natural images and that of model-generated outputs. This formulation
enables us to derive principled, quantitative measures that characterize which concepts are under or
over represented by a generative model relative to its data distribution. The process is illustrated in
Fig. 2. While we rely on standard assumptions in this pursuit (Von Kugelgen et al., 2021; Locatello
et al., 2019; Zimmermann et al., 2021; Gresele et al., 2020; 2021), empirically we find meaningful
phenomenology is elicited even when these assumptions are violated.

Definition 1 (Data-Generating Process). Let C ⊂ R
K denote a latent space with a Boltzmann prior

p(c) = exp(−E(c))Z−1, where E(·) denotes an energy function that linearly decomposes over
individual latents and Z is the corresponding partition function, i.e., E(c) =

∑
k E(ck) and hence

p(c) =
∏

k pk(ck). A data-generating process (DGP) is an invertible function G : C → X that maps
the latents c ∈ C to observations x ∈ X , i.e., x = G(c).

For notational simplicity, we use p(·) to denote both the latent density p(c) and its push-
forward to image space p(x), where x = G(c). This is justified by the invertibil-
ity of G, which induces a valid distribution over X via the change of variables formula.

Figure 2: Intuitive mapping of our framework.
Latent concepts ck ∈ C are mapped to observations
(x, t) through the (invertible) DGP. gθ generates
images x′ based on t. The energy model ξk(x)
extracts concept representations from both x and
x′, enabling comparison of concept distributions
to identify blindspots.

In essence, the individual dimensions of the
latent space reflect the Concepts underlying
the data-distribution PX , defined over some ob-
servation space of images X . For example,
different latents may correspond to concepts
like color, shape, size, location, and so
on (Okawa et al., 2023; Park et al., 2024). We
also let the data-generating process associate
a text-description t ∈ T with any image sam-
pled from the data distribution, but do not ex-
plicitly model it. These text descriptions can
then be used to train a text-conditioned Gener-
ative image model gθ, with parameters θ, on
a set of image-text pairs to map a noise signal
η ∼ N (0, I) and a text-description of the scene
t to produce images x illustrating the latter.

To define conceptual blindspots in the model gθ ,
we must assess the probability mass assigned to
a concept by the data-generating process, com-
paring it to the mass assigned by the model. To
this end, we take an evaluation set of natural image-text pairs (DX ,DT ) and define a set of synthet-
ically generated images D′

X using the text descriptions. To estimate the probability of occurrence
of a concept, we consider an Energy model ξ : X → R

d that maps images to a d-dimensional
vector, where each dimension associates a scalar representing the energy in the kth concept, i.e.,
ξk(x) = E(ck). These estimates are feasible because we assume the data-generating process is
invertible. Correspondingly, the probability the data-generating process associates with the image
x can then be defined as pk(x) ∝ exp(−∑k ξk(x)) (where Zξ is the partition function), hence
yielding a population-level estimate pk(DX ) =

∏
x∈DX

pk(x). Using this and the sigmoid map σ(·),
we define below the average energy difference in the kth concept between the datasets DX ,D′

X .

Definition 2 (Energy Difference). Let x ∈ DX denote a real image sampled from the data-
generating process G, and let x′ ∈ D′

X be a synthetic image generated by the model gθ. Let

ξk : X → R denote the energy assigned to the kth concept by the energy model ξ. We define the
energy difference for concept k as:

δgθ↔G(k) = σ (Ex′(ξk(x
′))− Ex(ξk(x)))

=
pk(D′

X )

pk(DX ) + pk(D′
X )

, (1)
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where the expectations are taken over D′
X and DX , respectively, and pk(D) ∝ exp

(
−∑x∈D ξk(x)

)

denotes the unnormalized conceptual probability mass of dataset D under concept k.

Thus, the energy difference in the kth concept describes the ratio of the probability a concept occurs
in a set of observations (here, D′

X ) compared to a baseline dataset (here, DX ). Based on this measure,
we can now define conceptual blindspots as follows.

Definition 3 (Suppressed / Exaggerated Conceptual Blindspots). Given a generative image model
gθ, we say, compared to the data-generating process G, ck is a suppressed conceptual blindspot in
the model if δgθ↔G(k) < λmin and exaggerated if δgθ↔G(k) > λmax.

Overall, we define a conceptual blindspot as a concept whose likelihood of occurrence in generated
images deviates markedly, either through suppression or exaggeration, from its prevalence under
the data-generating process. Suppressed concepts exhibit disproportionately low activation (e.g.,
δ(k) < λmin), whereas exaggerated concepts are overrepresented (e.g., δ(k) > λmax). Throughout
our analysis, we adopt threshold values of λmin = 0.1 and λmax = 0.9 to isolate these regimes.

We also note this definition is related to the idea of “mode collapse” studied in past work (e.g., see
Bau et al. (2019)): the difference is in the granularity at which the analysis is performed. Specifically,
mode collapse focuses on exaggerated / suppressed odds of generating entire images, while we focus
on changed odds of specific concepts. For example, if a model fails to produce images of an object
with a white background, we say this concept is a suppressed conceptual blindspot.

3 METHOD: OPERATIONALIZING THE DEFINITION OF CONCEPTUAL

BLINDSPOTS

We next discuss our pipeline for identifying conceptual blindspots in a generative model gθ. As
per Sec. 2, the salient objects we need for this are (i) a set of images sampled from gθ that allow
comparison with the ground-truth generative process, and (ii) an energy model which enables said
comparison. Below, we use ∥ · ∥F to denote the Frobenius norm and ∥ · ∥0 to denote the number
of non-zero entries (the ℓ0 pseudo-norm). For a vector or matrix X , X ≥ 0 implies element-wise
non-negativity. For n>0, we let [n] := {1, . . . , n}, and denote the i-th row of a matrix A by Ai.

From Prompts to Latent Representations. To identify conceptual blindspots in a model gθ, we
compare a dataset DX of image-caption pairs (x, t) sampled from the data-generating process G and
their synthetic counterparts sampled from the generative model gθ using the text descriptions.

Specifically, given t, we synthesize a counterpart image x′ using a pretrained text-to-image generator
gθ : T → X , implemented as a denoising diffusion probabilistic model (DDPM) (Razzhigaev et al.,
2023; Stability AI, 2022; Chen et al., 2023a). Sampling occurs in latent space via a reverse trajectory
(γt)

T
t=0:

γT ∼ N (0, I), γt−1 =
1√
αt

(
γt − 1−αt√

1−ᾱt
εθ(γt, t, c)

)
+ σtηt, and ηt ∼ N (0, I),

where αt ∈ (0, 1) and ᾱt =
∏t

s=1 αs follow the standard cosine noise schedule. The final latent γ0

is decoded via a pretrained VAE to yield the synthetic image x′ = VAE(γ0). For the remainder of
the paper, we treat gθ as a black box that maps prompts to images: t 7→ x′.

Defining the Energy Model. Building on prior work that shows the ability of self-supervised
learning methods to invert the data-generating process and identify the energy function underlying it
up to linear transformations (Zimmermann et al., 2021; Von Kugelgen et al., 2021; Khemakhem et al.,
2020; Hyvarinen et al., 2019), we use DINOv2 (Oquab et al., 2023) for our analysis2. Under the
expectation that the number of concepts underlying the DGP is larger than the dimensionality of the
model’s feature space (Elhage et al., 2022; Bricken et al., 2023), we train sparse autoencoders (SAEs)
on its features to identify subspaces corresponding to these concepts (Fel et al., 2025; Cunningham

2We use DINOv2 in our energy model because its self-supervised training on large-scale unlabeled data
yields emergent, highly structured visual representations that capture broad semantic and geometric regularities
without text supervision. These embeddings have proven robust across tasks (classification, segmentation, depth
estimation, tracking) and domains (natural, medical, satellite imagery) Oquab et al. (2023); ?); ?); ?.
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Figure 3: Concept Extraction Pipeline. For a triplet (x, t,x′), the concepts in x and t are extracted
by obtaining each image’s DINOv2 features, which are further processed by a RA-SAE into sparse
concept embeddings, yielding energy models ξ(x) and ξ(x′), respectively. In particular, ξk(x) =
E(ck) holds the energy in the kth concept.

et al., 2023; Gao et al., 2025; Templeton et al., 2024; Rajamanoharan et al., 2024). The intuition here
is that if the concepts underlying the generative process are modeled via approximately orthogonal
directions by DINOv2 (as assumed in our independence constraint in Def. 1), then an SAE should be
able to isolate these concepts along individual dimensions in its latent space (Elhage et al., 2022). The
activation associated by the SAE to a dimension will serve as our approximation of the ground-truth
energy function assigned to the concept modeled by that dimension.

Formally, using f : X → R
d to denote our feature extraction module (i.e., the DINOv2 model),

we extract features a = f(x) ∈ R
d from both natural and synthetic images from datasets DX ,D′

X .
Assuming the count of image-text pairs is n, we stack the real and generated features into matrices
A,A′ ∈ R

n×d. We then decompose each feature vector into a sparse combination of learned concept

atoms using an SAE. Specifically, let D ∈ R
d×K

′

denote a dictionary of K ′ concept vectors, and let

Ψ : Rd → R
K

′

be the SAE encoder that maps input features to sparse codes. Applying Ψ row-wise
yields the matrix of activations Z = Ψ(A) ∈ R

n×K′

, where each row zi = Ψ(ai) represents the
concept decomposition of an image. The decoder reconstructs features via ZD⊤, and the SAE is
trained to minimize the reconstruction error subject to sparsity and non-negativity:

min
Ψ,D

∥∥A−Ψ(A)D⊤∥∥2
F

s.t. Ψ(A) ≥ 0, ∥Ψ(A)i∥0 ≪ K
′ ∀i ∈ [n]. (2)

Vanilla SAEs often drift toward arbitrarily oriented dictionaries, making downstream analyses highly
sensitive to the random seed. To mitigate this instability and make our study reproducible and
independent of the seed, we employ the Archetypal SAE (RA-SAE) Fel et al. (2025) on a TOP-K
sparsity constraint Gao et al. (2025). RA-SAE constrains the dictionary D to be a convex combination
of training data. Specifically, we write D = WA with W ∈ ΩK′,n, the set of row-stochastic
matrices in R

K′×n:
ΩK′,n :=

{
W ∈ R

K′×n | W ≥ 0, W1 = 1

}
. (3)

Thus every atom Di lies in the convex hull of the data conv(A), and any reconstruction ZDT resides
inside the conic hull of the data cone(A). This ensures learned concepts remain faithful to the
support of the data distribution (Fel et al., 2025). Once trained, the SAE provides a consistent set
of sparse codes: Z for real images and Z ′ for their generated counterparts. These codes capture
the same prompt-conditioned visual semantics in terms of shared, interpretable concepts, with the
activation value of the concept serving as energy values for our analysis of conceptual blindspots.
In summary then, our method defines a structured pipeline that, given a prompt and its associated real
image (t,x), produces two sparse concept vectors (z, z′), enabling direct comparison of the real and
generated visual content in a common conceptual basis.

This summarizes our full pipeline: starting from a captioned image (t,x), we synthesize a counterpart
x′ and map both images into a shared, sparse concept space via a vision encoder and a trained
SAE, yielding interpretable representations (z, z′) that will serve as the foundation for evaluating
conceptual shifts induced by the generative process.
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4 RESULTS

We analyze four generative image models trained on LAION-5B—SD 1.5, SD 2.1, PixArt, and
Kandinsky—using |X | = 10,000 image-text pairs and their corresponding generations (Appendix N).
Our analysis spans three levels (Fig. 3): a • distribution-level evaluation reveals suppressed and
exaggerated concepts; a • datapoint-level analysis surfaces failures tied to ambiguity, omission, and
memorization; and a • compositional analysis uncovers subtle distortions in concept co-occurrence
geometry. Our core contribution is an interactive exploratory tool, shown in Appendix C, from which
all subsequent analyses emerge. Rather than exhaustively studying one phenomenon, we present
high-level findings that highlight the tool’s versatility and enable broader, customizable exploration.

4.1 THE HEAVY TAIL OF SUPPRESSED CONCEPTS

Figure 4: • Concept Energy Distribution. Log-scale histograms of energy differences δ(k) across
32, 000 concepts, comparing the natural and synthesized distributions for each evaluated model.
Values left of 0.5 represent suppressed concepts (under-represented); values right of 0.5 represent
exaggerated concepts (over-represented).

To assess disparities between the generative models and the natural image distribution, we begin by
analyzing the marginal energy difference δ(k) across 32,000 concepts learned using RA-SAE. As
defined in Sec. 3, this quantity reflects the relative prevalence of each concept in the synthesized
versus natural image sets. A value of δ(k) < 0.1 indicates that concept k is under-represented
(suppressed) in the generated images, while δ(k) > 0.9 indicates over-representation (exaggerated).
Fig. 4 presents the distribution of δ(k) for each of the four evaluated models. Across all models,
we observe heavy-tailed histograms with substantial mass on both extremes, suggesting systematic
discrepancies in concept coverage. Notably, the left tail—corresponding to suppressed concepts—is
denser and longer than the right, indicating a consistent tendency of concept suppression. This
asymmetry is reflected in the negative skewness of the distributions: Skewness = −0.54 for SD 2.1,
−0.40 for both SD 1.5 and PixArt, and −0.23 for Kandinsky.

We also note that while all models exhibit both suppressed and exaggerated concepts, their specific
profiles differ. For instance, PixArt shows a wider spread, suggesting a more suppressed concept
distribution. Nevertheless, the consistent left-skew in all distributions underscores a common tendency
toward concept omission, though the specific characteristics of this behavior require further analysis,
which we explore in the next Sections.

4.2 STRUCTURE AND SPECIFICITY OF CONCEPTUAL BLINDSPOTS

While the previous section quantified marginal discrepancies in concept frequency, here we investigate
their global structure by embedding the full set of 32,000 concepts into two dimensions using UMAP
on the sparse codes, coloring the concepts by their δ(·) values. As shown in Fig. 5, distinct clusters
of concepts emerge across all models. These clusters often correspond to contiguous regions of
conceptual blindspots, especially for suppressed (blue) concepts, suggesting that blindspots are quite
structured—reflecting shared biases in either training distributions or architectural priors. To assess
the consistency of these blindspot patterns across models, we further analyze both the magnitude and
structure of concept-level δ(·) values. Fig. 6 presents scatter plots and pairwise Pearson correlation
coefficients between the δ(k) vectors of SD 1.5 and all other models. As expected, SD 1.5 and 2.1
exhibit strong correlation (r = 0.82), reflecting their shared architectural and training pipelines.
In contrast, their correlations with PixArt and Kandinsky are substantially lower—r = 0.41 and
r = 0.46, respectively—indicating that these models emphasize different regions of the conceptual
space.
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Figure 5: • Structure of Concept Energy Differences. UMAP visualizations of 32, 000 concepts,
colored according to their energy difference δ(k) between the natural and synthesized distributions.
Clusters reveal patterns of conceptual blindspots, with suppressed concepts on the blue end and
exaggerated ones on the yellow end.

Figure 6: • Cross-Model Concept Energy Correlation. Pairwise scatter plots of δ(k) across all
four evaluated models, with Pearson correlation coefficients reported top left. Strong alignment
between SD 1.5 and SD 2.1 contrasts with weaker correlations among other architectures, indicating
model-specific blindspots. • Correlation Matrix of Conceptual Blindspots. Heatmap of pairwise
Pearson correlation coefficients for δ between all models, quantifying the degree of shared conceptual
blindspots across these models.

Overall, the analysis above reveals that while some blindspots are universally shared—likely due to
properties of the dataset—others are highly model-specific, emerging from idiosyncrasies in training
dynamics or model capacity. This motivates the need to identify and study both blindspots that are
shared across models and ones that are unique to specific models in subsequent sections.

4.3 QUALITATIVE BLINDSPOT EXAMPLES

Figure 7: • Example of an Exaggerated Concep-
tual Blindspot. Four synthesized images x′ with
the wooden surfaces and everyday objects

concept are shown alongside the corresponding nat-
ural image x and text prompt t. As expected with
exaggerated blindspots, the concept is prominent
in x′ but absent in x and t.

We next visualize specific examples of both sup-
pressed and exaggerated blindspots to gauge
what concepts fall under these regimes. Specif-
ically, in Fig. 8a we show an example of a con-
ceptual blindspot suppressed by all models—we
find all evaluated models fail to reproduce the
concept solid white on documents. As can
be seen in the figures, despite the caption explic-
itly referencing this concept, none of the gener-
ated images reflect the intended visual seman-
tics, suggesting that this region of the concept
space is systematically under-sampled across
models. Meanwhile, Fig. 8b highlights a model-
specific blindspot: the concept pan is accurately
captured by three models, yet conspicuously
missing from generations produced by Kandin-
sky. This reinforces the findings from Sec. 4.2,
where cross-model agreement was found to be
high in some cases but limited in others.

Conversely, in Fig. 7 we present a case of exaggeration, where the concept shadow under animal

is overly emphasized in generated images. While shadows are mildly plausible, their consistent
and pronounced rendering across models, relative to the more nuanced and variable occurrences in
natural images, suggests an overactive prior. Interestingly, despite attempts at finding concepts that
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Figure 8: • Examples of Suppressed Conceptual Blindspots. The natural images x, representative
ck and t, shown alongside four synthesized images x′, generated using Sθ. The universal blindspot is
present in all evaluated models; the unique blindspot is only present in Kandinsky.

are uniquely exaggerated by a specific model, we did not find any clear examples—this suggests
exaggerations are approximately universal.

Overall, the examples above concretely demonstrate how conceptual blindspots manifest in generated
outputs, illustrating that our energy-based diagnostic can surface both shared and model-specific
failure modes. Notably, it enables the identification of surprising model limitations—such as the
consistent failure to reproduce clear or solid background elements, like whitespaces on documents,
across all models. This raises the possibility that certain failure patterns may stem from architectural
constraints or training data biases that transcend individual model idiosyncrasies.

While these aggregate-level analyses are informative, they invite a deeper question: do these
blindspots emerge only in the aggregate across many samples, or do they manifest themselves even at
the level of individual datapoints? This finer-grained perspective allows us to probe the mechanisms
behind blindspots more directly—uncovering cases of prompt misinterpretation, latent memorization,
or both.

4.4 DATAPOINT-LEVEL ENERGY DIFFERENCE:
FROM INCONGRUENT TO MEMORIZED IMAGES

Figure 9: • Datapoint-level Conceptual Align-
ment. (a) Examples with minimal energy differ-
ences where models appear to memorize train-
ing patterns. (b) Examples with large differ-
ences where significant concept divergences due
to prompt ambiguity or model limitations occur.

To move beyond population-level statistics, we
examine individual natural vs. generated image
pairs for which the δ(.) values averaged across
all concepts exhibit the largest and smallest dif-
ferences. This analysis aids easy understanding
of model success and failures, latter of which we
find often arises from prompt ambiguity or mem-
orization artifacts. For example, Fig. 9a shows
instances with near-zero difference in average
δ(·) values. In these cases, the generated im-
ages are conceptually indistinguishable from the
original. However, qualitative inspection clearly
shows this happen not because the model faith-
fully captures the prompt semantics, but from
pure replication of memorized templates: we
see repetitive visual structures (e.g., outlines of
clothing or object arrangements), indicating that the model may be copying from overly frequent
patterns in the training data. By contrast, Fig. 9b illustrates samples that are among the largest
δ(·) values. These indicate significant conceptual divergence between the synthesized and natural
image. While some of these discrepancies can be attributed to underspecified or noisy captions, others
reveal genuine blindspots: the prompt describes a clear concept faithfully present in DX , yet the
model fails to realize it in D′

X . This failure suggests that even when language grounding is adequate,
certain concepts fall outside the model’s generative abilities. To confirm that these distributional
discrepancies reflect genuine failure cases rather than artifacts of poor data quality, we conduct a
systematic VLM-based inspection of high-divergence samples, finding that the majority (56.3% of
the 200 most diverging datapoints) constitute genuine blindspots where the caption is sufficient but
the model fails to generate the concept (see Appendix I for details).
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4.5 ANALYZING POST-TRAINING EFFECTS

Post-training protocols, e.g., safety fine-tuning, have been argued to reduce the diversity of
model generations (Kirk et al., 2023). Given our pipeline’s ability to isolate interesting dif-
ferences in a model’s generations and the ground-truth DGP, we next use it to understand
the effects of DPO—a popular safety fine-tuning protocol (Rafailov et al., 2023). Specifi-
cally, we compare two variants of the SD 1.5 model: one trained with DPO, and one without.

Figure 10: • Effect of DPO on Concept Fidelity.
Histogram of datapoint-wise energy differences
between the synthesized and natural distribution of
SD 1.5 models with and without DPO.

For each image pair (DX ,D′
X ), we compute

the ℓ2 norm of the difference between their inter-
nal concept energy vectors, ∥ξ(D′

X )−ξ(DX )∥2.
Fig. 10 presents a histogram of these datapoint-
wise energy differences. The DPO-enhanced
model exhibits both a lower median and a nar-
rower spread, indicating more consistent distri-
bution of generated concepts with the ground-
truth DGP. This suggests that DPO may serve
to regularize the model’s concept distribution,
encouraging outputs that more closely reflect
the semantic content of the seen inputs. While
our analysis does not disentangle the specific in-
ductive biases introduced by DPO, these results
provide empirical evidence that its optimization objective, which favors human-preferred generations,
indirectly promotes better match with the training distribution. In particular, it reduces both over and
under activation of individual concepts relative to the natural baseline. These findings highlight the
utility of our pipeline in characterizing the downstream effects of post-training interventions: not
merely in terms of output quality, but in how they reshape the conceptual geometry of the model’s
output space.

4.6 CONCEPTUAL MISALIGNMENT AS A FUNCTION OF EMPIRICAL FREQUENCY

Figure 11: • Concept Fidelity Across Frequency Spectrum. Scatter plots showing the relationship
between concept frequency (x-axis) and the energy difference (y-axis) across four evaluated models.
Each point represents a concept with size is proportional to its activation frequency.

We previously hypothesized that conceptual blindspots are not merely be architectural artifacts,
but may also emerge as a direct consequence of distributional peculiarities of certain features. In
this section, we empirically test this hypothesis by examining whether concepts that are rarely
activated in natural images, i.e., those in the long tail of the data distribution, lead to blindspots
in generative models. Specifically, we process the natural dataset DX through the trained SAE
and compute, for each concept k, its empirical frequency ||Z:,i||0, where Z:,i is the activations of
concept i across all our images. We then correlate this with the absolute energy difference observed
across generated outputs. Fig. 11 visualizes this relationship for all evaluated models. We find
that concepts with higher frequency in natural data tend to show lower energy discrepancies, while
rare concepts—especially suppressed ones (δ(k) < 0.5)—exhibit significant alignment errors. This
suggests that many blindspots stem not from randomness or model quirks, but from systematic effects
tied to long-tail concept distributions. Addressing these issues may require not just architectural
changes but also strategies like data reweighting or augmentation.
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5 DISCUSSION

Our analysis reveals multiple conceptual blindspots in four popular generative image models. The
results presented here, however, only scratch the surface: each individual finding could warrant
its own dedicated investigation. Rather than delving deeply into any one of these questions, we
instead showcase the versatility of our method and exploratory tool. Out of the box, they allow for
a systematic identification of concepts that models struggle to generate, detection of memorization
artifacts, discovery of datapoints with insufficient captions, quantification of post-training effects, and
characterization of conceptual shifts across model architectures. We thus open space for follow-up
work to extend the depth of analysis, scope of evaluated architectures, and inquiry into root causes
of conceptual blindspots. Future work could also explore hierarchical representations of concepts
in RA-SAE to allow for a more nuanced analysis. The core methodology presented in this paper is
modular and agnostic to the specific concept extraction model, and such an analysis would hence
require minimal adjustment to the overall process.

Beyond mere exploration and mapping of the conceptual space of existing models, our method could
also serve as grounds for targeted intervention strategies employed during training of new models.
Specifically, the energy profiles could inform prioritized sampling or reweighting, increasing the
prevalence of suppressed concepts in the training distribution, and more. The energy profiles could
also be employed into the training objective as a regularization term, explicitly penalizing deviations
from the natural concept distribution.

Limitations. We wish to highlight several limitations of our work. By relying on DINOv2 and
RA-SAE for concept extraction and representation, our approach is inherently constrained to the
kinds of concepts these models capture; concepts poorly represented by them will escape our analysis.
Additionally, while our sample size of 10,000 images is substantial, it may not fully capture the long
tail of rare concepts, concept co-occurrence, or other compositional statistics (see Appendix K).

USE OF LLMS

Large language models (LLMs) were used in parts of the implementation and during the writing of
the paper (e.g., paragraph shortening, transition refinement, etc.). AI-powered search engines were
also used to help identify some references.

REPRODUCIBILITY STATEMENT

To maximize reproducibility of our work, our code is fully open-sourced at https://github.
com/sae-diff/code-review and the web exploratory web app is available at https://sae-diff.
github.io/. This repository will also include the Conceptual Blindspots data extracted for the
models/datasets used in this paper. Furthermore, our experimental setup is clearly outlined in
Appendix D.

10

https://github.com/sae-diff/code-review
https://github.com/sae-diff/code-review
https://sae-diff.github.io/
https://sae-diff.github.io/


540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2026

REFERENCES

OpenAI. Sora: Creating video from text, 2024. URL https://openai.com/sora/.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pages 8821–8831. PMLR, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv:2112.10741, 2021.

Chen Wang, Jiatao Gu, Xiaoxiao Long, Yuan Liu, and Lingjie Liu. Geco: Generative image-to-3d
within a second. arXiv preprint arXiv:2405.20327, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. Texture: Text-guided
texturing of 3d shapes. In ACM SIGGRAPH 2023 conference proceedings, pages 1–11, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022a.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR, 2022b.

Yun-Chun Chen, Selena Ling, Zhiqin Chen, Vladimir G Kim, Matheus Gadelha, and Alec Jacobson.
Text-guided controllable mesh refinement for interactive 3d modeling. In SIGGRAPH Asia 2024
Conference Papers, pages 1–11, 2024.

Lei Zhong, Yiming Xie, Varun Jampani, Deqing Sun, and Huaizu Jiang. Smoodi: Stylized motion
diffusion model. In European Conference on Computer Vision, pages 405–421. Springer, 2024.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
only transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 19615–19625, 2024.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2. arXiv
preprint arXiv:2204.13807, 2022.

Ángel Alexander Cabrera, Abraham J Druck, Jason I Hong, and Adam Perer. Discovering and
validating ai errors with crowdsourced failure reports. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW2):1–22, 2021.

11

https://openai.com/sora/


594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2026

Rebecca Heigl. Generative artificial intelligence in creative contexts: a systematic review and future
research agenda. Management Review Quarterly, pages 1–38, 2025.

Qihao Liu, Adam Kortylewski, Yutong Bai, Song Bai, and Alan Yuille. Discovering failure modes of
text-guided diffusion models via adversarial search. arXiv preprint arXiv:2306.00974, 2023.

Colin Conwell, Rupert Tawiah-Quashie, and Tomer Ullman. Relations, negations, and numbers:
Looking for logic in generative text-to-image models. arXiv preprint arXiv:2411.17066, 2024.

Wenquan Lu, Yufei Xu, Jing Zhang, Chaoyue Wang, and Dacheng Tao. HandRefiner: Refining
malformed hands in generated images by diffusion-based conditional inpainting. In Proceedings
of the 32nd ACM International Conference on Multimedia, pages 7085–7093, 2024.

Supreeth Narasimhaswamy, Uttaran Bhattacharya, Xiang Chen, Ishita Dasgupta, Saayan Mitra,
and Minh Hoai. HanDiffuser: Text-to-image generation with realistic hand appearances. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2468–2479, 2024.

Qilong Zhangli, Jindong Jiang, Di Liu, Licheng Yu, Xiaoliang Dai, Ankit Ramchandani, Guan Pang,
Dimitris N Metaxas, and Praveen Krishnan. Layout-agnostic scene text image synthesis with
diffusion models. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7496–7506. IEEE Computer Society, 2024.

Forouzan Fallah, Maitreya Patel, Agneet Chatterjee, Vlad I Morariu, Chitta Baral, and Yezhou
Yang. TextInVision: Text and prompt complexity driven visual text generation benchmark.
arXiv:2503.13730, 2025.

Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang, and
Zhen Zhuang. Text-to-image diffusion models cannot count, and prompt refinement cannot help.
arXiv preprint arXiv:2503.06884, 2025.

Colin Conwell and Tomer Ullman. Testing relational understanding in text-guided image generation.
arXiv preprint arXiv:2208.00005, 2022.

Mahzarin R Banaji and Anthony G Greenwald. Blindspot: Hidden biases of good people. Bantam,
2016.

George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
generative model evaluation metrics and their unfair treatment of diffusion models. Advances in
Neural Information Processing Systems, 36:3732–3784, 2023.

Boheng Wang, Yunhuai Zhu, Liuqing Chen, Jingcheng Liu, Lingyun Sun, and Peter Childs. A study
of the evaluation metrics for generative images containing combinational creativity. AI EDAM, 37:
e11, 2023a.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 7514–7528, 2021.

Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, and Bernhard Kainz.
Image generation diversity issues and how to tame them. arXiv:2411.16171, 2024.

Jaehui Hwang, Junghyuk Lee, and Jong-Seok Lee. Anomaly score: Evaluating generative models
and individual generated images based on complexity and vulnerability. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8754–8763, 2024.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv:1511.01844, 2015.

12



648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2026

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International conference on machine
learning, pages 7176–7185. PMLR, 2020.

Vitali Petsiuk, Alexander E Siemenn, Saisamrit Surbehera, Zad Chin, Keith Tyser, Gregory Hunter,
Arvind Raghavan, Yann Hicke, Bryan A Plummer, Ori Kerret, et al. Human evaluation of text-to-
image models on a multi-task benchmark. arXiv:2211.12112, 2022.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903–15935, 2023.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. 2023a.

David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and Antonio
Torralba. Seeing what a GAN cannot generate. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4502–4511, 2019.

Julius Von Kugelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Scholkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Scholkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
gled representations. Proceedings of the International Conference on Machine Learning (ICML),
2019.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Bren-
del. Contrastive learning inverts the data generating process. Proceedings of the International
Conference on Machine Learning (ICML), 2021.

Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Scholkopf. The
incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. Uncertainty
in Artificial Intelligence, 2020.

Luigi Gresele, Julius Von Kugelgen, Vincent Stimper, Bernhard Scholkopf, and Michel Besserve.
Independent mechanism analysis, a new concept? Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural Information
Processing Systems, 36:50173–50195, 2023.

Core Francisco Park, Maya Okawa, Andrew Lee, Ekdeep S Lubana, and Hidenori Tanaka. Emergence
of hidden capabilities: Exploring learning dynamics in concept space. Advances in Neural
Information Processing Systems, 37:84698–84729, 2024.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov,
Ilya Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov.
Kandinsky: An improved text-to-image synthesis with image prior and latent diffusion. arXiv
preprint arXiv:2310.03502, 2023.

Stability AI. Stable Diffusion 2.0 Release, 2022. URL https://stability.ai/news/

stable-diffusion-v2-release.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023a.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders
and nonlinear ica: A unifying framework. Proceedings of the International Conference on Machine
Learning (ICML), 2020.

13

https://stability.ai/news/stable-diffusion-v2-release
https://stability.ai/news/stable-diffusion-v2-release


702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2026

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 859–868. PMLR, 2019.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. ArXiv e-print, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits Thread, 2022.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023.

Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Papadim-
itriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal SAE: Adaptive
and stable dictionary learning for concept extraction in large vision models. 2025.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. ArXiv e-print, 2023.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. Proceedings of the
International Conference on Learning Representations (ICLR), 2025.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward
Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling
monosemanticity: Extracting interpretable features from claude 3 sonnet. Transformer Circuits
Thread, 2024.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramar, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. ArXiv e-print, 2024.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. Proceedings of the International
Conference on Learning Representations (ICLR), 2013.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. Proceed-
ings of the International Conference on Machine Learning (ICML), 2017.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity
checks for saliency maps. Advances in Neural Information Processing Systems (NIPS), 2018.

14



756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2026

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2017.

Peter Hase and Mohit Bansal. Evaluating explainable ai: Which algorithmic explanations help users
predict model behavior? Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2020.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). Proceedings of the International Conference on Machine Learning (ICML), 2018.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023a.

Matthew Kowal, Achal Dave, Rares Ambrus, Adrien Gaidon, Konstantinos G Derpanis, and Pavel
Tokmakov. Understanding video transformers via universal concept discovery. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Thomas Fel, Victor Boutin, Mazda Moayeri, Remi Cadene, Louis Bethune, Mathieu Chalvidal,
and Thomas Serre. A holistic approach to unifying automatic concept extraction and concept
importance estimation. Advances in Neural Information Processing Systems (NeurIPS), 2023b.

David Chanin, James Wilken-Smith, Tomas Dulka, Hardik Bhatnagar, and Joseph Bloom. A is for
absorption: Studying feature splitting and absorption in sparse autoencoders. ArXiv e-print, 2024.

Martin Wattenberg and Fernanda B Viegas. Relational composition in neural networks: A survey and
call to action. ArXiv e-print, 2024.

Usha Bhalla, Suraj Srinivas, Asma Ghandeharioun, and Himabindu Lakkaraju. Towards unifying
interpretability and control: Evaluation via intervention. ArXiv e-print, 2024.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. arXiv preprint arXiv:2503.17547, 2025.

Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting CLIP with hierarchical
sparse autoencoders. arXiv:2502.20578, 2025.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. ArXiv e-print, 2024.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

Arpita Chowdhury, Dipanjyoti Paul, Zheda Mai, Jianyang Gu, Ziheng Zhang, Kazi Sajeed Mehrab,
Elizabeth G Campolongo, Daniel Rubenstein, Charles V Stewart, Anuj Karpatne, et al. Prompt-
CAM: A simpler interpretable transformer for fine-grained analysis. arXiv:2501.09333, 2025.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T Freeman,
and Antonio Torralba. GAN dissection: Visualizing and understanding generative adversarial
networks. 2018.

Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Kumar, Pontus
Stenetorp, Jimmy Lin, and Ferhan Ture. What the DAAM: Interpreting stable diffusion using cross
attention. 2022.

Ali Borji. Qualitative failures of image generation models and their application in detecting deepfakes.
Image and Vision Computing, 137:104771, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

15



810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020a.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pages 8162–8171. PMLR, 2021.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, and Mingyu Ding.
VDT: General-purpose video diffusion transformers via mask modeling. arXiv preprint
arXiv:2305.13311, 2023.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
elScope text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023b.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
Dahua Lin, and Bo Dai. AnimateDiff: Animate your personalized text-to-image diffusion models
without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

Shanchuan Lin and Xiao Yang. AnimateDiff-Lightning: Cross-model diffusion distillation. arXiv
preprint arXiv:2403.12706, 2024.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. CogVideo: Large-scale
pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868, 2022.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo
Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. VideoCrafter1: Open diffusion models for
high-quality video generation. arXiv preprint arXiv:2310.19512, 2023b.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7623–7633, 2023b.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-resolution text-to-3d content
creation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 300–309, 2023.

Heewoo Jun and Alex Nichol. Shap-E: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12619–12629, 2023c.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020b.

Stability AI. Introducing Stable Diffusion 3, 2024. URL https://stability.ai/news/

stable-diffusion-3.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

16

https://stability.ai/news/stable-diffusion-3
https://stability.ai/news/stable-diffusion-3


864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2026

Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. StyleDrop: Text-to-image generation in any
style. arXiv preprint arXiv:2306.00983, 2023.

Zhihong Pan, Xin Zhou, and Hao Tian. Arbitrary style guidance for enhanced diffusion-based
text-to-image generation. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 4461–4471, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3836–3847, 2023.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pages 22500–22510,
2023.

Darian Tomavsevic, Fadi Boutros, Chenhao Lin, Naser Damer, Vitomir Struc, and Peter Peer. Id-
booth: Identity-consistent face generation with diffusion models. arXiv preprint arXiv:2504.07392,
2025.

Stability AI. DeepFloyd IF: A Powerful Open-Source Text-to-Image Model, 2023. URL https:

//stability.ai/news/deepfloyd-if-text-to-image-model.

Black Forest Labs. Announcing Black Forest Labs, 2024. URL https://blackforestlabs.ai/

announcing-black-forest-labs/.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. LAION-5B:
An open large-scale dataset for training next generation image-text models. Advances in neural
information processing systems, 35:25278–25294, 2022.

Common Crawl. Common crawl corpus. https://commoncrawl.org, 2017.

Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon Kim.
COYO-700M: Image-text pair dataset, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual Captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of ACL, 2018.

Abeba Birhane, Sanghyun Han, Vishnu Boddeti, Sasha Luccioni, et al. Into the LAION’s den:
Investigating hate in multimodal datasets. Advances in neural information processing systems, 36:
21268–21284, 2023.

Abeba Birhane, Sepehr Dehdashtian, Vinay Prabhu, and Vishnu Boddeti. The dark side of dataset
scaling: Evaluating racial classification in multimodal models. In Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Transparency, pages 1229–1244, 2024.

Preethi Seshadri, Sameer Singh, and Yanai Elazar. The bias amplification paradox in text-to-image
generation. arXiv preprint arXiv:2308.00755, 2023.

17

https://stability.ai/news/deepfloyd-if-text-to-image-model
https://stability.ai/news/deepfloyd-if-text-to-image-model
https://blackforestlabs.ai/announcing-black-forest-labs/
https://blackforestlabs.ai/announcing-black-forest-labs/
https://commoncrawl.org


918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2026

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: Misogyny,
pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963, 2021.

David Thiel. Identifying and eliminating CSAM in generative ml training data and models. Stanford
Internet Observatory, Cyber Policy Center, December, 23:3, 2023.

Ali Shirali and Moritz Hardt. What makes ImageNet look unlike LAION. arXiv preprint
arXiv:2306.15769, 2023.

Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt. Improving
multimodal datasets with image captioning. Advances in Neural Information Processing Systems,
36:22047–22069, 2023.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 1996.

Michael Elad. Sparse and redundant representations: from theory to applications in signal and image
processing. 2010.

Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision, 2014.

David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 2006.

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 2006.

Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 1982.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 1999.

Nicolas Gillis. Nonnegative matrix factorization. 2020.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 2006.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. Proceedings of the International Conference on Machine Learning (ICML), 2009.

Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal component
analysis. International Conference on Artificial Intelligence and Statistics, 2010.

Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. The
Journal of Machine Learning Research (JMLR), 2012.

Jean Barbier and Nicolas Macris. Statistical limits of dictionary learning: random matrix theory and
the spectral replica method. Physical Review E, 2022.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional dictionary learning via local
processing. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017.

Alex Tamkin, Mohammad Taufeeque, and Noah D Goodman. Codebook features: Sparse and discrete
interpretability for neural networks. ArXiv e-print, 2023.

Berk Tinaz, Zalan Fabian, and Mahdi Soltanolkotabi. Emergence and evolution of interpretable
concepts in diffusion models. arXiv:2504.15473, 2025.

Viacheslav Surkov, Chris Wendler, Mikhail Terekhov, Justin Deschenaux, Robert West, and Caglar
Gulcehre. Unpacking SDXL turbo: Interpreting text-to-image models with sparse autoencoders.
ArXiv e-print, 2024.

18



972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

Akshay Kulkarni, Ge Yan, Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Interpretable
generative models through post-hoc concept bottlenecks. arXiv preprint arXiv:2503.19377, 2025.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv
preprint arXiv:2205.15480, 2022.

Can Demircan, Tankred Saanum, Akshay K Jagadish, Marcel Binz, and Eric Schulz. Sparse
autoencoders reveal temporal difference learning in large language models. arXiv preprint
arXiv:2410.01280, 2024.

Matthew Lyle Olson, Musashi Hinck, Neale Ratzlaff, Changbai Li, Phillip Howard, Vasudev Lal, and
Shao-Yen Tseng. Analyzing hierarchical structure in vision models with sparse autoencoders. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pages 4835–4839, 2025.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of the
27th international conference on international conference on machine learning, pages 399–406,
2010.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence of
unfolded ista and its practical weights and thresholds. Advances in Neural Information Processing
Systems, 31, 2018.

Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learning step sizes for
unfolded sparse coding. Advances in Neural Information Processing Systems, 32, 2019.

Bahareh Tolooshams and Demba Ba. Stable and interpretable unrolled dictionary learning. arXiv
preprint arXiv:2106.00058, 2021.

Benoît Malézieux, Thomas Moreau, and Matthieu Kowalski. Understanding approximate and unrolled
dictionary learning for pattern recovery. arXiv preprint arXiv:2106.06338, 2021.

Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for
sparse coding. In Conference on learning theory, pages 113–149. PMLR, 2015.

Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting assumptions:
The duality between sparse autoencoders and concept geometry. arXiv preprint arXiv:2503.01822,
2025.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Jingyi Xu, Hieu Le, and Dimitris Samaras. Assessing sample quality via the latent space of generative
models. In European Conference on Computer Vision, pages 449–464. Springer, 2024.

Iro Laina, Yuki M Asano, and Andrea Vedaldi. Measuring the interpretability of unsupervised
representations via quantized reverse probing. arXiv:2209.03268, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PmLR, 2021.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. Proceedings of the International Conference on Machine
Learning (ICML), 2020.

Chris Hamblin, Thomas Fel, Srijani Saha, Talia Konkle, and George Alvarez. Feature accentuation:
Revealing’what’features respond to in natural images. ArXiv e-print, 2024.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

19



1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Related Work 22

A.1 Explainability in Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.2 Generative Image Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.3 Datasets for Generative Image Models . . . . . . . . . . . . . . . . . . . . . . . . 22

A.4 Concept Discovery and Sparse Coding in Generative Image Models . . . . . . . . 23

B Comparison with Existing Approaches 24

C Exploratory Tool 25

D Experimental Setup 26

D.1 Observation Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2 Synthesized Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.3 • Distribution Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.4 • Datapoint Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.5 • Co-occurrence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E Computational Resources 28

F Custom RA-SAE 29

F.1 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F.2 Autointerpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F.3 Examples of Learned Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

G Additional Results: Qualitative Examples of Blindspots 36

G.1 Model-Specific Blindspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

G.2 Stress Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

G.2.1 Bird Feeder Blindspot in Kandinsky . . . . . . . . . . . . . . . . . . . . 39

G.2.2 Glossy DVD Disc Blindspot in SD 1.5 . . . . . . . . . . . . . . . . . . . 40

H Additional Results: Higher-order Blindspots with Compositional Discrepancy 41

I Additional Results: Caption Noise in High Divergence 43

I.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

I.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

I.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

J Additional Results: SAE Error Cases 44

J.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

J.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

20



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2026

J.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

J.3.1 Error Cases: Natural Images . . . . . . . . . . . . . . . . . . . . . . . . . 47

J.3.2 Error Cases: AI-Generated Images . . . . . . . . . . . . . . . . . . . . . . 47

K Concentration bounds for δ 48

L Monotonicity and Calibration-Free Interpretation of δ 49

M Stability of FID Under SAE Embeddings 50

N Additional Examples of Synthesized Images 52

21



1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 EXPLAINABILITY IN VISION

Early work in explainable AI, including computer vision, focused on methods for attribution of
influential input regions Simonyan et al. (2013); Sundararajan et al. (2017); Selvaraju et al. (2017).
However, these methods offered limited semantic information about learned representations and often
produced incorrect explanations Adebayo et al. (2018); Ghorbani et al. (2017); Hase and Bansal
(2020). To address these issues, concept-based interpretability Kim et al. (2018) emerged to identify
semantically meaningful directions in neural networks, revealing not just where they look but what
concepts and structures they employ Bau et al. (2017); Fel et al. (2023a); Kowal et al. (2024).

Recent work demonstrates that popular concept-based interpretability methods—ACE Ghorbani et al.
(2017), CRAFT Fel et al. (2023a), and Sparse Autoencoders (SAEs)Cunningham et al. (2023); Bricken
et al. (2023)—essentially address the same dictionary learning task under different constraintsFel et al.
(2023b). Out of these approaches, sparse autoencoders (SAEs) have emerged as particularly scalable
for concept-based interpretability. While recent studies reveal some limitations of the original SAEs—
including overly specific features Chanin et al. (2024), compositionality challenges Wattenberg and
Viegas (2024), and limited intervention effects Bhalla et al. (2024)—improved SAE versions have
emerged, including archetypal SAE (RA-SAE) Fel et al. (2025), hierarchical approaches Bussmann
et al. (2025); Zaigrajew et al. (2025), and variants addressing specific architectural choices Bussmann
et al. (2024); Makhzani and Frey (2014).

Beyond SAEs, other interpretability methods include prompt-based probing Chowdhury et al. (2025),
attention map or activation visualizations Bau et al. (2018); Tang et al. (2022), and dataset-level
statistics Dombrowski et al. (2024); Hwang et al. (2024) (e.g., diversity or distribution coverage
metrics) offer only partial insights to answer these questions. Crucially, they lack granularity, focusing
on full images or prompts instead of fine-grained features and concepts Theis et al. (2015); Naeem
et al. (2020). Furthermore, they depend on subjective interpretation and do not distinguish between
various failure models Borji (2023). The existing methods and metrics are hence inadequate in
systematically identifying feature- and concept-level weaknesses of generative image models Stein
et al. (2023).

A.2 GENERATIVE IMAGE MODELS

Diffusion-based methods have become dominant across various modalities in generative vision
modeling, including image Saharia et al. (2022); Ramesh et al. (2022); Song et al. (2020a; 2023);
Nichol and Dhariwal (2021), video Ho et al. (2022); Lu et al. (2023); Wang et al. (2023b); Guo
et al. (2023); Lin and Yang (2024); Hong et al. (2022); Chen et al. (2023b); Wu et al. (2023b), and
3D Poole et al. (2022); Lin et al. (2023); Jun and Nichol (2023); Wang et al. (2023c). In the domain
of image generation, this can be traced back to denoising diffusion probabilistic models (DDPMs) Ho
et al. (2020), which were later extended to non-Markov diffusion processes with denoising diffusion
implicit models (DDIMs) Song et al. (2020b).

The Stable Diffusion (SD) Rombach et al. (2022) model family made DDMPs highly accessible
both in the research and open-source communities. The original SD was followed by several
subsequent versions, including SD 2 Stability AI (2022), SD 3 Stability AI (2024), SD XL Podell
et al. (2023). Many modifications and extensions of the SD architecture have emerged, enabling
additional constraints for the diffusion process (e.g., style Sohn et al. (2023); Pan et al. (2023),
pose Zhang et al. (2023), and identity Ruiz et al. (2023); Tomavsevic et al. (2025)) as well as different
input modalities, such as image-to-image generation. Different Latent Diffusion Models built on top
of SD—including Kandinsky Razzhigaev et al. (2023), PixArt Chen et al. (2023a), DeepFloyd Saharia
et al. (2022); Stability AI (2023), and FLUX Black Forest Labs (2024)—have also emerged.

A.3 DATASETS FOR GENERATIVE IMAGE MODELS

The recent success of generative vision models is largely attributed to the abundance of computational
resources and large-scale internet datasets Dosovitskiy et al. (2020); Yu et al. (2022); Hestness et al.
(2017). Specifically, LAION-5B Schuhmann et al. (2022) has played a key role in the training of
open-source text-to-image models, including SD and its derivatives. This dataset, scraped from
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Common Crawl Common Crawl (2017), contains over 5B image-caption pairs, 2.3B of which are
in English. Other prominent datasets include COYO-700M Byeon et al. (2022) and Conceptual
Captions Sharma et al. (2018), with 700M and 3M image-caption pairs, respectively.

As LAION-5B gained popularity, concerns grew over its biases Birhane et al. (2023; 2024); Seshadri
et al. (2023); Birhane et al. (2021); Thiel (2023). Despite filtering attempts, harmful content per-
sisted Birhane et al. (2023; 2024); Seshadri et al. (2023), including NSFW material Birhane et al.
(2021) and hundreds of CSAM instances Thiel (2023), prompting its temporary removal from official
channels. The dataset also suffers from low-quality images Shirali and Hardt (2023) and internet-style
captions (e.g., product descriptions) that misalign with how users prompt trained models Nguyen
et al. (2023).

A.4 CONCEPT DISCOVERY AND SPARSE CODING IN GENERATIVE IMAGE MODELS

Dictionary learning seeks to find sparse representations of input data, where each sample can be recon-
structed using a linear combination of few dictionary atoms Olshausen and Field (1996); Elad (2010);
Mairal et al. (2014). Built upon compressed sensing theory Donoho (2006); Candès et al. (2006),
the field evolved from early vector quantization methods Lloyd (1982) to sophisticated approaches
including Non-negative Matrix Factorization Lee and Seung (1999); Gillis (2020), Sparse PCA Zou
et al. (2006), and K-SVD Aharon et al. (2006). Recent advances include online methods Mairal et al.
(2009), structured sparsity Jenatton et al. (2010), and theoretical guarantees Spielman et al. (2012);
Barbier and Macris (2022), alongside growing connections to deep learning Papyan et al. (2017);
Tamkin et al. (2023).

Advances in sparse coding have also been leveraged to study the emergence of high-level concepts
inside diffusion models Tinaz et al. (2025); Surkov et al. (2024). Prior to diffusion models, concept-
grounded interpretability has been deployed to earlier generative architectures through concept-
bottleneck models, which require human intervention at training time Kulkarni et al. (2025), and
post-hoc detectors that retrofit concept supervision Yuksekgonul et al. (2022). However, both of
these approaches require human-defined concepts and hence inherently miss broader trends that the
user does not explicitly register. Recent work has also explored SAE applications to understanding
temporal dynamics in language models Demircan et al. (2024), hierarchical structure in vision
models Olson et al. (2025), and theoretical connections between autoencoders and sparse coding
through unrolled optimization approaches Gregor and LeCun (2010); Chen et al. (2018); Ablin et al.
(2019); Tolooshams and Ba (2021); Malézieux et al. (2021); Arora et al. (2015); Hindupur et al.
(2025).

Aggregate metrics (e.g., precision, recall, density, and coverage Kynkäänniemi et al. (2019); Naeem
et al. (2020)) and latent density scores, which predict sample quality based on the model’s latent
space Xu et al. (2024), have emerged to evaluate generative image model capabilities. While these
effectively uncover distributional gaps, they offer little insight into specific concepts that are under-
or over-represented.

Together, these limitations motivate a scalable, unsupervised framework that can systematically
identify and quantify concept-level failure modes in generative image models Laina et al. (2022).

23



1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2026

B COMPARISON WITH EXISTING APPROACHES

Table 1 summarizes the existing approaches for evaluating consistency and semantic coverage of
generative image models, and compares them to our method.

Fréchet Inception Distance (FID), Heusel et al. (2017). This metric embeds images using
Inception-v3 and calculates the Wasserstein-2 distance between natural and generated distribu-
tions. While it is regularly used to encode the overall quality of a model, it aggregates many potential
failure modes into a single scalar. It is hence incapable of surfacing specific conceptual blindspots.

CLIPScore, Radford et al. (2021). CLIPScore computes the cosine similarity between the em-
beddings of a text prompt and a generated image to assess their consistency. This method is bound
by the prompt itself; it cannot detect blindspots for concepts that are not explicitly included in the
evaluation prompt set.

Improved Precision and Recall, Kynkäänniemi et al. (2019). This evaluation framework esti-
mates the manifold of real and generated data using k-Nearest Neighbor (k-NN) radii to separately
quantify precision (fidelity) and recall (coverage). While a drop in recall implies the existence of
distributional blindspots (mode collapse), the metric cannot identify which concepts are missing.

GAN Dissection, Bau et al. (2018). This method correlates the activation maps with semantic
segmentation masks to identify units responsible for specific concepts. Although it offers high granu-
larity, it is computationally intensive and limited to the fixed vocabulary of the external segmentation
network used for supervision.

Adversarial Search (SAGE), Liu et al. (2023). SAGE treats the generative image model as an
adversary and optimizes over text tokens to discover prompts that maximize divergence from a surro-
gate classifier. While effective at identifying specific error cases, it lacks a structured representation
of the full conceptual space, and the iterative optimization makes it prohibitively expensive.

Concept Bottleneck Models (CBMs), Koh et al. (2020). These architectures explicitly force the
neural network to compress information into a layer where neurons correspond to pre-defined human
concepts. This requires training models from scratch with concept-labeled data, making it unsuitable
for the post-hoc evaluation of pre-trained foundation models.

Table 1: Comparison of Approaches to Identifying Conceptual Blindspots in Image Models.

Method Specificity Unsupervised Scalability Exaggeration

FID ✗ ✓ ∼ ✗

Precision & Recall ✗ ✓ ∼ ✗

CLIPScore ✗ ✗ ∼ ✗

GAN Dissection ✓ ✗ ✗ ✓

SAGE ✓ ✗ ✗ ✗

CBMs ✓ ✗ ✗ ✗

Human Evaluation ✓ ✓ ✗ ✓

Our Method ✓ ✓ ✓ ✓

Evaluation Criteria

1. Specificity. The method supports a notion of discrete concepts (these may be defined in text,
via examples, a dictionary or otherwise; there may also exist a taxonomy/hierarchy).

2. Unsupervised. For a specific concept to be deemed as a blindspot, the method does not
require for the user to explicitly define or describe it.

3. Scalability. The complete conceptual space of the evaluated model, as conceptualized by
the framework, can be feasibly searched (given a conceptual space of ≥ 1,000 concepts).

4. Exaggeration. The method can detect both suppression and exaggeration.
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C EXPLORATORY TOOL

Shown in Figure 12 is an overview of the exploratory tool developed alongside this project to facilitate
inspection and comparison of concept-level energy differences. The tool is a web-based interface
built around a UMAP projection of concept representations, enabling visualization and comparison of
concept-level energy differences. It is publicly available at https://sae-diff.github.io/, along
with pre-computed energy difference data for the four models evaluated in this work (SD 1.5, SD 2.1,
PixArt, and Kandinsky). All subsequent analyses in this paper are derived from insights enabled by
this tool. Its primary functionalities, which support these analyses, include:

• Contrast different models and architectures. For each evaluated model, the tool provides
a UMAP visualization spanning all 32,000 concepts from the RA-SAE. Each scatter point
represents an individual concept, color-coded by its energy difference.

• Inspect concepts. Each concept has a card with key statistics, representative real and
generated images (x, x′), and visualized co-occurrence patterns.

• Explore blindspots. Beyond the UMAP and per-concept views, the tool features global
rankings of suppressed and exaggerated blindspots, helping to highlight the most notable
conceptual blindspots.

Figure 12: Overview of the Exploratory Tool. The web interface displays a UMAP projection for
each evaluated model, where each dot represents a concept, color-coded by its energy difference.
When a concept is selected, a detail panel presents illustrative images, statistics, and the most
representative natural and generated images x and x′. An ordered list of the concept’s co-occurrences
is shown alongside global rankings of blindspots.
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D EXPERIMENTAL SETUP

This section details the experimental setup for our analysis of four popular generative image models:
SD 1.5/2.1, Kandinsky, and PixArt, all trained on LAION-5B or its subsets/derivatives. The code is
available at https://github.com/sae-diff/code-review.

D.1 OBSERVATION SPACE

The observation space is constructed by sampling 10, 000 image-text pairs from the LAION-5B
dataset Schuhmann et al. (2022), which serves as our domain of natural images. Due to concerns
with CSAM and other unsafe content in the dataset, the original data release is no longer available. A
substitute release of a subset of this dataset with additional filtering of the unsafe content, available at
https://huggingface.co/datasets/laion/relaion2B-en-research-safe, is used.

The sampling procedure consists of: (1) loading the full LAION dataset using the Hugging Face
datasets library, (2) performing validation to ensure proper URL structure and resource availability
via HTTP HEAD requests, and (3) employing random sampling with replacement until reaching the
target count of 10, 000 valid samples. This approach, yielding DG with (x, t) tuples, ensures our
observation space contains accessible image-text pairs for comparative analysis of a dataset of image
URLs whose large portion has been made unavailable since original release. Additional examples of
synthesized images are shown in Appendix N.

D.2 SYNTHESIZED IMAGES

For each of the four evaluated models, we generate a synthetic dataset Dgθ
to have a one-to-one

correspondence with DG, yielding triplets (x,x′, t). Specifically, given the 10,000 image-text pairs
(x, t) from DG, we use t to synthesize counterpart images x′ using each generative model gθ .

The synthesis process follows the standard text-to-image generation pipeline for each model archi-
tecture, implemented using the Hugging Face diffusers library, where the models are loaded at
mixed precision (fp16). All synthetic images are generated at 512× 512 pixel resolution with default
parameters.

Stable Diffusion 1.5. The checkpoint from https://huggingface.co/benjamin-paine/

stable-diffusion-v1-5 (which is a mirror of the deprecated https://huggingface.co/

ruwnayml/stable-diffusion-v1-5) is used. Inference is performed using 50 inference steps,
with the guidance scale fixed at 7.5.

Stable Diffusion 1.5 + DPO. The DPO variant of SD 1.5 (used in the analysis in Sec. 4.5) follows
the baseline SD 1.5 implementation, but replaces the UNet component with a DPO-trained version
from https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1.

Stable Diffusion 2.1. The checkpoint from https://huggingface.co/stabilityai/

stable-diffusion-2-1 is used. Inference is performed using 50 inference steps, with the
guidance scale fixed at 7.5.

Kandinsky. The checkpoint from https://huggingface.co/kandinsky-community/

kandinsky-2-1 is used. Inference is performed using 100 inference steps, with the guid-
ance scale fixed at 4.0.

PixArt. The checkpoint from https://huggingface.co/PixArt-alpha/

PixArt-XL-2-1024-MS is used. Inference is performed using 50 inference steps, with the
guidance scale fixed at 7.5.

D.3 • DISTRIBUTION LEVEL ANALYSIS

Section 4.1. We compute energy differences δ(·) across all 32,000 concepts for each evaluated
model. The sigmoid transformation with temperature T = 0.8 is applied during normalization. The
resulting values are visualized as log-scale density histograms with 100 bins spanning [0, 1].
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Section 4.2. We embed the complete set of 32,000 concepts into two-dimensional space using
UMAP applied to the sparse concept codes. Each point in this UMAP represents an individual con-
cept, colored according to its energy difference δ(.), emphasizing both suppressed and exaggerated
blindspots. To quantify cross-model consistency, we compute pairwise Pearson correlation coeffi-
cients between δ(.) vectors of all model pairs, producing both scatter plots and correlation matrices.
This analysis reveals whether blindspots cluster in conceptual space and identifies model-specific
versus universal patterns of conceptual blindspots.

Section 4.3. We rank all 32,000 concepts by their energy difference δ(.), and manually examine the
extrema (both suppressed and exaggerated blindspots). For suppressed blindspots, we select concepts
with δ(.) < 0.1; for exaggerated blindspots, we choose those with δ(.) < 0.9. Presented examples
are manually annotated with textual descriptions of the respective concepts through inspection of
their most activating images and spatial attention patterns. We outline ongoing efforts to automate
this concept interpretation in Appendix F.2.

Section 4.5. We compare 1.5 with and without DPO in the following fashion: for each image
pair (x,x′), we compute the L2 norm of the difference between their concept energy vectors
∥ξ(x′)− ξ(x)∥2. We apply a sigmoid transformation with temperature T = 0.8 to the element-wise
differences before taking their mean. This yields datapoint-wise energy differences that quantify how
much each generated image deviates from its natural counterpart in concept space. Finally, these
differences are visualized as overlapping histograms, contrasting both model variants.

Section 4.6. For each concept ck, its empirical frequency ||Z:,i||0 (the count of non-zero activations
across the natural dataset) is counted. A sigmoid normalization with temperature T = 0.4 is then
applied to the energy differences δ(.) The analysis is visualized using scatter plots where the x-axis is
the empirical concept frequency and the y-axis is the sigmoid-transformed energy difference. The
point sizes are proportional to activation frequency and point colors are proportional to the magnitude
of energy differences.

D.4 • DATAPOINT LEVEL ANALYSIS

Section 4.4. For each image pair (x,x′), we compute the L2 norm of the difference between their
concept energy vectors ∥ξ(x′)− ξ(x)∥2. This yields a scalar measure of conceptual divergence for
each image pair. The samples are ranked by their energy differences. Minimal divergence indicate
potential memorization artifacts and maximal divergence point to significant conceptual failures. This
analysis enables qualitative inspection of specific failure modes.

D.5 • CO-OCCURRENCE ANALYSIS

Appendix H For both the natural and synthesized data DG and Dgθ
, concept co-occurrence

patterns are analyzed through the co-activation matrix ZTZ, which holds pair-wise correlations
in concept usage. Spectral analysis is performed to examine the dominant conceptual directions
using eigendecomposition. The alignment between natural and synthetic co-occurrence structures is
assessed using cosine similarity heatmaps between the top-100 eigenvectors of each co-occurrence
matrix. These 100×100 similarity matrices are visualized as square heatmaps where perfect diagonal
alignment would indicate identical principal concept axes, while off-diagonal patterns reveal would
revolve rotations and mismatches in compositional geometry.
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E COMPUTATIONAL RESOURCES

This section summarizes the GPU resources used for training and experiments in support of this
paper. In total, we used approximately 202 GPU-hours on NVIDIA H100s and H200s.

RA-SAE. Trained for approximately 24 GPU-hours on three NVIDIA H100s.

Synthesized Images. Generating the full Dgθ
(see Appendix D) took roughly 5 hours per generator

when distributed across four NVIDIA H200 GPUs. With five generators, this totaled approximately
100 GPU-hours on a NVIDIA H200.

• Distribution-Level Analysis. Extracting energy differences at the distribution level took about 3
hours per generator on a single NVIDIA H200 GPU (total ∼ 15 GPU-hours).

• Datapoint-Level Analysis. Computing datapoint-level energy differences, ranking concepts per
datapoint, and ranking datapoints per concept also took approximately 3 hours per generator on one
H200 GPU (total ∼ 15 GPU-hours).
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F CUSTOM RA-SAE

This section introduces our custom relaxed archetypal sparse autoencoder (RA-SAE), its training
configuration, autointerpretability pipeline, and examples of learned concepts. The model is open-
sourced at anonymized.

Sparse Autoencoders. SAEs decompose the high-dimensional activation space of models into
sparse, human-interpretable concepts. Specifically, SAEs enforce a sparsity constraint so that each
activation vector is reconstructed using only a small subset of learned feature directions (i.e. concepts),
which helps disentangle overlapping information (superposition) into more separable parts. Once
trained, each concept is assigned a human-interpretable label, either by human annotators or via
autointerpretability pipelines (for example using a vision-language model). To assist with this labeling,
high-activating exemplars (inputs that yield strong activation for that concept) are identified, and
recurring visual or semantic patterns across those exemplars are described.

Archetypal SAEs. Regular SAEs suffer from instability: small changes in initialization, data,
or training can lead to different learned dictionaries. Archetypal SAEs (A-SAEs) mitigate this by
constraining dictionary atoms (feature directions) to lie within the convex hull of the data; that is,
each concept vector must be expressible as a convex combination of actual activation vectors from
the data. This geometric anchoring forces the learned features (atoms) to be more directly tied to the
underlying data, improving stability. Relaxed Archetypal SAEs (RA-SAEs) loosen this constraint
somewhat to allow more flexibility (better reconstruction ability) while retaining much of the stability
benefits. Empirically, RA-SAEs have been found to match or outperform regular SAEs in benchmarks
of plausibility (how well learned directions recover known classification or semantic directions) and
identifiability (how well they disentangle synthetic mixtures of concepts), producing more stable and
semantically meaningful concepts.

Our Configuration. Our custom RA-SAE was trained on top of DINOv2 representations using the
Top-K sparsity constraint Gao et al. (2025). It has 32, 000 concepts, making it largest RA-SAE to
date. Training details are reported in App. F.1. We describe the autointerpretability pipeline to assign
labels to concepts in App. F.2. Finally, examples of concepts learned by the RA-SAE are given in
App. F.3

F.1 TRAINING DETAILS

Dataset. The auto-encoder is trained on the complete ImageNet-1k training split, (≈1.28M) RGB
images. Each image is converted to 261 visual tokens using DINOv2 Oquab et al. (2023); tokens are
fed to the SAE without class or position embeddings. The total number of training tokens is therefore
50× 1.28M × 261 ≈ 1.67× 1010.

Dictionary. The dictionary has 32,000 concept dimensions. For the sparse activation rule, top-k
masking with k = 5, is used; activations outside the largest five per input are set to 0. The weights
are initialized using Xavier/Glorot. The training is conducted at mixed precision (fp16), with the last
ten epochs performed at full precision.

Optimizer and Schedule. The model is trained for 50 epochs using base AdamW (β1 = 0.9,
β2 = 0.999) optimizer is employed with weight decay set to 10−5. Linear warm-up is applied on the
first 5% of steps, followed by cosine decay from ηmax = 5× 10−4 to ηfinal = 10−6. MSE loss is used
alongside an auxiliary term penalizing activations that never enter the top-k set, where λ = 10−5.
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F.2 AUTOINTERPRETABILITY

In an effort to automate the interpretation of concepts identified by the RA-SAE, we qualitatively
evaluated the ability of Vision-Language Models (VLMs) to describe them. In particular, we queried
ChatGPT 4o via the OpenAI API using various prompts and formats of an image x′′ in which the
given concept was salient, recording the description generated by the VLM. In this section, we
highlight the findings from our exploration. For evaluation purposes, we allowed the VLM to provide
its full reasoning; to make this a scalable solution, a simple modification of the prompt—asking the
VLM to provide only the description—would filter out the reasoning.

First, we provided the VLM with two images: a raw version of x′′ and x′′ with a heatmap superim-
posed to localize the intensity of the concept:

As seen in the example, the VLM did not interpret the heatmap visualization correctly. Instead of
describing the wood texture in the background—the actual salient region—it described the ring in the
foreground, which received no attention from the RA-SAE.

To determine whether this was a prompting issue, we tested the same scenario again—this time using
an expanded prompt that explained the heatmap in greater detail:

This prompt modification did not resolve the issue, as the VLM still identified the ring as the
prominent concept in the image. Several other prompting techniques, including those describing the
heatmap in even greater depth (e.g., by including the code used for its generation), were explored
with similar results.
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We next tested providing the VLM only with the heatmap-superimposed x′′ and a similar prompt
explaining how to interpret the heatmap:

Once again, the result failed to identify the wooden background as the prominent concept in the image
and instead focused on the ring. As in the previous case, we experimented with various prompting
strategies using this image format, but the results remained largely unchanged.

From these observations, we concluded that the heatmap alone is insufficient to guide the VLM’s
attention to the salient areas. The presence of less relevant regions appears to distract the model. To
address this, we replaced the heatmap-superimposed x′′ with an alpha-masked version of x′′:

As shown in the example, the VLM was now able to correctly identify wood texture as the dominant
concept. We observed consistent success across a range of concepts and images.

The formatting of x′′ and the prompt shown above yielded the most reliable results in our qualitative
evaluation. However, we note that this evaluation is limited by its qualitative nature (due to the
absence of ground truth annotations) and its focus on a single VLM. We hope future work on the
autointerpretability of SAE concepts can build on and expand this analysis.
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F.3 EXAMPLES OF LEARNED CONCEPTS

Shown below is a representative sample of concepts learned by our RA-SAE. For each concept, we
present 12 images for which the concept had the highest activation in the ImageNet dataset (on the
left) and a localization of the respective concept within those images (on the right). Additionally, an
epitome constructed using the Feature Accentuation method from Hamblin et al. (2024) is shown
bottom left.

As can be seen from this sample, the granularity of concepts varies. We see concepts for objects
(e.g., colorful underwater fish), textures and patterns (e.g., colorful polka dots pattern),
composition (e.g., person on the right edge at social gatherings and bright colorful

backgrounds), actions (e.g., skiing action on snowy slopes and gripping various tools

and objects), types of images (e.g., comic book illustrations and characters and male

portraits in various attire), and more.
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G ADDITIONAL RESULTS: QUALITATIVE EXAMPLES OF BLINDSPOTS

Shown below are qualitative examples of suppressed conceptual blindspots in SD 1.5. For each
concept, we include a representative image from the natural distribution to illustrate the desired visual
depiction. To the right, we show four images generated by SD 1.5 using various prompts designed to
elicit the concept. Despite using simple, clearly worded prompts, the model consistently struggles to
generate these concepts, supporting their identification as suppressed conceptual blindspots.

In the remainder of this section, we enumerate additional suppressed and exaggerated blindspots for
each evaluated model (see App. G.1). We also describe our stress-testing procedure, in which we
attempt to elicit the concepts identified as suppressed blindspots using many prompt variations, in
order to validate that these are indeed true blindspots (see App. G.2).

36



1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Under review as a conference paper at ICLR 2026

G.1 MODEL-SPECIFIC BLINDSPOTS

Figure 13: Examples of conceptual blindspots in Stable Diffusion 1.5. For each concept, the
prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on
the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop
the image.

Figure 14: Examples of conceptual blindspots in Stable Diffusion 2.1. For each concept, the
prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on
the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop
the image.
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Figure 15: Examples of conceptual blindspots in Kandinsky. For each concept, the prototypical
natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest
absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.

Figure 16: Examples of conceptual blindspots in PixArt. For each concept, the prototypical natural
(for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute
activation, is shown. The spatial heatmap for the concept is superimposed atop the image.
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G.2 STRESS TESTING

To stress-test the blindspots identified by our method, we gathered a range of prompts describing
these blindspots and used them to generate many images. We then contrasted the outputs from models
in which the concept was identified as a blindspot with those in which it was not.

Specifically, ChatGPT-4o was prompted as follows: I want to generate an image of the following
concept: "<blindspot>". Suggest 50 prompts highlighting this concept to be used as input for a
text-to-image model. Return these as a list of strings in Python. Five images were generated per
prompt and analyzed using our custom RA-SAE model (see Appendix F.1), which ranked them by
the intensity with which the desired concept appeared. All images were then manually reviewed to
determine whether the blindspot was successfully depicted.

As seen in the following examples of suppressed concepts, while some aspects of the target concept
occasionally appeared (e.g., a holder or string for the bird feeder blindspot and a round hole for the
glossy DVD disc blindspot), the models generally failed to generate the full concept. This aligns
with our method’s assessment and supports the validity of the stress test.

G.2.1 Bird Feeder BLINDSPOT IN KANDINSKY

Figure 17: Examples of images generated with various prompts involving the bird feeder concept
as a part of the stress testing. In Kandinsky, our method identified this concept as a suppressed
conceptual blindspot, which matches the observed behavior: the model is unable to generate a
corresponding image. By contrast, SD 1.5, in which this concept was not identified as a blindspot, is
able to generate this concept.
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G.2.2 Glossy DVD Disc BLINDSPOT IN SD 1.5

Figure 18: Examples of images generated with various prompts involving the glossy DVD disc

concept as a part of the stress testing. In SD 1.5, our method identified this concept as a suppressed
conceptual blindspot, which matches the observed behavior: the model is unable to generate a
corresponding image. By contrast, Kandinsky, in which this concept was not identified as a blindspot,
is able to generate this concept.
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H ADDITIONAL RESULTS: HIGHER-ORDER BLINDSPOTS WITH

COMPOSITIONAL DISCREPANCY

Thus far, our analysis has centered on individual concept activations. Yet visual scenes are rarely
composed of isolated concepts; instead, they are structured through rich and structured co-occurrence
patterns that encode compositional semantics. We now examine whether generative models capture
this higher-order structure by analyzing the co-activation matrix ZTZ, which reflects pairwise
correlations in concept usage.

Figure 19: • Sparsity and Structural Divergence. On the left: L0 norm of the co-occurrence matrix
ZZT as a function of ϵ (threshold), indicating how many entries remain active in each model. On the
right: Number of unique entries in the synthesized distribution relative to the natural distribution. All
evaluated models preserve global sparsity structure, but diverge in activation content.

Surprisingly, when assessed at the level of binary structure, diffusion models approximate the global
sparsity of the natural co-occurrence matrix with high fidelity. As shown in Fig. 19 (left), the ℓ0
norm of ZTZ – thresholded at varying ϵ values – tracks closely between the natural and synthesized
distributions across all models. This indicates that the gross connectivity of the conceptual graph,
i.e., which concepts tend to co-activate at all, is well preserved. Formally, one can deem ZTZ as
the adjacency matrix of a weighted, undirected graph over concepts, where edge weights reflect
co-activation strength across the dataset.

Figure 20: • Spectral Structure of Co-occurrence. Log-log plot of the eigenvalue spectra from
co-occurrence matrices ZZT across models and the natural distribution. All evaluated models match
the heavy-tailed decay of the natural distribution.

However, as illustrated in Fig. 19 (right), the specific content of these co-activations diverges: a
substantial portion of entries in the model-generated ZTZ are not shared with the natural baseline.
This suggests that while the capacity for compositionality is retained, the identity of active pairings
may shift, potentially reflecting model specific inductive biases or training artifacts. To probe the
internal structure of these co-occurrence patterns, we turn to spectral analysis. Fig. 20 shows the
eigenvalue spectra of the co-occurrence matrices for each model and the natural distribution. All
spectra exhibit a heavy-tailed decay, consistent with power-law behavior, indicating that generative
models preserve the overall rank structure and variance allocation across conceptual dimensions.

Further, we examine the alignment of dominant conceptual directions via cosine similarity heatmaps
between the top 100 eigenvectors of the synthesized and natural co-occurrence matrices (Fig. 21).
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Figure 21: •Concept Basis Similarity. Cosine similarity heatmaps between the top 100 eigenvectors
of the natural and synthesized co-occurrence matrices ZZT . Diagonal structure shows alignment of
dominant conceptual directors, with varying degrees of alignment across the four models.

While all models exhibit partial diagonal alignment—implying overlap in principal concept axes—the
off-diagonal entries reveal rotations and mismatches in higher modes, reflecting evident deviations in
compositional geometry.

Together, these findings reveal that diffusion models approximate the global shape of concept co-
activation surprisingly well, yet deviate in subtle and structured ways when examined through
the spectral lens. Such higher-order discrepancies may underpin failures in generating coherent,
multi-object scenes or relational concepts.
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I ADDITIONAL RESULTS: CAPTION NOISE IN HIGH DIVERGENCE

We inspected datapoints with the highest datapoint-level energy differences to determine whether the
divergence stems from genuine blindspots or low-quality input data (specifically, noisy captions).

I.1 METHODOLOGY

We isolated the top k datapoints with the highest datapoint-level energy difference ∥ξ(x′)− ξ(x)∥2
(see Section 4.4). We analyzes these using a Vision-Language Model acting as an AutoRater (also
referred to as “LLM-as-a-judge”). The VLM was presented with the natural image x and the text
prompt t, and tasked with classifying the caption quality into three categories:

1. Noisy. The caption is irrelevant, factual nonsense, or consists purely of meta-data (e.g.,
filenames, URLs).

2. Underspecified. The caption is technically correct but too vague to identify the specific
concepts visible in the image.

3. Sufficient. The caption provides enough semantic detail that a generative model should
reasonably be expected to reproduce the main concepts visible in the image.

I.2 RESULTS

We used ChatGPT-4o as the VLM and analyzed k=199 images. Out of these, 76 (38.2%) were
labeled as noisy, 1 (5.5%) as underspecified, and 112 (56.3%) as sufficient.

I.3 ANALYSIS

While a portion of the highest energy differences are indeed attributable to poor instruction quality,
inherent in web-scraped datasets like LAION-5B, the majority of cases have a sufficient caption. In
these instances, the prompt adequately describes the concept present in the natural image, yet the
generative model produces a high-energy difference output. This confirms that while dataset noise
is a contributing factor, the primary driver of high conceptual divergence remains structural model
limitations, supporting the findings in Section 4.4.
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J ADDITIONAL RESULTS: SAE ERROR CASES

To better understand the specificity and reliability of the SAE used in our experiments to give ξ(x) and
ξ(x′), we sought to quantify its misfires (false positives, FP) and missing concepts (false negatives,
FN).

J.1 METHODOLOGY

We randomly sampled n AI-generated and n natural images. We constructed the energy profile (ξ(x)
or ξ(x′)) of each image using the evaluated SAE, and filtered for the top-k concepts with the highest
activation values. Each concept was mapped to its autointerpretability label.

We then employed a Vision-Language Model (VLM) as an AutoRater (also referred to as “LLM-as-
a-judge”). The VLM was presented with the image (x or x′) and the list of top-k detected concept
descriptions (including their activation strengths), and tasked with two classification objectives:

1. Misfire (FP) Detection. Identify concepts in the detected list that are not visually present in
the image.

2. Missing Concept (FN) Detection. Identify critical visual concepts clearly present in the
image but absent from the detected concept list.

The VLM was instructed to weigh activation strength when evaluating misfires, as concepts with very
low activations are more likely to be spurious detections.

J.2 RESULTS

We conducted the analysis on the top-k=20 concepts from n=100 natural images and n=100 AI-
generated images (namely generated using SD 1.5), using ChatGPT-4o as the VLM. The top misfires
for natural and AI-generated images are reported in Tables 2 and 3, respectively. Structural concepts
with incorrect autointerpretability labels (see Section J.3) are shown in italics.

# Concept Count

1 (Striped marine creatures) 98
2 (Human interaction with surroundings) 20
3 Natural textures and organic forms 17
4 Green apples and playful animals 9
5 Musical instruments and accessories 7
6 Objects and symbols representing time 6
7 Airships and vintage photography 5
8 Red curtains and theatrical elements 4
9 Airplanes and clothing textures 4

10 Elegant fashion models in glamorous... 4

Table 2: Top Misfires for Natural Images. Con-
cepts from the top-k=20 concepts of natural im-
ages, labeled as misfires in a VLM AutoRater
analysis (conducted using ChatGPT-4o). Con-
cepts in cursive are structural concepts with in-
accurate autointerpretability labels.

# Concept Count

1 (Striped marine creatures) 100
2 (Human interaction with surroundings) 18
3 Natural textures and organic forms 13
4 Elegant fashion models in glamorous... 9
5 Musical instruments and everyday... 4
6 Airplanes and clothing textures 4
7 Bathroom fixtures and sinks 3
8 Leather couch and animals 3
9 Smoke and vapor emissions 3

10 Bookshelves and seating arrangements 3

Table 3: Top Misfires for AI Images. Concepts
from the top-k=20 concepts of AI-generated im-
ages (SD 1.5), labeled as misfires in a VLM Au-
toRater analysis (conducted using ChatGPT-4o).
Concepts in cursive are structural concepts with
inaccurate autointerpretability labels.
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Figures 22 and 23 show the cumulative misfire rate as a function of k. Figure 23 excludes structural
concepts with incorrect autointerpretability labels, since these are not visibly present in the images
and thus cannot be correctly annotated by the VLM; Figure 22 includes all top-k concepts.

Only 8.0% (AI-generated) and 11.1% (natural) of images had critical visual concepts missing from
the top-20. The share of concepts that were misfires among the top-20 was 24.04% for natural images
and 26.10% for AI-generated images.

Figure 22: Cumulative Concept Misfire (All).
Share of the n=100 images with at least one con-
cept misfire, labeled in a VLM AutoRater analy-
sis (conducted using ChatGPT-4o), as a function
of k. All concepts are included, including struc-
tural ones which are not visible and where the au-
tointerpretability description is inaccurate. The
region highlighted as “Target k” corresponds to
the k hyperparameter of the SAE.

Figure 23: Cumulative Concept Misfire (Vis-
ible Concepts Only). Share of the n=100 im-
ages with at least one concept misfire, labeled
in a VLM AutoRater analysis (conducted using
ChatGPT-4o), as a function of k. Structural con-
cepts that are not visible and where the autoin-
terpretability description is inaccurate are not
included. The region highlighted as “Target k”
corresponds to the k hyperparameter of the SAE.

J.3 ANALYSIS

Tables 2 and 3, listing the top misfires in natural and AI-generated images, point to a phenomenon
where abstract concepts fire frequently without being tied to a clear semantic feature visible in the
image. As shown in Figures 24 and 25, these concepts attend to abstract content near the left or right
edges of the image, without any particular semantic attachment. Consequently, the autointerpretability
descriptions assigned to these concepts by a VLM (e.g., Striped marine creatures and Human

interaction with surroundings) are not truly descriptive. The VLM AutoRater then marks these
concepts as misfires for almost every image because it relies purely on those textual descriptions
(Figure 22).

After filtering out such concepts, the misfire profile in Figure 23 shows strong performance under the
SAE configuration with k=5. Here, the SAE activates only five sparse concept codes per image, and
these are the positions that should be primarily scrutinized. At k=5, for both natural and AI-generated
images, the majority of datapoints exhibit no misfires. This rate increases approximately linearly
until it plateaus around k=20. Furthermore, only 8.0% of AI-generated images and 11.1% of natural
images had critical visual concepts missing from the top-20 concepts.

Specific examples of datapoints with misfires or missing concepts for both natural and AI-generated
images are given in Sections J.3.1 and J.3.2, respectively.
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Figure 24: Concept 31585 Detail. Shown above are the autointerpretability description, exemplars,
and epitome for the concept.

Figure 25: Concept 13101 Detail. Shown above are the autointerpretability description, exemplars,
and epitome for the concept.
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J.3.1 ERROR CASES: NATURAL IMAGES

J.3.2 ERROR CASES: AI-GENERATED IMAGES
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K CONCENTRATION BOUNDS FOR δ

In our experiments, we estimate δ(k) using n = 10,000 paired samples for each concept. While this
budget is modest, it raises the natural question of whether it suffices to obtain reliable estimates. To
address this, we derive a concentration bound on the empirical estimator δ̂n(k) using McDiarmid’s
inequality McDiarmid et al. (1989). The resulting bound is tight and demonstrates that even with
relatively few samples, we can obtain fast and accurate estimates of concept bias.

Theorem 4 (Concentration of δ̂n(k)). We assume that the concept score ξk(x) takes values in [a, b]
almost surely for all images x drawn from either DX or D′

X . Let n paired samples (xi,x
′i)ni=1 be

drawn independently with xi ∼ DX and x′
i ∼ D′

X , and define the empirical estimator

δ̂n(k) := σ

(
1

n

n∑

i=1

ξk(xi)−
1

n

n∑

i=1

ξk(x
′
i)

)
.

Let M := b− a and L := M/4. Then for every ε > 0, the deviation satisfies

P

(∣∣∣δ̂n(k)− δ(k)
∣∣∣ > ε

)
≤ 2 exp

(
−2nε2

L2

)
.

Proof. The function x 7→ σ(x) is 1/4-Lipschitz, since |σ′(x)| ≤ 1/4 for all x.

Viewing δ̂n(k) as a function of the 2n independent variables (x1, . . . ,xn,x
′
1, . . . ,x

′
n), changing a

single argument alters the inner difference of means by at most M/n, and the outer sigmoid scales this
by at most 1/4. Hence, the bounded difference constant for each coordinate is (M/n)(1/4) = L/n.

By McDiarmid’s inequality (McDiarmid et al., 1989),

P

(∣∣∣δ̂n(k)− δ(k)
∣∣∣ > ε

)
≤ 2 exp

(
− 2ε2
∑2n

j=1(L/n)
2

)
= 2 exp

(
−2nε2

L2

)
,

which proves the claim.

Practically, most concept scores δ(k) are sparse, with the majority concentrated near zero and only
a few reaching values up to 10. The concentration bound shows that even for the largest observed
biases, a sample size of n = 10,000 yields estimates of δ̂n(k) that deviate from the true value by
no more than a small ε with high probability. This justifies our sampling strategy and confirms that
accurate bias measurements are attainable with limited data.

48



2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

Under review as a conference paper at ICLR 2026

L MONOTONICITY AND CALIBRATION-FREE INTERPRETATION OF δ

Our goal when analyzing blind spots is to rank concepts by the severity of their generative bias. In
practice, we use the score δ(k) for this purpose. However, one may wonder whether such a score
introduces distortions relative to more direct quantities such as the energy gap or the odds ratio.
The following result establishes that δ(k) is a strictly increasing reparameterization of both, and
therefore inherits their ordering. This guarantees that no calibration is needed when using δ(k) to
rank concepts.

Theorem 5 (Monotonicity and Calibration of δgθ↔G). For every concept index k define the energy
gap

∆k = Ex′∼D′

X

[
ξk(x

′)
]
− Ex∼DX

[
ξk(x)

]
,

the associated odds ratio ρk = exp(∆k), and the energy–difference score

δ(k) =
1

1 + exp(−∆k)
=

ρk
1 + ρk

.

Then δ(k) is a strictly increasing bijection of both ∆k and ρk, so ranking concepts by any one of
δ(k), ∆k, or ρk produces exactly the same ordering.

Proof. The logistic sigmoid satisfies σ′(x) = σ(x)
(
1− σ(x)

)
> 0, ∀x ∈ R; hence σ and therefore

δ(k) = σ(∆k) grow strictly with ∆k. Because the exponential map is also strictly increasing and
bijective R→ (0,∞), setting ρk = exp(∆k) preserves order and gives ∆k = log ρk. Substituting
this identity into σ yields δ(k) = σ(log ρk) = ρk/(1 + ρk), which is the composition of two
strictly increasing bijections and is therefore itself strictly increasing and bijective in ρk. Since strict
monotonic functions never reverse inequalities, the three quantities share the same total order over
concepts.

Thus, ranking concepts by δ(·) is strictly equivalent to ranking them by energy gap or by conceptual
generation odds ρk. No calibration is necessary, and all three quantities preserve the same total
ordering over concepts.
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M STABILITY OF FID UNDER SAE EMBEDDINGS

In this section we establish a quantitative relationship between the Fréchet Inception Distance
(FID) computed in the original activation space (of dimension d) and the FID after applying a
(potentially overcomplete) SAE dictionary D ∈ R

k×d with k ≫ d. Throughout we assume that D
has orthonormal columns but is not necessarily square, i.e.

D⊤D = Id, while DD⊤ ̸= Ik.

We start by recalling a simple fact: if D is not overcomplete, orthogonal and k = d, the we have an
isometry between A and Z, implying that the FID is perfectly preserved. However, this case is not
realistic, we will then turn the the overcomplete case, and show we can bound FID by the extreme
singular value of D. We will work with the Wasserstein-2 metric W2, noting that FID is just W2

2
specialised to Gaussians.

For a probability measure µ on R
d we write D#µ for its push-forward under D, i.e. D#µ(z) =

µ(D−1z). Denote by σmin and σmax the minimal and maximal singular values of D, equivalently
the square-roots of the extremal eigenvalues of DD⊤:

σ2
minIk ⪯ DD⊤ ⪯ σ2

maxIk.

Empirically one usually finds σmin, σmax ≈ 1, but the proof does not rely on that. We will start by a
simple lemma in the case where D is not overcomplete.

Lemma 1 (Isometry under exact orthogonality). Suppose k = d and D⊤D = DD⊤ = Id. Then
D is an isometry: ∥Dv∥2 = ∥v∥2 for all v ∈ R

d. Consequently, for any probability measures µ,ν
on R

d with finite second moment,

W2

(
D#µ, D#ν

)
= W2(µ,ν).

Proof. Orthogonality of D implies preservation of the Euclidean norm, and push-forward commutes
with the map inside the W2 infimum; the integrand is unchanged, so the infimum value is identical.

This case, however, is quite unrealistic as SAE usually rely on the overcompletness to extract
meaningful and interpretable concepts. In the overcomplete case, D is no longer orthonormal, but
we can still have column-orthonormal dictionary. We will use that to show that we can bound using
the extremal singular value of DTD.

Theorem 6 (FID under column orthogonal embeddings). Let D ∈ R
k×d satisfy D⊤D = Id and

denote by 0 < σmin ≤ σmax the extreme singular values of DD⊤. Given two data matrices
A,A′ ∈ R

n×d (rows are sample vectors), set Z = AD⊤ ∈ R
n×k and Z ′ = A′D⊤ ∈ R

n×k. Then

σ2
min FID(A,A′) ≤ FID(Z,Z ′) ≤ σ2

max FID(A,A′).

Proof. Write µ for the empirical measure of A and ν for that of A′, i.e.

µ =
1

n

n∑

i=1

δAi,:
, ν =

1

n

n∑

i=1

δA′

i,:
.

For any coupling π ∈ Π(µ,ν) (i.e. a probability measure on R
d ×R

d with marginals µ,ν) we have,
by the extremal singular value bound,

σ2
min ∥x− y∥22 ≤ ∥D(x− y)∥22 ≤ σ2

max ∥x− y∥22, ∀(x,y) ∈ R
d × R

d.

Integrating with respect to an arbitrary coupling π ∈ Π(µ,ν) yields

σ2
min

∫
∥x− y∥22 dπ ≤

∫
∥D(x− y)∥22 dπ ≤ σ2

max

∫
∥x− y∥22 dπ.

The middle integral is exactly the transport cost of the pushed–forward coupling (D×D)#π between
µD := D#µ and νD := D#ν. Because the inequalities hold for every π, they hold in particular
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for the optimal couplings attaining W2(µ,ν) and W2(µD,νD), though these two optima need not
coincide. Taking the infimum over π term-wise makes this explicit:

σ2
min inf

π∈Π(µ,ν)

∫
∥x−y∥22 dπ ≤ inf

π∈Π(µ,ν)

∫
∥D(x−y)∥22 dπ ≤ σ2

max inf
π∈Π(µ,ν)

∫
∥x−y∥22 dπ.

Hence
σ2
min W2

2 (µ,ν) ≤ W2
2 (µD,νD) ≤ σ2

max W2
2 (µ,ν).

Recognising FID(·, ·) = W2
2 (·, ·) for the Gaussian surrogate and plugging in (A,A′) (resp. (Z,Z ′))

finishes the proof.

Essentially, theorem 6 tells us that applying a column-orthogonal overcomplete SAE dictionary
cannot distort Fréchet Inception Distance by more than the square of its extremal singular values.
When D is nearly orthogonal – empirically we usually found that σmin, σmax ≈ 1 – the result implies
that FID measured in the SAE feature space is essentially close to the canonical FID.
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N ADDITIONAL EXAMPLES OF SYNTHESIZED IMAGES

Figure 26: Additional image-caption pair examples from LAION-5B with matching images generated
with the same prompt by SD 1.5, SD 2.1, PixArt, and Kandinsky.
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