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ABSTRACT

Despite their impressive performance, generative image models trained on large-
scale datasets frequently fail to produce images with seemingly simple con-
cepts—e.g., human hands or objects appearing in groups of four—that are
reasonably expected to appear in the training data. These failure modes have largely
been documented anecdotally, leaving open the question of whether they reflect
idiosyncratic anomalies or more structural limitations of these models. To address
this, we introduce a systematic approach for identifying and characterizing "concep-
tual blindspots"—concepts present in the training data but absent or misrepresented
in a model’s generations. Our method leverages sparse autoencoders (SAEs) to
extract interpretable concept embeddings, enabling a quantitative comparison of
concept prevalence between real and generated images. We train an archetypal
SAE (RA-SAE) on DINOv2 features with 32,000 concepts—the largest such
SAE to date—enabling fine-grained analysis of conceptual disparities. Applied to
four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky),
our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD
discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood
background texture and palm trees). At the individual datapoint level, we
further isolate memorization artifacts — instances where models reproduce highly
specific visual templates seen during training. Overall, we propose a theoretically
grounded framework for systematically identifying conceptual blindspots in gener-
ative models by assessing their conceptual fidelity with respect to the underlying
data-generating process.

1 INTRODUCTION

Generative image models trained on large scale datasets have achieved unprecedented capabilities,
allowing their use in applications both within the vision domain OpenAll (2024)); Peebles and Xie
(2023)); Ramesh et al.|(2021)); Saharia et al.|(2022); Nichol et al.| (2021)); |Wang et al.| (2024); Poole
et al.[(2022)); Richardson et al.[(2023)); Rombach et al.[(2022) and well beyond that|Ahn et al.|(2022);
Huang et al.| (2022azb)); Rombach et al.| (2022); Chen et al.|(2024); |Zhong et al.| (2024); |Siddiqui et al.
(2024)). Despite this success, several qualitative (Marcus et al., [2022} (Cabrera et al., [2021} [Heigl,
2025) and quantitative studies (Liu et al., |2023; (Conwell et al., [2024) have shown that, at times,
models can struggle to generate images with relatively simple concepts, e.g., human hands (Lu et al.|
2024} Narasimhaswamy et al., 2024} Zhangli et al.,[2024} |[Fallah et al.| 2025)), objects appearing
in groups of four (Cao et al., 2025), and negations or object relations (Conwell and
Ullman| 2022; |(Conwell et al.| 2024). In fact, when prompted to generate images containing such
concepts, models tend to produce outputs with related structures, but not precisely the ground truth
concept—e.g., producing hands with six fingers. These failure modes, which we call “conceptual
blindspots’{', can be unintuitive, since one may reasonably expect models have had enough exposure
to demonstrations accurately detailing such concepts. This raises the question whether such failures
reflect intriguing quirks of certain specific concepts, or whether they are demonstration of a more
systematic phenomenon under which, for a broad spectrum of concepts, models fail to or are overly
likely to produce images containing them.

'We borrow the term “blindspots” from psychology literature (Banaji and Greenwald, 2016)), wherein it is
used to refer to scenarios where an agent makes biased decisions despite exposure to observations that contradicts
the rationale behind those decisions.
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Figure 1: §(k) quantifies a model’s tendency to over- or under-generate a concept ¢; compared
to its natural-data frequency. We deem concepts with §(k) < 0.1 as suppressed conceptual
blindspots and concepts with 6(k) > 0.9 as exaggerated conceptual blindspots. The depicted
images, generated by four popular generative image models, show examples of conceptual blindspots
as well as aligned concepts. The models are completely unable to generate suppressed blindspots (e.g.,
bird feeder), despite diverse prompting and steering strategies. For concepts with 6(k) = 0.25
(e.g., traffic sign), the models exhibit substantial deficiencies. In contrast, exaggerated blindspots
emerge unprompted, at rates far exceeding their distribution in natural images.
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Answering this question remains infeasible with existing approaches for evaluating generative image
models [Stein et al.| (2023); [Wang et al.| (2023a)). Specifically, existing approaches generally rely on
coarse-grained measures that are meant to assess image realism, e.g., FID (Heusel et al} [2017), and
hence do not capture distributional failures. Methods like CLIPScore evaluate generation diversity or

distribution-coverage statistics (Hessel et al., 2021} [Dombrowski et al. 2024} [Hwang et al.| [2024),

hence offering partial insights to our question, but not at the granularity of fine-grained features or
concepts [Theis et al.| (2015)); [Naeem et al.| (2020), making it difficult to identify conceptual blindspots.
Finally, qualitative analyses for evaluating generative models, such as participant surveys
letall 2021}, Nichol et al.} 2021}, [Petsiuk et al.l 2022} [Xu et al., 2023} [Wu et al, 2023a) or open-ended
exploration (Bau et al., 2019), can identify failures in models’ ability to capture certain concepts, but
do not offer a scalable methodology that can be easily repeated across model families and used for
their comparison.

This work. Motivated by the above, we argue identifying and analyzing conceptual blindspots in a
generative image model requires designing a methodology that, in an automated and unsupervised
manner, can elicit concepts in the data distribution that have a mismatch between their odds of
generation by the true data-generating process versus the trained model. Our contributions in this
work are three-fold:

* Formalizing Conceptual Blindspots in Generative Image Models. We introduce a systematic
framework for identifying and quantifying conceptual blindspots in generative image models
compared to natural images (Section[2). This formalization moves beyond anecdotal or human-
defined concept evaluations, offering a principled approach to understand the models’ limitations.

¢ A Scalable, Unsupervised Approach for Identifying Conceptual Blindspots using Sparse
Autoencoders. We develop a structured methodology using sparse autoencoders (SAEs) to extract
and compare concept distributions between natural and synthesized images (Section [3). To do so,
we employ SAEs, which decompose the high-dimensional activation space of models into sparse,
human-interpretable concepts. Concretely, SAEs are trained to reconstruct model activations
using a sparse combination of learned feature directions (concepts). Each concept can then be
assigned a human-interpretable label through autointerpretability: examining high-activating
exemplars and prompting an LLM to describe the recurring pattern. To this end, we train and
open-source an archetypal SAE (RA-SAE) on DINOV2 features with 32, 000 concepts, the largest
such RA-SAE to date.

* Exploratory Tool and Analysis. Our exploratory web tool enables both distribution- and
datapoint-level analysis of blindspots across models (Sections . 1}4.4). We apply our method to
Kandinsky, PixArt, and Stable Diffusion (SD) 1.5/2.1 (SectionEI). We identify specific instances
of both suppressed conceptual blindspots (e.g., bird feeders, DVD discs, and whitespaces
on documents) and exaggerated conceptual blindspots (e.g., wood background texture and
palm trees), shown in Fig.[I}
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The model, code, and web tool are available at https://github.com/sae-diff/code-review.

2 FORMALIZING CONCEPTUAL BLINDSPOTS IN GENERATIVE MODELS

We begin by formalizing the notion of conceptual blindspots: systematic discrepancies between
the conceptual content of natural images and that of model-generated outputs. This formulation
enables us to derive principled, quantitative measures that characterize which concepts are under or
over represented by a generative model relative to its data distribution. The process is illustrated in
Fig.[2l While we rely on standard assumptions in this pursuit (Von Kugelgen et al., 2021} |Locatello
et al,2019; |Zimmermann et al.| 2021} |Gresele et al., 2020; 2021)), empirically we find meaningful
phenomenology is elicited even when these assumptions are violated.

Definition 1 (Data-Generating Process). Let C C RY denote a latent space with a Boltzmann prior
p(c) = exp(—E(c))Z ™1, where E(-) denotes an energy function that linearly decomposes over
individual latents and Z is the corresponding partition function, i.e., E(c) = ", E(cy) and hence
p(c) =[], pr(ck). A data-generating process (DGP) is an invertible function G : C — X that maps
the latents ¢ € C to observations x € X, i.e., ¢ = G(c).

For notational simplicity, we use p(:) to denote both the latent density p(c) and its push-
forward to image space p(x), where * = G(c). This is justified by the invertibil-
ity of G, which induces a valid distribution over X via the change of variables formula.
In essence, the individual dimensions of the

latent space reflect the Concepts underlying Observation

the data-distribution Py, defined over some ob- Latent Space X
servation space of images X'. For example, spacecC /—ﬂ

different latents may correspond to concepts (\_/

like color, shape, size, location, and so

on (Okawa et al., 2023} [Park et al., 2024). We

also let the data-generating process associate

a text-description ¢ € 7 with any image sam-

pled from the data distribution, but do not ex- (_/

plicitly model it. These text descriptions can Energy Si(x) Synthesized

then be used to train a text-conditioned Gener- Model Images

ative image model gy, with parameters 6, on . . )
a set of image-text pairs to map a noise signal Figure 2: Intuitive mapping of our framework.
n ~ N(O, I) and a text_description of the scene Latent concepts ¢, € C are mapped to observations

t to produce images  illustrating the latter. (x,t) through the (invertible) DGP. gg generates
images ' based on t. The energy model & (x)

extracts concept representations from both & and
@', enabling comparison of concept distributions
to identify blindspots.

To define conceptual blindspots in the model gg,
we must assess the probability mass assigned to
a concept by the data-generating process, com-
paring it to the mass assigned by the model. To
this end, we take an evaluation set of natural image-text pairs (D, D7) and define a set of synthet-
ically generated images D', using the text descriptions. To estimate the probability of occurrence
of a concept, we consider an Energy model ¢ : X — R? that maps images to a d-dimensional
vector, where each dimension associates a scalar representing the energy in the k™ concept, i.e.,
&k(x) = E(cy). These estimates are feasible because we assume the data-generating process is
invertible. Correspondingly, the probability the data-generating process associates with the image
x can then be defined as py(x) o< exp(— >, {x(x)) (Where Z¢ is the partition function), hence
yielding a population-level estimate py,(Dx) = [[,cp, Pk(x). Using this and the sigmoid map o (-),
we define below the average energy difference in the k™ concept between the datasets Dy, Dl.

Definition 2 (Energy Difference). Let * € Dy denote a real image sampled from the data-
generating process G, and let *' € D'y, be a synthetic image generated by the model gg. Let
&+ X — R denote the energy assigned to the k™ concept by the energy model . We define the
energy difference for concept k as:

dgocsa(k) = 0 (Exr (Ek(2")) — Ex(Er()))
_ pr(Dl)
pr(Dx) + pe(Dhy)’

ey
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where the expectations are taken over D', and D x, respectively, and py, (D) x exp (— Y wen Sk (:B))
denotes the unnormalized conceptual probability mass of dataset D under concept k.

Thus, the energy difference in the k™ concept describes the ratio of the probability a concept occurs
in a set of observations (here, D’,) compared to a baseline dataset (here, D). Based on this measure,
we can now define conceptual blindspots as follows.

Definition 3 (Suppressed / Exaggerated Conceptual Blindspots). Given a generative image model
ge, we say, compared to the data-generating process G, ¢y, is a suppressed conceptual blindspot in
the model if 6g, s (k) < Amin and exaggerated if dg, (k) > Amax-

Overall, we define a conceptual blindspot as a concept whose likelihood of occurrence in generated
images deviates markedly, either through suppression or exaggeration, from its prevalence under
the data-generating process. Suppressed concepts exhibit disproportionately low activation (e.g.,
0(k) < Amin), whereas exaggerated concepts are overrepresented (e.g., 0 (k) > Amax). Throughout
our analysis, we adopt threshold values of Ay, = 0.1 and A\, = 0.9 to isolate these regimes.

We also note this definition is related to the idea of “mode collapse” studied in past work (e.g., see
Bau et al.|(2019)): the difference is in the granularity at which the analysis is performed. Specifically,
mode collapse focuses on exaggerated / suppressed odds of generating entire images, while we focus
on changed odds of specific concepts. For example, if a model fails to produce images of an object
with awhite background, we say this concept is a suppressed conceptual blindspot.

3 METHOD: OPERATIONALIZING THE DEFINITION OF CONCEPTUAL
BLINDSPOTS

We next discuss our pipeline for identifying conceptual blindspots in a generative model gg. As
per Sec. [2] the salient objects we need for this are (i) a set of images sampled from gg that allow
comparison with the ground-truth generative process, and (ii) an energy model which enables said
comparison. Below, we use || - || 7 to denote the Frobenius norm and || - ||o to denote the number
of non-zero entries (the ¢y pseudo-norm). For a vector or matrix X, X > 0 implies element-wise
non-negativity. For n>0, we let [n] := {1, ..., n}, and denote the i-th row of a matrix A by A,.

From Prompts to Latent Representations. To identify conceptual blindspots in a model gg, we
compare a dataset Dy of image-caption pairs (x, t) sampled from the data-generating process G and
their synthetic counterparts sampled from the generative model gg using the text descriptions.

Specifically, given t, we synthesize a counterpart image «’ using a pretrained text-to-image generator
ge : T — X, implemented as a denoising diffusion probabilistic model (DDPM) (Razzhigaev et al.|
2023; |Stability Al [2022;|Chen et al., 2023a). Sampling occurs in latent space via a reverse trajectory
(Vt)i=o:

1

NG (’)’t

where oy € (0,1) and &y = HZ: 1 o follow the standard cosine noise schedule. The final latent g
is decoded via a pretrained VAE to yield the synthetic image ' = VAE(~yy). For the remainder of
the paper, we treat gg as a black box that maps prompts to images: ¢ — x’.

1—ay

- Vi-a; 69(7t5t7c)) + OtMNy, and ne ~ N(07I)7

7TNN(07I)7 Yi—1 =

Defining the Energy Model. Building on prior work that shows the ability of self-supervised
learning methods to invert the data-generating process and identify the energy function underlying it
up to linear transformations (Zimmermann et al.,[2021; |Von Kugelgen et al., 2021; Khemakhem et al.,
2020; [Hyvarinen et al., [2019), we use DINOv2 (Oquab et al., [2023)) for our analysi Under the
expectation that the number of concepts underlying the DGP is larger than the dimensionality of the
model’s feature space (Elhage et al., 2022} Bricken et al.,[2023)), we train sparse autoencoders (SAEs)
on its features to identify subspaces corresponding to these concepts (Fel et al., 2025} |Cunningham

*We use DINOV?2 in our energy model because its self-supervised training on large-scale unlabeled data
yields emergent, highly structured visual representations that capture broad semantic and geometric regularities
without text supervision. These embeddings have proven robust across tasks (classification, segmentation, depth
estimation, tracking) and domains (natural, medical, satellite imagery) |Oquab et al.|(2023)); ?); ?); 2.
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Figure 3: Concept Extraction Pipeline. For a triplet (x, ¢, x'), the concepts in  and t are extracted
by obtaining each image’s DINOv2 features, which are further processed by a RA-SAE into sparse
concept embeddings, yielding energy models {(x) and ('), respectively. In particular, () =
E(cy) holds the energy in the k™ concept.

et al., [2023} |Gao et al.| 2025; [Templeton et al.} 2024; Rajamanoharan et al.|[2024). The intuition here
is that if the concepts underlying the generative process are modeled via approximately orthogonal
directions by DINOV2 (as assumed in our independence constraint in Def.[T), then an SAE should be
able to isolate these concepts along individual dimensions in its latent space (Elhage et al.||2022)). The
activation associated by the SAE to a dimension will serve as our approximation of the ground-truth
energy function assigned to the concept modeled by that dimension.

Formally, using f : X — R? to denote our feature extraction module (i.e., the DINOv2 model),
we extract features @ = f(z) € R from both natural and synthetic images from datasets D, D..
Assuming the count of image-text pairs is n, we stack the real and generated features into matrices
A, A’ € R"*? We then decompose each feature vector into a sparse combination of learned concept

atoms using an SAE. Specifically, let D € R*K / denote a dictionary of K’ concept vectors, and let

¥ : R? — RE be the SAE encoder that maps input features to sparse codes. Applying ¥ row-wise
yields the matrix of activations Z = ¥(A) € R"*X ', where each row z; = W(a;) represents the
concept decomposition of an image. The decoder reconstructs features via ZD T, and the SAE is
trained to minimize the reconstruction error subject to sparsity and non-negativity:

@iBHA—\II(A)DTHQF st. U(A) >0, [B(A)llo < K Vieln]. @)

Vanilla SAEs often drift toward arbitrarily oriented dictionaries, making downstream analyses highly
sensitive to the random seed. To mitigate this instability and make our study reproducible and
independent of the seed, we employ the Archetypal SAE (RA-SAE) [Fel et al.|(2025) on a ToP-K
sparsity constraint|Gao et al.[(2025)). RA-SAE constrains the dictionary D to be a convex combination
of training data. Specifically, we write D = W A with W € Qg ,, the set of row-stochastic

matrices in RE *7:
QK/7n::{W€RKX"|W20, W1:1}_ 3)

Thus every atom D; lies in the convex hull of the data conv (A ), and any reconstruction Z DT resides
inside the conic hull of the data cone(A). This ensures learned concepts remain faithful to the
support of the data distribution (Fel et al., [2025). Once trained, the SAE provides a consistent set
of sparse codes: Z for real images and Z’ for their generated counterparts. These codes capture
the same prompt-conditioned visual semantics in terms of shared, interpretable concepts, with the
activation value of the concept serving as energy values for our analysis of conceptual blindspots.
In summary then, our method defines a structured pipeline that, given a prompt and its associated real
image (¢, ), produces two sparse concept vectors (z, z’), enabling direct comparison of the real and
generated visual content in a common conceptual basis.

This summarizes our full pipeline: starting from a captioned image (¢, ), we synthesize a counterpart
«’ and map both images into a shared, sparse concept space via a vision encoder and a trained
SAE, yielding interpretable representations (z, z’) that will serve as the foundation for evaluating
conceptual shifts induced by the generative process.
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4 RESULTS

We analyze four generative image models trained on LAION-5B—SD 1.5, SD 2.1, PixArt, and
Kandinsky—using | X'| = 10,000 image-text pairs and their corresponding generations (Appendix E[)
Our analysis spans three levels (Fig.[3): a © distribution-level evaluation reveals suppressed and
exaggerated concepts; a ® datapoint-level analysis surfaces failures tied to ambiguity, omission, and
memorization; and a ® compositional analysis uncovers subtle distortions in concept co-occurrence
geometry. Our core contribution is an interactive exploratory tool, shown in Appendix [C| from which
all subsequent analyses emerge. Rather than exhaustively studying one phenomenon, we present
high-level findings that highlight the tool’s versatility and enable broader, customizable exploration.

4.1 THE HEAVY TAIL OF SUPPRESSED CONCEPTS

SD1.5 SD 2.1 PixArt Kandinsky

A

0.00 025 050 0.5 100000 025 050 075 1.000.00 0.25 0.50 0.75 1.000.00 025 050 0.75 1.00
Energy Difference Energy Difference Energy Difference Energy Difference

Density

10-"

Figure 4: © Concept Energy Distribution. Log-scale histograms of energy differences (k) across
32,000 concepts, comparing the natural and synthesized distributions for each evaluated model.
Values left of 0.5 represent suppressed concepts (under-represented); values right of 0.5 represent
exaggerated concepts (over-represented).

To assess disparities between the generative models and the natural image distribution, we begin by
analyzing the marginal energy difference ¢ (k) across 32,000 concepts learned using RA-SAE. As
defined in Sec. 3] this quantity reflects the relative prevalence of each concept in the synthesized
versus natural image sets. A value of (k) < 0.1 indicates that concept k is under-represented
(suppressed) in the generated images, while §(k) > 0.9 indicates over-representation (exaggerated).
Fig. |4-_1| presents the distribution of d(k) for each of the four evaluated models. Across all models,
we observe heavy-tailed histograms with substantial mass on both extremes, suggesting systematic
discrepancies in concept coverage. Notably, the left tail—corresponding to suppressed concepts—is
denser and longer than the right, indicating a consistent tendency of concept suppression. This
asymmetry is reflected in the negative skewness of the distributions: Skewness = —0.54 for SD 2.1,
—0.40 for both SD 1.5 and PixArt, and —0.23 for Kandinsky.

We also note that while all models exhibit both suppressed and exaggerated concepts, their specific
profiles differ. For instance, PixArt shows a wider spread, suggesting a more suppressed concept
distribution. Nevertheless, the consistent left-skew in all distributions underscores a common tendency
toward concept omission, though the specific characteristics of this behavior require further analysis,
which we explore in the next Sections.

4.2 STRUCTURE AND SPECIFICITY OF CONCEPTUAL BLINDSPOTS

While the previous section quantified marginal discrepancies in concept frequency, here we investigate
their global structure by embedding the full set of 32,000 concepts into two dimensions using UMAP
on the sparse codes, coloring the concepts by their 4(-) values. As shown in Fig.[5] distinct clusters
of concepts emerge across all models. These clusters often correspond to contiguous regions of
conceptual blindspots, especially for suppressed (blue) concepts, suggesting that blindspots are quite
structured—reflecting shared biases in either training distributions or architectural priors. To assess
the consistency of these blindspot patterns across models, we further analyze both the magnitude and
structure of concept-level §(-) values. Fig. |§| presents scatter plots and pairwise Pearson correlation
coefficients between the (k) vectors of SD 1.5 and all other models. As expected, SD 1.5 and 2.1
exhibit strong correlation (r = 0.82), reflecting their shared architectural and training pipelines.
In contrast, their correlations with PixArt and Kandinsky are substantially lower—r = 0.41 and
r = 0.46, respectively—indicating that these models emphasize different regions of the conceptual
space.
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Figure 5: © Structure of Concept Energy Differences. UMAP visualizations of 32, 000 concepts,
colored according to their energy difference 0 (k) between the natural and synthesized distributions.
Clusters reveal patterns of conceptual blindspots, with suppressed concepts on the blue end and
exaggerat(g) (b)
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Figure 6: © Cross-Model Concept Energy Correlation. Pairwise scatter plots of §(k) across all
four evaluated models, with Pearson correlation coefficients reported top left. Strong alignment
between SD 1.5 and SD 2.1 contrasts with weaker correlations among other architectures, indicating
model-specific blindspots. © Correlation Matrix of Conceptual Blindspots. Heatmap of pairwise
Pearson correlation coefficients for § between all models, quantifying the degree of shared conceptual
blindspots across these models.

Overall, the analysis above reveals that while some blindspots are universally shared—Iikely due to
properties of the dataset—others are highly model-specific, emerging from idiosyncrasies in training
dynamics or model capacity. This motivates the need to identify and study both blindspots that are
shared across models and ones that are unique to specific models in subsequent sections.

SD15 SD2.1

4.3  QUALITATIVE BLINDSPOT EXAMPLES PixArt  Kandinsky

We next visualize specific examples of both sup- .., / w
pressed and exaggerated blindspots to gauge 1= 3
what concepts fall under these regimes. Specif-
ically, in Fig.[8h we show an example of a con-
ceptual blindspot suppressed by all models—we

03

find all evaluated models fail to reproduce the
concept solid white on documents. As can
be seen in the figures, despite the caption explic-
itly referencing this concept, none of the gener-
ated images reflect the intended visual seman-
tics, suggesting that this region of the concept
space is systematically under-sampled across
models. Meanwhile, Fig. [8p highlights a model-
specific blindspot: the concept pan is accurately
captured by three models, yet conspicuously
missing from generations produced by Kandin-
sky. This reinforces the findings from Sec.[d.2]
where cross-model agreement was found to be
high in some cases but limited in others.
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Figure 7: © Example of an Exaggerated Concep-
tual Blindspot. Four synthesized images =’ with
the wooden surfaces and everyday objects
concept are shown alongside the corresponding nat-
ural image « and text prompt ¢t. As expected with
exaggerated blindspots, the concept is prominent
in &’ but absent in « and ¢.

Conversely, in Fig.[7]we present a case of exaggeration, where the concept shadow under animal
is overly emphasized in generated images. While shadows are mildly plausible, their consistent
and pronounced rendering across models, relative to the more nuanced and variable occurrences in
natural images, suggests an overactive prior. Interestingly, despite attempts at finding concepts that
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(a) Universal Blindspot (b) Unique Blindspot
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Figure 8: © Examples of Suppressed Conceptual Blindspots. The natural images x, representative
¢k and t, shown alongside four synthesized images @', generated using Sy. The universal blindspot is
present in all evaluated models; the unique blindspot is only present in Kandinsky.

are uniquely exaggerated by a specific model, we did not find any clear examples—this suggests
exaggerations are approximately universal.

Overall, the examples above concretely demonstrate how conceptual blindspots manifest in generated
outputs, illustrating that our energy-based diagnostic can surface both shared and model-specific
failure modes. Notably, it enables the identification of surprising model limitations—such as the
consistent failure to reproduce clear or solid background elements, like whitespaces on documents,
across all models. This raises the possibility that certain failure patterns may stem from architectural
constraints or training data biases that transcend individual model idiosyncrasies.

While these aggregate-level analyses are informative, they invite a deeper question: do these
blindspots emerge only in the aggregate across many samples, or do they manifest themselves even at
the level of individual datapoints? This finer-grained perspective allows us to probe the mechanisms
behind blindspots more directly—uncovering cases of prompt misinterpretation, latent memorization,
or both.

(a) Me

4.4  DATAPOINT-LEVEL ENERGY DIFFERENCE
FROM INCONGRUENT TO MEMORIZED IMAGES ¥

To move beyond population-level statistics, we
examine individual natural vs. generated image
pairs for which the §(.) values averaged across
all concepts exhibit the largest and smallest dif-

ferences. This analysis aids easy understanding Bl sistema
. . 2747548144 digestivo del
of model success and failures, latter of which we THELT.CROWD | | image Unavailable, | caballo parte
. . . t 10 year silver QUOTE. short- Image not available further avian
find often arises from prompt ambiguity or mem- price aloste lnisex for. Color NewEra  digestive system

performance t-shirt Dallas... 51449308...

orization artifacts. For example, Fig.[Oa shows
instances with near-zero difference in average
d(+) values. In these cases, the generated im-
ages are conceptually indistinguishable from the
original. However, qualitative inspection clearly
shows this happen not because the model faith-
fully captures the prompt semantics, but from
pure replication of memorized templates: we
see repetitive visual structures (e.g., outlines of
clothing or object arrangements), indicating that the model may be copying from overly frequent
patterns in the training data. By contrast, Fig. [Ob illustrates samples that are among the largest
d(+) values. These indicate significant conceptual divergence between the synthesized and natural
image. While some of these discrepancies can be attributed to underspecified or noisy captions, others
reveal genuine blindspots: the prompt describes a clear concept faithfully present in Dy, yet the
model fails to realize it in D’.. This failure suggests that even when language grounding is adequate,
certain concepts fall outside the model’s generative abilities. To confirm that these distributional
discrepancies reflect genuine failure cases rather than artifacts of poor data quality, we conduct a
systematic VLM-based inspection of high-divergence samples, finding that the majority (56.3% of
the 200 most diverging datapoints) constitute genuine blindspots where the caption is sufficient but
the model fails to generate the concept (see Appendix [[]for details).

Figure 9: ® Datapoint-level Conceptual Align-
ment. (a) Examples with minimal energy differ-
ences where models appear to memorize train-
ing patterns. (b) Examples with large differ-
ences where significant concept divergences due
to prompt ambiguity or model limitations occur.
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4.5 ANALYZING POST-TRAINING EFFECTS

Post-training protocols, e.g., safety fine-tuning, have been argued to reduce the diversity of
model generations (Kirk et al., 2023). Given our pipeline’s ability to isolate interesting dif-
ferences in a model’s generations and the ground-truth DGP, we next use it to understand
the effects of DPO—a popular safety fine-tuning protocol (Rafailov et al., [2023). Specifi-
cally, we compare two variants of the SD 1.5 model: one trained with DPO, and one without.
For each image pair (Dx, D), we compute
the ¢5 norm of the difference between their inter-
nal concept energy vectors, ||€(D%) —&(Dx)|2. 50 b 15 b 15 DPO
Fig. [I0] presents a histogram of these datapoint- “ ‘ 08
wise energy differences. The DPO-enhanced oe
model exhibits both a lower median and a nar- Zz
rower spread, indicating more consistent distri- o
butlon Of enerated COnCe ts Wlth the round— 0.4950 0.4975 0.5000 0.5025 0.5050 0.4950 0.4975 0.5000 0.5025 0.5050
g P g Datapoint Energy Diff Datapoint Energy Diff

truth DGP. This suggests that DPO may serve _. . N
to regularize the model’s concept distribution, F 1gure 10: @ Effect O.f DP(.) on Concept Fidelity.
Histogram of datapoint-wise energy differences

encouraging outputs that more closely reflect . A
. . . between the synthesized and natural distribution of
the semantic content of the seen inputs. While y
P SD 1.5 models with and without DPO.

our analysis does not disentangle the specific in-
ductive biases introduced by DPO, these results
provide empirical evidence that its optimization objective, which favors human-preferred generations,
indirectly promotes better match with the training distribution. In particular, it reduces both over and
under activation of individual concepts relative to the natural baseline. These findings highlight the
utility of our pipeline in characterizing the downstream effects of post-training interventions: not
merely in terms of output quality, but in how they reshape the conceptual geometry of the model’s
output space.

S

4.6 CONCEPTUAL MISALIGNMENT AS A FUNCTION OF EMPIRICAL FREQUENCY

SD 1.5 SD 2.1 PixArt Kandinsky

Relative Energy Difference

0.
800 025 050 o075 100 025 050 075 1.00 000 025 050 075 1.00 025 050 075 1.00
Nb of Fire [1Zi]lo - Nb of Fire ||Zillo - Nb of Fire ||Zillo - Nb of Fire ||Zillo

Figure 11: © Concept Fidelity Across Frequency Spectrum. Scatter plots showing the relationship
between concept frequency (x-axis) and the energy difference (y-axis) across four evaluated models.
Each point represents a concept with size is proportional to its activation frequency.

We previously hypothesized that conceptual blindspots are not merely be architectural artifacts,
but may also emerge as a direct consequence of distributional peculiarities of certain features. In
this section, we empirically test this hypothesis by examining whether concepts that are rarely
activated in natural images, i.e., those in the long tail of the data distribution, lead to blindspots
in generative models. Specifically, we process the natural dataset Dy through the trained SAE
and compute, for each concept k, its empirical frequency || Z. ;||o, where Z. ; is the activations of
concept ¢ across all our images. We then correlate this with the absolute energy difference observed
across generated outputs. Fig. [IT] visualizes this relationship for all evaluated models. We find
that concepts with higher frequency in natural data tend to show lower energy discrepancies, while
rare concepts—especially suppressed ones (§(k) < 0.5)—exhibit significant alignment errors. This
suggests that many blindspots stem not from randomness or model quirks, but from systematic effects
tied to long-tail concept distributions. Addressing these issues may require not just architectural
changes but also strategies like data reweighting or augmentation.
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5 DISCUSSION

Our analysis reveals multiple conceptual blindspots in four popular generative image models. The
results presented here, however, only scratch the surface: each individual finding could warrant
its own dedicated investigation. Rather than delving deeply into any one of these questions, we
instead showcase the versatility of our method and exploratory tool. Out of the box, they allow for
a systematic identification of concepts that models struggle to generate, detection of memorization
artifacts, discovery of datapoints with insufficient captions, quantification of post-training effects, and
characterization of conceptual shifts across model architectures. We thus open space for follow-up
work to extend the depth of analysis, scope of evaluated architectures, and inquiry into root causes
of conceptual blindspots. Future work could also explore hierarchical representations of concepts
in RA-SAE to allow for a more nuanced analysis. The core methodology presented in this paper is
modular and agnostic to the specific concept extraction model, and such an analysis would hence
require minimal adjustment to the overall process.

Beyond mere exploration and mapping of the conceptual space of existing models, our method could
also serve as grounds for targeted intervention strategies employed during training of new models.
Specifically, the energy profiles could inform prioritized sampling or reweighting, increasing the
prevalence of suppressed concepts in the training distribution, and more. The energy profiles could
also be employed into the training objective as a regularization term, explicitly penalizing deviations
from the natural concept distribution.

Limitations. We wish to highlight several limitations of our work. By relying on DINOv2 and
RA-SAE for concept extraction and representation, our approach is inherently constrained to the
kinds of concepts these models capture; concepts poorly represented by them will escape our analysis.
Additionally, while our sample size of 10,000 images is substantial, it may not fully capture the long
tail of rare concepts, concept co-occurrence, or other compositional statistics (see Appendix [K).

USE OF LLMS

Large language models (LLMs) were used in parts of the implementation and during the writing of
the paper (e.g., paragraph shortening, transition refinement, etc.). Al-powered search engines were
also used to help identify some references.

REPRODUCIBILITY STATEMENT

To maximize reproducibility of our work, our code is fully open-sourced at https://github!
com/sae-diff/code-review and the web exploratory web app is available at https://sae-diff|
github.io/. This repository will also include the Conceptual Blindspots data extracted for the
models/datasets used in this paper. Furthermore, our experimental setup is clearly outlined in

Appendix
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A RELATED WORK

A.1 EXPLAINABILITY IN VISION

Early work in explainable Al, including computer vision, focused on methods for attribution of
influential input regions |[Simonyan et al.|(2013); [Sundararajan et al.| (2017); |Selvaraju et al.|(2017).
However, these methods offered limited semantic information about learned representations and often
produced incorrect explanations |Adebayo et al.| (2018)); |Ghorbani et al.| (2017); Hase and Bansal
(2020). To address these issues, concept-based interpretability Kim et al.| (2018) emerged to identify
semantically meaningful directions in neural networks, revealing not just where they look but what
concepts and structures they employ Bau et al.| (2017); Fel et al.[|(2023a); |[Kowal et al.|(2024).

Recent work demonstrates that popular concept-based interpretability methods—ACE |Ghorbani et al.
(2017), CRAFT Fel et al.|(2023al), and Sparse Autoencoders (SAEs)Cunningham et al.|(2023)); Bricken
et al.|(2023)—essentially address the same dictionary learning task under different constraintsFel et al.
(2023b). Out of these approaches, sparse autoencoders (SAEs) have emerged as particularly scalable
for concept-based interpretability. While recent studies reveal some limitations of the original SAEs—
including overly specific features Chanin et al.[(2024), compositionality challenges Wattenberg and
Viegas| (2024])), and limited intervention effects Bhalla et al.[|(2024)—improved SAE versions have
emerged, including archetypal SAE (RA-SAE) Fel et al|(2025)), hierarchical approaches [Bussmann
et al.[(20235);|Zaigrajew et al.|(2025), and variants addressing specific architectural choices Bussmann
et al.|(2024); Makhzani and Frey|(2014).

Beyond SAEs, other interpretability methods include prompt-based probing [Chowdhury et al.| (2025),
attention map or activation visualizations |[Bau et al.| (2018); |Tang et al.| (2022)), and dataset-level
statistics [Dombrowski et al.| (2024)); [Hwang et al| (2024) (e.g., diversity or distribution coverage
metrics) offer only partial insights to answer these questions. Crucially, they lack granularity, focusing
on full images or prompts instead of fine-grained features and concepts Theis et al.|(2015); Naeem
et al.[(2020). Furthermore, they depend on subjective interpretation and do not distinguish between
various failure models Borji| (2023). The existing methods and metrics are hence inadequate in
systematically identifying feature- and concept-level weaknesses of generative image models Stein
et al.| (2023)).

A.2 GENERATIVE IMAGE MODELS

Diffusion-based methods have become dominant across various modalities in generative vision
modeling, including image |[Saharia et al.| (2022); Ramesh et al.| (2022); Song et al.| (2020a; [2023));
Nichol and Dhariwal| (2021)), video [Ho et al.| (2022); |[Lu et al.| (2023)); Wang et al.| (2023b)); \Guo
et al.|(2023); ILin and Yang|(2024); Hong et al.|(2022); |Chen et al.|(2023b); Wu et al.|(2023b), and
3D|Poole et al.|(2022); |Lin et al.| (2023)); Jun and Nichol (2023); /Wang et al.|(2023c). In the domain
of image generation, this can be traced back to denoising diffusion probabilistic models (DDPMs) Ho
et al.| (2020), which were later extended to non-Markov diffusion processes with denoising diffusion
implicit models (DDIMs) Song et al.| (2020b).

The Stable Diffusion (SD) Rombach et al.[(2022) model family made DDMPs highly accessible
both in the research and open-source communities. The original SD was followed by several
subsequent versions, including SD 2 [Stability All(2022), SD 3 [Stability Al|(2024), SD XL Podell
et al.| (2023). Many modifications and extensions of the SD architecture have emerged, enabling
additional constraints for the diffusion process (e.g., style |[Sohn et al.| (2023); [Pan et al.| (2023),
pose Zhang et al.|(2023), and identity Ruiz et al. (2023)); Tomavsevic et al.|(2025)) as well as different
input modalities, such as image-to-image generation. Different Latent Diffusion Models built on top
of SD—including Kandinsky Razzhigaev et al.| (2023), PixArt|Chen et al.|(2023a), DeepFloyd Saharia
et al.| (2022); Stability All(2023)), and FLUX Black Forest Labs|(2024)—have also emerged.

A.3 DATASETS FOR GENERATIVE IMAGE MODELS

The recent success of generative vision models is largely attributed to the abundance of computational
resources and large-scale internet datasets |Dosovitskiy et al.[(2020); [Yu et al.|(2022)); [Hestness et al.
(2017). Specifically, LAION-5B [Schuhmann et al.|(2022) has played a key role in the training of
open-source text-to-image models, including SD and its derivatives. This dataset, scraped from
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Common Crawl|Common Crawl|(2017), contains over 5B image-caption pairs, 2.3B of which are
in English. Other prominent datasets include COYO-700M Byeon et al.| (2022) and Conceptual
Captions [Sharma et al.| (2018), with 700M and 3M image-caption pairs, respectively.

As LAION-5B gained popularity, concerns grew over its biases Birhane et al.| (2023 2024); [Seshadri
et al.| (2023); Birhane et al.| (2021); Thiel| (2023)). Despite filtering attempts, harmful content per-
sisted |Birhane et al.| (2023} [2024)); [Seshadri et al.| (2023), including NSFW material |Birhane et al.
(2021)) and hundreds of CSAM instances [Thiel| (2023)), prompting its temporary removal from official
channels. The dataset also suffers from low-quality images|Shirali and Hardt|(2023)) and internet-style
captions (e.g., product descriptions) that misalign with how users prompt trained models Nguyen
et al.|(2023)).

A.4 CONCEPT DISCOVERY AND SPARSE CODING IN GENERATIVE IMAGE MODELS

Dictionary learning seeks to find sparse representations of input data, where each sample can be recon-
structed using a linear combination of few dictionary atoms Olshausen and Field| (1996); Elad| (2010);
Mairal et al.|(2014). Built upon compressed sensing theory [Donoho| (2006)); |(Candes et al.| (2006),
the field evolved from early vector quantization methods [Lloyd| (1982) to sophisticated approaches
including Non-negative Matrix Factorization [Lee and Seung|(1999); |Gillis| (2020), Sparse PCA [Zou
et al.| (2006)), and K-SVD |Aharon et al.|(2006). Recent advances include online methods Mairal et al.
(2009), structured sparsity Jenatton et al.| (2010)), and theoretical guarantees Spielman et al.[(2012);
Barbier and Macris| (2022)), alongside growing connections to deep learning |[Papyan et al.| (2017);
Tamkin et al.|(2023)).

Advances in sparse coding have also been leveraged to study the emergence of high-level concepts
inside diffusion models Tinaz et al.| (2025); |Surkov et al.|(2024). Prior to diffusion models, concept-
grounded interpretability has been deployed to earlier generative architectures through concept-
bottleneck models, which require human intervention at training time [Kulkarni et al.|(2025)), and
post-hoc detectors that retrofit concept supervision |[Yuksekgonul et al.[(2022)). However, both of
these approaches require human-defined concepts and hence inherently miss broader trends that the
user does not explicitly register. Recent work has also explored SAE applications to understanding
temporal dynamics in language models [Demircan et al.| (2024), hierarchical structure in vision
models [Olson et al.|(2025)), and theoretical connections between autoencoders and sparse coding
through unrolled optimization approaches |Gregor and LeCun|(2010); (Chen et al.|(2018); |Ablin et al.
(2019); [Tolooshams and Bal (2021)); Malézieux et al.[| (2021); |Arora et al.| (2015)); Hindupur et al.
(2025).

Aggregate metrics (e.g., precision, recall, density, and coverage Kynkiédnniemi et al.|(2019); Naeem
et al.| (2020)) and latent density scores, which predict sample quality based on the model’s latent
space | Xu et al.[(2024), have emerged to evaluate generative image model capabilities. While these
effectively uncover distributional gaps, they offer little insight into specific concepts that are under-
or over-represented.

Together, these limitations motivate a scalable, unsupervised framework that can systematically
identify and quantify concept-level failure modes in generative image models Laina et al.[(2022).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B COMPARISON WITH EXISTING APPROACHES

Table [T summarizes the existing approaches for evaluating consistency and semantic coverage of
generative image models, and compares them to our method.

Fréchet Inception Distance (FID), [Heusel et al.| (2017). This metric embeds images using
Inception-v3 and calculates the Wasserstein-2 distance between natural and generated distribu-
tions. While it is regularly used to encode the overall quality of a model, it aggregates many potential
failure modes into a single scalar. It is hence incapable of surfacing specific conceptual blindspots.

CLIPScore,[Radford et al] (2021). CLIPScore computes the cosine similarity between the em-
beddings of a text prompt and a generated image to assess their consistency. This method is bound
by the prompt itself; it cannot detect blindspots for concepts that are not explicitly included in the
evaluation prompt set.

Improved Precision and Recall, [Kynkaanniemi et al.| (2019). This evaluation framework esti-
mates the manifold of real and generated data using k-Nearest Neighbor (k-NN) radii to separately
quantify precision (fidelity) and recall (coverage). While a drop in recall implies the existence of
distributional blindspots (mode collapse), the metric cannot identify which concepts are missing.

GAN Dissection, (2018). This method correlates the activation maps with semantic
segmentation masks to identify units responsible for specific concepts. Although it offers high granu-
larity, it is computationally intensive and limited to the fixed vocabulary of the external segmentation
network used for supervision.

Adversarial Search (SAGE), (2023). SAGE treats the generative image model as an
adversary and optimizes over text tokens to discover prompts that maximize divergence from a surro-
gate classifier. While effective at identifying specific error cases, it lacks a structured representation
of the full conceptual space, and the iterative optimization makes it prohibitively expensive.

Concept Bottleneck Models (CBMs), (2020). These architectures explicitly force the
neural network to compress information into a layer where neurons correspond to pre-defined human
concepts. This requires training models from scratch with concept-labeled data, making it unsuitable
for the post-hoc evaluation of pre-trained foundation models.

Table 1: Comparison of Approaches to Identifying Conceptual Blindspots in Image Models.

Method Specificity Unsupervised Scalability Exaggeration

FID

Precision & Recall
CLIPScore

GAN Dissection
SAGE

CBMs

Human Evaluation

Our Method

NN X XXX\
SN X X N\ XXX

AN
N X ™X™X>? 22

Evaluation Criteria

1. Specificity. The method supports a notion of discrete concepts (these may be defined in text,
via examples, a dictionary or otherwise; there may also exist a taxonomy/hierarchy).

2. Unsupervised. For a specific concept to be deemed as a blindspot, the method does not
require for the user to explicitly define or describe it.

3. Scalability. The complete conceptual space of the evaluated model, as conceptualized by
the framework, can be feasibly searched (given a conceptual space of > 1,000 concepts).

4. Exaggeration. The method can detect both suppression and exaggeration.
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C EXPLORATORY TOOL

Shown in Figure[I2]is an overview of the exploratory tool developed alongside this project to facilitate
inspection and comparison of concept-level energy differences. The tool is a web-based interface
built around a UMAP projection of concept representations, enabling visualization and comparison of
concept-level energy differences. It is publicly available at https://sae-diff.github.io/, along
with pre-computed energy difference data for the four models evaluated in this work (SD 1.5, SD 2.1,
PixArt, and Kandinsky). All subsequent analyses in this paper are derived from insights enabled by
this tool. Its primary functionalities, which support these analyses, include:

* Contrast different models and architectures. For each evaluated model, the tool provides
a UMAP visualization spanning all 32,000 concepts from the RA-SAE. Each scatter point
represents an individual concept, color-coded by its energy difference.

* Inspect concepts. Each concept has a card with key statistics, representative real and
generated images (x, «), and visualized co-occurrence patterns.

* Explore blindspots. Beyond the UMAP and per-concept views, the tool features global
rankings of suppressed and exaggerated blindspots, helping to highlight the most notable
conceptual blindspots.

Contrast various models & architectures

o1 Relative Diff —

UMAR Optious ‘Stable Diffusion 1.5

nnnnnnn

- '"A':_ O B i) « o e \
Explore blindspots

Inspect individual concepts

Figure 12: Overview of the Exploratory Tool. The web interface displays a UMAP projection for
each evaluated model, where each dot represents a concept, color-coded by its energy difference.
When a concept is selected, a detail panel presents illustrative images, statistics, and the most
representative natural and generated images @ and «’. An ordered list of the concept’s co-occurrences
is shown alongside global rankings of blindspots.
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D EXPERIMENTAL SETUP

This section details the experimental setup for our analysis of four popular generative image models:
SD 1.5/2.1, Kandinsky, and PixArt, all trained on LAION-5B or its subsets/derivatives. The code is
available at https://github.com/sae-diff/code-review.

D.1 OBSERVATION SPACE

The observation space is constructed by sampling 10,000 image-text pairs from the LAION-5B
dataset|Schuhmann et al.| (2022)), which serves as our domain of natural images. Due to concerns
with CSAM and other unsafe content in the dataset, the original data release is no longer available. A
substitute release of a subset of this dataset with additional filtering of the unsafe content, available at
https://huggingface.co/datasets/laion/relaion2B-en-research-safe, is used.

The sampling procedure consists of: (1) loading the full LAION dataset using the Hugging Face
datasets library, (2) performing validation to ensure proper URL structure and resource availability
via HTTP HEAD requests, and (3) employing random sampling with replacement until reaching the
target count of 10, 000 valid samples. This approach, yielding Dg with (z, t) tuples, ensures our
observation space contains accessible image-text pairs for comparative analysis of a dataset of image
URLSs whose large portion has been made unavailable since original release. Additional examples of
synthesized images are shown in Appendix [N

D.2 SYNTHESIZED IMAGES

For each of the four evaluated models, we generate a synthetic dataset Dy, to have a one-to-one
correspondence with D¢, yielding triplets (x, ', t). Specifically, given the 10,000 image-text pairs
(z,t) from D¢, we use t to synthesize counterpart images &’ using each generative model gg.

The synthesis process follows the standard text-to-image generation pipeline for each model archi-
tecture, implemented using the Hugging Face diffusers library, where the models are loaded at
mixed precision (fp16). All synthetic images are generated at 512 x 512 pixel resolution with default
parameters.

Stable Diffusion 1.5. The checkpoint from |https://huggingface.co/benjamin-paine/
stable-diffusion-v1-5 (which is a mirror of the deprecated |https://huggingface.co/
ruwnayml/stable-diffusion-v1-5) is used. Inference is performed using 50 inference steps,
with the guidance scale fixed at 7.5.

Stable Diffusion 1.5 + DPO. The DPO variant of SD 1.5 (used in the analysis in Sec. .5 follows
the baseline SD 1.5 implementation, but replaces the UNet component with a DPO-trained version
from https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1.

Stable Diffusion 2.1. The checkpoint from https://huggingface.co/stabilityai/
stable-diffusion-2-1| is used. Inference is performed using 50 inference steps, with the
guidance scale fixed at 7.5.

Kandinsky. The checkpoint from |https://huggingface.co/kandinsky-community/
kandinsky-2-1| is used. Inference is performed using 100 inference steps, with the guid-
ance scale fixed at 4.0.

PixArt. The checkpoint from https://huggingface.co/PixArt-alpha/
PixArt-XL-2-1024-MS is used. Inference is performed using 50 inference steps, with the
guidance scale fixed at 7.5.

D.3 DISTRIBUTION LEVEL ANALYSIS

Section We compute energy differences d(-) across all 32,000 concepts for each evaluated

model. The sigmoid transformation with temperature 7" = 0.8 is applied during normalization. The
resulting values are visualized as log-scale density histograms with 100 bins spanning [0, 1].
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Section We embed the complete set of 32,000 concepts into two-dimensional space using
UMAP applied to the sparse concept codes. Each point in this UMAP represents an individual con-
cept, colored according to its energy difference J(.), emphasizing both suppressed and exaggerated
blindspots. To quantify cross-model consistency, we compute pairwise Pearson correlation coeffi-
cients between §(.) vectors of all model pairs, producing both scatter plots and correlation matrices.
This analysis reveals whether blindspots cluster in conceptual space and identifies model-specific
versus universal patterns of conceptual blindspots.

Section We rank all 32,000 concepts by their energy difference §(.), and manually examine the
extrema (both suppressed and exaggerated blindspots). For suppressed blindspots, we select concepts
with 0(.) < 0.1; for exaggerated blindspots, we choose those with §(.) < 0.9. Presented examples
are manually annotated with textual descriptions of the respective concepts through inspection of
their most activating images and spatial attention patterns. We outline ongoing efforts to automate
this concept interpretation in Appendix

Section We compare 1.5 with and without DPO in the following fashion: for each image
pair (z, '), we compute the L2 norm of the difference between their concept energy vectors
[I€(x") — &(x)||2- We apply a sigmoid transformation with temperature 7" = 0.8 to the element-wise
differences before taking their mean. This yields datapoint-wise energy differences that quantify how
much each generated image deviates from its natural counterpart in concept space. Finally, these
differences are visualized as overlapping histograms, contrasting both model variants.

Section[4.6,  For each concept ¢, its empirical frequency || Z. ;||o (the count of non-zero activations
across the natural dataset) is counted. A sigmoid normalization with temperature 7' = 0.4 is then
applied to the energy differences d(.) The analysis is visualized using scatter plots where the x-axis is
the empirical concept frequency and the y-axis is the sigmoid-transformed energy difference. The
point sizes are proportional to activation frequency and point colors are proportional to the magnitude
of energy differences.

D.4 @ DATAPOINT LEVEL ANALYSIS

Section For each image pair (z, '), we compute the L2 norm of the difference between their
concept energy vectors ||(x’) — &(x)||2. This yields a scalar measure of conceptual divergence for
each image pair. The samples are ranked by their energy differences. Minimal divergence indicate
potential memorization artifacts and maximal divergence point to significant conceptual failures. This
analysis enables qualitative inspection of specific failure modes.

D.5 ® CO-OCCURRENCE ANALYSIS

Appendix [H] For both the natural and synthesized data D and Dy, , concept co-occurrence
patterns are analyzed through the co-activation matrix Z7 Z, which holds pair-wise correlations
in concept usage. Spectral analysis is performed to examine the dominant conceptual directions
using eigendecomposition. The alignment between natural and synthetic co-occurrence structures is
assessed using cosine similarity heatmaps between the top-100 eigenvectors of each co-occurrence
matrix. These 100 x 100 similarity matrices are visualized as square heatmaps where perfect diagonal
alignment would indicate identical principal concept axes, while off-diagonal patterns reveal would
revolve rotations and mismatches in compositional geometry.
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E COMPUTATIONAL RESOURCES

This section summarizes the GPU resources used for training and experiments in support of this
paper. In total, we used approximately 202 GPU-hours on NVIDIA H100s and H200s.

RA-SAE. Trained for approximately 24 GPU-hours on three NVIDIA H100s.

Synthesized Images. Generating the full Dy, (see Appendix@ took roughly 5 hours per generator
when distributed across four NVIDIA H200 GPUs. With five generators, this totaled approximately
100 GPU-hours on a NVIDIA H200.

Distribution-Level Analysis. Extracting energy differences at the distribution level took about 3
hours per generator on a single NVIDIA H200 GPU (total ~ 15 GPU-hours).

® Datapoint-Level Analysis. Computing datapoint-level energy differences, ranking concepts per

datapoint, and ranking datapoints per concept also took approximately 3 hours per generator on one
H200 GPU (total ~ 15 GPU-hours).
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F CustoM RA-SAE

This section introduces our custom relaxed archetypal sparse autoencoder (RA-SAE), its training
configuration, autointerpretability pipeline, and examples of learned concepts. The model is open-
sourced at anonymized.

Sparse Autoencoders. SAEs decompose the high-dimensional activation space of models into
sparse, human-interpretable concepts. Specifically, SAEs enforce a sparsity constraint so that each
activation vector is reconstructed using only a small subset of learned feature directions (i.e. concepts),
which helps disentangle overlapping information (superposition) into more separable parts. Once
trained, each concept is assigned a human-interpretable label, either by human annotators or via
autointerpretability pipelines (for example using a vision-language model). To assist with this labeling,
high-activating exemplars (inputs that yield strong activation for that concept) are identified, and
recurring visual or semantic patterns across those exemplars are described.

Archetypal SAEs. Regular SAEs suffer from instability: small changes in initialization, data,
or training can lead to different learned dictionaries. Archetypal SAEs (A-SAEs) mitigate this by
constraining dictionary atoms (feature directions) to lie within the convex hull of the data; that is,
each concept vector must be expressible as a convex combination of actual activation vectors from
the data. This geometric anchoring forces the learned features (atoms) to be more directly tied to the
underlying data, improving stability. Relaxed Archetypal SAEs (RA-SAEs) loosen this constraint
somewhat to allow more flexibility (better reconstruction ability) while retaining much of the stability
benefits. Empirically, RA-SAEs have been found to match or outperform regular SAEs in benchmarks
of plausibility (how well learned directions recover known classification or semantic directions) and
identifiability (how well they disentangle synthetic mixtures of concepts), producing more stable and
semantically meaningful concepts.

Our Configuration. Our custom RA-SAE was trained on top of DINOvV?2 representations using the
Top-K sparsity constraint|Gao et al.|(2025)). It has 32,000 concepts, making it largest RA-SAE to
date. Training details are reported in App. [F-T} We describe the autointerpretability pipeline to assign
labels to concepts in App. Finally, examples of concepts learned by the RA-SAE are given in

App.[F3|
F.1 TRAINING DETAILS

Dataset. The auto-encoder is trained on the complete ImageNet- 1k training split, (= 1.28 M) RGB
images. Each image is converted to 261 visual tokens using DINOv2 |Oquab et al.| (2023); tokens are
fed to the SAE without class or position embeddings. The total number of training tokens is therefore
50 x 1.28M x 261 ~ 1.67 x 10%.

Dictionary. The dictionary has 32,000 concept dimensions. For the sparse activation rule, top-k
masking with £ = 5, is used; activations outside the largest five per input are set to 0. The weights
are initialized using Xavier/Glorot. The training is conducted at mixed precision (fp16), with the last
ten epochs performed at full precision.

Optimizer and Schedule. The model is trained for 50 epochs using base AdamW (5; = 0.9,
Bo = 0.999) optimizer is employed with weight decay set to 10~°. Linear warm-up is applied on the
first 5% of steps, followed by cosine decay from 7,.x = 5 X 10~% to Nfinal = 107%. MSE loss is used
alongside an auxiliary term penalizing activations that never enter the top-k set, where A = 1075,
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F.2 AUTOINTERPRETABILITY

In an effort to automate the interpretation of concepts identified by the RA-SAE, we qualitatively
evaluated the ability of Vision-Language Models (VLMs) to describe them. In particular, we queried
ChatGPT 4o via the OpenAl API using various prompts and formats of an image x’’ in which the
given concept was salient, recording the description generated by the VLM. In this section, we
highlight the findings from our exploration. For evaluation purposes, we allowed the VLM to provide
its full reasoning; to make this a scalable solution, a simple modification of the prompt—asking the

VLM to provide only the description—would filter out the reasoning.

First, we provided the VLM with two images: a raw version of ' and =" with a heatmap superim-

posed to localize the intensity of the concept:

Input

You are given two images: (1) raw image
and (2) the same image with a heatmap
of areas that are salient for a concept
present in the image, as identified by a
DINOv2-based SAE. Describe what is this
concept.

As seen in the example, the VLM did not interpret the heatmap visualization correctly. Instead of
describing the wood texture in the background—the actual salient region—it described the ring in the

Output

The concept identified by the DINOv2-based SAE in these images appears to correspond
to "ring" or "metal ring" as the salient object.

Reasoning:

- In the original image, a sleek, brushed-metal ring is centered on a wooden surface.

- In the heatmap overlay, the regions that are most activated (least transparent with bright
color blocks) are tightly focused on the ring itself, particularly the outer surface and inner
reflections.

- The wooden background is mostly ignored except for minor scattered activations,
confirming that the concept is not about the background texture.

- The consistent and strong focus on the metallic, circular object suggests that the model
recognizes this as the defining element—likely trained to detect the shape, material, and
reflectivity typical of rings.

foreground, which received no attention from the RA-SAE.

To determine whether this was a prompting issue, we tested the same scenario again—this time using

an expanded prompt that explained the heatmap in greater detail:

Input

You are given two images: (1) raw image
and (2) the same image with a
superimposed heatmap of areas that
contain a concept identified by a DINOv2-
based SAE. Red areas are the most salient
(contain the concept); blue areas are the
least salient (do not contain the concept).
Describe what is this concept.

This prompt modification did not resolve the issue, as the VLM still identified the ring as the
prominent concept in the image. Several other prompting techniques, including those describing the
heatmap in even greater depth (e.g., by including the code used for its generation), were explored

with similar results.

Output

The concept identified by the DINOv2-based SAE in these images appears to be "ring" or
more specifically "metal band/jewelry ring.”

Here's the reasoning:

- In the heatmap image, the red and yellow (most salient) regions align very closely with
the circular metal ring at the center of the image.

- The ring is the only distinct object in the photo and is clearly segmented from the
background (wooden surface), which is mostly marked in blue and green (least salient).

- The attention does not focus on the texture of the background or lighting but is highly
localized to the curved, metallic object.

Thus, the concept is almost certainly the metallic ring—its shape, reflectivity, and material

seem to trigger the sparse autoencoder's activation, making it a learned concept in the
SAE dictionary.
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We next tested providing the VLM only with the heatmap-superimposed =’ and a similar prompt
explaining how to interpret the heatmap:

Output
You are given an image with a The concept identified by the DINOv2-based SAE in this image appears to be "ring" or
superimposed heatmap of areas that more broadly, "circular metallic object". The most salient (red) areas are focused tightly
contain a concept identified by a around the ring itself—especially along its edges and reflective interior—indicating that the
DINOv2-based SAE. Red areas are the model has strongly associated those regions with the concept.
most salient (contain the concept); blue
areas are the least salient (do not contain The surrounding wooden surface is mostly in blue and green, which shows it is not relevant
the concept). Describe what is this to the concept, supporting the idea that the model is isolating the ring as the key object of

concept. interest.

Once again, the result failed to identify the wooden background as the prominent concept in the image
and instead focused on the ring. As in the previous case, we experimented with various prompting
strategies using this image format, but the results remained largely unchanged.

From these observations, we concluded that the heatmap alone is insufficient to guide the VLM’s
attention to the salient areas. The presence of less relevant regions appears to distract the model. To
address this, we replaced the heatmap-superimposed =’ with an alpha-masked version of x”:

Input Output
b
x
=
B
=
==
=
You are given an image where only areas The concept identified and preserved in this image appears to be "wood texture" or
that contain a concept identified by a "wood grain." The retained areas show consistent patterns typical of wooden surfaces—
DINOv2-based SAE are preserved; areas linear, fibrous streaks in earthy tones like beige, gray, and brown. The selective masking
without the concept were removed. highlights parts of the image where this natural texture is most prominent, suggesting the
Describe what is this concept. SAE learned to isolate the visual features of wood (likely flooring or a table).

As shown in the example, the VLM was now able to correctly identify wood texture as the dominant
concept. We observed consistent success across a range of concepts and images.

The formatting of &’ and the prompt shown above yielded the most reliable results in our qualitative
evaluation. However, we note that this evaluation is limited by its qualitative nature (due to the
absence of ground truth annotations) and its focus on a single VLM. We hope future work on the
autointerpretability of SAE concepts can build on and expand this analysis.
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F.3 EXAMPLES OF LEARNED CONCEPTS

Shown below is a representative sample of concepts learned by our RA-SAE. For each concept, we
present 12 images for which the concept had the highest activation in the ImageNet dataset (on the
left) and a localization of the respective concept within those images (on the right). Additionally, an
epitome constructed using the Feature Accentuation method from [Hamblin et al (2024) is shown
bottom left.

As can be seen from this sample, the granularity of concepts varies. We see concepts for objects
(e.g., colorful underwater fish), textures and patterns (e.g., colorful polka dots pattern),
composition (e.g., person on the right edge at social gatherings and bright colorful
backgrounds), actions (e.g., skiing action on snowy slopes and gripping various tools
and objects), types of images (e.g., comic book illustrations and characters and male
portraits in various attire), and more.
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G ADDITIONAL RESULTS: QUALITATIVE EXAMPLES OF BLINDSPOTS

Shown below are qualitative examples of suppressed conceptual blindspots in SD 1.5. For each
concept, we include a representative image from the natural distribution to illustrate the desired visual
depiction. To the right, we show four images generated by SD 1.5 using various prompts designed to
elicit the concept. Despite using simple, clearly worded prompts, the model consistently struggles to
generate these concepts, supporting their identification as suppressed conceptual blindspots.
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In the remainder of this section, we enumerate additional suppressed and exaggerated blindspots for
each evaluated model (see App.[G.I)). We also describe our stress-testing procedure, in which we
attempt to elicit the concepts identified as suppressed blindspots using many prompt variations, in
order to validate that these are indeed true blindspots (see App.[G.2).
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G.1 MODEL-SPECIFIC BLINDSPOTS

(a) Suppressed Blindspots (b) Exaggerated Blindspots
Bottom white Whitespaces on Bottom left Solid black Solid gray Wood texture Round objects
€k padding documents white padding background Book cover €k background Sea floor Fries background in the back
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Figure 13: Examples of conceptual blindspots in Stable Diffusion 1.5. For each concept, the
prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on
the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop
the image.
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Figure 14: Examples of conceptual blindspots in Stable Diffusion 2.1. For each concept, the
prototypical natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on
the highest absolute activation, is shown. The spatial heatmap for the concept is superimposed atop
the image.
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(a) Suppressed Blindspots (b) Exaggerated Blindspots
Bird feeder Flowerhead of Thin ropes Sky, edge of Grass
Ck  withseeds a cone flower against sky Watermark tree branches Ck  Owlfacial disc Turtle shell background Penguin body Palm trees
— =
- ﬂ G |
’ ’ J Y
X X
ey
o
n
x -
p
x /
' ,-‘ )
Researchers at Multi channel figure cocktail lapaward tree Luxury
t Red Northern the University of auftragsabwicklu beverage with growth fruit t 2012 BMW 650i destination
cardinal birds Washington have ng: Filiale SAP cherry icon, green color Antique scroll convertible by African penguins wedding, grand
eating seed from created a sensor best practices for  vector llustration  nature leaf soft shell turtle AC Schnitzer - royalty free stock palladium
feeder package that... retail. design freshness... Burrowing owl by Toshizumi 9.9.2011 image. Jamaica - ...

Figure 15: Examples of conceptual blindspots in Kandinsky. For each concept, the prototypical
natural (for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest
absolute activation, is shown. The spatial heatmap for the concept is superimposed atop the image.
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Figure 16: Examples of conceptual blindspots in PixArt. For each concept, the prototypical natural
(for suppressed blindspots) or synthesized (for exaggerated blindspots), based on the highest absolute
activation, is shown. The spatial heatmap for the concept is superimposed atop the image.
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G.2 STRESS TESTING

To stress-test the blindspots identified by our method, we gathered a range of prompts describing
these blindspots and used them to generate many images. We then contrasted the outputs from models
in which the concept was identified as a blindspot with those in which it was not.

Specifically, ChatGPT-40 was prompted as follows: I want to generate an image of the following
concept: "<blindspot>". Suggest 50 prompts highlighting this concept to be used as input for a
text-to-image model. Return these as a list of strings in Python. Five images were generated per
prompt and analyzed using our custom RA-SAE model (see Appendix [FI), which ranked them by
the intensity with which the desired concept appeared. All images were then manually reviewed to
determine whether the blindspot was successfully depicted.

As seen in the following examples of suppressed concepts, while some aspects of the target concept
occasionally appeared (e.g., a holder or string for the bird feeder blindspot and a round hole for the
glossy DVD disc blindspot), the models generally failed to generate the full concept. This aligns
with our method’s assessment and supports the validity of the stress test.

G.2.1 Bird Feeder BLINDSPOT IN KANDINSKY

Suppressed Blindspot Regular Concept

Text Kandinsky SD 1.5

bird feeder
hanging from a
tree branch

colorful bird
feeder attracting
many small birds

bird feeder
surrounded by
blooming flowers

transparent tube
bird feeder filled
with seeds

Figure 17: Examples of images generated with various prompts involving the bird feeder concept
as a part of the stress testing. In Kandinsky, our method identified this concept as a suppressed
conceptual blindspot, which matches the observed behavior: the model is unable to generate a
corresponding image. By contrast, SD 1.5, in which this concept was not identified as a blindspot, is
able to generate this concept.
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G.2.2 Glossy DVD Disc BLINDSPOTIN SD 1.5

Regular Concept Suppressed Blindspot

Text Kandinsky SD 1.5

\ o

e () @& o) O
on a white

background

glossy DVD disc
with visible data
layer

minimalist glossy
DVD disc

glossy DVD disc
with rainbow
spectrum

Figure 18: Examples of images generated with various prompts involving the glossy DVD disc
concept as a part of the stress testing. In SD 1.5, our method identified this concept as a suppressed
conceptual blindspot, which matches the observed behavior: the model is unable to generate a

corresponding image. By contrast, Kandinsky, in which this concept was not identified as a blindspot,
is able to generate this concept.
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H ADDITIONAL RESULTS: HIGHER-ORDER BLINDSPOTS WITH
COMPOSITIONAL DISCREPANCY

Thus far, our analysis has centered on individual concept activations. Yet visual scenes are rarely
composed of isolated concepts; instead, they are structured through rich and structured co-occurrence
patterns that encode compositional semantics. We now examine whether generative models capture
this higher-order structure by analyzing the co-activation matrix ZT Z, which reflects pairwise
correlations in concept usage.

LO norm Unique elements
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10°) — sp1s 5 —— SD15
SD 2.1 sD2.1
10 ———. Original 10" ———. Original
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Figure 19: ® Sparsity and Structural Divergence. On the left: LO norm of the co-occurrence matrix
ZZ7T as a function of e (threshold), indicating how many entries remain active in each model. On the
right: Number of unique entries in the synthesized distribution relative to the natural distribution. All
evaluated models preserve global sparsity structure, but diverge in activation content.

Surprisingly, when assessed at the level of binary structure, diffusion models approximate the global
sparsity of the natural co-occurrence matrix with high fidelity. As shown in Fig. [19| (left), the ¢
norm of Z Z — thresholded at varying e values — tracks closely between the natural and synthesized
distributions across all models. This indicates that the gross connectivity of the conceptual graph,
i.e., which concepts tend to co-activate at all, is well preserved. Formally, one can deem Z' Z as
the adjacency matrix of a weighted, undirected graph over concepts, where edge weights reflect
co-activation strength across the dataset.
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Figure 20: ® Spectral Structure of Co-occurrence. Log-log plot of the eigenvalue spectra from
co-occurrence matrices ZZ7 across models and the natural distribution. All evaluated models match
the heavy-tailed decay of the natural distribution.

However, as illustrated in Fig. [T9] (right), the specific content of these co-activations diverges: a
substantial portion of entries in the model-generated Z T Z are not shared with the natural baseline.
This suggests that while the capacity for compositionality is retained, the identity of active pairings
may shift, potentially reflecting model specific inductive biases or training artifacts. To probe the
internal structure of these co-occurrence patterns, we turn to spectral analysis. Fig. [20] shows the
eigenvalue spectra of the co-occurrence matrices for each model and the natural distribution. All
spectra exhibit a heavy-tailed decay, consistent with power-law behavior, indicating that generative
models preserve the overall rank structure and variance allocation across conceptual dimensions.

Further, we examine the alignment of dominant conceptual directions via cosine similarity heatmaps
between the top 100 eigenvectors of the synthesized and natural co-occurrence matrices (Fig. 21)).
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SD 1.5 SD 2.1 PixArt Kandinsky
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Figure 21: ® Concept Basis Similarity. Cosine similarity heatmaps between the top 100 eigenvectors
of the natural and synthesized co-occurrence matrices ZZ” . Diagonal structure shows alignment of
dominant conceptual directors, with varying degrees of alignment across the four models.

While all models exhibit partial diagonal alignment—implying overlap in principal concept axes—the
off-diagonal entries reveal rotations and mismatches in higher modes, reflecting evident deviations in
compositional geometry.

Together, these findings reveal that diffusion models approximate the global shape of concept co-
activation surprisingly well, yet deviate in subtle and structured ways when examined through
the spectral lens. Such higher-order discrepancies may underpin failures in generating coherent,
multi-object scenes or relational concepts.
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I ADDITIONAL RESULTS: CAPTION NOISE IN HIGH DIVERGENCE

We inspected datapoints with the highest datapoint-level energy differences to determine whether the
divergence stems from genuine blindspots or low-quality input data (specifically, noisy captions).

1.1 METHODOLOGY

We isolated the top k datapoints with the highest datapoint-level energy difference ||£(x’) — £(x)]|2
(see Section[.4). We analyzes these using a Vision-Language Model acting as an AutoRater (also
referred to as “LLM-as-a-judge”). The VLM was presented with the natural image « and the text
prompt ¢, and tasked with classifying the caption quality into three categories:

1. Noisy. The caption is irrelevant, factual nonsense, or consists purely of meta-data (e.g.,
filenames, URLs).

2. Underspecified. The caption is technically correct but too vague to identify the specific
concepts visible in the image.

3. Sufficient. The caption provides enough semantic detail that a generative model should
reasonably be expected to reproduce the main concepts visible in the image.

1.2 RESULTS

We used ChatGPT-40 as the VLM and analyzed k=199 images. Out of these, 76 (38.2%) were
labeled as noisy, 1 (5.5%) as underspecified, and 112 (56.3%) as sufficient.

1.3 ANALYSIS

While a portion of the highest energy differences are indeed attributable to poor instruction quality,
inherent in web-scraped datasets like LAION-5B, the majority of cases have a sufficient caption. In
these instances, the prompt adequately describes the concept present in the natural image, yet the
generative model produces a high-energy difference output. This confirms that while dataset noise
is a contributing factor, the primary driver of high conceptual divergence remains structural model
limitations, supporting the findings in Section[£.4]
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J ADDITIONAL RESULTS: SAE ERROR CASES

To better understand the specificity and reliability of the SAE used in our experiments to give £ () and
&(a), we sought to quantify its misfires (false positives, FP) and missing concepts (false negatives,
EN).

J.1 METHODOLOGY

We randomly sampled n Al-generated and n natural images. We constructed the energy profile (£(x)
or £(x')) of each image using the evaluated SAE, and filtered for the top-k concepts with the highest
activation values. Each concept was mapped to its autointerpretability label.

We then employed a Vision-Language Model (VLM) as an AutoRater (also referred to as “LLM-as-
a-judge”). The VLM was presented with the image (x or x’) and the list of top-k detected concept
descriptions (including their activation strengths), and tasked with two classification objectives:

1. Misfire (FP) Detection. Identify concepts in the detected list that are not visually present in
the image.

2. Missing Concept (FN) Detection. Identify critical visual concepts clearly present in the
image but absent from the detected concept list.

The VLM was instructed to weigh activation strength when evaluating misfires, as concepts with very
low activations are more likely to be spurious detections.

J.2  RESULTS

We conducted the analysis on the top-k=20 concepts from n=100 natural images and n=100 Al-
generated images (namely generated using SD 1.5), using ChatGPT-40 as the VLM. The top misfires
for natural and Al-generated images are reported in Tables 2] and [3] respectively. Structural concepts
with incorrect autointerpretability labels (see Section[[.3) are shown in italics.

#  Concept Count #  Concept Count
1 (Striped marine creatures) 98 1 (Striped marine creatures) 100
2 (Human interaction with surroundings) 20 2 (Human interaction with surroundings) 18
3 Natural textures and organic forms 17 3 Natural textures and organic forms 13
4 Green apples and playful animals 9 4 Elegant fashion models in glamorous... 9
5 Musical instruments and accessories 7 5 Musical instruments and everyday... 4
6  Objects and symbols representing time 6 6  Airplanes and clothing textures 4
7 Airships and vintage photography 5 7 Bathroom fixtures and sinks 3
8  Red curtains and theatrical elements 4 8  Leather couch and animals 3
9  Airplanes and clothing textures 4 9  Smoke and vapor emissions 3
10 Elegant fashion models in glamorous... 4 10 Bookshelves and seating arrangements 3

Table 2: Top Misfires for Natural Images. Con-  Table 3: Top Misfires for AI Images. Concepts
cepts from the top-k=20 concepts of natural im-  from the top-k=20 concepts of Al-generated im-
ages, labeled as misfires in a VLM AutoRater  ages (SD 1.5), labeled as misfires in a VLM Au-
analysis (conducted using ChatGPT-40). Con-  toRater analysis (conducted using ChatGPT-40).
cepts in cursive are structural concepts with in-  Concepts in cursive are structural concepts with
accurate autointerpretability labels. inaccurate autointerpretability labels.
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Figures[22) and 23] show the cumulative misfire rate as a function of k. Figure 23]excludes structural
concepts with incorrect autointerpretability labels, since these are not visibly present in the images
and thus cannot be correctly annotated by the VLM; Figure P2]includes all top-k concepts.

Only 8.0% (Al-generated) and 11.1% (natural) of images had critical visual concepts missing from
the top-20. The share of concepts that were misfires among the top-20 was 24.04% for natural images
and 26.10% for Al-generated images.
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Figure 22: Cumulative Concept Misfire (All).  Figure 23: Cumulative Concept Misfire (Vis-
Share of the n=100 images with at least one con-  ible Concepts Only). Share of the n=100 im-
cept misfire, labeled in a VLM AutoRater analy-  ages with at least one concept misfire, labeled
sis (conducted using ChatGPT-40), as a function ~ in a VLM AutoRater analysis (conducted using
of k. All concepts are included, including struc-  ChatGPT-40), as a function of k. Structural con-
tural ones which are not visible and where the au-  cepts that are not visible and where the autoin-
tointerpretability description is inaccurate. The  terpretability description is inaccurate are not
region highlighted as “Target k£ corresponds to  included. The region highlighted as “Target k”
the k£ hyperparameter of the SAE. corresponds to the k hyperparameter of the SAE.

J.3 ANALYSIS

Tables ] and 3] listing the top misfires in natural and Al-generated images, point to a phenomenon
where abstract concepts fire frequently without being tied to a clear semantic feature visible in the
image. As shown in Figures24]and 23] these concepts attend to abstract content near the left or right
edges of the image, without any particular semantic attachment. Consequently, the autointerpretability
descriptions assigned to these concepts by a VLM (e.g., Striped marine creatures and Human
interaction with surroundings) are not truly descriptive. The VLM AutoRater then marks these
concepts as misfires for almost every image because it relies purely on those textual descriptions

(Figure 22).

After filtering out such concepts, the misfire profile in Figure 23]shows strong performance under the
SAE configuration with k=5. Here, the SAE activates only five sparse concept codes per image, and
these are the positions that should be primarily scrutinized. At k=5, for both natural and Al-generated
images, the majority of datapoints exhibit no misfires. This rate increases approximately linearly
until it plateaus around k=20. Furthermore, only 8.0% of Al-generated images and 11.1% of natural
images had critical visual concepts missing from the top-20 concepts.

Specific examples of datapoints with misfires or missing concepts for both natural and Al-generated
images are given in Sections[[.3.Tand [[.3:2] respectively.
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k 31585

Striped marine
creatures

Epitome Most-Activating ImageNet Examples

Figure 24: Concept 31585 Detail. Shown above are the autointerpretability description, exemplars,
and epitome for the concept.

k 13101

Human
¢, interaction with
surroundings

Epitome Most-Activating ImageNet Examples

Figure 25: Concept 13101 Detail. Shown above are the autointerpretability description, exemplars,
and epitome for the concept.
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J.3.1

Search result for baked chicken
fajitas heart healthy. Easy and
delicious homemade recipe...

The Economics Of Developing
Countries

ERROR CASES: NATURAL IMAGES

Top Extracted Concepts (Misfires)

Bowils of various foods

Bell peppers, vibrant colors, cross-sections

Striped marine creatures

Gourmet food presentation

Fresh vegetables and dips

Top Extracted Concepts (Misfires)

Vibrant market scenes

Seating arrangements in crowds

Facial expressions and cultural diversity

Human interaction with surroundings

Back views of clothing and swimwear

J.3.2 ERROR CASES: AI-GENERATED IMAGES

t

Where To Buy Memory Foam
Mattress Size Cool Memory
Foam Mattress

MSS Cavitation Cleaner

2019 MSS
CAVITATIONCLEANER

Top Extracted Concepts (Misfires)

Beds and mattresses

Industrial tools and equipment
Bedding pillows and blankets
Natural textures and organic forms

Bedding patterns and textures

Top Extracted Concepts (Misfires)

Website layouts and designs

Tools and equipment for various tasks
Smoke and vapor emissions

Bright orange backgrounds

Textual labels and branding elements
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K CONCENTRATION BOUNDS FOR ¢

In our experiments, we estimate §(k) using n = 10,000 paired samples for each concept. While this
budget is modest, it raises the natural question of whether it suffices to obtain reliable estimates. To
address this, we derive a concentration bound on the empirical estimator d,, (k) using McDiarmid’s
inequality [McDiarmid et al.|(1989). The resulting bound is tight and demonstrates that even with
relatively few samples, we can obtain fast and accurate estimates of concept bias.

Theorem 4 (Concentration of gn(k)) We assume that the concept score & () takes values in [a, b]
almost surely for all images x drawn from either Dy or D’. Let n paired samples (x;,x'i)!"_, be
drawn independently with x; ~ Dy and ) ~ D', and define the empirical estimator

() i= (i > (@) - isz@”) .

Let M :=b— aand L := M /4. Then for every ¢ > 0, the deviation satisfies

P ([6uk) —6)] > £) < 2exp <_ 22‘;2) .

Proof. The function x — o(x) is 1/4-Lipschitz, since |0’ (z)| < 1/4 for all .

Viewing gn(k:) as a function of the 2n independent variables (21, ..., T,, 2], ..., 2, ), changing a
single argument alters the inner difference of means by at most M /n, and the outer sigmoid scales this
by at most 1/4. Hence, the bounded difference constant for each coordinate is (M /n)(1/4) = L/n.

By McDiarmid’s inequality (McDiarmid et al., [1989),

which proves the claim. O

Practically, most concept scores (k) are sparse, with the majority concentrated near zero and only
a few reaching values up to 10. The concentration bound shows that even for the largest observed
biases, a sample size of n = 10,000 yields estimates of ¢,,(k) that deviate from the true value by
no more than a small € with high probability. This justifies our sampling strategy and confirms that
accurate bias measurements are attainable with limited data.
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L MONOTONICITY AND CALIBRATION-FREE INTERPRETATION OF ¢

Our goal when analyzing blind spots is to rank concepts by the severity of their generative bias. In
practice, we use the score §(k) for this purpose. However, one may wonder whether such a score
introduces distortions relative to more direct quantities such as the energy gap or the odds ratio.
The following result establishes that §(k) is a strictly increasing reparameterization of both, and
therefore inherits their ordering. This guarantees that no calibration is needed when using d(k) to
rank concepts.

Theorem S (Monotonicity and Calibration of g, ). For every concept index k define the energy
gap
Ap = Egopy [§h ()] — Exnp. k()]

the associated odds ratio p, = exp(Ay), and the energy—difference score

1 P
(k) 1+ exp(—Ag) 1+ pg
Then 6(k) is a strictly increasing bijection of both Ay and py, so ranking concepts by any one of
0(k), Ak, or pg produces exactly the same ordering.

Proof. The logistic sigmoid satisfies o’ (z) = o(2)(1 — o(2)) > 0, Vz € R; hence ¢ and therefore
0(k) = o(Ay) grow strictly with Aj. Because the exponential map is also strictly increasing and
bijective R — (0, 00), setting pr, = exp(Ay) preserves order and gives Ay = log py. Substituting
this identity into o yields 6(k) = o(logpr) = pr/(1 + pr), which is the composition of two
strictly increasing bijections and is therefore itself strictly increasing and bijective in pg. Since strict
monotonic functions never reverse inequalities, the three quantities share the same total order over
concepts.

O

Thus, ranking concepts by §(-) is strictly equivalent to ranking them by energy gap or by conceptual
generation odds py. No calibration is necessary, and all three quantities preserve the same total
ordering over concepts.
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M STABILITY OF FID UNDER SAE EMBEDDINGS

In this section we establish a quantitative relationship between the Fréchet Inception Distance
(FID) computed in the original activation space (of dimension d) and the FID after applying a
(potentially overcomplete) SAE dictionary D € R**? with k >> d. Throughout we assume that D
has orthonormal columns but is not necessarily square, i.e.

D'D =1, while ~ DDT # I,

We start by recalling a simple fact: if D is not overcomplete, orthogonal and k& = d, the we have an
isometry between A and Z, implying that the FID is perfectly preserved. However, this case is not
realistic, we will then turn the the overcomplete case, and show we can bound FID by the extreme
singular value of D. We will work with the Wasserstein-2 metric W, noting that FID is just W3
specialised to Gaussians.

For a probability measure g on R? we write D, p for its push-forward under D, i.e. Dyp(z) =
u(D‘lz). Denote by 0,in and opax the minimal and maximal singular values of D, equivalently
the square-roots of the extremal eigenvalues of DD T:

o2. I, < DD" < o2 I,.

min max

Empirically one usually finds oin, omax = 1, but the proof does not rely on that. We will start by a
simple lemma in the case where D is not overcomplete.

Lemma 1 (Isometry under exact orthogonality). Suppose k =dand D" D = DDT = I,. Then
D is an isometry: | Dv||y = ||v||2 for all v € R?. Consequently, for any probability measures ., v
on R? with finite second moment,

Wa(Dyp, Dyv) = Wa(p,v).

Proof. Orthogonality of D implies preservation of the Euclidean norm, and push-forward commutes
with the map inside the WV, infimum; the integrand is unchanged, so the infimum value is identical.
O

This case, however, is quite unrealistic as SAE usually rely on the overcompletness to extract
meaningful and interpretable concepts. In the overcomplete case, D is no longer orthonormal, but
we can still have column-orthonormal dictionary. We will use that to show that we can bound using
the extremal singular value of DT D.

Theorem 6 (FID under column orthogonal embeddings). Let D € R**? satisfy D" D = I; and
denote by 0 < Opin < Omax the extreme singular values of DDT. Given two data matrices
A, A" € R"  (rows are sample vectors), set Z = ADT € R"** and Z' = A’DT € R"**. Then

o2.. FID(A,A") < FID(Z,Z') < o2, FID(A, A").

min max

Proof. Write p for the empirical measure of A and v for that of A’, i.e.

1o Ly
= 5;6&,:, v = g;fha,:

For any coupling 7w € TI(p, V) (i.e. a probability measure on R? x R? with marginals p, /) we have,
by the extremal singular value bound,

ormlle—yl3 < [[D@-9)3 < oluclle—yl3,  V(z,y) € R xR

— max

Integrating with respect to an arbitrary coupling 7 € II(p, v) yields

7o [z~ yl3an < [ID@ - y)Bdn < ok, [la -yl

The middle integral is exactly the transport cost of the pushed—forward coupling (D x D)7 between
pp = Dyup and vp := Dyv. Because the inequalities hold for every m, they hold in particular
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for the optimal couplings attaining Wa(p, v) and Wa(up, vp), though these two optima need not
coincide. Taking the infimum over 7r term-wise makes this explicit:

2 : 2 : 2 2 : 2
Opin Inf z—y|sdr < inf / D(x—y)lzdr < o5, iInf / x —y|5dm.
ot /II 12 ot 1D( )z et | 112
Hence

O.?nin W22 (/1’7 V) < W22 (H'Dv VD) < U?nax )/\}22 (H” V)'

Recognising FID(-, -) = W3(-, -) for the Gaussian surrogate and plugging in (A, A’) (resp. (Z, Z"))
finishes the proof. O

Essentially, theorem [6] tells us that applying a column-orthogonal overcomplete SAE dictionary
cannot distort Fréchet Inception Distance by more than the square of its extremal singular values.
When D is nearly orthogonal — empirically we usually found that o, 0max & 1 — the result implies
that FID measured in the SAE feature space is essentially close to the canonical FID. [J
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N ADDITIONAL EXAMPLES OF SYNTHESIZED IMAGES

Text Natural SD1.5 SD 2.1 PixArt Kandinsky
New Modern 71 . -
Fiberglass Plastic
Swimming Pool
Entrance Step With
Clean Fresh
Refreshing Blue
Water On

Kylie - Yorkie -
Rolly Teacup
Puppies

DREWS e

CT—
1 KARAOKE HITS
]

gwen stefani
wind it up mp3:

office bundle
package

Stagecoach
Springs Road,
Custer image

Christ On The
Cross Acrylic Print
by Delacroix

Picture of
Outdoor Swing
Chair / Bed
Canopy
Patterned Arch -
Coffee

00Cs
PEOPLE

SR g
Dogs and Their LBV E \)‘\{ e
People b /4
i Bt

carbonara
spaghetti on
wood
background

Figure 26: Additional image-caption pair examples from LAION-5B with matching images generated
with the same prompt by SD 1.5, SD 2.1, PixArt, and Kandinsky.
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