

000 001 002 003 004 005 TOKENIZING SINGLE-CHANNEL EEG WITH TIME- 006 FREQUENCY MOTIF LEARNING 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Foundation models are reshaping EEG analysis, yet an important problem of EEG
031 tokenization remains a challenge. This paper presents TFM-Tokenizer, a novel
032 tokenization framework that learns a vocabulary of time-frequency motifs from
033 *single-channel* EEG signals and encodes them into discrete tokens. We propose a
034 dual-path architecture with time-frequency masking to capture robust motif repre-
035 sentations, and it is model-agnostic, supporting both lightweight transformers and
036 existing foundation models for downstream tasks. Our study demonstrates three
037 key benefits: *Accuracy*: Experiments on four diverse EEG benchmarks demon-
038 strate consistent performance gains across both single- and multi-dataset pretrain-
039 ing settings, achieving up to 11% improvement in Cohen’s Kappa over strong
040 baselines. *Generalization*: Moreover, as a plug-and-play component, it consis-
041 tently boosts the performance of diverse foundation models, including BIOT and
042 LaBram. *Scalability*: By operating at the single-channel level rather than relying
043 on the strict 10–20 EEG system, our method has the potential to be device-
044 agnostic. Experiments on ear-EEG sleep staging, which differs from the pretrain-
045 ing data in signal format, channel configuration, recording device, and task, show
046 that our tokenizer outperforms baselines by 14%. A comprehensive token analy-
047 sis reveals strong class-discriminative, frequency-aware, and consistent structure,
048 enabling improved representation quality and interpretability. Code is available at
049 <https://anonymous.4open.science/r/TFM-Tokenizer-FE33>.
050
051

1 INTRODUCTION

052 Foundation models have revolutionized how machines understand human language, leading to major
053 breakthroughs in natural language processing (NLP) (OpenAI et al., 2024; DeepSeek-AI et al., 2025)
054 and cross-modality tasks such as text-to-image generation (Bordes et al., 2024). Inspired by this
055 success, researchers are now advancing a paradigm shift in electroencephalogram (EEG) analysis
056 toward task-agnostic foundation models (Mohammadi Foumani et al., 2024; Yang et al., 2024; Jiang
057 et al., 2024b; Wang et al., 2024a). By pretraining on massive, diverse EEG data corpora, these
058 models learn universal representations that generalize well across various downstream tasks.
059

060 Despite substantial recent progress, an important open problem remains: *how to design an effective*
061 *tokenization method for EEG signals*. Tokenization, a core component in NLP, transforms raw text
062 into meaningful tokens, which reduces data complexity and introduces a helpful inductive bias in
063 foundation models (Gastaldi et al., 2025). Typically, tokenization is performed by a learnable func-
064 tion that trains a vocabulary of tokens and statistics from a given corpus. However, existing EEG
065 foundation models tokenize signals by directly segmenting continuous EEGs into short-duration
066 tokens, without learning a vocabulary. They merely discretize EEG signals, failing to capture sta-
067 tistically grounded representations in a data-driven manner. LaBram (Jiang et al., 2024b) proposes
068 a neural tokenizer to learn data-driven tokens before pretraining. However, these tokens primarily
069 serve as training objectives rather than as actual inputs for subsequent model training and are dis-
070 carded during downstream inference, limiting their reusability. As a result, the foundation model is
071 still trained on continuous segment-level embeddings, failing to fully leverage the benefits of tok-
072 enization, such as improving the quality of input representations. In this paper, we study a novel and
073 critical problem of developing a principled EEG tokenization that seamlessly integrates with various
074 foundation models and enhance downstream performance and generalization.
075

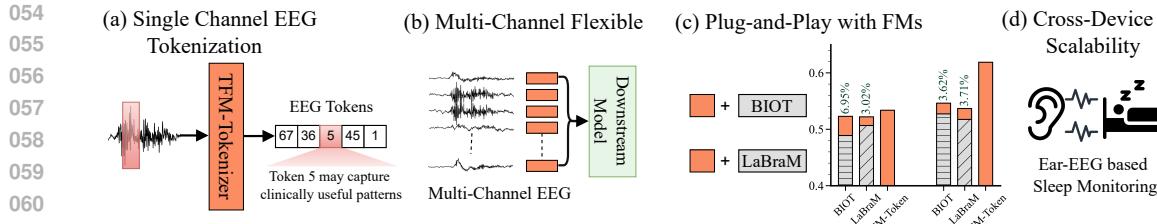


Figure 1: (a) Our TFM-Tokenizer converts single-channel EEG into discrete tokens by capturing time-frequency motifs. (b) It is adaptable to any different multi-channel settings, (c) can be integrated with existing foundation models to enhance their performance, and (d) enables cross-device scalability.

Various studies have shown that developing an effective tokenization is a non-trivial task in general, as it is influenced by multiple factors (Schmidt et al., 2024). In this paper, we recognize and focus on three key challenges of EEG tokenization. **1) Tokenization target:** real-world EEG recordings exhibit diverse formats due to varying devices, channel configurations, and recording lengths (Yang et al., 2024). We argue that tokenizers should be trained and operated at the *single-channel level* to learn channel-agnostic discrete tokens. This design enables flexible adaptation to multi-channel tasks and can generalize to non-standard EEG devices. In Section 4.4, we provide scalability experiments on ear-EEG settings. **2) Token resolution:** in NLP, tokenization can be defined at different resolutions (characters, subwords, words), each reflecting different assumptions about semantic granularity. However, EEG signals are characterized by diverse oscillatory (e.g., alpha, beta) (Pradeepkumar et al., 2024) and transient patterns (e.g., spikes) (Chen et al., 2022). Thus, effective tokens must represent such underlying *motifs* (Xu et al., 2023) that reflect distinct neural or physiological events. **Motifs can be understood as short, recurring patterns in a time series that exhibit limited variability and often carry discriminative significance** (Xu et al., 2023). However, these motifs are often distorted by noise, amplitude scaling, and temporal warping, making it challenging to design robust EEG tokenization methods. **3) Tokenization learning objective:** EEGs exhibit various temporal variations, manifested as a mixture of low- and high-frequency components that co-occur and are intermixed in complex ways. **Relying solely on capturing time-based motifs into discrete tokens and expecting the model to implicitly infer spectral structure from raw signals risks overlooking important frequency information.** We therefore argue that the tokenization learning objective should explicitly incorporate *time-frequency representations*, enabling the tokenizer to capture band-specific and cross-frequency patterns and to encode more meaningful neural motifs

To tackle these challenges, we propose TFM-Tokenizer, a novel EEG tokenization framework that captures time-frequency motifs from single-channel EEG signals and encodes them into distinct tokens. Specifically, **1) Tokenizing EEGs at single-channel:** We tokenize single-channel EEG signals into discrete token sequences akin to NLP models, which are then paired with a generic transformer to perform multi-channel modeling using these single-channel tokens. Our tokenizer is model-agnostic and can be paired with any downstream model. Our experiments confirmed that TFM-Tokenizer can seamlessly integrate with existing foundation models, and further improve their performance (see Figure 1). **2) Learning motif features as tokens:** We introduce a motif learning architecture that encodes time-frequency motifs into tokens through a dual-path encoding design. Capturing frequency-band characteristics or compositions is crucial for EEG analysis, and to model such dynamics, we designed a Localized Spectral Window Encoder, which isolates and aggregates information across frequency bands prior to fusion with temporal features. **3) Explicit time-frequency masking prediction:** this learning objective disentangles the entangled time-frequency representations, enabling the model to explicitly learn distinct frequency-specific patterns across time. By forcing the model to predict masked regions in both domains, it encourages the tokenizer to discover and encode meaningful neural motifs that are localized in time and frequency. Overall, our contributions are summarized as follows:

- **Formulating Single-Channel EEG Tokenization.** To our knowledge, we are the first to investigate the problem of learning a discrete token vocabulary that captures time-frequency motifs in *single-channel* EEG signals from a given corpus and directly utilizes them as inputs for downstream modeling.
- **Proposing Novel TFM-Token Framework.** We introduce a single-channel EEG tokenization framework that transforms EEG into a discrete token sequence via TFM-Tokenizer, which is then

108 used by a lightweight transformer model for cross-channel and downstream modeling. As shown
 109 in Figure 1c, TFM-Tokenizer integrates smoothly with existing models and consistently boosts
 110 performance, improving BIOT and LaBraM by approximately 4% on TUEV dataset.

111 • **Broad Evaluation across Foundation Models and Devices.** **Extensive experiments across four**
 112 **datasets show that our method outperforms strong baselines, achieving up to a 11% gain over**
 113 **the baseline model on TUEV dataset.** We also evaluate cross-device scalability on an ear-EEG
 114 sleep staging task, using electrodes outside the standard 10–20 EEG system, where our tokenizer
 115 outperforms baselines by 14%. Beyond performance, we comprehensively analyze token quality,
 116 including token consistency, class-specific uniqueness, and frequency learning analysis, validating
 117 that our learned tokens are informative and interpretable.

2 RELATED WORK

121 **EEG Foundation Models and Tokenization Methods.** Existing EEG foundation models can be
 122 categorized into decoding and encoder-based methods. Decoding-based methods focus on generative
 123 tasks like cross-modal translation (Duan et al., 2023; Liu et al., 2024; Wang et al., 2024c). In
 124 contrast, encoder-based methods focus on classification tasks and representation learning. Notable
 125 models include LaBraM (Jiang et al., 2024b), BIOT (Yang et al., 2024), BRANT (Zhang et al.,
 126 2024), and MMM (Yi et al., 2024). Our work aligns with this latter category, aiming to enhance
 127 input representations to improve classification performance and generalization across diverse foun-
 128 dation models. A parallel question is how to *tokenize* EEG signals. Existing methods primarily
 129 adopt segment-based continuous tokenization (Yang et al., 2024; Wang et al., 2024b; Zhang et al.,
 130 2024). Vector Quantized (VQ) tokenizers (Van Den Oord et al., 2017), which have been success-
 131 ful in tokenizing continuous images (Esser et al., 2020), have recently been adapted for EEG by
 132 LaBraM (Jiang et al., 2024b). However, in LaBraM, the tokenizer is not designed to represent EEG
 133 data and replace raw signals as inputs to foundation models; instead, it mainly serves as a training
 134 objective. In this paper, we propose a new tokenization framework for EEG signals that encodes
 135 inputs into discrete representations and provide a reusable interface for foundation models.

136 **EEG Motif Learning.** Motifs are short, recurring patterns with small variability in a time series
 137 and may hold predictive or discriminative value (Xu et al., 2023). In the EEG domain, motif learning
 138 remains largely underexplored, with only a few works such as (Schäfer & Leser, 2022), which
 139 focus solely on the temporal domain. EEG motifs correspond to neurophysiological events such as
 140 oscillatory bursts or transient spikes, which are best characterized by joint temporal-spectral struc-
 141 ture. Frequency-domain modeling is therefore essential, yet raw time-domain signals often entangle
 142 multiple spectral components. This can cause models to overemphasize dominant low-frequency
 143 rhythms while overlooking informative high-frequency details (Zhi-Qin John Xu et al., 2020; Piao
 144 et al., 2024). Such bias limits the ability to capture diverse EEG waveforms and degrades represen-
 145 tation quality (Park & Kim, 2022). To the best of our knowledge, we are the first to propose methods
 146 to encode diverse, informative time-frequency motifs as discrete tokens.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW AND FORWARD PROCESS

151 Our TFM-Tokenizer framework consists of two major phase, as shown in Figure 2:

153 1. **TFM-Tokenizer with Motif Learning.** The tokenizer is trained in a single-channel, unsuper-
 154 vised setting, capturing key motif features. We regard motifs as various waveforms that encode
 155 characteristic time-frequency patterns in EEGs. To represent these motifs, the tokenizer is com-
 156 posed of four components: (i) a Localized Spectral Window Encoder that extracts frequency
 157 patterns within short spectral windows, (ii) a Temporal Encoder that incorporates raw EEG con-
 158 text, (iii) a Temporal Transformer that models dependencies across windows, and (iv) a codebook
 159 quantizer that maps embeddings into a discrete vocabulary. Therefore, we train a motif-based vo-
 160 cabulary that transforms continuous EEGs into interpretable discrete tokens (Sec. 3.2).

161 2. **Downstream Transformer Model.** This phase serves as an example to illustrate *how a foun-*
162 dation model processes tokenized sequences for downstream tasks such as classification. Raw

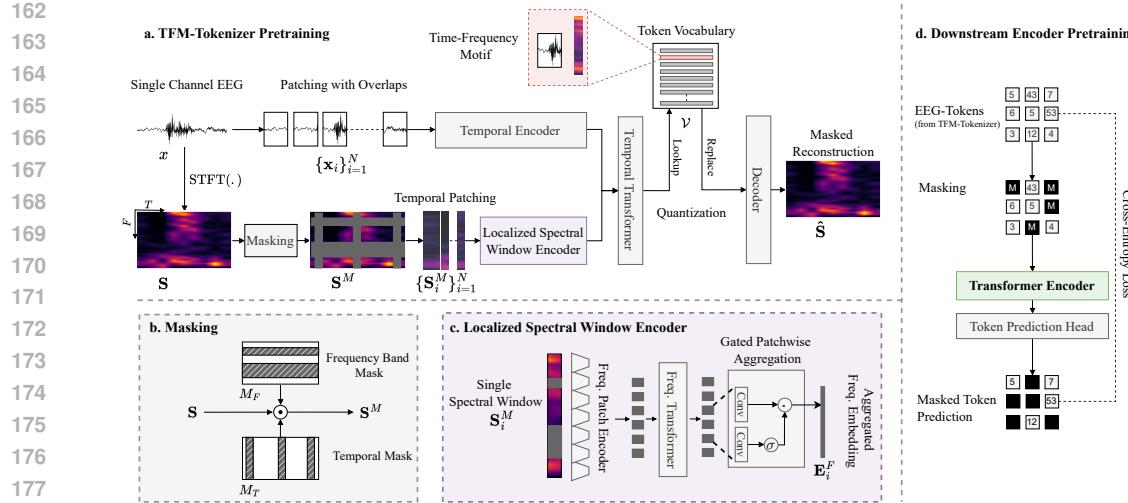


Figure 2: Overview of our framework. (a) TFM-Tokenizer Pretraining: Through dual-path encoding and masked prediction, learns to capture time-frequency motifs into discrete tokens. (b) Masking Strategy: A combination of frequency band masking and temporal masking is used for TFM-Tokenizer pretraining. (c) Localized Spectral Window Encoder: Processes individual spectral windows from S , extracts frequency band information, and aggregates features across all bands into a single compact embedding per window. (d) Downstream Transformer Encoder Pretraining: Trains on learned EEG tokens using masked token prediction.

EEGs are first passed through our pretrained tokenizer, where they are converted into discrete tokens that serve as inputs to foundation models. Since the tokenizer is model-agnostic, it can be paired with different backbone models. In our implementation, we adopt a lightweight Transformer (Vaswani, 2017) with linear attention (Katharopoulos et al., 2020), demonstrating that the tokenizer ($\sim 0.7\text{M}$ parameters) enables strong performance even with a compact model (Sec. 3.3).

Overall, we first pretrain the tokenizer to learn a discrete vocabulary of EEG motifs. The tokenizer is then frozen, and the downstream Transformer is pretrained with a masked token prediction objective. Finally, the downstream Transformer is fine-tuned on target EEG tasks such as classification.

3.2 SINGLE-CHANNEL TFM-TOKENIZER WITH MOTIF LEARNING

TFM-Tokenizer encodes EEGs into discrete motifs tokens through a dual-path frequency-time paradigm (Figure 2a). Given a multi-channel EEG $\mathbf{X} \in \mathbb{R}^{C \times T}$, we segment each channel signal x into overlapping patches of length L and hop size H , yielding $N = \lfloor (T-L)/H \rfloor + 1$ patches aligned with spectral windows $\{\mathbf{S}_i\}_{i=1}^N$. To define the pretraining task, masking is applied in both temporal and frequency domains (Figure 2b), where unmasked patches provide context and masked ones are reconstructed. Feature learning is performed as follows: each spectral window \mathbf{S}_i is encoded by the Localized Spectral Window Encoder (Figure 2c) and fused with raw EEG patch features through a Temporal Encoder. A Temporal Transformer then integrates the time-frequency features, and the output embeddings are mapped into a learnable VQ vocabulary, producing motif tokens.

Localized Spectral Window Encoder. Capturing frequency-band characteristics is essential for EEG analysis, as the signals often exhibit oscillatory components (e.g., alpha, beta) with varying amplitudes and temporal dynamics. Unlike prior work that projects an entire spectral window through a single linear layer (Yang et al., 2024), we divide the window into patches along the frequency axis, allowing effective modeling of cross-frequency dependencies. This process consists of three steps.

- **Frequency Patch Encoder.** Given a set of spectral windows $\{\mathbf{S}_i\}_{i=1}^N$, we isolate and divide each spectral window \mathbf{S}_i into P non-overlapping patches $\{\mathbf{S}_{(i,p)}\}_{p=1}^P$, each spanning Δf frequency bins such that $P \cdot \Delta f = F$. We then project each frequency patch into a latent space: $e_{(i,p)} = \text{GroupNorm}(\text{GeLU}(\mathbf{W}_p \mathbf{S}_{(i,p)}))$ where $\mathbf{W}_p \in \mathbb{R}^{D \times \Delta f}$ is the parameter matrix that maps each patch into a D -dimensional embedding.

- *Frequency Transformer.* We then apply a frequency transformer that operates along the frequency axis of \mathbf{S}_i , to model intra-spectral window cross-frequency band dependencies.
- *Gated Patchwise Aggregation.* In many EEG scenarios, large portions of the frequency spectrum can be irrelevant. For instance, tasks related to sleep primarily focus on frequency bands up to approximately 32 Hz (Chen et al., 2023). Also, the frequencies of interest vary across conditions and tasks. To emphasize important frequency patches and suppress the rest, we adopt a gated aggregation mechanism to obtain a embedding for each S_i : $\mathbf{E}_i^F = \text{Concat} [\sigma(\mathbf{W}_{g1}\mathbf{e}_{(i,p)}) \mathbf{W}_{g2}\mathbf{e}_{(i,p)}]$ where $\mathbf{W}_{g1}, \mathbf{W}_{g2}$ are trainable parameters and $\sigma(\cdot)$ is the element-wise sigmoid function.

Temporal Encoder and Temporal Transformer. To capture temporal dynamics from raw EEG patches $\{x_i\}_{i=1}^N$, each patch is projected linearly, followed by GELU activation and group normalization, producing temporal embeddings $\{\mathbf{E}_i^T\}_{i=1}^N$. Each aggregated frequency embedding \mathbf{E}_i^F is then concatenated with its corresponding temporal embedding \mathbf{E}_i^T , and the resulting sequence is processed by a temporal Transformer. This module integrates time and frequency features across N EEG patches, enabling the modeling of long-range dependencies. Finally, the outputs \mathbf{Z}_i are quantized into discrete tokens using a learnable vocabulary \mathcal{V}^k . Notably, we omit positional encoding because EEG signals are inherently non-stationary and often exhibit chaotic dynamics; our objective is to capture distinctive features without enforcing positional constraints (see Appendix C.6).

VQ Tokenizer Vocabulary. Our vocabulary is based on the discrete codebook of Vector-Quantized Variational Autoencoders (VQ-VAE). We perform vector quantization to fused embedding \mathbf{Z}_i that enables the vocabulary to capture time–frequency motifs as discrete tokens, supporting timestamp-level retrieval and improving EEG interpretability. Formally, given $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$, each \mathbf{z}_i is mapped to the closest code in the codebook $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_K\}$ by nearest-neighbor search.

$$q(\mathbf{z}_i) = \arg \min_{\mathbf{v}_k \in \mathcal{V}} \|\mathbf{z}_i - \mathbf{v}_k\|_2^2.$$

where K denotes the number of latent vectors in the codebook and defines a K -way discrete categorical distribution. Each patch z_i is mapped to its nearest code entry v_i . As a result, given a single-channel EEG \mathbf{X}^c , TFM-Tokenizer generates a sequence of N tokens $\{v_i\}_{i=1}^N$.

Frequency Masking Prediction for Tokenizer Learning

We employ a joint frequency–temporal masking strategy for TFM-Tokenizer training. The spectrogram \mathbf{S} is partitioned along the frequency axis into $N_F = \lfloor F/\delta_f \rfloor$ groups of size δ_f , and random frequency-band masks M_F and temporal masks M_T are applied to obtain the masked input \mathbf{S}^M . Following (Jiang et al., 2024b), we further adopt symmetric masking for data augmentation and training stability. The overall objective combines masked reconstruction and vocabulary loss:

$$\mathcal{L}_{\text{token}} = \sum_{(f,t)} \|\mathbf{S}(f,t) - \hat{\mathbf{S}}(f,t)\|_2^2 + \alpha \sum_i \|\text{sg}[E_i] - v_i\|_2^2 + \beta \sum_i \|E_i - \text{sg}[v_i]\|_2^2$$

where $\hat{\mathbf{S}}$ is the reconstruction, $\text{sg}[\cdot]$ is the stop-gradient operator, and α, β are hyperparameters. We also apply exponential moving average updates for stable codebook training.

3.3 DOWNSTREAM TRANSFORMER TRAINING

We employ a lightweight transformer model to aggregate tokenized representations across channels, learn cross-channel dependencies and perform downstream tasks. It consists of a token-embedding lookup table (initialized from the VQ codebook) followed by linear attention transformer layers. Given a multi-channel recording $\mathbf{X} \in \mathbb{R}^{C \times T}$, the pretrained TFM-Tokenizer produces token sequences $\left\{ \{v_i^c\}_{i=1}^N \right\}_{c=1}^C$ for each channel c independently. We flatten the token embeddings across channels and incorporate channel and position embeddings. An additional class token is prepended (Devlin, 2018), and the sequence is processed by transformer layers.

In order to pretrain the model and enable the model to learn intra and cross-channel dependencies of tokens, we adopt a strategy akin to masked language modeling. We first randomly mask tokens across multiple channels and time steps and then train the model to predict these masked tokens via a cross-entropy loss. Along with representation learning, this approach enhances robustness to missing or corrupted data, common in real-world EEG systems where channels or time segments may be dropped or noisy. Finally, the transformer model is finetuned for downstream tasks.

270 **4 EXPERIMENTS AND RESULTS**
271272 **4.1 EXPERIMENT SETUP**
273

274 **Datasets:** We evaluated our method on four EEG datasets. **(1) TUEV** (Harati et al., 2015): A
275 subset of the TUH EEG Corpus (Obeid & Picone, 2016), containing clinical EEG recordings an-
276 notated for six event types: spike and sharp wave (SPSW), generalized periodic epileptiform dis-
277 charges (GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), ar-
278 tifact (ARTF), and background (BCKG). **(2) TUAB** (Lopez et al., 2015): Also from Temple Uni-
279 versity Hospital, labeled for normal and abnormal EEG activity. **(3) CHB-MIT** (Shoeb, 2009): A
280 widely used benchmark for epilepsy seizure detection, comprising EEG recordings from 23 pediatric
281 subjects with intractable seizures. **(4) IIIC Seizure** (Jing et al., 2023; Ge et al., 2021): Designed
282 for detecting six ictal–interictal–injury continuum (IIIC) patterns, including others (OTH), elec-
283 trographic seizures (ESZ), lateralized periodic discharges (LPD), generalized periodic discharges
284 (GPD), lateralized rhythmic delta activity (LRDA), and generalized rhythmic delta activity (GRDA).
285 - *Scalability Validation.* In this paper, we provided a scalability experiment to evaluate the usability of
286 our tokenizer across different EEG devices. Since our tokenizer is trained in a single-channel setting,
287 it can naturally be applied to recordings from non-standard devices. Therefore, we evaluated on the
288 **Ear-EEG Sleep Monitoring (EESM23)** (Bjarke Mikkelsen et al., 2025; Tabar et al., 2024) dataset,
289 which contains ear-EEG sleep recordings from 10 subjects. Detailed dataset statistics, splits, and
preprocessing procedures are provided in Appendix B.1, B.2, and B.3.

290 **Baselines:** We evaluated our approach against the baselines from Yang et al. (2024) and recent
291 state-of-the-art methods, including BIOT, LaBraM, NeuroLM, and EEGPT. We adopted the best re-
292 sults reported in BIOT, except for the IIIC Seizure dataset, where we re-evaluated the methods due to
293 a sample size mismatch. Experiments were conducted under two settings: (1) Single-dataset setting:
294 pretraining and finetuning on the same single dataset, and (2) Multiple dataset setting: pretraining on
295 four EEG datasets. For BIOT, we reproduced their unsupervised pretraining and finetuning pipeline
296 in the single-dataset setting (denoted BIOT*) to enable a fair comparison, as their vanilla BIOT vari-
297 ant does not include pretraining. Similarly, we reproduced LaBraM by training its neural tokenizer,
298 performing masked EEG modeling, and finetuning within the same dataset (LaBraM*). Since our
299 focus is on EEG tokenization rather than full foundation modeling, we reproduced LaBraM under
300 the multiple dataset setting using the previously mentioned four EEG datasets (denoted LaBraM†).
301 This was necessary to ensure a fair comparison because the original LaBraM used a substantially
302 larger pretraining corpus. Additional experiment details are provided in Appendix B.4 and B.5.

303 **4.2 HOW DOES TFM-TOKENIZER COMPARE TO EXISTING BASELINES?**
304

305 Table 1 reports results on TUEV (event classification) and TUAB (abnormal detection), while Ta-
306 ble 2 summarizes performance on IIIC-Seizure (seizure type classification) and CHB-MIT (seizure
307 detection). Our TFM-Tokenizer paired with a downstream transformer outperforms the baselines
308 in both experiment settings. On the challenging six-class event-type classification task in TUEV, it
309 achieves a 5% gain in Cohen’s Kappa in the single-dataset setting and a notable $\sim 11\%$ improve-
310 ment ($0.5588 \rightarrow 0.6189$) in the multi-dataset setting over the next best baseline. On IIIC-Seizure,
311 which is another six-class classification task, TFM-Tokenizer improves Cohen’s Kappa by 36%
312 over the LaBraM ($0.3658 \rightarrow 0.4979$) and 3% improvement over CBraMod ($0.4792 \rightarrow 0.4979$) in
313 multiple dataset settings, demonstrating the strong capability of our tokenizer in modeling class-
314 discriminative features for complex clinical EEG tasks. Additionally, it is worth noting that TFM-
315 Tokenizer achieves better performance with fewer parameters, being 3 times smaller than LaBraM
316 and 1.5 times smaller than BIOT. The ability to achieve best performance with low model size can be
317 attributed to our tokenization approach, which compresses the EEG into a token sequence, thereby
318 reducing data complexity. Notably, the TFM-Tokenizer is paired with a lightweight transformer
319 comprising only $\sim 0.7M$ parameters.

320 **4.3 CAN TFM-TOKENIZER IMPROVE EXISTING FOUNDATION MODELS?**
321

322 To evaluate the generalizability of TFM-Tokenizer, we integrated it into two representative EEG
323 foundation models, BIOT and LaBraM, under both single- and multi-dataset settings. For BIOT, we
replaced raw EEG inputs with token embeddings while following the original training protocol. For

324 Table 1: Performance comparison on TUEV and TUAB datasets.
325

326 Models	327 Model	328 TUEV (event type classification)			329 TUAB (abnormal detection)		
		330 Size	331 Balanced Acc.	332 Cohen's Kappa	333 Weighted F1	334 Balanced Acc.	AUC-PR
335 Single Dataset Setting							
336 SPaRCNet (Jing et al., 2023)	337 0.79M	338 0.4161 \pm 0.0262	339 0.4233 \pm 0.0181	340 0.7024 \pm 0.0104	341 0.7896 \pm 0.0018	342 0.8414 \pm 0.0018	343 0.8676 \pm 0.0012
344 ContraWR (Yang et al., 2023)	345 1.6M	346 0.4384 \pm 0.0349	347 0.3912 \pm 0.0237	348 0.6893 \pm 0.0136	349 0.7746 \pm 0.0041	350 0.8421 \pm 0.0104	351 0.8456 \pm 0.0074
352 CNN-Transformer (Peh et al., 2022)	353 3.2M	354 0.4087 \pm 0.0161	355 0.3815 \pm 0.0134	356 0.6854 \pm 0.0293	357 0.7777 \pm 0.0022	358 0.8433 \pm 0.0039	359 0.8461 \pm 0.0013
360 FFCL (Li et al., 2022)	361 2.4M	362 0.3979 \pm 0.0104	363 0.3732 \pm 0.0188	364 0.6783 \pm 0.0120	365 0.7848 \pm 0.0038	366 0.8448 \pm 0.0065	367 0.8569 \pm 0.0051
368 ST-Transformer (Song et al., 2021)	369 3.5M	370 0.3984 \pm 0.0228	371 0.3765 \pm 0.0306	372 0.6823 \pm 0.0190	373 <u>0.7966</u> \pm 0.0023	374 0.8521 \pm 0.0026	375 0.8707 \pm 0.0019
376 Vanilla BIOT (Yang et al., 2024)	377 3.2M	378 0.4682 \pm 0.0125	379 0.4482 \pm 0.0285	380 0.7085 \pm 0.0184	381 0.7925 \pm 0.0035	382 0.8707 \pm 0.0087	383 0.8691 \pm 0.0033
384 BIOT* (Yang et al., 2024)	385 3.2M	386 0.4679 \pm 0.0354	387 0.4890 \pm 0.0407	388 0.7352 \pm 0.0236	389 0.7955 \pm 0.0047	390 <u>0.8819</u> \pm 0.0046	391 <u>0.8834</u> \pm 0.0041
392 LaBraM-Base* (Jiang et al., 2024b)	393 5.8M	394 0.4682 \pm 0.0856	395 0.5067 \pm 0.0413	396 0.7466 \pm 0.0202	397 0.7720 \pm 0.0046	398 0.8498 \pm 0.0036	399 0.8534 \pm 0.0027
399 TFM-Tokenizer (Ours)	400 1.9M	401 0.4943 \pm 0.0516	402 0.5337 \pm 0.0306	403 0.7570 \pm 0.0163	404 0.8152 \pm 0.0014	405 0.8946 \pm 0.0008	406 0.8897 \pm 0.0008
407 With Multiple Dataset Pretraining							
408 BIOT (Yang et al., 2024)	409 3.2M	410 0.5281 \pm 0.0225	411 0.5273 \pm 0.0249	412 0.7492 \pm 0.0082	413 0.7959 \pm 0.0057	414 0.8792 \pm 0.0023	415 <u>0.8815</u> \pm 0.0043
416 EEGPT (Wang et al., 2024a)	417 4.7M	418 0.5670 \pm 0.0066	419 0.5085 \pm 0.0173	420 0.7535 \pm 0.0097	421 <u>0.7959</u> \pm 0.0021	422 -	423 0.8716 \pm 0.0041
424 NeuroLM-B (Jiang et al., 2024a)	425 254M	426 0.4560 \pm 0.0048	427 0.4285 \pm 0.0048	428 0.7153 \pm 0.0028	429 0.7826 \pm 0.0065	430 0.6975 \pm 0.0081	431 0.7816 \pm 0.0079
432 LaBraM-Base [†] (Jiang et al., 2024b)	433 5.8M	434 0.5550 \pm 0.0403	435 0.5175 \pm 0.0339	436 0.7450 \pm 0.0194	437 0.7735 \pm 0.0030	438 0.8531 \pm 0.0028	439 0.8557 \pm 0.0027
439 CBraMod [†] (Wang et al., 2024d)	440 4M	441 <u>0.5696</u> \pm 0.0221	442 <u>0.5588</u> \pm 0.0273	443 <u>0.7702</u> \pm 0.0137	444 0.5000 \pm 0.0000	445 0.4938 \pm 0.0443	446 0.5281 \pm 0.0409
446 TFM-Tokenizer (Ours) [†]	447 1.9M	448 0.5974 \pm 0.0079	449 0.6189 \pm 0.0302	450 0.8010 \pm 0.0161	451 0.8032 \pm 0.0035	452 0.8886 \pm 0.0032	453 0.8870 \pm 0.0022

341 Table 2: Performance comparison on IIIC Seizure and CHB-MIT datasets.
342

343 Models	344 Model	345 IIIC Seizure (seizure type classification)			346 CHB-MIT (seizure detection)		
		347 Size	348 Balanced Acc.	349 Cohen's Kappa	350 Weighted F1	351 Balanced Acc.	AUC-PR
352 Single Dataset Setting							
353 SPaRCNet (Jing et al., 2023)	354 0.79M	355 0.5011 \pm 0.0286	356 0.4115 \pm 0.0297	357 0.4996 \pm 0.0262	358 0.5876 \pm 0.0191	359 0.1247 \pm 0.0119	360 0.8143 \pm 0.0148
361 ContraWR (Yang et al., 2023)	362 1.6M	363 0.5421 \pm 0.0123	364 0.4549 \pm 0.0166	365 0.5387 \pm 0.0138	366 0.6344 \pm 0.0002	367 0.2264 \pm 0.0174	368 0.8097 \pm 0.0114
369 CNN-Transformer (Peh et al., 2022)	370 3.2M	371 0.5395 \pm 0.0144	372 0.4500 \pm 0.0165	373 0.5413 \pm 0.0176	374 0.6389 \pm 0.0067	375 0.2479 \pm 0.0227	376 <u>0.8662</u> \pm 0.0082
377 FFCL (Li et al., 2022)	378 2.4M	379 0.5309 \pm 0.0217	380 0.4412 \pm 0.0253	381 0.5315 \pm 0.0277	382 0.6262 \pm 0.0104	383 0.2049 \pm 0.0346	384 0.8271 \pm 0.0051
385 ST-Transformer (Song et al., 2021)	386 3.5M	387 0.5093 \pm 0.0122	388 0.4217 \pm 0.0151	389 0.5217 \pm 0.0110	390 0.5915 \pm 0.0195	391 0.1422 \pm 0.0094	392 0.8237 \pm 0.0491
393 Vanilla BIOT (Yang et al., 2024)	394 3.2M	395 <u>0.5762</u> \pm 0.0034	396 <u>0.4932</u> \pm 0.0046	397 <u>0.5773</u> \pm 0.0031	398 <u>0.6640</u> \pm 0.0037	399 0.2573 \pm 0.0088	400 0.8646 \pm 0.0030
401 BIOT* (Yang et al., 2024)	402 3.2M	403 0.4458 \pm 0.0183	404 0.3418 \pm 0.0228	405 0.4511 \pm 0.0207	406 0.6582 \pm 0.0896	407 <u>0.3127</u> \pm 0.0890	408 0.8456 \pm 0.0333
409 LaBraM-Base* (Jiang et al., 2024b)	410 5.8M	411 0.4736 \pm 0.0101	412 0.3716 \pm 0.0128	413 0.4765 \pm 0.0097	414 0.5035 \pm 0.0078	415 0.0959 \pm 0.0742	416 0.6624 \pm 0.1050
417 TFM-Tokenizer (Ours)	418 1.9M	419 0.5775 \pm 0.0042	420 0.4985 \pm 0.0039	421 0.5847 \pm 0.0050	422 0.6750 \pm 0.0392	423 0.3379 \pm 0.0515	424 0.8839 \pm 0.0173
425 With Multiple Dataset Pretraining							
426 BIOT (Yang et al., 2024)	427 3.2M	428 0.4414 \pm 0.0035	429 0.3362 \pm 0.0040	430 0.4483 \pm 0.0033	431 0.7068 \pm 0.0457	432 0.3277 \pm 0.0460	433 0.8761 \pm 0.0284
434 EEGPT (Wang et al., 2024a)	435 4.7M	436 0.4545 \pm 0.0193	437 0.3502 \pm 0.0255	438 0.4559 \pm 0.0311	439 0.6644 \pm 0.0227	440 0.3373 \pm 0.0264	441 0.8185 \pm 0.0252
442 LaBraM-Base [†] (Jiang et al., 2024b)	443 5.8M	444 0.4736 \pm 0.0037	445 0.3658 \pm 0.0033	446 0.4708 \pm 0.0015	447 0.5260 \pm 0.0369	448 0.2138 \pm 0.0523	449 0.7750 \pm 0.0540
450 CBraMod [†] (Wang et al., 2024d)	451 4M	452 <u>0.5566</u> \pm 0.0126	453 <u>0.4792</u> \pm 0.0167	454 <u>0.5743</u> \pm 0.0138	455 0.6646 \pm 0.0598	456 <u>0.3469</u> \pm 0.0281	457 0.9071 \pm 0.0199
458 TFM-Tokenizer (Ours) [†]	459 1.9M	460 0.5747 \pm 0.0022	461 0.4979 \pm 0.0038	462 0.5797 \pm 0.0017	463 <u>0.6471</u> \pm 0.0145	464 0.3554 \pm 0.0264	465 <u>0.8818</u> \pm 0.0117

359 1. The best and second-best results for each dataset setting are **bolded** and underlined, respectively. 2. The number of parameters for LaBraM
360 is only considering their classifier model. The size of their neural tokenizer was 8.6M. 3. * indicates reproduced in a single dataset setting and
361 † indicates pretraining on 4 EEG datasets.

362 LaBraM, we substituted its neural tokenizer with ours during masked EEG modeling. As shown in
363 Figure 3, our method consistently improves performance on TUEV, IIIC, and CHB-MIT, achieving
364 gains of at least 3% in most cases. LaBraM notably underperforms on CHB-MIT in the single-
365 dataset setting, yet integrating our tokenizer yields a 147% improvement in AUC-PR, demonstrating
366 its effectiveness in capturing class-discriminative features in data-scarce scenarios. These results
367 highlight the broad applicability of TFM-Tokenizer across architectures and its capacity to enhance
368 diverse EEG foundation models.

369 4.4 DOES TFM-TOKENIZER SCALE TO OTHER BRAIN-SIGNAL TYPES / DEVICES?

370 In order to assess the scalability of
371 TFM-Tokenizer beyond the modalities and tasks seen during pre-
372 training, we evaluate its performance on the EESM23 ear-EEG
373 dataset (Bjarke Mikkelsen et al.,
374 2025) for sleep staging, a task, brain
375 signal modality, acquisition system,
376 number of channels and channel con-
377 figuration entirely distinct from those in the pretraining set. Specifically, we only finetune pretrained
378 TFM-Tokenizer with ours during masked EEG modeling. As shown in Figure 3, our method consistently
379 improves performance on TUEV, IIIC, and CHB-MIT, achieving gains of at least 3% in most cases. LaBraM
380 notably underperforms on CHB-MIT in the single-dataset setting, yet integrating our tokenizer yields a 147% improvement in AUC-PR, demonstrating its effectiveness in capturing class-discriminative features in data-scarce scenarios. These results highlight the broad applicability of TFM-Tokenizer across architectures and its capacity to enhance diverse EEG foundation models.

381 Table 3: Scalability experiments results on EESM23.

382 Models	383 Ear-EEG (Sleep Staging)		
	384 Balanced Acc.	385 Cohen's Kappa	386 Weighted F1
387 BIOT	388 0.3858 \pm 0.0085	389 0.3406 \pm 0.0096	390 0.4888 \pm 0.0124
391 BIOT-TFM	392 0.3952 \pm 0.0170 \uparrow	393 0.3603 \pm 0.0252 \uparrow	394 0.5033 \pm 0.0165 \uparrow
395 LaBraM-Base	396 0.3890 \pm 0.0182	397 0.3322 \pm 0.0232	398 0.4827 \pm 0.0157
399 LaBraM-TFM	400 0.4004 \pm 0.0086 \uparrow	401 0.3475 \pm 0.0128 \uparrow	402 0.4864 \pm 0.0118 \uparrow
403 TFM-Tokenizer	404 0.4148 \pm 0.0209	405 0.3883 \pm 0.0233	406 0.5174 \pm 0.0141

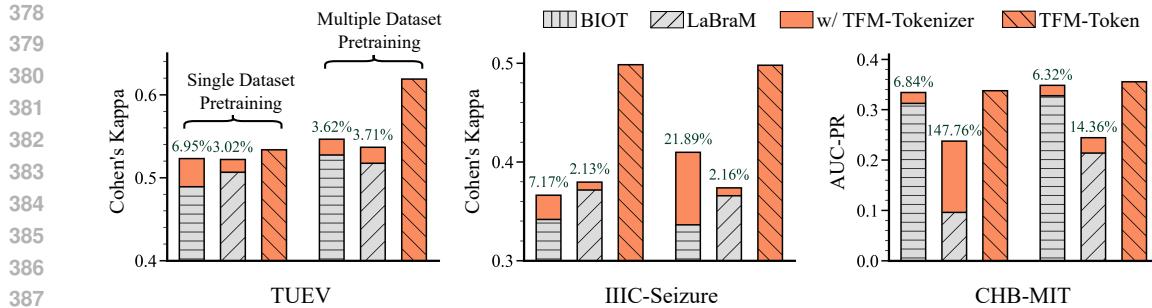


Figure 3: Performance comparison of existing foundation models with and without integration of TFM-Tokenizer on the TUEV, IIIC, and CHB-MIT datasets. For each dataset, the first three bars show single-dataset pretraining and the latter three show multi-dataset pretraining. Percentage values above each bar indicate the relative performance gain achieved by incorporating TFM-Tokenizer.

models (our method, BIOT, and LaBrA M) on the EESM23 dataset using only $\sim 8K$ labeled training samples. EEGPT was not scalable in this setting due to its reliance on a fixed EEG channel layout for spatial embeddings (Wang et al., 2024a). As shown in Table 3, TFM-Tokenizer demonstrates strong generalization, outperforming both baselines ($p = 0.02$) in this out-of-domain setting.

4.5 HOW IMPORTANT ARE FREQUENCY AND TEMPORAL MODELING FOR EEG TOKENIZATION?

To evaluate the importance of joint frequency–temporal modeling, we conducted an ablation study with three tokenization variants: (1) TFM-Tokenizer-R, which uses only raw EEG patches to predict the masked spectrogram; (2) TFM-Tokenizer-S, which uses only the spectrogram as input; and (3) TFM-Tokenizer, which jointly models both domains. Masked modeling was applied for token learning in the latter two. On TUEV (Figure 4a), TFM-Tokenizer-S achieves higher Cohen’s Kappa than TFM-Tokenizer-R, while TFM-Tokenizer-R yields better AUC-PR in abnormal detection (Appendix Figure 6). These results show that different EEG tasks rely on different feature domains, underscoring the need for joint modeling, where TFM-Tokenizer consistently outperforms both variants.

4.6 HOW EFFECTIVE ARE TFM-TOKENIZER TOKENS?

We evaluate the quality of EEG tokens learned by our tokenizer across four aspects: (1) class-specific distinctiveness, (2) token consistency, (3) frequency learning capability, and (4) token utilization (results in Appendix C.1). For this analysis, we compare all three TFM-Tokenizer variants with the neural tokenizer from LaBrA M, using the test splits of TUEV and IIIC, which both contain multiple classes. To ensure fairness, all tokenizers employ a fixed vocabulary size of 8192. Results on TUEV are shown in Figure 4b–c, with additional results for other datasets provided in the Appendix.

Class-Token uniqueness. To assess whether tokenizers capture class-specific motifs, we define the *Class-Token Uniqueness Score* as $\frac{\# \text{ Unique Tokens in Class}}{\# \text{ Tokens Utilized by Class}} \times 100\%$. This metric quantifies how well a tokenizer assigns distinctive tokens to each class. Figure 4b shows the scores for TUEV, where a robust tokenizer should yield high distinctiveness across all classes through unsupervised pretraining. TFM-Tokenizer consistently achieves higher scores than its variants and LaBrA M’s neural tokenizer, indicating that it produces more compact and informative token representations and validating the benefit of joint frequency–temporal modeling in EEG analysis.

Class-wise Token Consistency Analysis. We conduct a retrieval-based EEG signal mining experiment to evaluate token consistency within the same class, using similar-class sample retrieval (see Figure 4c). Given a multi-channel EEG sample, we first obtain its discrete token representation. Using the Jaccard similarity score, we then retrieve the top K most similar samples from the dataset and compute the precision score for correctly retrieving samples of the same class. For this study, we constructed a balanced subset from the IIIC and TUEV datasets and tested all four tokenization methods. Results show that all TFM-Tokenizer variants significantly outperform the neural tokenizer. Among all variants, our method yields the best retrieval performance, reflecting better token consistency. Notably, TFM-Tokenizer-S and TFM-Tokenizer achieve nearly 60% precision on the

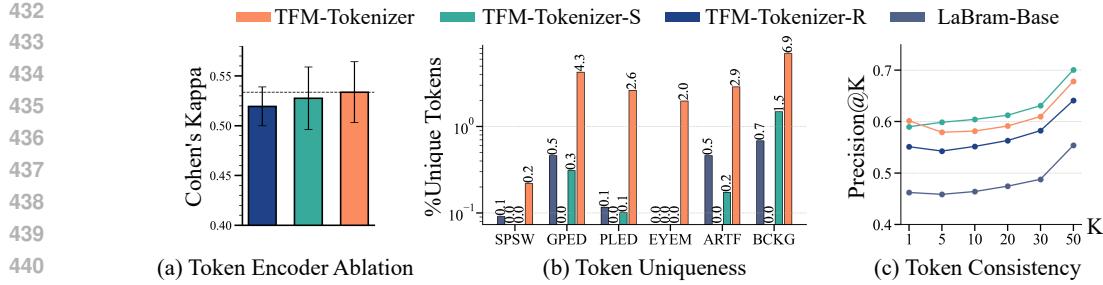


Figure 4: (a) Frequency and temporal token encoder ablation on TUEV. (b) Comparison of class-token uniqueness scores across all classes and (c) Class-wise token consistency analysis.

TUEV for $K = 1$. While the Jaccard similarity measure demonstrates initial feasibility, further work is needed to identify optimal metrics. Nonetheless, the results suggest that EEG tokens can support the identification of similar pairs, with potential applications in contrastive learning.

4.7 DO THE LEARNED TOKENS CAPTURE MEANINGFUL EEG MOTIFS?

We perform a small-scale qualitative analysis to examine whether TFM-Tokenizer captures meaningful time-frequency motifs in EEG signals. Figure 5 shows some representative tokens learned by our method on the TUEV dataset. Each token represents a spectral window and its corresponding raw EEG patch (1s window with 0.5s overlap). For clarity, we highlight the most frequent tokens per class using distinct colors. Periodic Lateralized Epileptiform Discharges (PLEDs) are periodic patterns consisting of sharp waves or spikes followed by a slow wave, occurring every 1–2s (Pohlmann-Eden et al., 1996). Token 4035 consistently captures this characteristic waveform across different samples in the PLED class, despite variations in noise, amplitude, and minor temporal shifts. This confirms that our TFM-Tokenizer can capture class-specific physiologically meaningful EEG motifs into discrete tokens. Similarly, tokens such as 5096 and 3751 in the GPED class highlight the benefit of joint time-frequency modeling, as they remain robust to minor temporal shifts and warping within a window due to emphasizing spectral patterns. However, we found limitations associated with using fixed windowing for tokenization, as large patterns or shifts may cause splits across windows, leading to separate token assignments and misinterpretation as distinct events.

5 CONCLUSION

In this paper, we presented TFM-Tokenizer, a model-agnostic tokenization framework that encodes *single-channel* EEG into discrete tokens by capturing time-frequency motifs. Our study demonstrated three key benefits: (i) Accuracy: By accurately extracting single-channel features, our tokenizer enabled stronger representations and surpassed competitive baselines across four EEG benchmarks. (ii) Generalization: As a plug-and-play component, our method consistently boosted the performance of existing foundation models, showing its broad applicability. (iii) Scalability: Because it operates at the single-channel level rather than depending on the strict 10–20 EEG system, our method readily extended to ear-EEG sleep staging tasks, validating its cross-device scalability. Furthermore, analyses confirmed the class distinctiveness, consistency, and interpretability of the learned tokens, providing deeper insights into EEG tokenization. We hope this work will inspire the development of more robust tokenization frameworks and advance scalable, generalizable EEG foundation models across diverse modalities, devices, and tasks.

486 6 REPRODUCIBILITY STATEMENT
487

488 To support the reproducibility of our work, we provide our complete source code and pre-
 489 trained model weights at <https://anonymous.4open.science/r/TFM-Token-FE33>.
 490 The repository includes scripts for data preprocessing, loading, and model training to reproduce our
 491 results presented in this paper. In the main text, Section 4.1 outlines our experimental setup, in-
 492 cluding descriptions of the dataset and baselines. Additional implementation details, such as dataset
 493 statistics, preprocessing steps, ear-EEG-specific processing, evaluation metrics, and baseline config-
 494urations, are provided in Appendix B.1, B.2, B.3, B.4, and B.5. The Appendix also includes extended
 495 experiments across multiple datasets, including frequency learning analysis (Appendix C.1), cross-
 496 dataset generalization studies (Appendix C.3), additional results on improving foundation models
 497 (Appendix C.4), and further ablation studies. We have made every effort to ensure that our work can
 498 be easily reproduced by the community.

499 500 REFERENCES
501

502 Kaare Bjarke Mikkelsen, Yousef Rezai Tabar, Laura Rævsbæk Birch, Simon Lind Kappel, Chris-
 503 tian Bech Christensen, Lars Dalskov Mosgaard, Marit Otto, Martin Christian Hemmsen, Mike
 504 Lind Rank, and Preben Kidmose. Ear-eeg sleep monitoring data sets. *Scientific Data*, 12(1):301,
 505 2025.

506 Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C. Li, Adrien Bardes, Suzanne
 507 Petryk, Oscar Mañas, et al. An introduction to vision-language modeling. *arXiv preprint*
 508 *arXiv:2405.17247*, 2024.

509 Zheng Chen, Lingwei Zhu, Ziwei Yang, and Renyuan Zhang. Multi-tier platform for cognizing
 510 massive electroencephalogram. In *IJCAI-22*, pp. 2464–2470, 2022.

511 Zheng Chen, Ziwei Yang, Lingwei Zhu, Wei Chen, Toshiyo Tamura, Naoaki Ono, Md Altaf-Ul-
 512 Amin, Shigehiko Kanaya, and Ming Huang. Automated sleep staging via parallel frequency-cut
 513 attention. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, pp. 1974–1985,
 514 2023.

515 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, et al.
 516 Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv*
 517 *preprint arXiv:2501.12948*, 2025.

518 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
 519 *arXiv preprint arXiv:1810.04805*, 2018.

520 Yiqun Duan, Charles Zhou, Zhen Wang, Yu-Kai Wang, and Chin-teng Lin. Dewave: Discrete encod-
 521 ing of eeg waves for eeg to text translation. In *Thirty-seventh Conference on Neural Information*
 522 *Processing Systems*, pp. 9907 – 9918, 2023.

523 Filip Elvander and Andreas Jakobsson. Defining fundamental frequency for almost harmonic sig-
 524 nals. *IEEE TRANSACTIONS ON SIGNAL PROCESSING*, 2020.

525 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
 526 synthesis, 2020.

527 Juan Luis Gastaldi, John Terilla, Luca Malagutti, Brian DuSell, Tim Vieira, and Ryan Cotterell. The
 528 foundations of tokenization: Statistical and computational concerns. In *The Thirteenth Interna-
 529 tional Conference on Learning Representations*, 2025.

530 Wendong Ge, Jin Jing, Sungtae An, Aline Herlopian, Marcus Ng, Aaron F Struck, Brian Appavu,
 531 Emily L Johnson, Gamaleldin Osman, Hiba A Haider, et al. Deep active learning for interictal
 532 ictal injury continuum eeg patterns. *Journal of neuroscience methods*, 351:108966, 2021.

533 Amir Harati, Meysam Golmohammadi, Silvia Lopez, Iyad Obeid, and Joseph Picone. Improved eeg
 534 event classification using differential energy. In *2015 IEEE Signal Processing in Medicine and*
 535 *Biology Symposium (SPMB)*, pp. 1–4. IEEE, 2015.

540 Long Steven R Wu Manli C Shih Hsing H Zheng Quanan Yen Nai-Chyuan Tung Chi Chao Huang
 541 Norden E Shen Zheng and Liu Henry H. The empirical mode decomposition and the hilbert
 542 spectrum for nonlinear and non-stationary time series analysis. *Proceedings of the Royal Society
 543 of London. Series A: mathematical, physical, and engineering sciences*, pp. 903–995, 1998.

544
 545 Wei-Bang Jiang, Yansen Wang, Bao-Liang Lu, and Dongsheng Li. Neurolm: A universal multi-
 546 task foundation model for bridging the gap between language and eeg signals. *arXiv preprint
 547 arXiv:2409.00101*, 2024a.

548 Weibang Jiang, Liming Zhao, and Bao liang Lu. Large brain model for learning generic represen-
 549 tations with tremendous EEG data in BCI. In *The Twelfth International Conference on Learning
 550 Representations*, 2024b.

551
 552 Jin Jing, Wendong Ge, Shenda Hong, Marta Bento Fernandes, Zhen Lin, Chaoqi Yang, Sungtae An,
 553 Aaron F Struck, Aline Herlopian, Ioannis Karakis, et al. Development of expert-level classifica-
 554 tion of seizures and rhythmic and periodic patterns during eeg interpretation. *Neurology*, 100(17):
 555 e1750–e1762, 2023.

556 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 557 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-
 558 chine learning*, pp. 5156–5165. PMLR, 2020.

559
 560 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
 561 temporal patterns with deep neural networks. pp. 95–104, 2018.

562 Hongli Li, Man Ding, Ronghua Zhang, and Chunbo Xiu. Motor imagery eeg classification algorithm
 563 based on cnn-lstm feature fusion network. *Biomedical signal processing and control*, 72:103342,
 564 2022.

565
 566 Hanwen Liu, Daniel Hajialigol, Benny Antony, Aiguo Han, and Xuan Wang. Eeg2text: Open
 567 vocabulary eeg-to-text decoding with eeg pre-training and multi-view transformer. *arXiv preprint
 568 arXiv:2405.02165*, 2024.

569 Sebas Lopez, G Suarez, D Jungreis, I Obeid, and Joseph Picone. Automated identification of abnor-
 570 mal adult eegs. In *2015 IEEE signal processing in medicine and biology symposium (SPMB)*, pp.
 571 1–5. IEEE, 2015.

572
 573 Navid Mohammadi Foumani, Geoffrey Mackellar, Soheila Ghane, Saad Irtza, Nam Nguyen, and
 574 Mahsa Salehi. Eeg2rep: enhancing self-supervised eeg representation through informative
 575 masked inputs. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discov-
 576 ery and Data Mining*, pp. 5544–5555, 2024.

577 Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. *Frontiers in neuro-
 578 science*, 10:196, 2016.

579
 580 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 581 Clark, AJ Ostrow, Akila Welihinda, and othres. Gpt-4o system card. *arXiv preprint arXiv:
 582 2410.21276*, 2024.

583
 584 Namuk Park and Songkuk Kim. How do vision transformers work? 2022.

585 Wei Yan Peh, Yuanyuan Yao, and Justin Dauwels. Transformer convolutional neural networks for
 586 automated artifact detection in scalp eeg. In *2022 44th Annual International Conference of the
 587 IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 3599–3602. IEEE, 2022.

588 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 589 Frequency debiased transformer for time series forecasting. In *Proceedings of the 30th ACM
 590 SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, 2024.

591
 592 Bernd Pohlmann-Eden, Daniel B Hoch, Jeffrey I Cochius, and Keith H Chiappa. Periodic lateralized
 593 epileptiform discharges—a critical review. *Journal of clinical neurophysiology*, 13(6):519–530,
 1996.

594 Jathurshan Pradeepkumar, Mithunjha Anandakumar, Vinith Kugathasan, Dhinesh Suntharalingham,
 595 Simon L Kappel, Anjula C De Silva, and Chamira US Edussooriya. Towards interpretable sleep
 596 stage classification using cross-modal transformers. *IEEE Transactions on Neural Systems and*
 597 *Rehabilitation Engineering*, 2024.

598 Patrick Schäfer and Ulf Leser. Motiflets—simple and accurate detection of motifs in time series.
 599 *arXiv preprint arXiv:2206.03735*, 2022.

600 Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, and
 601 Chris Tanner. Tokenization is more than compression. In *Proceedings of the 2024 Conference on*
 602 *Empirical Methods in Natural Language Processing*, pp. 678–702, November 2024.

603 Ali Hossam Shoeb. *Application of machine learning to epileptic seizure onset detection and treat-*
 604 *ment*. PhD thesis, Massachusetts Institute of Technology, 2009.

605 Yonghao Song, Xueyu Jia, Lie Yang, and Longhan Xie. Transformer-based spatial-temporal feature
 606 learning for eeg decoding. *arXiv preprint arXiv:2106.11170*, 2021.

607 Yousef Rezaei Tabar, Kaare B Mikkelsen, Mike Lind Rank, Martin Christian Hemmsen, Marit Otto,
 608 and Preben Kidmose. Ear-eeg for sleep assessment: a comparison with actigraphy and psg. *Sleep*
 609 and *Breathing*, 25(3):1693–1705, 2021.

610 Yousef Rezaei Tabar, Kaare Mikkelsen, Laura Birch, Nelly Shenton, Simon L Kappel, Astrid R
 611 Bertelsen, Reza Nikbakht, Hans O Toft, Chris H Henriksen, Martin C Hemmsen, Mike L Rank,
 612 Marit Otto, and Preben Kidmose. "ear-eeg sleep monitoring 2023 (eesm23)", 2024.

613 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 614 *neural information processing systems*, 30, 2017.

615 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

616 Guagnyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 617 transformer for universal and reliable representation of eeg signals. In *Advances in Neural Infor-*
 618 *mation Processing Systems*, pp. 39249–39280, 2024a.

619 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 620 transformer for universal and reliable representation of eeg signals. *Advances in Neural Infor-*
 621 *mation Processing Systems*, 37:39249–39280, 2024b.

622 Jiaqi Wang, Zhenxi Song, Zhengyu Ma, Xipeng Qiu, Min Zhang, and Zhiguo Zhang. Enhancing
 623 eeg-to-text decoding through transferable representations from pre-trained contrastive eeg-text
 624 masked autoencoder. *arXiv preprint arXiv:2402.17433*, 2024c.

625 Jiquan Wang, Sha Zhao, Zhiling Luo, Yangxuan Zhou, Haiteng Jiang, Shijian Li, Tao Li, and
 626 Gang Pan. Cbramod: A criss-cross brain foundation model for eeg decoding. *arXiv preprint*
 627 *arXiv:2412.07236*, 2024d.

628 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Etsformer: Expon-
 629 ential smoothing transformers for time-series forecasting. 2022.

630 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 631 formers with auto-correlation for long-term series forecasting. 2021.

632 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 633 Temporal 2d-variation modeling for general time series analysis. 2023.

634 Maxwell A Xu, Alexander Moreno, Hui Wei, Benjamin M Marlin, and James M Rehg.
 635 Rebar: Retrieval-based reconstruction for time-series contrastive learning. *arXiv preprint*
 636 *arXiv:2311.00519*, 2023.

637 Chaoqi Yang, Danica Xiao, M Brandon Westover, and Jimeng Sun. Self-supervised eeg representa-
 638 tion learning for automatic sleep staging. *JMIR AI*, pp. e46769, 2023.

639 Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
 640 the wild. *Advances in Neural Information Processing Systems*, 36, 2024.

648 Ke Yi, Yansen Wang, Kan Ren, and Dongsheng Li. Learning topology-agnostic eeg representations
649 with geometry-aware modeling. *Advances in Neural Information Processing Systems*, 36, 2024.
650

651 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
652 Foundation model for intracranial neural signal. *Advances in Neural Information Processing
653 Systems*, 2024.

654 Zhi-Qin John Xu Zhi-Qin John Xu, Yaoyu Zhang Yaoyu Zhang, Tao Luo Tao Luo, Yanyang Xiao
655 Yanyang Xiao, and Zheng Ma Zheng Ma. Frequency principle: Fourier analysis sheds light on
656 deep neural networks. *Communications in Computational Physics*, 28(5):1746–1767, 2020.
657

658 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
659 enhanced decomposed transformer for long-term series forecasting. pp. 1–12, 2022.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

Contents

702	A Problem Formulation	14
703		
704		
705		
706	B Additional Experiment Details	15
707		
708		
709	B.1 Dataset Statistics and Splits	15
710		
711	B.2 Preprocessing	16
712		
713	B.3 Ear-EEG Preprocessing	16
714		
715	B.4 Evaluation Metrics	16
716		
717	B.5 Additional details on baselines	16
718		
719	B.6 STFT parameters	16
720		
721	C Extended Experiment Results	17
722		
723	C.1 Additional Results on Token Quality Analysis and Frequency Learning	17
724		
725	C.2 Additional results on Frequency and Temporal Modeling for EEG Tokenization . .	18
726		
727	C.3 Token Generalization Assessment through Cross-Dataset Experiments	18
728		
729	C.4 Additional Results on TFM-Tokenizer Improving Existing Foundation Models .	19
730		
731	C.5 Effect of Masked Token Prediction in EEG Tokenization	19
732		
733	C.6 Removing Position Embedding in TFM-Tokenizer Improves Token Learning . .	20
734		
735	C.7 Downstream Model Ablation	20
736		
737	C.8 Ablation on Token Vocabulary Size	21
738		
739	C.9 Ablation on Masking	21
740		
741	C.10 Masking Ratio Ablation	22
742		
743	C.11 Window Length (L) and Hop Size (H) Ablation	22
744		
745	C.12 Token Embedding Size Ablation	23
746		
747	D TFM-Tokenizer Implementation and Hyperparameter Tuning	23
748		
749		
750	D.1 Hyperparameter Tuning of TFM-Tokenizer and Downstream Transformer	23
751		
752	D.2 TFM-Tokenizer Hyperparameters	24
753		
754	D.3 Downstream Transformer Encoder Hyperparameters	25
755		
756	E BIOT-TFM and LaBraM-TFM Implementation Details	26
757		
758	F More Related Works	26
759		
760	G LLM Usage Statement	27
761		

A PROBLEM FORMULATION

EEG Data. Let $\mathbf{X} \in \mathbb{R}^{C \times T}$ denote a multi-channel EEG recording with C channels and T time samples. Each channel $x^c \in \mathbb{R}^T$ is decomposed into (1) raw patches $\{x_i\}_{i=1}^N$ and (2) corresponding

time-frequency representation windows $\{\mathbf{S}_i\}_{i=1}^N$, where N is the number of time windows. For simplicity, we omit the channel index and refer to x as a single-channel EEG signal unless stated otherwise. To obtain the time-frequency representation, i.e., spectrogram, \mathbf{S} , we apply the short-time Fourier transform (STFT) to x using a windowing function $w(\cdot)$ of length L and a hop size H .

Short-Time Fourier Transform (STFT). To obtain the time-frequency representation, i.e.g, spectrogram, \mathbf{S} , we apply a STFT to x using a windowing function $w(\cdot)$ of length L and a hop size H :

$$\mathbf{S}(\omega, \tau) = \left| \sum_{l=0}^{L-1} x(\tau H + l)w(l)e^{-\frac{-j2\pi\omega l}{L}} \right| \quad (1)$$

where ω indexes the discrete frequencies and τ indexes the time segments (i.e., time windows shifted by H). We retain only the magnitude $|\cdot|$ to form $\mathbf{S} \in \mathbb{R}^{F \times N}$, where F is the number of frequency bins and N is the number of time windows.

Problem Statement 1 (EEG Tokenization): Given a single channel EEG x , we aim to learn a tokenization function $f_{\text{tokenizer}} : \mathbb{R}^T \rightarrow \mathcal{V}^{N \times D}$, that maps x (or transformations) to a sequence of discrete tokens $\{v_i\}_{i=1}^N$, where each token is from a learnable EEG token vocabulary \mathcal{V} of size k and embedding size of D . These tokens should represent various time-frequency “motifs” derived from both x_i and \mathbf{S}_i . Therefore, \mathcal{V} is learnable from \mathbf{S} and the temporal patches $\{x_i\}_{i=1}^N$. **Remark.** We here hold several expectations for the learned motif tokens. First, these tokens are expected to reduce redundancy, noise, and complexity, providing a compact, sparse, and informative representation of EEGs. Second, these motifs should capture key neurophysiological patterns from both temporal and frequency domains. Third, the tokens should generalize well across different EEG tasks.

Problem Statement 2 (Multi-Channel EEG Classification): Given EEGs \mathbf{X} and a fixed, learned single-channel tokenizer $f_{\text{tokenizer}}$, we apply $f_{\text{tokenizer}}$ independently to each channel c to obtain a tokenization representation $\left\{ \{v_i^c\}_{i=1}^N \right\}_{c=1}^C$. These tokens are aggregated and mapped to output labels by: $f_{\text{classifier}} : (\mathcal{V}^D)^{N \times C} \rightarrow \mathbf{Y}$ where \mathbf{Y} is the target labels (e.g., EEG events, seizure types). Notably, $f_{\text{classifier}}$ can be any downstream model, and its training is performed separately from the EEG tokenizer $f_{\text{tokenizer}}$.

B ADDITIONAL EXPERIMENT DETAILS

B.1 DATASET STATISTICS AND SPLITS

Table 4: Evaluation Dataset Summary

Dataset	# of Recordings	# of Samples	Duration (s)	Task
TUEV	11,914	112,491	5	EEG Event Classification
IIIC Seizure	2,689	135,096	10	Seizure Type Classification
CHB-MIT	686	326,993	10	Seizure Detection
TUAB	2,339	409,455	10	Abnormal EEG Detection
EESM23	120	14,509	30	Ear-EEG based Sleep Staging

This section provides detailed information on the datasets used in our experiments and their respective splits. Table 4 summarizes key statistics, including the number of recordings, the total number of samples after preprocessing, their duration, and the corresponding downstream tasks. For TUEV and TUAB, we utilized the official training and test splits provided by the dataset and further divided the training splits into 80% training and 20% validation sets. We performed a subject-wise split into 60% training, 20% validation, and 20% test on the IIIC Seizure dataset. In the CHB-MIT dataset, we used 1-19 subjects for training, 20-21 for validation, and 22-23 for testing. For the out-of-distribution evaluation on the ear-EEG EESM23 (Bjarke Mikkelsen et al., 2025) dataset, we followed a subject-wise split, where subjects 1-6 were used for fine-tuning, 7-8 for validation, and 9-10 for testing.

810 B.2 PREPROCESSING
811

812 We follow the preprocessing setup of BIOT (Yang et al., 2024). We adhere to the 16-channel bipolar
813 montage from the international 10–20 system, as used in (Yang et al., 2024). All EEG recordings
814 are resampled to 200 Hz. For TUEV and TUAB, we apply a bandpass filter (0.1–75 Hz) and a
815 notch filter (50 Hz), following the preprocessing pipeline of LaBraM (Jiang et al., 2024b). We
816 then segment the recordings according to the provided annotations and preprocessing guidelines.
817 STFT computation of the signals is performed using PyTorch, with detailed parameters provided in
818 Appendix B.6. For training, validation, and test splits, we follow the recommendations from (Yang
819 et al., 2024). We adopt a window length of 1s with 0.5s overlap to segment EEG signals during
820 training and inference, following prior work for consistency (Yang et al., 2024).
821

822 B.3 EAR-EEG PREPROCESSING
823

824 We follow the preprocessing guidelines of Tabar et al. (2021) for the EESM-23 ear-EEG dataset,
825 which includes four channels (RB, RT, LB, LT). A bandpass filter (0.1–100 Hz) and a 50Hz notch
826 filter are applied. Each patients perform certain tasks before sleep. To isolate sleep segments, we
827 crop each session from the onset of annotated sleep scoring, segment the signal into 30-second
828 epochs, and discard corrupted segments.
829

830 B.4 EVALUATION METRICS
831

832 For evaluation, we used balanced accuracy, Cohen’s kappa coefficient, and weighted F1 for multi-
833 class classification, and balanced accuracy, AUROC, and AUC-PR for binary classification. During
834 finetuning, we employed binary cross-entropy loss for TUAB, cross-entropy loss for TUEV and
835 IIIC, and focal loss for CHB-MIT due to class imbalance. All experiments were conducted using
836 five different random seeds, and we report the mean and standard deviation.
837

838 B.5 ADDITIONAL DETAILS ON BASELINES
839

840 All baselines were reproduced using their official open-source repositories. LaBraM’s primary con-
841 tribution lies in large-scale EEG pretraining using over 2,500 hours of data (Jiang et al., 2024b),
842 whereas our focus is on developing an effective EEG tokenizer. To ensure a fair comparison, we
843 reproduced LaBraM using its official repository under our dataset and experimental settings. For
844 EEGPT, we report the published results for the 4.7M model on TUEV and TUAB (Wang et al.,
845 2024a). Since results on CHB-MIT and IIIC-Seizure were not available, we used the official pre-
846 trained weights and fine-tuned the model on these tasks.
847

848 B.6 STFT PARAMETERS
849850
851 Table 5: STFT parameters

852 Parameter	853 Value	854 Description
854 FFT size (n_{fft} , L)	855 200	856 Number of frequency bins (equal to resampling rate)
855 Hop length H	856 100	857 Step size for sliding window (50% overlap)
856 Window type	857 Hann	858 A smoothing window function to reduce spectral leakage
857 Output representation	858 Magnitude	859 Only the absolute values of the STFT are retained
858 Centering	859 False	860 The STFT is computed without implicit zero-padding
859 One-sided output	860 True	861 Only the positive frequency components are kept

860 To extract frequency-domain representations of the EEG, we utilized the STFT function from Py-
861 Torch. The recommendations of Yang et al. (2024) guided our parameter selection and empirical
862 analysis of different configurations to optimize the trade-off between time-frequency resolution. The
863 final parameters are as follows:
864

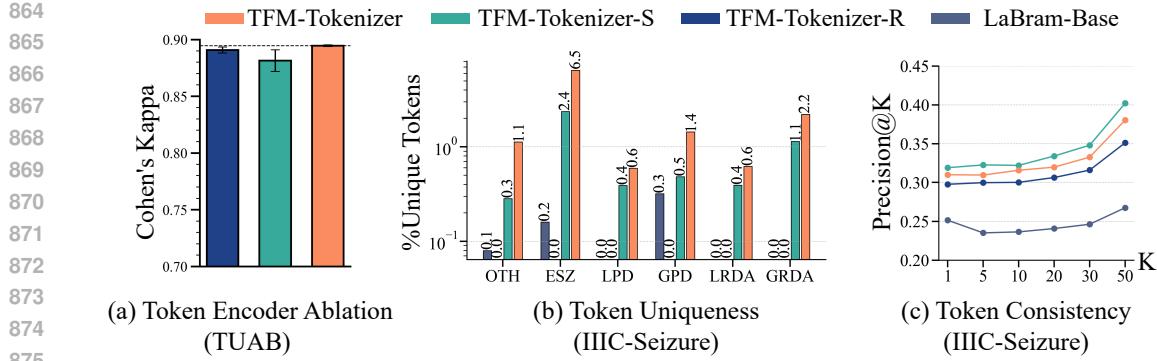


Figure 6: (a) Frequency and temporal token encoder ablation on TUAB. (b) & (c) presents Analysis of token quality across three TFM-Tokenizer variants and the neural tokenizer on IIIC. (b) Comparison of class-token uniqueness scores across all classes and (c) Class-wise token consistency analysis

Table 6: Token Utilization and class-token uniqueness comparison

Tokenization Method	# Params	Utilization %		Class-Token Uniqueness (GM) %	
		TUEV	IIIC	TUEV	IIIC
Neural Tokenizer (LaBram)	8.6M	21.13	15.25	0.034	0.000
TFM-Tokenizer-R	1.1M	5.29	7.87	0.000	0.000
TFM-Tokenizer-S	1.1M	13.93	11.04	0.004	0.619
TFM-Tokenizer	1.2M	9.78	8.26	2.14	1.429

C EXTENDED EXPERIMENT RESULTS

C.1 ADDITIONAL RESULTS ON TOKEN QUALITY ANALYSIS AND FREQUENCY LEARNING

In this section, we present more results on token quality analysis, specifically focusing on token utilization and frequency learning capability of our tokenizer. Additional token uniqueness and consistency experiments on IIIC dataset is presented in Figure 6b and c.

Token utilization: Token utilization (%) score was calculated as the percentage of unique tokens activated from the total available vocabulary size. Additionally, we computed the geometric mean (GM) of class-token uniqueness scores along with the utilization score, and the results are presented

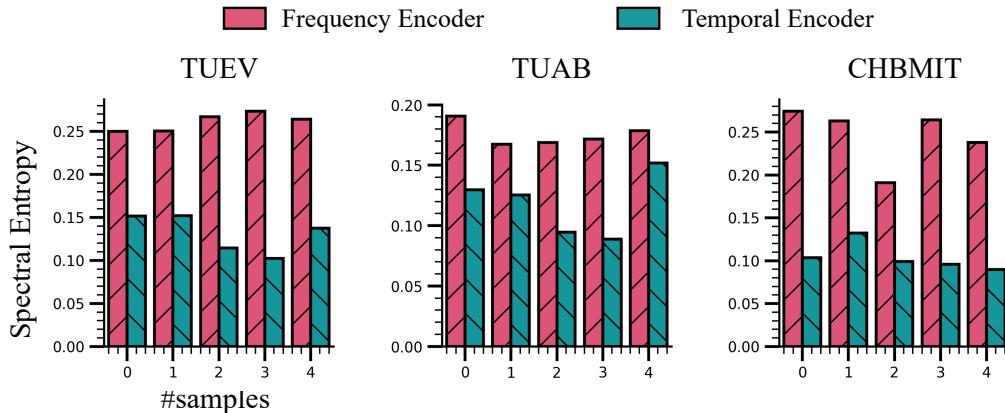


Figure 7: An analysis of how the proposed frequency and temporal-domain encoders capture frequency features, by using the spectral entropy of the learned token sequences from randomly selected samples. Higher values indicate that the tokens contain richer frequency information.

918 in Table 6. Our TFM-Tokenizer reduces token utilization by more than two-fold compared to the
 919 neural tokenizer on TUEV (21.13% \rightarrow 9.78%) and nearly two-fold on IIIC (15.25% \rightarrow 8.26%).
 920 It also significantly improves learning of class-unique tokens compared to the neural tokenizer
 921 (0.034% \rightarrow 2.14% on TUEV, 0.0% \rightarrow 1.429% on IIIC).

922 **Evaluating the Frequency Learning of TFM-Tokenizer Tokens:** In this experiment, we com-
 923 pare the frequency and temporal-domain encoders of the TFM-Tokenizer to evaluate their ability to
 924 capture diverse frequency features in EEG signals. Specifically, we arrange all tokens in temporal
 925 order and perform a discrete Fourier transform on the token sequence. This process decomposes
 926 the tokens into frequencies, where each frequency reflects the degree of change between tokens at
 927 various scales. Larger changes indicate more diverse token representations. Then, we compute spec-
 928 tral entropy, defined as the normalized Shannon entropy of the amplitude values, to quantify how
 929 energy is distributed across the spectrum. Higher spectral entropy means that the model has learned
 930 a broader range of frequency features, capturing differences from both large-scale trends and fine
 931 details. Figure 7 shows that on the TUEV, TUAB, and CHBMIT datasets, the frequency encoder
 932 produces tokens with significantly higher spectral entropy than the temporal encoder. For example,
 933 on the TUEV dataset, the frequency encoder achieved an average spectral entropy of 0.26, while the
 934 temporal encoder reached only 0.14. This multi-scale sensitivity benefits downstream tasks such as
 935 classification, where learning detailed differences in EEG tokens can improve performance.

936 C.2 ADDITIONAL RESULTS ON FREQUENCY AND TEMPORAL MODELING FOR EEG 937 TOKENIZATION

938 Table 7: Ablation study on input representation to TFM-Tokenizer

941 Models	942 TUEV (event type classification)			943 TUAB (abnormal detection)		
	944 Balanced Acc.	945 Cohen's Kappa	946 Weighted F1	947 Balanced Acc.	948 AUC-PR	949 AUROC
TFM-Tokenizer-R	0.4898 \pm 0.0105	0.5194 \pm 0.0195	0.7518 \pm 0.0095	0.8033 \pm 0.0021	0.8908 \pm 0.0027	0.8849 \pm 0.0024
TFM-Tokenizer-S	0.4708 \pm 0.0339	0.5275 \pm 0.0314	0.7538 \pm 0.0152	0.7927 \pm 0.0044	0.8814 \pm 0.0095	0.8836 \pm 0.0052
TFM-Tokenizer	0.4943 \pm 0.0516	0.5337 \pm 0.0306	0.7570 \pm 0.0163	0.8152 \pm 0.0014	0.8946 \pm 0.0008	0.8897 \pm 0.0008

946 1. The best results are **bolded**, while the second-best are underlined.

947 In Table 7 we provide detailed results of our ablation study discussed under Section 4.5.

950 C.3 TOKEN GENERALIZATION ASSESSMENT THROUGH CROSS-DATASET EXPERIMENTS

952 Table 8: Cross dataset generalizability experiments under single dataset settings

954 Testing	955 Tokenizer	956 MTP	957 Performance Metrics		
			958 Dataset	959 Dataset	960 Balanced Acc.
955 TUEV	956 TUEV	957 TUEV	958 Dataset	959 Dataset	960 Balanced Acc.
		957 TUEV	958 TUEV	959 TUEV	960 0.4943 \pm 0.0516
	956 IIIC	957 IIIC	958 TUEV	959 IIIC	960 0.4722 \pm 0.0578
		957 IIIC	958 IIIC	959 IIIC	960 0.4291 \pm 0.0235
	956 TUAB	957 TUAB	958 TUEV	959 TUAB	960 0.4651 \pm 0.0449
		957 TUAB	958 TUAB	959 TUAB	960 0.5252 \pm 0.0431
955 CHB-MIT	956 TUEV	957 CHB-MIT	958 TUEV	959 CHB-MIT	960 0.4979 \pm 0.0444
	956 CHB-MIT	957 CHB-MIT	958 CHB-MIT	959 CHB-MIT	960 0.5898 \pm 0.0192

966 To evaluate the robustness of our tokenizer, we conducted cross-dataset experiments under two set-
 967 tings: (1) fixing the tokenizer and performing masked token prediction (MTP) & finetuning on a
 968 different target dataset and (2) fixing the tokenizer and MTP, followed by finetuning downstream
 969 transformer only on the target dataset. Results are presented in Table 8, which demonstrates strong
 970 generalizability, with our TFM-Tokenizer achieving the best performance on TUEV when pretrained
 971 on CHBMIT—outperforming the best-reported result in four dataset settings. These findings high-
 light the potential of our tokenizer as a foundation for a scalable, universal EEG tokenizer.

C.4 ADDITIONAL RESULTS ON TFM-TOKENIZER IMPROVING EXISTING FOUNDATION MODELS

Table 9: Performance comparison of LaBraM and BIOT with and w/o our TFM–Tokenizer.

Dataset	Exp.	Method	Performance Metrics			
			Balanced Acc.	Cohen's Kappa	Weighted F1	
TUEV	Single	BIOT	0.4679 ± 0.0354	0.4890 ± 0.0407	0.7352 ± 0.0236	
		BIOT-TFM	0.4228 ± 0.0162	0.5230 ± 0.0226 ↑	0.7490 ± 0.0114 ↑	
		LaBraM	0.4682 ± 0.0856	0.5067 ± 0.0413	0.7466 ± 0.0202	
		LaBraM-TFM	0.5147 ± 0.0174 ↑	0.5220 ± 0.0153 ↑	0.7533 ± 0.0094 ↑	
	Multiple	BIOT	0.5281 ± 0.0225	0.5273 ± 0.0249	0.7492 ± 0.0082	
		BIOT-TFM	0.5530 ± 0.0089 ↑	0.5464 ± 0.0137 ↑	0.7625 ± 0.0069 ↑	
		LaBraM	0.5550 ± 0.0403	0.5175 ± 0.0339	0.7450 ± 0.0194	
		LaBraM-TFM	0.5541 ± 0.0316	0.5367 ± 0.0281 ↑	0.7567 ± 0.0165 ↑	
IIC	Single	BIOT	0.4458 ± 0.0183	0.3418 ± 0.0228	0.4511 ± 0.0207	
		BIOT-TFM	0.4633 ± 0.0078 ↑	0.3663 ± 0.0103 ↑	0.4689 ± 0.0090 ↑	
		LaBraM	0.4736 ± 0.0101	0.3716 ± 0.0128	0.4765 ± 0.0097	
		LaBraM-TFM	0.4814 ± 0.0075 ↑	0.3795 ± 0.0091 ↑	0.4841 ± 0.0062 ↑	
	Multiple	BIOT	0.4414 ± 0.0035	0.3362 ± 0.0040	0.4483 ± 0.0033	
		BIOT-TFM	0.5050 ± 0.0037 ↑	0.4098 ± 0.0052 ↑	0.5139 ± 0.0025 ↑	
		LaBraM	0.4736 ± 0.0037	0.3658 ± 0.0033	0.4708 ± 0.0015	
		LaBraM-TFM	0.4782 ± 0.0065 ↑	0.3737 ± 0.0076 ↑	0.4790 ± 0.0082 ↑	
CHB-MIT				Balanced Acc.	AUC-PR	AUROC
	Single	BIOT	0.6582 ± 0.0896	0.3127 ± 0.0890	0.8456 ± 0.0333	
		BIOT-TFM	0.5893 ± 0.0197	0.3341 ± 0.0349 ↑	0.8752 ± 0.0123 ↑	
		LaBraM	0.5035 ± 0.0078	0.0959 ± 0.0742	0.6624 ± 0.1050	
		LaBraM-TFM	0.5473 ± 0.047 ↑	0.2376 ± 0.0461 ↑	0.7863 ± 0.0438 ↑	
	Multiple	BIOT	0.7068 ± 0.0457	0.3277 ± 0.0460	0.8761 ± 0.0284	
		BIOT-TFM	0.6197 ± 0.0085	0.3484 ± 0.0078 ↑	0.8726 ± 0.0098	
		LaBraM	0.5260 ± 0.0369	0.2138 ± 0.0523	0.7750 ± 0.0540	
		LaBraM-TFM	0.5579 ± 0.0394 ↑	0.2445 ± 0.0351 ↑	0.7887 ± 0.0423 ↑	

Table 9 presents detailed results on integrating TFM-Tokenizer with BIOT and LaBraM. Across all metrics and settings, TFM-Tokenizer improves performance in 93% of cases, demonstrating its effectiveness in enhancing existing EEG foundation models.

C.5 EFFECT OF MASKED TOKEN PREDICTION IN EEG TOKENIZATION

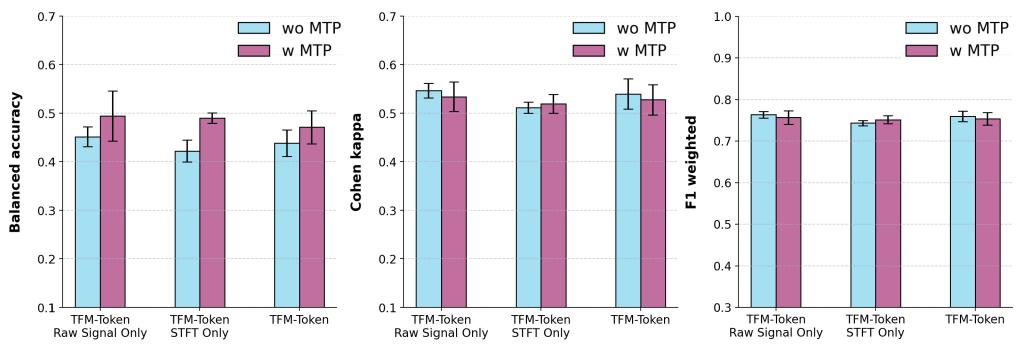


Figure 8: Masked Token Prediction Ablation

We conducted an ablation study on downstream transformer to assess the impact of masked token prediction pretraining in a fully discretized framework. Using a pretrained TFM-Tokenizer, we compared two approaches: (1) masked token prediction pretraining followed by fine-tuning and (2) direct fine-tuning without pretraining. This experiment was performed on the TUEV dataset across all three TFM-Tokenizer variants, with results summarized in Figure 8. While Cohen’s Kappa and Weighted F1 showed no significant differences between the two approaches, masked token prediction pretraining significantly improved balanced accuracy across all TFM-Tokenizer variants. This suggests that pretraining enhances class-wise prediction consistency by capturing token dependencies and making downstream transformer more robust to missing channels or time segments, a common challenge in EEG analysis.

C.6 REMOVING POSITION EMBEDDING IN TFM-TOKENIZER IMPROVES TOKEN LEARNING

Table 10: TFM-Tokenizer Comparison with and w/o Position Embedding (PE) on TUEV Dataset

Method	Utilization %	Uniqueness (GM) %	Balanced Acc.	Cohen’s Kappa	Weighted F1
TFM-Tokenizer + PE	12.87	1.94	0.4765 ± 0.038	0.5119 ± 0.022	0.7457 ± 0.012
TFM-Tokenizer w/o PE	9.78	2.14	0.4943 ± 0.052	0.5337 ± 0.031	0.7570 ± 0.016

Through our empirical analysis, we found that the performance significantly improved when no position embedding was applied to the TFM-Tokenizer. EEG patterns are inherently chaotic and non-stationary, meaning similar motifs can occur at any position within the signal. An ideal tokenizer should be capable of capturing and representing such EEG motifs as distinct tokens without relying on positional information.

We conducted an ablation study comparing the TFM-Tokenizer’s performance with and without position embeddings to critically analyze this phenomenon. The results of this analysis, presented in Table 10, clearly show that the TFM-Tokenizer without position embedding achieves significantly better performance, with an increase of 4% in Cohen’s Kappa ($0.5119 \rightarrow 0.5337$).

We further studied the quality of the learned tokens in terms of token utilization and class-uniqueness scores. Token utilization decreased ($12.87\% \rightarrow 9.78\%$) when position embeddings were removed, while the class-token uniqueness score increased ($1.94\% \rightarrow 2.14\%$). This suggests that the TFM-Tokenizer, when using positional encoding, learns different tokens for the same motifs depending on their location in the signal, leading to redundancy. Removing the position embedding allows the TFM-Tokenizer to learn more compact and meaningful tokens without introducing unnecessary data complexities. This improvement is further illustrated in the motifs captured by the TFM-Tokenizer’s tokens in Figure 5 in Section 4.7.

C.7 DOWNSTREAM MODEL ABLATION

We ablated the number of transformer layers in the downstream model on the TUEV dataset, with results presented in Table 11. Notably, even with significantly fewer parameters

Table 11: Ablation on number of transformer layers in the downstream model

# Layers	Number of Params.	Performance Metrics		
		Balanced Acc.	Cohen’s Kappa	Weighted F1
1	0.58M	0.4486 ± 0.0297	0.5404 ± 0.0168	0.7603 ± 0.0096
2	0.63M	0.4920 ± 0.0595	0.5758 ± 0.0169	0.7780 ± 0.0089
4	0.72M	0.4943 ± 0.0516	0.5337 ± 0.0306	0.7570 ± 0.0163
6	0.82M	0.5025 ± 0.0592	0.4996 ± 0.0208	0.7410 ± 0.0104
12	1.12M	0.5016 ± 0.0730	0.5088 ± 0.0272	0.7456 ± 0.0139

(two layers), the model maintains competitive and, in some cases, better performance across key metrics. This highlights the potential for developing lightweight and efficient models for EEG analysis without substantial performance trade-offs.

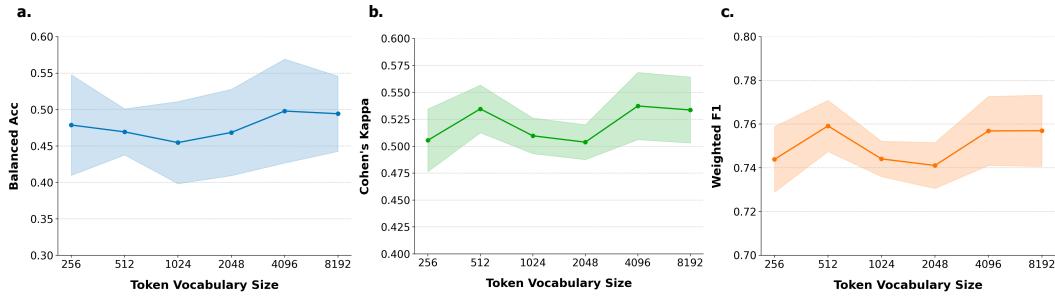
1080
1081

C.8 ABLATION ON TOKEN VOCABULARY SIZE

1082
1083
1084
1085
1086
1087
1088

To evaluate the impact of token vocabulary size on performance and token learning, we conducted an ablation study by varying the vocabulary size from 256 to 8192 in powers of two. As shown in Figure 9, no monotonic trend was observed for Cohen’s Kappa and Weighted F1 scores. However, balanced accuracy increased with larger vocabulary sizes. Further analysis of token utilization and class-token uniqueness scores is presented in Figure 10. Notably, Figure 10b shows that class-token uniqueness scores increase with vocabulary size, contributing to the improvement in balanced accuracy by enabling learning more unique class-specific tokens.

1089



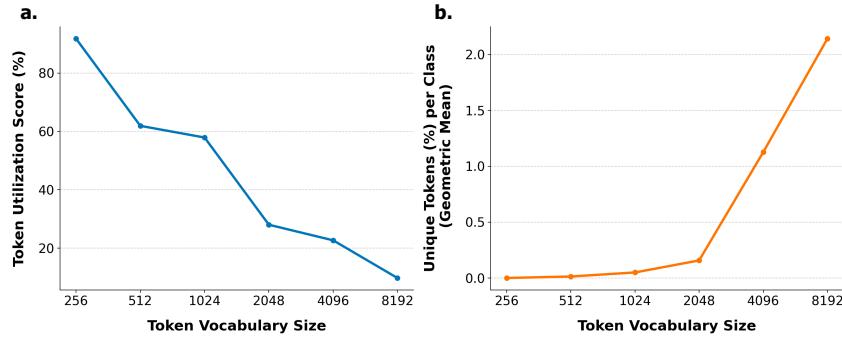
1099

Figure 9: Token vocabulary size ablation with performance metrics

1100

1101

1102

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

1114

1115

1116

Figure 10: Token vocabulary size ablation with token utilization and uniqueness

1117

C.9 ABLATION ON MASKING

1118
1119
1120

Table 12: Ablation on masking used for the pretraining of TFM-Tokenizer on TUEV Dataset

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

Masking Strategy	Balanced Acc.	Cohen’s Kappa	Weighted F1
Random Masking	0.4351 ± 0.0462	0.4772 ± 0.0140	0.7296 ± 0.0076
Frequency Band Masking	0.4673 ± 0.0540	0.5193 ± 0.0243	0.7536 ± 0.0125
Frequency Band + Temporal Masking	0.4946 ± 0.0392	0.5045 ± 0.0221	0.7462 ± 0.0116
Frequency Band + Temporal Masking + Symmetric Masking	0.4943 ± 0.0516	0.5337 ± 0.0306	0.7570 ± 0.0163

1131
1132
1133

We conducted an ablation study on masking strategies during TFM-Tokenizer pretraining to assess their impact on performance. Results shown in Table 12 indicate that random masking on the spectrogram S performs poorly compared to other strategies, underscoring the need for effective masking to capture frequency and temporal features from EEG. Frequency band masking

1134 significantly improves performance over random masking, with an 8% increase in Cohen’s Kappa
 1135 ($0.4772 \rightarrow 0.5193$) and a 7% increase in balanced accuracy ($0.4351 \rightarrow 0.4673$), highlighting
 1136 the importance of modeling frequency band dynamics. The addition of temporal masking fur-
 1137 ther boosts balanced accuracy by 5% ($0.4673 \rightarrow 0.4946$), underscoring the importance of joint
 1138 temporal-frequency modeling. However, temporal masking results in a decline in Cohen’s Kappa
 1139 and Weighted F1, which is then resolved by introducing symmetric masking, achieving the overall
 1140 best performance.

1141

1142

1143

1144

C.10 MASKING RATIO ABLATION

1145

1146 Table 13: **Ablation on frequency band masking ratio used for the pretraining of TFM–Tokenizer**
 1147 on TUEV, IIIC Seizure and CHB-MIT Datasets.

1148

Dataset	Frequency Mask Ratio	Balanced Acc.	Cohen’s Kappa	Weighted F1
TUEV	0.5	0.4946 ± 0.0392	0.5045 ± 0.0221	0.7462 ± 0.0116
	0.3	0.4306 ± 0.0187	0.5025 ± 0.0193	0.7432 ± 0.0090
	0.1	0.3859 ± 0.0580	0.4308 ± 0.0755	0.7057 ± 0.0376
IIIC	0.5	0.5315 ± 0.0102	0.4427 ± 0.0143	0.5369 ± 0.0114
	0.3	0.5148 ± 0.0158	0.4250 ± 0.0193	0.5222 ± 0.0167
	0.1	0.4381 ± 0.0032	0.3286 ± 0.0046	0.4420 ± 0.0047
		Balanced Acc.	AUC-PR	AUROC
CHB-MIT	0.5	0.6809 ± 0.0380	0.3335 ± 0.0182	0.8859 ± 0.0137
	0.3	0.6313 ± 0.0599	0.3233 ± 0.0337	0.8708 ± 0.0187
	0.1	0.6530 ± 0.0486	0.3502 ± 0.0441	0.8742 ± 0.0116

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

We conducted an ablation study to examine how varying the frequency band masking ratio affects model performance and generalization across datasets. All experiments were performed under the single-channel setting, with the temporal masking ratio fixed at 0.5 without symmetric masking, and the results are summarized in Table 13. For the TUEV and IIIC Seizure datasets, a frequency mask ratio of 0.5 yielded the best overall performance. A similar trend was observed in the CHB-MIT dataset, except for Cohen’s Kappa, which showed a slightly higher score at a masking ratio of 0.1. Considering these results along with the added benefit that a 0.5 masking ratio enables more effective use of symmetric masking as a data-augmentation strategy, we selected a frequency mask ratio of 0.5 for our final approach.

1174

1175

1176

1177

C.11 WINDOW LENGTH (L) AND HOP SIZE (H) ABLATION

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Table 14: **Ablation on window length (L) and stride or hop size (H) used to segment raw signals and compute STFT for the pretraining of TFM–Tokenizer on TUEV Dataset.**

Window Length (s)	Hop Size (s)	Balanced Acc.	Cohen’s Kappa	Weighted F1
0.5	0.25	0.5038 ± 0.0561	0.6059 ± 0.0170	0.7935 ± 0.0112
1.0	0.25	0.4796 ± 0.0598	0.5761 ± 0.0171	0.7780 ± 0.0098
1.0	0.5	0.4943 ± 0.0516	0.5337 ± 0.0306	0.7570 ± 0.0163
1.0	0.75	0.4068 ± 0.0182	0.4868 ± 0.0210	0.7327 ± 0.0085
2.0	0.5	0.1726 ± 0.0093	0.0168 ± 0.0137	0.5202 ± 0.0074
2.0	1.0	0.2123 ± 0.0143	0.1504 ± 0.0146	0.5748 ± 0.0087
2.0	1.5	0.3948 ± 0.0287	0.4042 ± 0.0282	0.6878 ± 0.0167

To investigate how window length and stride affect the tokenizer’s ability to capture time–frequency motifs and performance, we conducted an ablation varying both parameters and adjusted the STFT configuration to preserve one-to-one alignment between time and frequency windows. The results, summarized in Table 14, indicate that smaller windows with greater overlap yield the strongest performance. This suggests that shorter segments allow the tokenizer to capture finer-grained motifs that may be lost when using larger windows. For consistency with baselines and prior work, however, we adopt a 1-second window length with a 0.5-second hop size in all reported experiments.

C.12 TOKEN EMBEDDING SIZE ABLATION

Table 15: Token embedding size ablation on TUEV Dataset.

Embedding Dimension	Balanced Acc.	Cohen’s Kappa	Weighted F1
32	0.4213 ± 0.0529	0.4974 ± 0.0165	0.7417 ± 0.0081
64	0.4943 ± 0.0516	0.5337 ± 0.0306	0.7570 ± 0.0163
128	0.3199 ± 0.0193	0.1909 ± 0.0245	0.5700 ± 0.0276
256	0.3864 ± 0.0082	0.3575 ± 0.0157	0.6682 ± 0.0091

Table 15 summarizes the results of the token embedding size ablation. Performance improves up to an embedding dimension of 64, after which it begins to decline. We do not observe a consistent trend as the embedding size increases, which may be attributed to training instability when using larger embedding dimensions.

D TFM-TOKENIZER IMPLEMENTATION AND HYPERPARAMETER TUNING

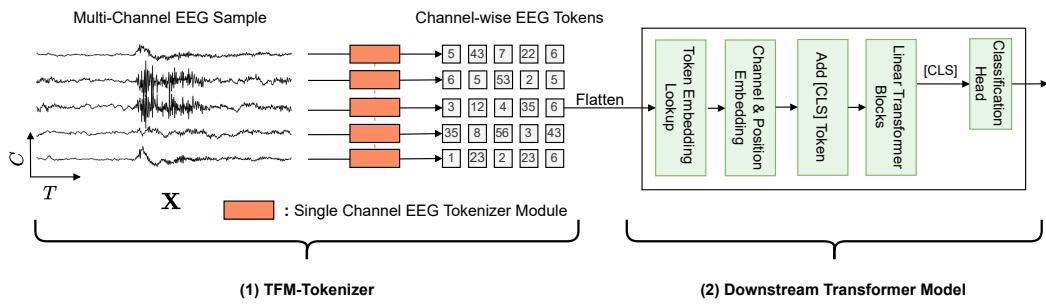


Figure 11: TFM-TOKENIZER framework Overview

Figure 11 presents an overview of the framework during inference. This section provides additional details on the implementation and training of the framework.

D.1 HYPERPARAMETER TUNING OF TFM-TOKENIZER AND DOWNSTREAM TRANSFORMER

We employed a systematic approach to optimize the hyperparameters of both the TFM-Tokenizer and downstream transformer models using Ray Tune¹ with the Optuna² search algorithm. Our optimization process followed a three-phase strategy.

In the first phase, we optimized the TFM-Tokenizer architecture by tuning the depth and number of attention heads in the frequency transformer, temporal transformer, and transformer decoder modules to minimize the masked reconstruction loss \mathcal{L}_{recon} . This was followed by tuning the training optimizer’s parameters, including learning rate and weight decay. The second phase focused on

¹<https://docs.ray.io/en/latest/tune/>

²<https://optuna.org/>

1242 the downstream transformer optimization for the classification task, where we first tuned its archi-
 1243 tectural parameters (depth and number of heads), followed by training the optimizer’s parameters
 1244 while keeping the tokenizer frozen. The third phase focused on tuning optimizer parameters for the
 1245 masked token prediction pretraining of the downstream transformer.

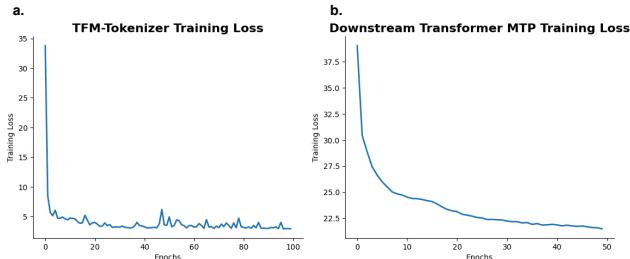
1246 To ensure a fair comparison with
 1247 LaBraM’s neural tokenizer, we main-
 1248 tained a vocabulary size of 8, 192 and
 1249 an embedding dimension of 64. For
 1250 our ablation studies involving raw
 1251 signal-only and STFT-only variants,
 1252 we doubled the embedding dimen-
 1253 sions of the temporal encoder and fre-
 1254 quency patch encoder to match the
 1255 codebook dimension while maintain-
 1256 ing all other parameters same. De-
 1257 tailed hyperparameter configura-
 1258 tions for both TFM-Tokenizer and down-
 1259 stream transformer are provided in
 1260 Appendices D.2 and D.3, respectively.
 1261

1262 In Figure 12a and b, we present the training loss curves for both the TFM-Tokenizer training stage
 1263 and the masked-token-prediction pretraining of the downstream transformer, respectively. The
 1264 curves demonstrate stable training behavior, even with a large codebook and a relatively small
 1265 dataset. We kept the codebook size at 8192 to ensure a fair comparison with LaBraM’s neural
 1266 tokenizer.

1266 D.2 TFM-TOKENIZER HYPERPARAMETERS

1267 Table 16: Hyperparameters for TFM-Tokenizer unsupervised pretraining on single-channel setting

Hyperparameter	Values
Batch size	256
Optimizer	AdamW
Weight decay	0.00001
β_1	0.9
β_2	0.99
Learning rate scheduler	Cosine
Minimal Learning rate	0.001
Peak Learning rate	0.005
# of Warmup Epochs	10
# of Pretraining Epochs	100



1267 Figure 12: Training loss curves for (a) the TFM-Tokenizer
 1268 learning and (b) the masked-token-prediction pretraining of
 1269 the downstream transformer

Table 17: Hyperparameters for TFM-Tokenizer

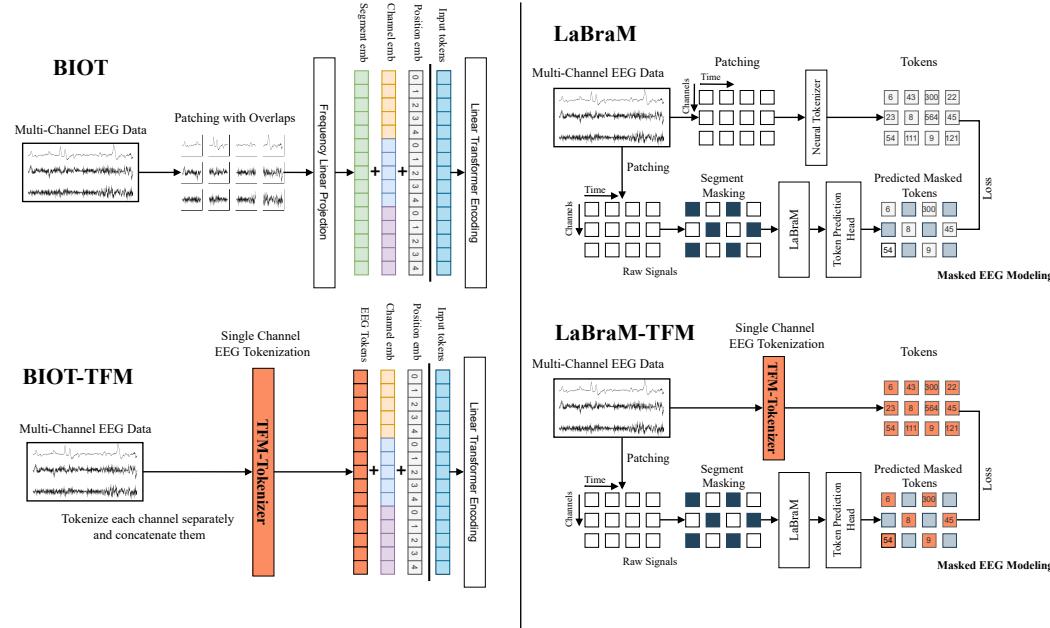
	Hyperparameter	Values
1298 1299 1300 1301 1302 1303 1304 1305 1306	Convolution layer 1	Input Channels 1
		Output Dimension 64
		Kernel Size 200
	Convolution layer 2	Stride 100
		Output Dimension 64
		Kernel Size 1
	Convolution layer 3	Stride 1
		Output Dimension 32
		Kernel Size 1
		Stride 1
1307 1308 1309 1310 1311 1312 1313 1314 1315	Convolution layer 1	Input Channels 1
		Output Dimension 64
		Kernel Size 5
	Convolution layer 2	Stride 5
		Output Dimension 64
		Kernel Size 1
	Convolution layer 3	Stride 1
		Output Dimension 64
		Kernel Size 1
		Stride 1
1316 1317 1318 1319 1320 1321 1322 1323 1324	Transformer Encoder Layers	2
		Embedding Dimension 64
		Number of Heads 8
	Frequency Transformer	Output Dimension 32
		Kernel Size 5
		Stride 5
	Gated Patchwise Aggregation	Transformer Encoder Layers 2
		Embedding Dimension 64
		Number of Heads 8
	Temporal Transformer	Output Dimension 32
		Kernel Size 5
		Stride 5
	Token vocabulary (Codebook size)	Transformer Encoder Layers 2
		Embedding Dimension 64
		Number of Heads 8
	Transformer Decoder	Token vocabulary (Codebook size) 8192
		Transformer Encoder Layers 8
		Embedding Dimension 64
	Linear Decoder	Number of Heads 8
		Linear Decoder 100

D.3 DOWNSTREAM TRANSFORMER ENCODER HYPERPARAMETERS

Table 18: Hyperparameters for downstream transformer, its masked token prediction pretraining and downstream finetuning

Hyperparameter	Values
Transformer Encoder Layers	4
Embedding Dimension	64
Number of Heads	8
Masked Token Prediction Pretraining	
Batch size	512
Optimizer	AdamW
Weight decay	0.00001
β_1	0.9
β_2	0.99
Learning rate scheduler	Cosine
Minimal Learning rate	0.001
Peak Learning rate	0.005
# of Warmup Epochs	5
# of training Epochs	50
Finetuning	
Other parameters are the same as above except:	
β_2	0.999
label smoothing (multi-class)	0.1

1350 1351 1352 E BIOT-TFM AND LABRAM-TFM IMPLEMENTATION DETAILS 1353 1354 1355



1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376 Figure 13: Schematics of integrating the proposed TFM-Tokenizer with BIOT and LaBram founda-
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
2222222222222222221
2222222222222222222
2222222222222222223
2222222222222222224
2222222222222222225
2222222222222222226
2222222222222222227
2222222222222222228
2222222222222222229
22222222222222222210
22222222222222222211
22222222222222222212
22222222222222222213
22222222222222222214
22222222222222222215
22222222222222222216
22222222222222222217
22222222222222222218
22222222222222222219
22222222222222222220
22222222222222222221
22222222222222222222
22222222222222222223
22222222222222222224
22222222222222222225
22222222222222222226
22222222222222222227
22222222222222222228
22222222222222222229
222222222222222222210
222222222222222222211
222222222222222222212
222222222222222222213
222222222222222222214
222222222222222222215
222222222222222222216
222222222222222222217
222222222222222222218
222222222222222222219
222222222222222222220
222222222222222222221
222222222222222222222
222222222222222222223
222222222222222222224
222222222222222222225
222222222222222222226
222222222222222222227
222222222222222222228
222222222222222222229
2222222222222222222210
2222222222222222222211
2222222222222222222212
2222222222222222222213
2222222222222222222214
2222222222222222222215
2222222222222222222216
2222222222222222222217
2222222222222222222218
2222222222222222222219
2222222222222222222220
2222222222222222222221
2222222222222222222222
2222222222222222222223
2222222222222222222224
2222222222222222222225
2222222222222222222226
2222222222222222222227
2222222222222222222228
2222222222222222222229
22222222222222222222210
22222222222222222222211
22222222222222222222212
22222222222222222222213
22222222222222222222214
22222222222222222222215
2222222222222222

1404 features while neglecting the high-frequency details. This issue can lead to a lack of capturing
1405 various EEG waveforms and degenerating data representation (Park & Kim, 2022). Motivated
1406 by these works, our paper focuses on developing methods to learn diverse, informative frequency
1407 features. In Section C.1, we provide an analysis of our proposed frequency-domain tokenizer and
1408 its impact on model performance.

1410 G LLM USAGE STATEMENT

1411 We used large language models (LLMs) solely for writing support, including grammar correction,
1412 sentence refinement, and clarity improvements. All conceptual contributions, algorithm design, code
1413 development, experiments, and analyses were conducted entirely by the authors.

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457