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ABSTRACT

Foundation models are reshaping EEG analysis, yet an important problem of EEG
tokenization remains a challenge. This paper presents TFM-Tokenizer, anovel
tokenization framework that learns a vocabulary of time-frequency motifs from
single-channel EEG signals and encodes them into discrete tokens. We propose a
dual-path architecture with time—frequency masking to capture robust motif repre-
sentations, and it is model-agnostic, supporting both lightweight transformers and
existing foundation models for downstream tasks. Our study demonstrates three
key benefits: Accuracy: Experiments on four diverse EEG benchmarks demon-
strate consistent performance gains across both single- and multi-dataset pretrain-
ing settings, achieving up to 11% improvement in Cohen’s Kappa over strong
baselines. Generalization: Moreover, as a plug-and-play component, it consis-
tently boosts the performance of diverse foundation models, including BIOT and
LaBraM. Scalability: By operating at the single-channel level rather than rely-
ing on the strict 10-20 EEG system, our method has the potential to be device-
agnostic. Experiments on ear-EEG sleep staging, which differs from the pretrain-
ing data in signal format, channel configuration, recording device, and task, show
that our tokenizer outperforms baselines by 14%. A comprehensive token analy-
sis reveals strong class-discriminative, frequency-aware, and consistent structure,
enabling improved representation quality and interpretability. Code is available at
https://anonymous.4open.science/r/TFM-Token-FE33.

1 INTRODUCTION

Foundation models have revolutionized how machines understand human language, leading to major
breakthroughs in natural language processing (NLP) (OpenAl et al., 2024; DeepSeek-Al et al., 2025)
and cross-modality tasks such as text-to-image generation (Bordes et al., 2024). Inspired by this
success, researchers are now advancing a paradigm shift in electroencephalogram (EEG) analysis
toward task-agnostic foundation models (Mohammadi Foumani et al., 2024; Yang et al., 2024; Jiang
et al., 2024b; Wang et al., 2024a). By pretraining on massive, diverse EEG data corpora, these
models learn universal representations that generalize well across various downstream tasks.

Despite substantial recent progress, an important open problem remains: how fo design an effective
tokenization method for EEG signals. Tokenization, a core component in NLP, transforms raw text
into meaningful tokens, which reduces data complexity and introduces a helpful inductive bias in
foundation models (Gastaldi et al., 2025). Typically, tokenization is performed by a learnable func-
tion that trains a vocabulary of tokens and statistics from a given corpus. However, existing EEG
foundation models tokenize signals by directly segmenting continuous EEGs into short-duration
tokens, without learning a vocabulary. They merely discretize EEG signals, failing to capture sta-
tistically grounded representations in a data-driven manner. LaBraM (Jiang et al., 2024b) proposes
a neural tokenizer to learn data-driven tokens before pretraining. However, these tokens primarily
serve as training objectives rather than as actual inputs for subsequent model training and are dis-
carded during downstream inference, limiting their reusability. As a result, the foundation model is
still trained on continuous segment-level embeddings, failing to fully leverage the benefits of tok-
enization, such as improving the quality of input representations. In this paper, we study a novel and
critical problem of developing a principled EEG tokenization that seamlessly integrates with various
foundation models and enhance downstream performance and generalization.
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Figure 1: (a) Our TFM-Tokenizer converts single-channel EEG into discrete tokens by capturing
time-frequency motifs. (b) It is adaptable to any different multi-channel settings, (c) can be inte-
grated with existing foundation models to enhance their performance, and (d) enables cross-device
scalability.

Various studies have shown that developing an effective tokenization is a non-trivial task in general,
as it is influenced by multiple factors (Schmidt et al., 2024). In this paper, we recognize and focus
on three key challenges of EEG tokenization. 1) Tokenization target: real-world EEG recordings
exhibit diverse formats due to varying devices, channel configurations, and recording lengths (Yang
et al., 2024). We argue that tokenizers should be trained and operated at the single-channel level
to learn channel-agnostic discrete tokens. This design enables flexible adaptation to multi-channel
tasks and can generalize to non-standard EEG devices. In Section 4.4, we provide scalability ex-
periments on ear-EEG settings. 2) Token resolution: in NLP, tokenization can be defined at
different resolutions (characters, subwords, words), each reflecting different assumptions about se-
mantic granularity. However, EEG signals are characterized by diverse oscillatory (e.g., alpha, beta)
(Pradeepkumar et al., 2024) and transient patterns (e.g., spikes) (Chen et al., 2022). Thus, effective
tokens must represent such underlying motifs (Xu et al., 2023) that reflect distinct neural or phys-
iological events. Motifs can be understood as short, recurring patterns in a time series that exhibit
limited variability and often carry discriminative significance (Xu et al., 2023). However, these
motifs are often distorted by noise, amplitude scaling, and temporal warping, making it challenging
to design robust EEG tokenization methods. 3) Tokenization learning objective: EEGs exhibit
various temporal variations, manifested as a mixture of low- and high-frequency components that
co-occur and are intermixed in complex ways. Relying solely on capturing time-based motifs into
discrete tokens and expecting the model to implicitly infer spectral structure from raw signals risks
overlooking important frequency information. We therefore argue that the tokenization learning
objective should explicitly incorporate time—frequency representations, enabling the tokenizer to
capture band-specific and cross-frequency patterns and to encode more meaningful neural motifs

To tackle these challenges, we propose TFM-Tokenizer, a novel EEG tokenization framework
that captures time—frequency motifs from single-channel EEG signals and encodes them into dis-
tinct tokens. Specifically, 1) Tokenizing EEGs at single-channel: We tokenize single-channel EEG
signals into discrete token sequences akin to NLP models, which are then paired with a generic
transformer to perform multi-channel modeling using these single-channel tokens. Our tokenizer
is model-agnostic and can be paired with any downstream model. Our experiments confirmed that
TFM-Tokenizer can seamlessly integrate with existing foundation models, and further improve their
performance (see Figure 1). 2) Learning motif features as tokens: We introduce a motif learn-
ing architecture that encodes time—frequency motifs into tokens through a dual-path encoding de-
sign. Capturing frequency-band characteristics or compositions is crucial for EEG analysis, and to
model such dynamics, we designed a Localized Spectral Window Encoder, which isolates and aggre-
gates information across frequency bands prior to fusion with temporal features. 3) Explicit time-
frequency masking prediction: this learning objective disentangles the entangled time—frequency
representations, enabling the model to explicitly learn distinct frequency-specific patterns across
time. By forcing the model to predict masked regions in both domains, it encourages the tokenizer
to discover and encode meaningful neural motifs that are localized in time and frequency. Overall,
our contributions are summarized as follows:

* Formulating Single-Channel EEG Tokenization. To our knowledge, we are the first to inves-
tigate the problem of learning a discrete token vocabulary that captures time—frequency motifs in
single-channel EEG signals from a given corpus and directly utilizes them as inputs for down-
stream modeling.

* Proposing Novel TFM-Token Framework. We introduce a single-channel EEG tokenization
framework that transforms EEG into a discrete token sequence via TFM-Tokenizer, which is then
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used by a lightweight transformer model for cross-channel and downstream modeling. As shown
in Figure 1c, TFM-Tokenizer integrates smoothly with existing models and consistently boosts
performance, improving BIOT and LaBraM by approximately 4% on TUEV dataset.

* Broad Evaluation across Foundation Models and Devices. Extensive experiments across four
datasets show that our method outperforms strong baselines, achieving up to a 11% gain over
the baseline model on TUEV dataset. We also evaluate cross-device scalability on an ear-EEG
sleep staging task, using electrodes outside the standard 10-20 EEG system, where our tokenizer
outperforms baselines by 14%. Beyond performance, we comprehensively analyze token quality,
including token consistency, class-specific uniqueness, and frequency learning analysis, validating
that our learned tokens are informative and interpretable.

2 RELATED WORK

EEG Foundation Models and Tokenization Methods. Existing EEG foundation models can be
categorized into decoding and encoder-based methods. Decoding-based methods focus on genera-
tive tasks like cross-modal translation (Duan et al., 2023; Liu et al., 2024; Wang et al., 2024c). In
contrast, encoder-based methods focus on classification tasks and representation learning. Notable
models include LaBraM (Jiang et al., 2024b), BIOT (Yang et al., 2024), BRANT (Zhang et al.,
2024), and MMM (Yi et al., 2024). Our work aligns with this latter category, aiming to enhance
input representations to improve classification performance and generalization across diverse foun-
dation models. A parallel question is how to fokenize EEG signals. Existing methods primarily
adopt segment-based continuous tokenization (Yang et al., 2024; Wang et al., 2024b; Zhang et al.,
2024). Vector Quantized (VQ) tokenizers (Van Den Oord et al., 2017), which have been success-
ful in tokenizing continuous images (Esser et al., 2020), have recently been adapted for EEG by
LaBraM (Jiang et al., 2024b). However, in LaBraM, the tokenizer is not designed to represent EEG
data and replace raw signals as inputs to foundation models; instead, it mainly serves as a training
objective. In this paper, we propose a new tokenization framework for EEG signals that encodes
inputs into discrete representations and provide a reusable interface for foundation models.

EEG Motif Learning. Motifs are short, recurring patterns with small variability in a time series
and may hold predictive or discriminative value (Xu et al., 2023). In the EEG domain, motif learn-
ing remains largely underexplored, with only a few works such as (Schifer & Leser, 2022), which
focus solely on the temporal domain. EEG motifs correspond to neurophysiological events such as
oscillatory bursts or transient spikes, which are best characterized by joint temporal-spectral struc-
ture. Frequency-domain modeling is therefore essential, yet raw time-domain signals often entangle
multiple spectral components. This can cause models to overemphasize dominant low-frequency
rhythms while overlooking informative high-frequency details (Zhi-Qin John Xu et al., 2020; Piao
et al., 2024). Such bias limits the ability to capture diverse EEG waveforms and degrades represen-
tation quality (Park & Kim, 2022). To the best of our knowledge, we are the first to propose methods
to encode diverse, informative time—frequency motifs as discrete tokens.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW AND FORWARD PROCESS
Our TFM-Tokenizer framework consists of two major phase, as shown in Figure 2:

1. TFM-Tokenizer with Motif Learning. The tokenizer is trained in a single-channel, unsuper-
vised setting, capturing key motif features. We regard motifs as various waveforms that encode
characteristic time—frequency patterns in EEGs. To represent these motifs, the tokenizer is com-
posed of four components: (i) a Localized Spectral Window Encoder that extracts frequency
patterns within short spectral windows, (ii) a Temporal Encoder that incorporates raw EEG con-
text, (iii) a Temporal Transformer that models dependencies across windows, and (iv) a codebook
quantizer that maps embeddings into a discrete vocabulary. Therefore, we train a motif-based vo-
cabulary that transforms continuous EEGs into interpretable discrete tokens (Sec. 3.2).

2. Downstream Transformer Model. This phase serves as an example to illustrate how a foun-
dation model processes tokenized sequences for downstream tasks such as classification. Raw
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Figure 2: Overview of our framework. (a) TFM-Tokenizer Pretraining: Through dual-path en-
coding and masked prediction, learns to capture time-frequency motifs into discrete tokens. (b)
Masking Strategy: A combination of frequency band masking and temporal masking is used for
TFM-Tokenizer pretraining. (c) Localized Spectral Window Encoder: Processes individual spec-
tral windows from S, extracts frequency band information, and aggregates features across all bands
into a single compact embedding per window. (d) Downstream Transformer Encoder Pretraining:
Trains on learned EEG tokens using masked token prediction.

EEGs are first passed through our pretrained tokenizer, where they are converted into discrete
tokens that serve as inputs to foundation models. Since the tokenizer is model-agnostic, it can
be paired with different backbone models. In our implementation, we adopt a lightweight Trans-
former (Vaswani, 2017) with linear attention (Katharopoulos et al., 2020), demonstrating that the
tokenizer (~0.7M parameters) enables strong performance even with a compact model (Sec. 3.3).

Overall, we first pretrain the tokenizer to learn a discrete vocabulary of EEG motifs. The tokenizer is
then frozen, and the downstream Transformer is pretrained with a masked token prediction objective.
Finally, the downstream Transformer is fine-tuned on target EEG tasks such as classification.

3.2 SINGLE-CHANNEL TFM-TOKENIZER WITH MOTIF LEARNING

TFM-Tokenizer encodes EEGs into discrete motifs tokens through a dual-path frequency—time
paradigm (Figure 2a). Given a multi-channel EEG X € R¢*T | we segment each channel signal «
into overlapping patches of length L and hop size H, yielding N = | (T — L) /H |+1 patches aligned
with spectral windows {S;}¥ ;. To define the pretraining task, masking is applied in both temporal
and frequency domains (Figure 2b), where unmasked patches provide context and masked ones are
reconstructed. Feature learning is performed as follows: each spectral window S; is encoded by the
Localized Spectral Window Encoder (Figure 2¢) and fused with raw EEG patch features through a
Temporal Encoder. A Temporal Transformer then integrates the time—frequency features, and the
output embeddings are mapped into a learnable VQ vocabulary, producing motif tokens.

Localized Spectral Window Encoder. Capturing frequency-band characteristics is essential for
EEG analysis, as the signals often exhibit oscillatory components (e.g., alpha, beta) with varying am-
plitudes and temporal dynamics. Unlike prior work that projects an entire spectral window through
a single linear layer (Yang et al., 2024), we divide the window into patches along the frequency axis,
allowing effective modeling of cross-frequency dependencies. This process consists of three steps.

e Frequency Patch Encoder. Given a set of spectral windows {S;}¥ ,, we isolate and divide each
spectral window S; into P non-overlapping patches {S(iyp)}le, each spanning A f frequency
bins such that P.Af = F. We then project each frequency patch into a latent space: e(; ) =

GroupNorm (GeLU (WS ; ,,))) where W, € RP*A/ is the parameter matrix that maps each
patch into a D-dimensional embedding.
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*» Frequency Transformer. We then apply a frequency transformer that operates along the frequency
axis of S;, to model intra-spectral window cross-frequency band dependencies.

* Gated Patchwise Aggregation. In many EEG scenarios, large portions of the frequency spectrum
can be irrelevant. For instance, tasks related to sleep primarily focus on frequency bands up to ap-
proximately 32 Hz (Chen et al., 2023). Also, the frequencies of interest vary across conditions and
tasks. To emphasize important frequency patches and suppress the rest, we adopt a gated aggre-
gation mechanism to obtain a embedding for each S;: Ef' = Concat [0 (Wg1e(i p)) Wgze(i )]
where W1, W are trainable parameters and o(-) is the element-wise sigmoid function.

Temporal Encoder and Temporal Transformer. To capture temporal dynamics from raw EEG
patches {x;} X, each patch is projected linearly, followed by GELU activation and group normal-
ization, producing temporal embeddings {EX}¥ ;. Each aggregated frequency embedding Ef is
then concatenated with its corresponding temporal embedding E7, and the resulting sequence is
processed by a temporal Transformer. This module integrates time and frequency features across N
EEG patches, enabling the modeling of long-range dependencies. Finally, the outputs Z; are quan-
tized into discrete tokens using a learnable vocabulary V*. Notably, we omit positional encoding
because EEG signals are inherently non-stationary and often exhibit chaotic dynamics; our objective
is to capture distinctive features without enforcing positional constraints (see Appendix C.6).

VQ Tokenizer Vocabulary. Our vocabulary is based on the discrete codebook of Vector-Quantized
Variational Autoencoders (VQ-VAE). We perform vector quantization to fused embedding Z; that
enables the vocabulary to capture time—frequency motifs as discrete tokens, supporting timestamp-
level retrieval and improving EEG interpretability. Formally, given Z = {z;}Y ,, each z; is mapped
to the closest code in the codebook V = {vy,..., vk} by nearest-neighbor search.

q(zi) = arg\{lk}ief‘l) 2 — vill3.

where K denotes the number of latent vectors in the codebook and defines a K-way discrete cat-
egorical distribution. Each patch z; is mapped to its nearest code entry v;. As a result, given a
single-channel EEG X¢, TFM-Tokenizer generates a sequence of N tokens {v; } Y ;.

Frequency Masking Prediction for Tokenizer Learning

We employ a joint frequency—temporal masking strategy for TFM-Tokenizer training. The spectro-
gram S is partitioned along the frequency axis into Ny = |F'/d;] groups of size ¢, and random
frequency-band masks My and temporal masks My are applied to obtain the masked input SM.
Following (Jiang et al., 2024b), we further adopt symmetric masking for data augmentation and
training stability. The overall objective combines masked reconstruction and vocabulary loss:

Lioken = O |[S(£) = S(£ 0|5+ Y [selE] — vill;+8 D ||B: — selvi|l;
(f,t) i i

where S is the reconstruction, sg[] is the stop-gradient operator, and «, 8 are hyperparameters. We
also apply exponential moving average updates for stable codebook training.

3.3 DOWNSTREAM TRANSFORMER TRAINING

We employ a lightweight transformer model to aggregate tokenized representations across chan-
nels, learn cross-channel dependencies and perform downstream tasks. It consists of a token-
embedding lookup table (initialized from the VQ codebook) followed by linear attention transformer
layers. Given a multi-channel recording X € R“*7 the pretrained TFM-Tokenizer produces to-

c
ken sequences {{vf fvzl} for each channel c independently. We flatten the token embeddings

across channels and incorporate channel and position embeddings. An addtional class token is
prepended (Devlin, 2018), and the sequence is processed by transformer layers.

In order to pretrain the model and enable the model to learn intra and cross-channel dependencies
of tokens, we adopt a strategy akin to masked language modeling. We first randomly mask tokens
across multiple channels and time steps and then train the model to predict these masked tokens
via a cross-entropy loss. Along with representation learning, this approach enhances robustness to
missing or corrupted data, common in real-world EEG systems where channels or time segments
may be dropped or noisy. Finally, the transformer model is finetuned for downstream tasks.
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4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

Datasets: We evaluated our method on four EEG datasets. (1) TUEV (Harati et al., 2015): A
subset of the TUH EEG Corpus (Obeid & Picone, 2016), containing clinical EEG recordings an-
notated for six event types: spike and sharp wave (SPSW), generalized periodic epileptiform dis-
charges (GPED), periodic lateralized epileptiform discharges (PLED), eye movement (EYEM), ar-
tifact (ARTF), and background (BCKG). (2) TUAB (Lopez et al., 2015): Also from Temple Uni-
versity Hospital, labeled for normal and abnormal EEG activity. (3) CHB-MIT (Shoeb, 2009): A
widely used benchmark for epilepsy seizure detection, comprising EEG recordings from 23 pediatric
subjects with intractable seizures. (4) IIIC Seizure (Jing et al., 2023; Ge et al., 2021): Designed
for detecting six ictal-interictal-injury continuum (IIIC) patterns, including others (OTH), elec-
trographic seizures (ESZ), lateralized periodic discharges (LPD), generalized periodic discharges
(GPD), lateralized rhythmic delta activity (LRDA), and generalized rhythmic delta activity (GRDA).
- Scalability Validation. In this paper, we provided a scalability experiment to evalute the usability of
our tokenizer across different EEG devices. Since our tokenizer is trained in a single-channel setting,
it can naturally be applied to recordings from non-standard devices. Therefore, we evaluated on the
Ear-EEG Sleep Monitoring (EESM23) (Bjarke Mikkelsen et al., 2025; Tabar et al., 2024) dataset,
which contains ear-EEG sleep recordings from 10 subjects. Detailed dataset statistics, splits, and
preprocessing procedures are provided in Appendix B.1, B.2, and B.3.

Baselines: We evaluated our approach against the baselines from Yang et al. (2024) and recent
state-of-the-art methods, including BIOT, LaBraM, NeuroL M, and EEGPT. We adopted the best re-
sults reported in BIOT, except for the IIIC Seizure dataset, where we re-evaluated the methods due to
a sample size mismatch. Experiments were conducted under two settings: (1) Single-dataset setting:
pretraining and finetuning on the same single dataset, and (2) Multiple dataset setting: pretraining on
four EEG datasets. For BIOT, we reproduced their unsupervised pretraining and finetuning pipeline
in the single-dataset setting (denoted BIOT™) to enable a fair comparison, as their vanilla BIOT vari-
ant does not include pretraining. Similarly, we reproduced LaBraM by training its neural tokenizer,
performing masked EEG modeling, and finetuning within the same dataset (LaBraM*). Since our
focus is on EEG tokenization rather than full foundation modeling, we reproduced LaBraM under
the multiple dataset setting using the previously mentioned four EEG datasets (denoted LaBraM™).
This was necessary to ensure a fair comparison because the original LaBraM used a substantially
larger pretraining corpus. Additional experiment details are provided in Appendix B.4 and B.5.

4.2 How DOES TFM-TOKENIZER COMPARE TO EXISTING BASELINES?

Table 1 reports results on TUEV (event classification) and TUAB (abnormal detection), while Ta-
ble 2 summarizes performance on IIIC-Seizure (seizure type classification) and CHB-MIT (seizure
detection). Our TFM-Tokenizer paired with a downstream transformer outperforms the baselines
in both experiment settings. On the challenging six-class event-type classification task in TUEV, it
achieves a 5% gain in Cohen’s Kappa in the single-dataset setting and a notable ~ 11% improve-
ment (0.5588 — 0.6189) in the multi-dataset setting over the next best baseline. On IIIC-Seizure,
which is another six-class classification task, TFM-Tokenizer improves Cohen’s Kappa by 36%
over the LaBraM (0.3658 — 0.4979) and 3% improvement over CBraMod (0.4792 — 0.4979) in
multiple dataset settings, demonstrating the strong capability of our tokenizer in modeling class-
discriminative features for complex clinical EEG tasks. Additionally, it is worth noting that TFM-
Tokenizer achieves better performance with fewer parameters, being 3 times smaller than LaBraM
and 1.5 times smaller than BIOT. The ability to achieve best performance with low model size can be
attributed to our tokenization approach, which compresses the EEG into a token sequence, thereby
reducing data complexity. Notably, the TFM-Tokenizer is paired with a lightweight transformer
comprising only ~0.7M parameters.

4.3 CAN TFM-TOKENIZER IMPROVE EXISTING FOUNDATION MODELS?

To evaluate the generalizability of TFM-Tokenizer, we integrated it into two representative EEG
foundation models, BIOT and LaBraM, under both single- and multi-dataset settings. For BIOT, we
replaced raw EEG inputs with token embeddings while following the original training protocol. For
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Table 1: Performance comparison on TUEV and TUAB datasets.

Models Model TUEYV (event type classification) TUAB (abnormal detection)
Size Balanced Acc. Cohen’s Kappa  Weighted F1 Balanced Acc. AUC-PR AUROC
Single Dataset Setting

SPaRCNet (Jing et al., 2023) 0.79M 0.4161 £0.0262 0.4233 £0.0181 0.7024 £ 0.0104 0.7896 + 0.0018 0.8414 £ 0.0018 0.8676 + 0.0012
ContraWR (Yang et al., 2023) 1.6M  0.4384 £ 0.0349 0.3912 £ 0.0237 0.6893 + 0.0136 0.7746 + 0.0041 0.8421 + 0.0104 0.8456 + 0.0074
CNN-Transformer (Peh et al,, 2022)  3.2M  0.4087 £ 0.0161 0.3815 £ 0.0134 0.6854 £ 0.0293 0.7777 £ 0.0022 0.8433 £ 0.0039 0.8461 = 0.0013
FFCL (Li et al., 2022) 24M  0.3979 £0.0104 0.3732 +0.0188 0.6783 +0.0120 0.7848 + 0.0038 0.8448 4 0.0065 0.8569 + 0.0051
ST-Transformer (Song et al., 2021) 3.5M  0.3984 £ 0.0228 0.3765 £ 0.0306 0.6823 £0.0190 0.7966 + 0.0023 0.8521 + 0.0026 0.8707 = 0.0019
Vanilla BIOT (Yang et al., 2024) 32M  0.4682 +0.0125 0.4482 +0.0285 0.7085 + 0.0184 0.7925 4+ 0.0035 0.8707 & 0.0087 0.8691 =+ 0.0033
BIOT* (Yang et al., 2024) 32M  0.4679 £ 0.0354 0.4890 £ 0.0407 0.7352 £0.0236 0.7955 £ 0.0047 0.8819 4+ 0.0046 0.8834 =+ 0.0041
LaBraM-Base* (Jiang et al., 2024b) ~ 5.8M  0.4682 + 0.0856 0.5067 4 0.0413 0.7466 + 0.0202 0.7720 £ 0.0046 0.8498 + 0.0036 0.8534 + 0.0027
TFM-Tokenizer (Ours) 19M  0.4943 +0.0516 0.5337 £+ 0.0306 0.7570 + 0.0163 0.8152 + 0.0014 0.8946 + 0.0008 0.8897 + 0.0008

‘With Multiple Dataset Pretraining

BIOT (Yang et al., 2024)

EEGPT (Wang et al., 2024a)
NeuroLM-B (Jiang et al., 2024a)
LaBraM-Base® (Jiang et al., 2024b)
CBraModf (Wang et al., 2024d)
TFM-Tokenizer (Ours)

3.2M
4.7M
254M
5.8M
4M
1.9M

0.5281 + 0.0225
0.5670 + 0.0066
0.4560 + 0.0048
0.5550 + 0.0403
0.5696 + 0.0221
0.5974 + 0.0079

0.5273 £ 0.0249
0.5085 £ 0.0173
0.4285 £ 0.0048
0.5175 £ 0.0339
0.5588 + 0.0273
0.6189 + 0.0302

0.7492 £ 0.0082
0.7535 £ 0.0097
0.7153 £ 0.0028
0.7450 £ 0.0194
0.7702 £ 0.0137
0.8010 £ 0.0161

0.7959 £ 0.0057
0.7959 + 0.0021
0.7826 £ 0.0065
0.7735 £ 0.0030
0.5000 == 0.0000
0.8032 £ 0.0035

0.8792 £ 0.0023 0.8815 =+ 0.0043

- 0.8716 £ 0.0041
0.6975 £ 0.0081 0.7816 £ 0.0079
0.8531 £ 0.0028 0.8557 £ 0.0027
0.4938 £ 0.0443 0.5281 =+ 0.0409
0.8886 + 0.0032 0.8870 + 0.0022

Table 2: Performance comparison on IIIC Seizure and CHB-MIT datasets.

Models Model IIIC Seizure (seizure type classification) CHB-MIT (seizure detection)
Size Balanced Acc. Cohen’s Kappa  Weighted F1 Balanced Acc. AUC-PR AUROC
Single Dataset Setting

SPaRCNet (Jing et al., 2023) 0.79M 0.5011 + 0.0286 0.4115 4 0.0297 0.4996 + 0.0262 0.5876 & 0.0191 0.1247 +0.0119 0.8143 + 0.0148
ContraWR (Yang et al., 2023) 1.6M  0.5421 £ 0.0123 0.4549 £+ 0.0166 0.5387 £0.0138 0.6344 £ 0.0002 0.2264 +0.0174 0.8097 = 0.0114
CNN-Transformer (Peh et al., 2022)  32M  0.5395 4 0.0144 0.4500 4 0.0165 0.5413 £ 0.0176 0.6389 = 0.0067 0.2479 + 0.0227 0.8662 + 0.0082
FFCL (Li et al., 2022) 24M  0.5309 £ 0.0217 0.4412 £0.0253 0.5315 £0.0277 0.6262 £ 0.0104 0.2049 + 0.0346 0.8271 & 0.0051
ST-Transformer (Song et al., 2021) ~ 3.5M  0.5093 £ 0.0122 0.4217 + 0.0151 0.5217 £ 0.0110 0.5915 + 0.0195 0.1422 4 0.0094 0.8237 + 0.0491
Vanilla BIOT (Yang et al., 2024) 32M  0.5762 £ 0.0034 0.4932 + 0.0046 0.5773 £ 0.0031 0.6640 + 0.0037 0.2573 £ 0.0088 0.8646 + 0.0030
BIOT* (Yang et al., 2024) 32M  0.4458 £0.0183 0.3418 +0.0228 0.4511 +0.0207 0.6582 4 0.0896 0.3127 4 0.0890 0.8456 + 0.0333

LaBraM-Base* (Jiang et al., 2024b)
TFM-Tokenizer (Ours)

5.8M
1.OM

0.4736 £ 0.0101
0.5775 + 0.0042

0.3716 £+ 0.0128
0.4985 + 0.0039

0.4765 £ 0.0097
0.5847 + 0.0050

0.5035 £ 0.0078
0.6750 = 0.0392

0.0959 + 0.0742
0.3379 £ 0.0515

0.6624 £ 0.1050
0.8839 +0.0173

‘With Multiple Dataset Pretraining

BIOT (Yang et al., 2024)

EEGPT (Wang et al., 2024a)
LaBraM-Base’ (Jiang et al., 2024b)
CBraMod (Wang et al., 2024d)
TFM-Tokenizer (Ours) |

3.2M
4.M
5.8M
4M
1.9M

0.4414 £ 0.0035
0.4545 £0.0193
0.4736 + 0.0037
0.5566 + 0.0126
0.5747 + 0.0022

0.3362 + 0.0040
0.3502 £ 0.0255
0.3658 + 0.0033
0.4792 £+ 0.0167
0.4979 + 0.0038

0.4483 £ 0.0033
0.4559 £ 0.0311
0.4708 £ 0.0015
0.5743 +0.0138
0.5797 £ 0.0017

0.7068 + 0.0457
0.6644 + 0.0227
0.5260 =+ 0.0369
0.6646 + 0.0598
0.6471 + 0.0145

0.3277 £ 0.0460
0.3373 £ 0.0264
0.2138 £ 0.0523
0.3469 + 0.0281
0.3554 + 0.0264

0.8761 + 0.0284
0.8185 + 0.0252
0.7750 + 0.0540
0.9071 £+ 0.0199
0.8818 + 0.0117

1. The best and second-best results for each dataset setting are bolded and underlined, respectively. 2. The number of parameters for LaBraM
is only considering their classifier model. The size of their neural tokenizer was 8.6M. 3. x indicates reproduced in a single dataset setting and

T indicates pretraining on 4 EEG datasets.

LaBraM, we substituted its neural tokenizer with ours during masked EEG modeling. As shown in
Figure 3, our method consistently improves performance on TUEV, IIIC, and CHB-MIT, achieving
gains of at least 3% in most cases. LaBraM notably underperforms on CHB-MIT in the single-
dataset setting, yet integrating our tokenizer yields a 147% improvement in AUC-PR, demonstrating
its effectiveness in capturing class-discriminative features in data-scarce scenarios. These results
highlight the broad applicability of TFM-Tokenizer across architectures and its capacity to enhance
diverse EEG foundation models.

4.4 DOES TFM-TOKENIZER SCALE TO OTHER BRAIN-SIGNAL TYPES / DEVICES?

In order to assess the scalability of
TFM-Tokenizer beyond the modal-

ities and tasks seen during pre-
we evaluate its perfor-
mance on the EESM23 ear-EEG
dataset (Bjarke Mikkelsen et al.,
2025) for sleep staging, a task, brain
signal modality, acquisition system,
number of channels and channel con-

training,

Table 3: Scalability experiments results on EESM23.

Ear-EEG (Sleep Staging)

LaBraM-Base
LaBraM-TFM

0.3890 & 0.0182
0.4004 =+ 0.0086

0.3322 £ 0.0232
0.3475 £ 0.0128

Models

Balanced Acc. Cohen’s Kappa Weighted F1
BIOT 0.3858 4 0.0085 0.3406 £ 0.0096 0.4888 4 0.0124
BIOT-TFM 0.3952 £ 0.0170 0.3603 £ 0.0252 0.5033 £ 0.0165

0.4827 £+ 0.0157
0.4864 £ 0.0118

TFM-Tokenizer

0.4148 £ 0.0209

0.3883 + 0.0233

0.5174 4 0.0141

figuration entirely distinct from those in the pretraining set. Specifically, we only finetune pretrained
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Figure 3: Performance comparison of existing foundation models with and without integration of
TFM-Tokenizer onthe TUEV, IIIC, and CHB-MIT datasets. For each dataset, the first three bars
show single-dataset pretraining and the latter three show multi-dataset pretraining. Percentage values
above each bar indicate the relative performance gain achieved by incorporating TFM-Tokenizer.

models (our method, BIOT, and LaBraM) on the EESM23 dataset using only ~8K labeled training
samples. EEGPT was not scalable in this setting due to its reliance on a fixed EEG channel layout
for spatial embeddings (Wang et al., 2024a). As shown in Table 3, TFM-Tokenizer demonstrates
strong generalization, outperforming both baselines (p = 0.02) in this out-of-domain setting.

4.5 HoOw IMPORTANT ARE FREQUENCY AND TEMPORAL MODELING FOR EEG
TOKENIZATION?

To evaluate the importance of joint frequency—temporal modeling, we conducted an ablation study
with three tokenization variants: (1) TFM-Tokenizer-R, which uses only raw EEG patches to predict
the masked spectrogram; (2) TFM-Tokenizer-S, which uses only the spectrogram as input; and (3)
TFM-Tokenizer, which jointly models both domains. Masked modeling was applied for token learn-
ing in the latter two. On TUEV (Figure 4a), TFM-Tokenizer-S achieves higher Cohen’s Kappa than
TFM-Tokenizer-R, while TFM-Tokenizer-R yields better AUC-PR in abnormal detection (Appendix
Figure 6). These results show that different EEG tasks rely on different feature domains, underscor-
ing the need for joint modeling, where TFM-Tokenizer consistently outperforms both variants.

4.6 How EFFECTIVE ARE TFM-TOKENIZER TOKENS?

We evaluate the quality of EEG tokens learned by our tokenizer across four aspects: (1) class-specific
distinctiveness, (2) token consistency, (3) frequency learning capability, and (4) token utilization
(results in Appendix C.1). For this analysis, we compare all three TFM-Tokenizer variants with the
neural tokenizer from LaBraM, using the test splits of TUEV and IIIC, which both contain multiple
classes. To ensure fairness, all tokenizers employ a fixed vocabulary size of 8192. Results on TUEV
are shown in Figure 4b—c, with additional results for other datasets provided in the Appendix.

Class-Token uniqueness. To assess whether tokenizers capture class-specific motifs, we define the

. # Unique Tokens in Class . . .
Class-Token Uniqueness Score as # Tokens Utifized by Class < 100%. This metric quantifies how well a

tokenizer assigns distinctive tokens to each class. Figure 4b shows the scores for TUEV, where a ro-
bust tokenizer should yield high distinctiveness across all classes through unsupervised pretraining.
TFM-Tokenizer consistently achieves higher scores than its variants and LaBraM’s neural tokenizer,
indicating that it produces more compact and informative token representations and validating the
benefit of joint frequency—temporal modeling in EEG analysis.

Class-wise Token Consistency Analysis. We conduct a retrieval-based EEG signal mining exper-
iment to evaluate token consistency within the same class, using similar-class sample retrieval (see
Figure 4c). Given a multi-channel EEG sample, we first obtain its discrete token representation.
Using the Jaccard similarity score, we then retrieve the top K most similar samples from the dataset
and compute the precision score for correctly retrieving samples of the same class. For this study,
we constructed a balanced subset from the IIIC and TUEV datasets and tested all four tokenization
methods. Results show that all TFM-Tokenizer variants significantly outperform the neural tok-
enizer. Among all variants, our method yields the best retrieval performance, reflecting better token
consistency. Notably, TEM-Tokenizer-S and TFM-Tokenizer achieve nearly 60% precision on the
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Figure 4: (a) Frequency and temporal token encoder ablation on TUEV. (b) Comparison of class-
token uniqueness scores across all classes and (c) Class-wise token consistency analysis.

TUEV for K = 1. While the Jaccard similarity measure demonstrates initial feasibility, further
work is needed to identify optimal metrics. Nonetheless, the results suggest that EEG tokens can
support the identification of similar pairs, with potential applications in contrastive learning.

4.7 DO THE LEARNED TOKENS CAPTURE MEANINGFUL EEG MOTIFS?

We perform a small-scale qualitative analysis 4035 [ 4882 [ 6634 [ 3751 B9 5096 7 1097
to examine whether TFM-Tokenizer captures 2) PLED b) GPED

meaningful time—frequency motifs in EEG sig-

nals. Figure 5 shows some representative to- W i ' '
kens learned by our method on the TUEV (1) pusy (1) ey
dataset. Each token represents a spectral win- E %

dow and its corresponding raw EEG patch (1s
window with 0.5s overlap). For clarity, we

highlight the most frequent tokens per class us- @ g — () p———
ing distinct colors. Periodic Lateralized Epilep- E %

tiform Discharges (PLEDs) are periodic pat-
terns consisting of sharp waves or spikes fol-
lowed by a slow wave, occurring every 1- © pus— m%‘ 5 E— )
2s (Pohlmann-Eden et al., 1996). Token 4035 m = = -_|
consistently captures this characteristic wave- coo e n e s
form across different samples in the PLED g0 e 5. Overview of motifs captured by TFM-

class, despite variations in noise, amplitude, Tokenizer on TUEV: (a) three samples from the

and minor tempgral shifts. This confirms that PLED class and (b) three samples from the GPED.
our TFM-Tokenizer can capture class-specific

physiologically meaningful EEG motifs into discrete tokens. Similarly, tokens such as 5096 and
3751 in the GPED class highlight the benefit of joint time—frequency modeling, as they remain ro-
bust to minor temporal shifts and warping within a window due to emphasizing spectral patterns.
However, we found limitations associated with using fixed windowing for tokenization, as large
patterns or shifts may cause splits across windows, leading to separate token assignments and mis-
interpretation as distinct events.

5 CONCLUSION

In this paper, we presented TFM—-Tokenizer, a model-agnostic tokenization framework that en-
codes single-channel EEG into discrete tokens by capturing time—frequency motifs. Our study
demonstrated three key benefits: (i) Accuracy: By accurately extracting single-channel features,
our tokenizer enabled stronger representations and surpassed competitive baselines across four EEG
benchmarks. (ii) Generalization: As a plug-and-play component, our method consistently boosted
the performance of existing foundation models, showing its broad applicability. (iii) Scalability: Be-
cause it operates at the single-channel level rather than depending on the strict 10-20 EEG system,
our method readily extended to ear-EEG sleep staging tasks, validating its cross-device scalability.
Furthermore, analyses confirmed the class distinctiveness, consistency, and interpretability of the
learned tokens, providing deeper insights into EEG tokenization. We hope this work will inspire
the development of more robust tokenization frameworks and advance scalable, generalizable EEG
foundation models across diverse modalities, devices, and tasks.
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6 REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we provide our complete source code and pre-
trained model weights at https://anonymous.4open.science/r/TFM-Token-FE33.
The repository includes scripts for data preprocessing, loading, and model training to reproduce our
results presented in this paper. In the main text, Section 4.1 outlines our experimental setup, in-
cluding descriptions of the dataset and baselines. Additional implementation details, such as dataset
statistics, preprocessing steps, ear-EEG-specific processing, evaluation metrics, and baseline config-
urations, are provided in Appendix B.1, B.2, B.3, B.4, and B.5. The Appendix also includes extended
experiments across multiple datasets, including frequency learning analysis (Appendix C.1), cross-
dataset generalization studies (Appendix C.3), additional results on improving foundation models
(Appendix C.4), and further ablation studies. We have made every effort to ensure that our work can
be easily reproduced by the community.
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A PROBLEM FORMULATION

EEG Data. Let X € RE*T denote a multi-channel EEG recording with C' channels and 7" time
samples. Each channel 2¢ € R is decomposed into (1) raw patches {z;}}¥ ; and (2) corresponding
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time-frequency representation windows {S;}~ ;, where N is the number of time windows. For
simplicity, we omit the channel index and refer to x as a single-channel EEG signal unless stated
otherwise. To obtain the time-frequency representation, i.e., spectrogram, S, we apply the short-time
Fourier transform (STFT) to « using a windowing function w(.) of length L and a hop size H.

Short-Time Fourier Transform (STFT). To obtain the time-frequency representation, i.e.g, spec-
trogram, S, we apply a STFT to x using a windowing function w(.) of length L and a hop size
H:

—j2mwl

L—1
S(w,7)=|>_ a(rH + huw(l)e 7 (1)
=0

where w indexes the discrete frequencies and 7 indexes the time segments (i.e., time windows
shifted by H). We retain only the magnitude |.| to form S € RF*¥ where F is the number of
frequency bins and [V is the number of time windows.

Problem Statement 1 (EEG Tokenization): Given a single channel EEG x, we aim to learn a
tokenization function fiokenizer : R — VV*P, that maps x (or transformations) to a sequence of
discrete tokens {v; }}¥,, where each token is from a learnable EEG token vocabulary V of size k and
embedding size of D. These tokens should represent various time-frequency “motifs” derived from
both z; and S;. Therefore, V is learnable from S and the temporal patches {mz}f\il Remark. We
here hold several expectations for the learned motif tokens. First, these tokens are expected to reduce
redundancy, noise, and complexity, providing a compact, sparse, and informative representation of
EEGs. Second, these motifs should capture key neurophysiological patterns from both temporal and
frequency domains. Third, the tokens should generalize well across different EEG tasks.

Problem Statement 2 (Multi-Channel EEG Classification): Given EEGs X and a fixed, learned
single-channel tokenizer fiokenizers» W€ apply fiokenizer independently to each channel ¢ to obtain a

tokenization representation {{vf fil} . These tokens are aggregated and mapped to output
c=1

labels by: feassifier : (VP)V*¢ — Y where Y is the target labels (e.g., EEG events, seizure types).
Notably, feassifier can be any downstream model, and its training is performed separately from the
EEG tokenizer fiokenizer-

B ADDITIONAL EXPERIMENT DETAILS
B.1 DATASET STATISTICS AND SPLITS

Table 4: Evaluation Dataset Summary

Dataset # of Recordings # of Samples  Duration (s) Task

TUEV 11,914 112,491 5 EEG Event Classification
IIIC Seizure 2,689 135,096 10 Seizure Type Classification
CHB-MIT 686 326,993 10 Seizure Detection
TUAB 2,339 409, 455 10 Abnormal EEG Detection
EESM23 120 14,509 30 Ear-EEG based Sleep Staging

This section provides detailed information on the datasets used in our experiments and their respec-
tive splits. Table 4 summarizes key statistics, including the number of recordings, the total number
of samples after preprocessing, their duration, and the corresponding downstream tasks. For TUEV
and TUAB, we utilized the official training and test splits provided by the dataset and further di-
vided the training splits into 80% training and 20% validation sets. We performed a subject-wise
split into 60% training, 20% validation, and 20% test on the IIIC Seizure dataset. In the CHB-MIT
dataset, we used 1-19 subjects for training, 20-21 for validation, and 22-23 for testing. For the
out-of-distribution evaluation on the ear-EEG EESM23 (Bjarke Mikkelsen et al., 2025) dataset, we
followed a subject-wise split, where subjects 1-6 were used for fine-tuning, 7-8 for validation, and
9-10 for testing.
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B.2 PREPROCESSING

We follow the preprocessing setup of BIOT (Yang et al., 2024). We adhere to the 16-channel bipolar
montage from the international 10-20 system, as used in (Yang et al., 2024). All EEG recordings
are resampled to 200 Hz. For TUEV and TUAB, we apply a bandpass filter (0.1-75 Hz) and a
notch filter (50 Hz), following the preprocessing pipeline of LaBraM (Jiang et al., 2024b). We
then segment the recordings according to the provided annotations and preprocessing guidelines.
STFT computation of the signals is performed using PyTorch, with detailed parameters provided in
Appendix B.6. For training, validation, and test splits, we follow the recommendations from (Yang
et al.,, 2024). We adopt a window length of 1s with 0.5s overlap to segment EEG signals during
training and inference, following prior work for consistency (Yang et al., 2024).

B.3 EAR-EEG PREPROCESSING

We follow the preprocessing guidelines of Tabar et al. (2021) for the EESM-23 ear-EEG dataset,
which includes four channels (RB, RT, LB, LT). A bandpass filter (0.1-100 Hz) and a 50Hz notch
filter are applied. Each patients perform certain tasks before sleep. To isolate sleep segments, we
crop each session from the onset of annotated sleep scoring, segment the signal into 30-second
epochs, and discard corrupted segments.

B.4 EVALUATION METRICS

For evaluation, we used balanced accuracy, Cohen’s kappa coefficient, and weighted F1 for multi-
class classification, and balanced accuracy, AUROC, and AUC-PR for binary classification. During
finetuning, we employed binary cross-entropy loss for TUAB, cross-entropy loss for TUEV and
IIIC, and focal loss for CHB-MIT due to class imbalance. All experiments were conducted using
five different random seeds, and we report the mean and standard deviation.

B.5 ADDITIONAL DETAILS ON BASELINES

All baselines were reproduced using their official open-source repositories. LaBraM’s primary con-
tribution lies in large-scale EEG pretraining using over 2,500 hours of data (Jiang et al., 2024b),
whereas our focus is on developing an effective EEG tokenizer. To ensure a fair comparison, we
reproduced LaBraM using its official repository under our dataset and experimental settings. For
EEGPT, we report the published results for the 4.7M model on TUEV and TUAB (Wang et al.,
2024a). Since results on CHB-MIT and IIIC-Seizure were not available, we used the official pre-
trained weights and fine-tuned the model on these tasks.

B.6 STFT PARAMETERS

Table 5: STFT parameters

Parameter Value Description

FFT size (n, L) 200 Number of frequency bins (equal to resampling rate)
Hop length H 100 Step size for sliding window (50% overlap)
Window type Hann A smoothing window function to reduce spectral leakage
Output representation  Magnitude Only the absolute values of the STFT are retained
Centering False The STFT is computed without implicit zero-padding
One-sided output True Only the positive frequency components are kept

To extract frequency-domain representations of the EEG, we utilized the STFT function from Py-
Torch. The recommendations of Yang et al. (2024) guided our parameter selection and empirical
analysis of different configurations to optimize the trade-off between time-frequency resolution. The
final parameters are as follows:
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Figure 6: (a) Frequency and temporal token encoder ablation on TUAB. (b) & (c) presents Anal-
ysis of token quality across three TFM-Tokenizer variants and the neural tokenizer on IIIC. (b)
Comparison of class-token uniqueness scores across all classes and (c) Class-wise token consistency

analysis
Table 6: Token Utilization and class-token uniqueness comparison

Tokenization Method # Params Utilization Class-Token
% Uniqueness (GM) %

TUEV IIC TUEV IIIC
Neural Tokenizer (LaBraM) 8.6M 21.13 1525 0.034 0.000

TFM-Tokenizer-R 1.IM 5.29 7.87  0.000 0.000
TFM-Tokenizer-S 1.IM 13.93 11.04 0.004 0.619
TFM-Tokenizer 1.2M 9.78 8.26 2.14 1.429

C EXTENDED EXPERIMENT RESULTS

C.1 ADDITIONAL RESULTS ON TOKEN QUALITY ANALYSIS AND FREQUENCY LEARNING

In this section, we present more results on token quality analysis, specifically focusing on token
utilization and frequency learning capability of our tokenizer. Additional token uniqueness and
consistency experiments on IIIC dataset is presented in Figure 6b and c.

Token utilization: Token utilization (%) score was calculated as the percentage of unique tokens
activated from the total available vocabulary size. Additionally, we computed the geometric mean
(GM) of class-token uniqueness scores along with the utilization score, and the results are presented

[ Frequency Encoder [ Temporal Encoder
TUEV TUAB CHBMIT

Spectral Entropy

0 1 2 3 4
#samples

Figure 7: An analysis of how the proposed frequency and temporal-domain encoders capture fre-
quency features, by using the spectral entropy of the learned token sequences from randomly se-
lected samples. Higher values indicate that the tokens contain richer frequency information.
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in Table 6. Our TFM-Tokenizer reduces token utilization by more than two-fold compared to the
neural tokenizer on TUEV (21.13% — 9.78%) and nearly two-fold on IIIC (15.25% — 8.26%).
It also significantly improves learning of class-unique tokens compared to the neural tokenizer
(0.034% — 2.14% on TUEV, 0.0% — 1.429% on IIIC).

Evaluating the Frequency Learning of TFM—-Tokenizer Tokens: In this experiment, we com-
pare the frequency and temporal-domain encoders of the TFM-Tokenizer to evaluate their ability to
capture diverse frequency features in EEG signals. Specifically, we arrange all tokens in temporal
order and perform a discrete Fourier transform on the token sequence. This process decomposes
the tokens into frequencies, where each frequency reflects the degree of change between tokens at
various scales. Larger changes indicate more diverse token representations. Then, we compute spec-
tral entropy, defined as the normalized Shannon entropy of the amplitude values, to quantify how
energy is distributed across the spectrum. Higher spectral entropy means that the model has learned
a broader range of frequency features, capturing differences from both large-scale trends and fine
details. Figure 7 shows that on the TUEV, TUAB, and CHBMIT datasets, the frequency encoder
produces tokens with significantly higher spectral entropy than the temporal encoder. For example,
on the TUEV dataset, the frequency encoder achieved an average spectral entropy of 0.26, while the
temporal encoder reached only 0.14. This multi-scale sensitivity benefits downstream tasks such as
classification, where learning detailed differences in EEG tokens can improve performance.

C.2 ADDITIONAL RESULTS ON FREQUENCY AND TEMPORAL MODELING FOR EEG
TOKENIZATION

Table 7: Ablation study on input representation to TFM-Tokenizer

Models TUEYV (event type classification) TUAB (abnormal detection)

Cohen’s Kappa Weighted F1 AUC-PR AUROC

TFM-Tokenizer-R ~ 0.4898 +0.0105 0.5194 £0.0195 0.7518 +0.0095 0.8033 £ 0.0021  0.8908 4 0.0027  0.8849 + 0.0024
TFM-Tokenizer-S  0.4708 +0.0339  0.5275 £0.0314 0.7538 +0.0152  0.7927 £0.0044 0.8814 4 0.0095 0.8836 + 0.0052
TFM-Tokenizer  0.4943 4 0.0516  0.5337 £ 0.0306  0.7570 & 0.0163  0.8152 + 0.0014  0.8946 £ 0.0008 0.8897 + 0.0008

Balanced Acc. Balanced Acc.

1. The best results are bolded, while the second-best are underlined.

In Table 7 we provide detailed results of our ablation study discussed under Section 4.5.
C.3 TOKEN GENERALIZATION ASSESSMENT THROUGH CROSS-DATASET EXPERIMENTS

Table 8: Cross dataset generalizability experiments under single dataset settings

Testing Tokenizer MTP Performance Metrics

Dataset  Dataset Dataset Balanced Acc.  Cohen’s Kappa Weighted F1
TUEV TUEV 0.4943 £ 0.0516  0.5337 £0.0306 0.7570 £+ 0.0163
1IIC TUEV 0.4722 £ 0.0578  0.4990 £ 0.0237 0.7380 £ 0.0137
TUEV IC 0.4291 £ 0.0235 0.5195 £ 0.0200 0.7534 + 0.0100
TUAB TUEV 0.4651 £ 0.0449  0.5925 £ 0.0249 0.7847 + 0.0136
TUAB 0.5252 £0.0431 0.6187 £0.0285 0.8018 4+ 0.0138
CHB-MIT TUEV 0.4979 £ 0.0444  0.5995 £ 0.0225 0.7885 + 0.0122
CHB-MIT 0.5898 + 0.0192  0.6591 £ 0.0106  0.8196 + 0.0045

To evaluate the robustness of our tokenizer, we conducted cross-dataset experiments under two set-
tings: (1) fixing the tokenizer and performing masked token prediction (MTP) & finetuning on a
different target dataset and (2) fixing the tokenizer and MTP, followed by finetuning downstream
transformer only on the target dataset. Results are presented in Table §, which demonstrates strong
generalizability, with our TFM-Tokenizer achieving the best performance on TUEV when pretrained
on CHBMIT—outperforming the best-reported result in four dataset settings. These findings high-
light the potential of our tokenizer as a foundation for a scalable, universal EEG tokenizer.
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C.4 ADDITIONAL RESULTS ON TFM-ToKENIZER IMPROVING EXISTING FOUNDATION

MODELS

Table 9: Performance comparison of LaBraM and BIOT with and w/o our TFM-Tokenizer.

Dataset Exp. Method Performance Metrics
Setting Balanced Acc. Cohen’s Kappa Weighted F1
BIOT 0.4679 4+ 0.0354 0.4890 + 0.0407 0.7352 + 0.0236
Single BIOT-TFM 0.4228 £0.0162  0.5230 £ 0.0226 T 0.7490 £+ 0.0114 |
LaBraM 0.4682 £+ 0.0856 0.5067 +0.0413 0.7466 + 0.0202
TUEV LaBraM-TFM  0.5147 £0.0174 1 0.5220 £ 0.0153 1 0.7533 4 0.0094
BIOT 0.5281 4+ 0.0225 0.5273 4+ 0.0249 0.7492 £+ 0.0082
Multiple BIOT-TFM  0.5530 £ 0.0089 7 0.5464 £ 0.0137 | 0.7625 £ 0.0069 |
LaBraM 0.5550 £ 0.0403 0.5175 +0.0339 0.7450 + 0.0194
LaBraM-TFM  0.5541 £ 0.0316  0.5367 £ 0.0281 17 0.7567 + 0.0165
BIOT 0.4458 +0.0183 0.3418 + 0.0228 0.4511 + 0.0207
Single BIOT-TFM  0.4633 +0.0078 7 0.3663 £ 0.0103 1 0.4689 £ 0.0090
LaBraM 0.4736 + 0.0101 0.3716 +0.0128 0.4765 + 0.0097
Ic LaBraM-TFM  0.4814 £ 0.0075 1 0.3795 £0.0091 7 0.4841 +£ 0.0062 |
BIOT 0.4414 £+ 0.0035 0.3362 £ 0.0040 0.4483 £+ 0.0033
Multiple BIOT-TFM  0.5050 +0.0037 7 0.4098 £ 0.0052 1 0.5139 £ 0.0025 1
LaBraM 0.4736 £+ 0.0037 0.3658 £+ 0.0033 0.4708 + 0.0015
LaBraM-TEM  0.4782 £ 0.0065 | 0.3737 £ 0.0076 7 0.4790 =+ 0.0082
Balanced Acc. AUC-PR AUROC
BIOT 0.6582 4+ 0.0896 0.3127 4+ 0.0890 0.8456 + 0.0333
Single BIOT-TFM 0.5893 £0.0197  0.3341 £0.0349 1 0.8752 £ 0.0123 |
LaBraM 0.5035 4+ 0.0078 0.0959 £+ 0.0742 0.6624 + 0.1050
CHB-MIT LaBraM-TFM  0.5473 £0.047 7 0.2376 +0.0461 7 0.7863 £ 0.0438 |
BIOT 0.7068 £ 0.0457 0.3277 £+ 0.0460 0.8761 + 0.0284
Multiple BIOT-TFM 0.6197 £0.0085  0.3484 £ 0.0078 7 0.8726 £ 0.0098
LaBraM 0.5260 £ 0.0369 0.2138 +0.0523 0.7750 &+ 0.0540
LaBraM-TEM  0.5579 £ 0.0394 | 0.2445 +0.0351 7 0.7887 + 0.0423

Table 9 presents detailed results on integrating TFM-Tokenizer with BIOT and LaBraM. Across
all metrics and settings, TFM-Tokenizer improves performance in 93% of cases, demonstrating its
effectiveness in enhancing existing EEG foundation models.

C.5 EFFECT OF MASKED TOKEN PREDICTION IN EEG TOKENIZATION
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Figure 8: Masked Token Prediction Ablation
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We conducted an ablation study on downstream transformer to assess the impact of masked token
prediction pretraining in a fully discretized framework. Using a pretrained TFM-Tokenizer, we
compared two approaches: (1) masked token prediction pretraining followed by fine-tuning and (2)
direct fine-tuning without pretraining. This experiment was performed on the TUEV dataset across
all three TFM-Tokenizer variants, with results summarized in Figure 8. While Cohen’s Kappa and
Weighted F1 showed no significant differences between the two approaches, masked token pre-
diction pretraining significantly improved balanced accuracy across all TFM-Tokenizer variants.
This suggests that pretraining enhances class-wise prediction consistency by capturing token depen-
dencies and making downstream transformer more robust to missing channels or time segments, a
common challenge in EEG analysis.

C.6 REMOVING POSITION EMBEDDING IN TFM-TOKENIZER IMPROVES TOKEN LEARNING

Table 10: TFM-Tokenizer Comparison with and w/o Position Embedding (PE) on TUEV Dataset

Method Utilization Uniqueness Balanced Cohen’s Weighted
% (GM) % Acc. Kappa F1

TFM-Tokenizer + PE 12.87 1.94 0.4765+£0.038 0.5119 +0.022 0.7457 £ 0.012

TFM-Tokenizer w/o PE 9.78 2.14 0.4943 +0.052  0.5337 £0.031  0.7570 +£0.016

Through our empirical analysis, we found that the performance significantly improved when no
position embedding was applied to the TFM-Tokenizer. EEG patterns are inherently chaotic and
non-stationary, meaning similar motifs can occur at any position within the signal. An ideal tok-
enizer should be capable of capturing and representing such EEG motifs as distinct tokens without
relying on positional information.

We conducted an ablation study comparing the TFM-Tokenizer’s performance with and without
position embeddings to critically analyze this phenomenon. The results of this analysis, presented
in Table 10, clearly show that the TFM-Tokenizer without position embedding achieves significantly
better performance, with an increase of 4% in Cohen’s Kappa (0.5119 — 0.5337).

We further studied the quality of the learned tokens in terms of token utilization and class-uniqueness
scores. Token utilization decreased (12.87% — 9.78%) when position embeddings were removed,
while the class-token uniqueness score increased (1.94% — 2.14%). This suggests that the TFM-
Tokenizer, when using positional encoding, learns different tokens for the same motifs depending
on their location in the signal, leading to redundancy. Removing the position embedding allows the
TFM-Tokenizer to learn more compact and meaningful tokens without introducing unnecessary data
complexities. This improvement is further illustrated in the motifs captured by the TFM-Tokenizer’s
tokens in Figure 5 in Section 4.7.

C.7 DOWNSTREAM MODEL ABLATION

We ablated the
number of trans-  Table 11: Ablation on number of transformer layers in the downstream model
former layers

in the down- T

stream model
on the TUEV  Layers Params. Balanced Acc.  Cohen’s Kappa Weighted F1

Number of Performance Metrics

dataset,  with | 0.58M  0.4486 & 0.0297 0.5404 £ 0.0168 0.7603 + 0.0096
results presented 2 0.63M  0.4920 & 0.0595 0.5758 = 0.0169  0.7780 -+ 0.0089
in Table 11. 4 072M 04943 £0.0516 0.5337 & 0.0306 0.7570 £ 0.0163
Notably, even 6 0.82M  0.5025 + 0.0592  0.4996 + 0.0208 0.7410 + 0.0104
with significantly 12 LI2M 05016 +0.0730  0.5088 + 0.0272  0.7456 + 0.0139

fewer parameters

(two layers), the model maintains competitive and, in some cases, better performance across key
metrics. This highlights the potential for developing lightweight and efficient models for EEG
analysis without substantial performance trade-offs.
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C.8 ABLATION ON TOKEN VOCABULARY SIZE

To evaluate the impact of token vocabulary size on performance and token learning, we conducted
an ablation study by varying the vocabulary size from 256 to 8192 in powers of two. As shown in
Figure 9, no monotonic trend was observed for Cohen’s Kappa and Weighted F1 scores. However,
balanced accuracy increased with larger vocabulary sizes. Further analysis of token utilization and
class-token uniqueness scores is presented in Figure 10. Notably, Figure 10b shows that class-
token uniqueness scores increase with vocabulary size, contributing to the improvement in balanced
accuracy by enabling learning more unique class-specific tokens.
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Figure 9: Token vocabulary size ablation with performance metrics
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Figure 10: Token vocabulary size ablation with token utilization and uniqueness

C.9 ABLATION ON MASKING

8192

Table 12: Ablation on masking used for the pretraining of TFM-Tokenizer on TUEV Dataset

Masking Strategy Balanced Acc. Cohen’s Kappa Weighted F1
Random Masking 0.4351 £0.0462  0.4772+£0.0140  0.7296 £ 0.0076
Frequency Band Masking  0.4673 =0.0540  0.5193 £0.0243  0.7536 4+ 0.0125
Frequency Band | 0.4946 £ 0.0302  0.5045 4+ 0.0221  0.7462 % 0.0116
+ Temporal Masking

Frequency Band

+ Temporal Masking 0.4943 +0.0516  0.5337 +0.0306 0.7570 4+ 0.0163

+ Symmetric Masking

We conducted an ablation study on masking strategies during TFM-Tokenizer pretraining to as-

sess their impact on performance. Results shown in Table 12 indicate that random masking on
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fective masking to capture frequency and temporal features from EEG. Frequency band masking
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significantly improves performance over random masking, with an 8% increase in Cohen’s Kappa
(0.4772 — 0.5193) and a 7% increase in balanced accuracy (0.4351 — 0.4673), highlighting
the importance of modeling frequency band dynamics. The addition of temporal masking fur-
ther boosts balanced accuracy by 5% (0.4673 — 0.4946), underscoring the importance of joint
temporal-frequency modeling. However, temporal masking results in a decline in Cohen’s Kappa
and Weighted F1, which is then resolved by introducing symmetric masking, achieving the overall
best performance.

C.10 MASKING RATIO ABLATION

Table 13: Ablation on frequency band masking ratio used for the pretraining of TFM-Tokenizer
on TUEV, ITIIC Seizure and CHB-MIT Datasets.

Dataset Frequency Mask Ratio  Balanced Acc.  Cohen’s Kappa Weighted F1
0.5 0.4946 + 0.0392  0.5045 + 0.0221 0.7462 4+ 0.0116
TUEV 0.3 0.4306 + 0.0187  0.5025 + 0.0193  0.7432 £ 0.0090
0.1 0.3859 +0.0580 0.4308 + 0.0755 0.7057 + 0.0376
0.5 0.5315 + 0.0102  0.4427 + 0.0143  0.5369 + 0.0114
mic 0.3 0.5148 £0.0158 0.4250 £0.0193  0.5222 £+ 0.0167
0.1 0.4381 £ 0.0032  0.3286 + 0.0046  0.4420 + 0.0047
Balanced Acc. AUC-PR AUROC
0.5 0.6809 + 0.0380 0.3335 £ 0.0182 0.8859 + 0.0137
CHB-MIT 0.3 0.6313 +£0.0599 0.3233 +0.0337 0.8708 + 0.0187
0.1 0.6530 +0.0486  0.3502 + 0.0441 0.8742 +0.0116

We conducted an ablation study to examine how varying the frequency band masking ratio affects
model performance and generalization across datasets. All experiments were performed under the
single-channel setting, with the temporal masking ratio fixed at 0.5 without symmetric masking,
and the results are summarized in Table 13. For the TUEV and IIIC Seizure datasets, a frequency
mask ratio of 0.5 yielded the best overall performance. A similar trend was observed in the CHB-
MIT dataset, except for Cohen’s Kappa, which showed a slightly higher score at a masking ratio of
0.1. Considering these results along with the added benefit that a 0.5 masking ratio enables more
effective use of symmetric masking as a data-augmentation strategy, we selected a frequency mask
ratio of 0.5 for our final approach.

C.11 WINDOW LENGTH (L) AND HOP S1ZE (H) ABLATION

Table 14: Ablation on window length (L) and stride or hop size (/1) used to segment raw signals
and compute STFT for the pretraining of TFM-Tokenizer on TUEV Dataset.

Window Hop Size R .

Length (s) (s) Balanced Acc.  Cohen’s Kappa Weighted F1
0.5 0.25 0.5038 + 0.0561  0.6059 + 0.0170  0.7935 £+ 0.0112
1.0 0.25 0.4796 + 0.0598 0.5761 £ 0.0171  0.7780 £ 0.0098
1.0 0.5 0.4943 £0.0516  0.5337 £0.0306  0.7570+ 0.0163
1.0 0.75 0.4068 +0.0182  0.4868 £ 0.0210  0.7327 4+ 0.0085
2.0 0.5 0.1726 £ 0.0093  0.0168 +0.0137  0.5202 £+ 0.0074
2.0 1.0 0.2123 £0.0143  0.1504 £ 0.0146  0.5748 £ 0.0087
2.0 1.5 0.3948 4+ 0.0287  0.4042 £ 0.0282  0.6878 + 0.0167
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To investigate how window length and stride affect the tokenizer’s ability to capture time—frequency
motifs and performance, we conducted an ablation varying both parameters and adjusted the STFT
configuration to preserve one-to-one alignment between time and frequency windows. The results,
summarized in Table 14, indicate that smaller windows with greater overlap yield the strongest per-
formance. This suggests that shorter segments allow the tokenizer to capture finer-grained motifs
that may be lost when using larger windows. For consistency with baselines and prior work, how-
ever, we adopt a 1-second window length with a 0.5-second hop size in all reported experiments.

C.12 TOKEN EMBEDDING SIZE ABLATION

Table 15: Token embedding size ablation on TUEV Dataset.

gl‘nbed(‘hng Balanced Acc.  Cohen’s Kappa Weighted F1
imension

32 0.4213 £0.0529 0.4974 +0.0165 0.7417 £ 0.0081
64 0.4943 + 0.0516  0.5337 + 0.0306  0.7570 + 0.0163
128 0.3199 £ 0.0193  0.1909 + 0.0245 0.5700 £+ 0.0276
256 0.3864 £ 0.0082  0.3575 £ 0.0157 0.6682 £ 0.0091

Table 15 summarizes the results of the token embedding size ablation. Performance improves up
to an embedding dimension of 64, after which it begins to decline. We do not observe a consistent
trend as the embedding size increases, which may be attributed to training instability when using
larger embedding dimensions.

D TFM-TOKENIZER IMPLEMENTATION AND HYPERPARAMETER TUNING
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Figure 11: TFM-Tokenizer framework Overview

Figure 11 presents an overview of the framework during inference. This section provides additional
details on the implementation and training of the framework.

D.1 HYPERPARAMETER TUNING OF TFM-TOKENIZER AND DOWNSTREAM TRANSFORMER

We employed a systematic approach to optimize the hyperparameters of both the TFM-Tokenizer
and downstream transformer models using Ray Tune! with the Optuna® search algorithm. Our
optimization process followed a three-phase strategy.

In the first phase, we optimized the TFM-Tokenizer architecture by tuning the depth and number of
attention heads in the frequency transformer, temporal transformer, and transformer decoder mod-
ules to minimize the masked reconstruction 10ss L,ccon. This was followed by tuning the training
optimizer’s parameters, including learning rate and weight decay. The second phase focused on

"https://docs.ray.io/en/latest/tune/
2https://optuna.org/
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the downstream transformer optimization for the classification task, where we first tuned its archi-
tectural parameters (depth and number of heads), followed by training the optimizer’s parameters
while keeping the tokenizer frozen. The third phase focused on tuning optimizer parameters for the
masked token prediction pretraining of the downstream transformer.

To ensure a fair comparison with a b.
LaBraM,S neural tOkenizer, we main- - TFM-Tokenizer Training Loss Downstream Transformer MTP Training Loss
tained a vocabulary size of 8,192 and =«
an embedding dimension of 64. For =
our ablation studies involving raw I !
signal-only and STFT-only variants, #=
we doubled the embedding dimen- =«
sions of the temporal encoder and fre- -
quency patch encoder to match the L S N
codebook dimension while maintain-

ing all other parameters same. De-
tailed hyperparameter configurations
for both TFM-Tokenizer and down-

Figure 12: Training loss curves for (a) the TFM-Tokenizer
learning and (b) the masked-token-prediction pretraining of
the downstream transformer

stream transformer are provided in
Appendices D.2 and D.3, respectively.

In Figure 12a and b, we present the training loss curves for both the TFM-Tokenizer training stage
and the masked-token-prediction pretraining of the downstream transformer, respectively. The
curves demonstrate stable training behavior, even with a large codebook and a relatively small
dataset. We kept the codebook size at 8192 to ensure a fair comparison with LaBraM’s neural
tokenizer.

D.2 TFM-TOKENIZER HYPERPARAMETERS

Table 16: Hyperparameters for TFM-Tokenizer unsupervised pretraining on single-channel setting

Hyperparameter Values
Batch size 256
Optimizer AdamW
Weight decay 0.00001
Jeit 0.9
Ba 0.99
Learning rate scheduler ~ Cosine
Minimal Learning rate 0.001
Peak Learning rate 0.005
# of Warmup Epochs 10

# of Pretraining Epochs 100
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Table 17: Hyperparameters for TFM-Tokenizer

Hyperparameter Values
Input Channels 1
Convolution layer 1 Output Dim@nsion 64
Kernel Size 200
Stride 100
g Output Dimension 64
Temporal Encoder Convolution layer 2 Kernel Size 1
Stride 1
Output Dimension 32
Convolution layer 3 Kernel Size 1
Stride 1
Input Channels 1
. Output Dimension 64
Convolution layer 1 Kernel Size 5
Stride 5
Output Dimension 64
Frequency Patch Encoder Convolution layer 2 Iréemel Size 1
Stride 1
Output Dimension 64
Convolution layer 3 Kernel Size 1
Stride 1
Transformer Encoder Layers 2
Frequency Transformer Embedding Dimension 64
Number of Heads 8
Output Dimension 32
Gated Patchwise Aggregation Kernel Size 5
Stride 5
Transformer Encoder Layers 2
Temporal Transformer Embedding Dimension 64
Number of Heads 8
Token vocabulary (Codebook size) 8192
Transformer Encoder Layers 8
o Embedding Dimension 64
Transformer Decoder Number of Heads ]
Linear Decoder 100

D.3 DOWNSTREAM TRANSFORMER ENCODER HYPERPARAMETERS

Table 18: Hyperparameters for downstream transformer, its masked token prediction pretraining and
downstream finetuning

Hyperparameter Values
Transformer Encoder Layers 4
Embedding Dimension 64
Number of Heads 8
Masked Token Prediction Pretraining
Batch size 512
Optimizer AdamW
Weight decay 0.00001
51 0.9
Ba 0.99
Learning rate scheduler Cosine
Minimal Learning rate 0.001
Peak Learning rate 0.005
# of Warmup Epochs 5
# of training Epochs 50
Finetuning
Other parameters are the same as above except:
Ba 0.999
label smoothing (multi-class) 0.1

25



Under review as a conference paper at ICLR 2026

E BIOT-TFM AND LABRAM-TFM IMPLEMENTATION DETAILS
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Figure 13: Schematics of integrating the proposed TFM-Tokenizer with BIOT and LaBraM founda-
tion models.

Figure 13 illustrates how the proposed TFM-Tokenizer is seamlessly integrated into existing EEG
foundation models such as BIOT and LaBraM.

BIOT-TFM. For BIOT, we replace the initial patch-based linear projection layers with our tok-
enizer, which converts multi-channel EEG signals into discrete token sequences. Similar to BIOT,
we add channel embeddings and positional embeddings before feeding the tokens into the linear
transformer layers. We follow BIOT’s original training pipeline, which includes unsupervised pre-
training, supervised pretraining, and downstream finetuning, allowing a direct comparison while
isolating the effect of our tokenizer.

LaBraM-TFM. LaBraM employs a neural tokenizer only during its masked EEG modeling
(MEM) pretraining stage, where multi-channel EEG signals are patched, a subset of patches is
masked, and the model is trained to predict the tokenizer-generated codebook indices for masked
patches. In LaBraM-TFM, we simply replace LaBraM’s neural tokenizer with our TFM-Tokenizer
and conduct MEM pretraining as in the original workflow. After pretraining, the tokenizer is dis-
carded and only the LaBraM transformer is finetuned for downstream tasks.

F MORE RELATED WORKS

Frequency Representation Collapse. Frequency domain analysis is crucial in EEG and general
time series analysis (Elvander & Jakobsson, 2020; Wu et al., 2021; 2023; Woo et al., 2022). In
real-world signals, time-domain observations inherently mix multiple frequency components, and
high-energy, low-frequency signals often dominate the spectrum (Huang Norden E Shen Zheng
& H, 1998; Lai et al., 2018). As a result, these entangled frequency features makes it difficult for
models to distinguish between them (Zhou et al., 2022; Piao et al., 2024). Recent studies have shown
that these entangled signals can lead to a collapse in the learned frequency representations (Zhi-Qin
John Xu et al., 2020; Piao et al., 2024). Models tend to overemphasize the dominant low-frequency
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features while neglecting the high-frequency details. This issue can lead to a lack of capturing
various EEG waveforms and degenerating data representation (Park & Kim, 2022). Motivated
by these works, our paper focuses on developing methods to learn diverse, informative frequency
features. In Section C.1, we provide an analysis of our proposed frequency-domain tokenizer and
its impact on model performance.

G LLM USAGE STATEMENT

We used large language models (LLMs) solely for writing support, including grammar correction,
sentence refinement, and clarity improvements. All conceptual contributions, algorithm design, code
development, experiments, and analyses were conducted entirely by the authors.
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