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STGAN: Detecting Host Threats via Fusion of Spatial-Temporal
Features in Host Provenance Graphs

Anonymous Author(s)∗

Abstract
As the complexity and frequency of cyberattacks, such as Advanced
Persistent Threats (APTs) and ransomware, continue to escalate,
traditional anomaly detection methods have proven inadequate
in addressing these sophisticated, multi-faceted threats. Recently,
Host Provenance Graphs (HPGs) have played a crucial role in ana-
lyzing system-level interactions, detecting anomalous behaviors,
and tracing attack chains. However, existing provenance-based
detection methods primarily rely on single-dimensional feature
analysis, which fails to capture the dynamic and multi-dimensional
patterns of modern APT attacks, resulting in insufficient detection
performance. To overcome this limitation, we introduce STGAN, a
model that integrates spatial-temporal graphs into host provenance
graph modeling. STGAN applies temporal and spatial encoding to
dynamic provenance graphs to extract temporal, spatial, and seman-
tic features, constructing a comprehensive feature representation.
This representation is further fused and enhanced using a multi-
head self-attention mechanism, followed by anomaly detection.
Through extensive evaluations on three widely-used provenance
graph datasets, we demonstrate that our approach consistently
outperforms current state-of-the-art techniques in terms of de-
tection performance. Additionally, we contribute to the research
community by releasing our datasets and code, facilitating further
exploration and validation.
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Network Security, Host Provenance Graph, Graph Anomaly Detec-
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1 Introduction
The complexity and frequency of cyberattacks are rapidly increas-
ing, posing unprecedented threats to businesses, government agen-
cies, and society at large [1]. Modern cyberattacks are no longer
confined to malware propagation and data theft but have evolved
into highly complex attack chains, encompassing Advanced Persis-
tent Threats (APTs), ransomware attacks, and supply chain attacks.
These attacks not only result in substantial economic losses but
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also jeopardize the security of critical infrastructure. Traditional
anomaly detection methods [22, 32], such as signature-based and
rule-based intrusion detection systems, have become inadequate in
addressing the challenges posed by these sophisticated attacks.

Host Provenance Graphs (HPGs) are gradually becoming a pow-
erful tool in the field of detecting host threats [6, 13, 27, 47, 49].
By recording and analyzing the interactions between files, net-
work connections, and processes within a host, HPGs construct a
comprehensive activity map that helps security analysts identify
anomalous behaviors, trace the origins of attacks, and enhance sys-
tem security. They reveal the attacker’s activities within the host
and can link multiple attack events, providing critical insights into
understanding the attack chain. Recent researchers have proposed
various types of provenance-based anomaly detection methods,
including static feature analysis, spatial feature analysis, and tem-
poral feature analysis. However, these existing methods still flaw
to following limitations:

• Static Low-Dimensional Feature Analysis: Early studies
[21, 22, 36] extracted statistical features from HPGs or de-
signed heuristic rules for anomaly detection in nodes and
edges. However, rules and statistical feature-based mecha-
nisms can easily be mistakenly triggered by benign nodes,
so these methods tend to have high false alarm rates and
rely heavily on expert knowledge.

• Temporal FeatureAnalysis: Some time-series-based graph
methods [18, 29] utilized Graph Sketch to extract statistical
feature changes from flow graphs for detecting anomalous
nodes or edges. However, these methods focus solely on
the statistical information of dynamic graphs, overlooking
the rich spatial information within the graph structure.

• Spatial Feature Analysis: Some previous research [11, 24,
44] utilized graph embedding methods to extract topologi-
cal and node features from provenance graphs to identify
anomalous nodes and connections. Yet, these methods often
overlook the dynamic nature of attacks, making it challeng-
ing to capture the temporal evolution of attack behaviors.

Given these limitations, our core idea is to enhance detection
performance by integrating temporal and spatial features. This in-
tegration poses challenges, as spatial features require whole-graph
input for extraction, while temporal features rely on accurate mod-
eling of event sequences. To address these challenges, we propose
STGAN, which introduces the concept of spatio-temporal graphs
into host anomaly detection for the first time. STGAN combines spa-
tial, temporal, and semantic dimensions to generate comprehensive
node representations, enabling more accurate and thorough iden-
tification of potential anomalous nodes and malicious behaviors.
Specifically, we divide the streaming host audit logs into multiple
time steps. Within each time step, we extract edge information
from each log entry using regular expressions to form quadruples
<src, dst, type, timestamp> and construct a provenance graph. For
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each time step, we employ Word2Vec [30] and GAT [42] to extract
structural and semantic features, respectively, and fuse them into
unified spatial features. Temporal features are captured using TGN
[39]. To further enhance feature representation, we fuse the spatial
and temporal features using a multi-head self-attention mechanism,
creating unified feature representations for node anomaly classifi-
cation. For anomaly detection, we design a lightweight XGBoost
detector for downstream anomalous node identification.

In designing STGAN, we specifically addressed the challenges
faced by previous methods. (1) STGAN constructs sentences for
semantic extraction by using a node’s neighbors and edge types,
effectively capturing the semantic differences between malicious
and benign nodes. This helps us overcome the issue of neglecting
semantic features in prior research, ensuring more comprehen-
sive and accurate node embeddings, thereby improving detection
performance. (2) We are the first to jointly model and represent
both spatial and temporal information of the provenance graph.
This enables us to overcome the limitations of earlier research,
where single-dimensional feature analysis could not comprehen-
sively capture all relevant characteristics of cyberattacks. (3) The
self-attention mechanism further enhances our model by effectively
fusing spatial-temporal data, creating a comprehensive feature rep-
resentation that surpasses previous single-dimensional methods.

We have implemented a prototype of STGAN and conducted
extensive evaluations on three three widely-used provenance graph
datasets from the DARPA TC E3 [2], including Theia, Trace, and
Cadets. Additionally, we selected five state-of-the-art (SOTA) meth-
ods as benchmarks, including Threatrace [44], Anograph [9],
Unicorn [18], FLASH [38], and HOLMES [32]. The experimen-
tal results demonstrate that our method outperforms the current
state-of-the-art techniques in terms of performance metrics such
as precision and F1 score (exceeding 97%). Furthermore, we con-
ducted ablation studies to validate the rationality and necessity
of STGAN’s module design. Additionally, we evaluated STGAN’s
parameter settings to highlight how different configurations affect
its performance. In summary, our contributions include:

• Novel Perspective: We introduce the concept of spatial-
temporal graphs into provenance-based detection for the
first time, offering a novel detection perspective for anom-
aly detection in host provenance graphs.

• Multi-Dimensional Feature Capture and Fusion: We
leverage spatial and temporal encoders to extract spatio-
temporal features from streaming provenance graphs, which
are then fused through a multi-head self-attention mecha-
nism to produce more expressive feature representations.

• Better detection performance: We built a prototype of
STGAN and conducted a comprehensive evaluation on
three datasets. The experiments demonstrated that STGAN’s
detection performance surpasses five different types of
SOTA methods, including HOLMES [32], Threatrace [44],
Unicorn [18], AnoGraph [9], and FLASH [38].

• Open-Source Resources: Contributing to the research com-
munity by providing open-source datasets and code. 1

1STGAN is available at https://anonymous.4open.science/r/STGAN-anonymous.
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Figure 1: The example of host provenance graph.

Ethics and Privacy: All datasets are sourced from public web-
sites, and experiments were conducted in a controlled environment
to minimize potential ethical and privacy risks.

2 Background
2.1 Host Provenance Graph
Host Provenance Graphs have recently been widely used for net-
work threat detection. A host provenance graph represents the
activity of processes within a host and is constructed from audit
logs (e.g., Windows ETW [5] or Linux Audit [3]). It comprises three
types of nodes: process nodes, file nodes, and network nodes, with
edges representing system events such as reads, sends, and dele-
tions. Researchers collect audit logs from the target host and extract
the basic graph tuples <src, dst, type, timestamp> to construct the
host provenance graph.

Figure 1 provides an example of a provenance graph where dif-
ferent shape represent different types of nodes, and the edges illus-
trate the relationships between them. For instance, the relationships
between two process nodes may include fork or clone; between
process and file nodes, the relationships may include write, read,
open, and unlink; and between process and network nodes, the re-
lationships include sendmsg and recvmsg. Overall, the provenance
graph records the sequence of activities within the host system,
containing rich semantic and spatial information.

2.2 Provenance-based IDS
Since the provenance graph can express the relationship between
system operating entities in time, existing research has used this
feature to build an IDS based on the provenance graph. Including
detection schemes based on knowledge labels [20, 22, 32], these
schemes construct a series of matching rules based on expert knowl-
edge to match in the origin graph to detect anomalies. Based on
the statistics IDS scheme [14, 21, 28], they use the structural fea-
ture information of the graph, including: abnormality, discrepancy,
time correlation and other features to analyze in the graph to de-
tect anomalies. Recently, more learning-based IDS solutions have
been proposed [6, 19, 24, 41, 47, 49]. These solutions use models
such as graph representation learning and sequence learning to
extract high-dimensional features from graphs to perform anomaly
detection in downstream tasks.

2
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Figure 2: Overview of STGAN’s architecture.

2.3 Threat Model
Our experiment environment relies on a Trusted Computing Base
(TCB) comprising an operating system, an auditing framework, and
provenance analysis tools. All components in the TCB are assumed
to be fully functional from installation to completion, which is
standard among existing provenance-based detectors. Hardware
trojans and side-channel attacks that cannot be captured by audit
are not considered in this paper. Additionally, the integrity of output
audit data is assumed to be ensured by existing secure provenance
and integrity audit systems [8, 35, 36, 50].

3 Design of STGAN
The overall workflow of STGAN is illustrated in Figure 2. STGAN
receives streaming audit log input and segments the log information
into multiple parts. For each subgraph within a segment, STGAN
models and extracts both spatial and temporal information. In terms
of spatial information extraction, STGAN encodes both semantic
and structural features separately. First, it constructs sentences
based on each node’s first-hop neighbors and uses Word2Vec to
learn the semantic features of the nodes. Then, GAT is applied
to extract structural features, thereby forming a comprehensive
spatial feature representation. For temporal information extraction,
STGAN uses TGN to model temporal information and capture
the temporal features of the nodes. Finally, STGAN employs a
multi-head self-attention mechanism to fuse spatial and temporal
features, generating a complete spatial-temporal graph embedding
to support anomaly detection tasks. During the anomaly detection
phase, STGAN utilizes XGBoost as the anomaly detector to perform
anomaly detection.

3.1 Batch Provenance Graph Construction
STGAN first needs to convert system audit logs into a provenance
graph. This graph represents the internal process interactions (such
as bash ->shell), file operations (e.g., bash -> /etc/passwd), and net-
work connections (e.g., firefox ->101.162.12.201:8080) within the host
system. STGAN processes logs from Windows ETW or Linux Au-
dit, which record process executions, file operations, and network
connections on the host. To facilitate both temporal and spatial
feature processing and support streaming detection, we designed a
batch processing mechanism. Specifically, STGAN processes logs in

passwdbash passwdztmp

bash net ztmp net

read read

fork fork

(a) Event semantic example

passwdbash

bash net

read

fork

（src，type，dst）

（"bash read passwd"）

（"bash fork net"）

Provenance Edges

(b) Node sentence construction

Figure 3: Event semantic examples (a) and semantic informa-
tion extraction (b)

configurable batches, where the batch size k represents the number
of audit logs processed per batch, and then converts each batch into
a provenance graph.

3.2 Spatial Encoder
Nodes in a provenance graph contain rich attribute information that
must first be mapped into a vector space for utilization by the model.
Previous encoding schemes for provenance graphs have employed
one-hot encoding for node and edge types or have utilized methods
such as GAT and Graph Convolutional Networks (GCN)[24, 44],
which are based on the assumption of homogeneity and primarily
focus on structural features. However, these approaches have not
fully leveraged the rich semantic information inherent in the graph.
Unlike homogeneous graphs, such as social networks, the nodes
and edges in a provenance graph possess specific naming informa-
tion that often encapsulates significant behavioral semantics. For
instance, as illustrated in Figure 3.(a), there is a notable distinction
between a bash process (a user process) reading the passwd file and
a ztmp process (a malicious process) accessing the same file. Al-
though both instances represent a process reading a file within the
provenance graph, their semantics are markedly different. There-
fore, it is essential to consider this semantic information.

3
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3.2.1 Semantic Encoder. We use a word2vec model for capturing
semantic features of nodes. The training objective of Word2Vec can
be expressed as maximizing the following log-likelihood function:

𝐿 =
∑︁
𝑤𝑡 ∈𝑉

∑︁
−𝑐≤ 𝑗≤𝑐,𝑗≠0

log 𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡 ), (1)

where 𝑉 is the vocabulary, 𝑤𝑡 is the target word, 𝑤𝑡+𝑗 is the
context word, 𝑐 is the context window size, and 𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡 ) is the
probability of predicting the context word 𝑤𝑡+𝑗 given the target
word𝑤𝑡 . This probability is typically computed using the softmax
function:

𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡 ) =
exp(𝑣𝑇𝑤𝑡+𝑗 · 𝑣𝑤𝑡

)∑
𝑤∈𝑉 exp(𝑣𝑇𝑤 · 𝑣𝑤𝑡

)
, (2)

where 𝑣𝑤 is the vector representation of word𝑤 .

3.2.2 Structural Encoder. After extracting the semantic features,
we further capture the structural features of nodes using Graph
Attention Network (GAT). Unlike traditional graph convolutional
networks, GAT introduces an attention mechanism that allows the
model to aggregate information based on the importance of different
neighbors. Initially, the attributes of nodes are one-hot encoded and
mapped into a high-dimensional sparse vector space. Subsequently,
for each node, GAT performs weighted aggregation of its feature
vector through linear transformations and the attention mechanism
to generate new node representations.

In STGAN, for each node 𝑣𝑖 , we perform a linear transforma-
tion𝑊 on its feature vector ℎ𝑖 to obtain the linear representation
ℎ′
𝑖
= 𝑊ℎ𝑖 . Then, GAT computes the attention coefficient 𝛼𝑖 𝑗 be-

tween node 𝑣𝑖 and its neighbor 𝑣 𝑗 , which reflects the importance of
neighbor node 𝑣 𝑗 to node 𝑣𝑖 . The attention coefficient 𝛼𝑖 𝑗 is com-
puted considering the similarity and relevance of node features, as
follows:

𝛼𝑖 𝑗 =
exp(LeakyReLU(𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ 𝑗 ]))∑

𝑘∈N(𝑖 ) exp(LeakyReLU(𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ𝑘 ]))
, (3)

where 𝑎 is a trainable attention weight vector, N(𝑖) represents
the neighbor set of node 𝑣𝑖 , ∥ denotes the vector concatenation op-
eration, and LeakyReLU is used as a nonlinear activation function.

Finally, GAT aggregates the feature vectors of nodes and their
neighbors using these attention coefficients to generate new node
feature representations:

ℎ′′𝑖 = 𝜎
©«

∑︁
𝑗∈N(𝑖 )

𝛼𝑖 𝑗ℎ
′
𝑗
ª®¬ , (4)

where 𝜎 is a nonlinear activation function.
By combining the semantic information extracted fromWord2Vec

with the structural information captured by GAT, we form a com-
prehensive spatial feature representation. This representation con-
siders both the semantic features of the nodes and their positional
relationships within the graph, providing a more thorough founda-
tion for subsequent temporal encoding and anomaly detection.

3.3 Temporal Encoder
Due to the inherently dynamic nature of network attacks, it is essen-
tial to model the temporal information within provenance graphs

to effectively capture these evolving activities. To achieve this, we
employ the Temporal Graph Network (TGN) for temporal encoding.
TGN is a network model specifically designed for dynamic graphs,
allowing it to account for the influence of temporal information
on the relationships between nodes and edges in graph-structured
data. By using TGN, we can obtain temporal representations of
each node at various time points, thereby enhancing our ability to
track behavioral evolution and changes in anomaly patterns over
time.

Specifically, TGN processes the spatial features of each batch
graph organized in a time series. With its time-aware mechanism,
TGN monitors interaction histories between nodes and aggregates
this historical information to create time-aware node embeddings.
These embeddings not only capture dynamic interactions among
nodes but also reveal temporal behavior patterns within the system.

For each batch graph, a dynamic graph𝐺 (𝑡) is given, where𝐺 (𝑡)
represents the graph at time 𝑡 and consists of a node set V and an
edge set E. Each edge 𝑒 ∈ E has a timestamp 𝑡𝑒 indicating when it
occurred. TGN performs temporal encoding through the following
steps:

First, in the time embedding generation stage, the timestamp
𝑡𝑒 of each edge is embedded into a vector t𝑒 . This is done using
positional encoding methods, where timestamps are mapped into a
high-dimensional space using sine and cosine functions. Specifically,
for a timestamp 𝑡𝑒 , the time embedding t𝑒 is calculated as:

t𝑒 =
[
sin

(
𝑡𝑒

100002𝑖/𝑑

)
, cos

(
𝑡𝑒

100002𝑖/𝑑

)]𝑑/2
𝑖=1

, (5)

where 𝑑 is the dimension of the embedding space and 𝑖 is the
positional encoding dimension index.

Next, in the time-aware information aggregation process, the
time-aware feature h𝑖 (𝑡) of each node 𝑣𝑖 is updated by aggregating
the information from its neighboring nodes. Specifically, the feature
representation h𝑖 (𝑡) of node 𝑣𝑖 at time 𝑡 is updated by aggregating
the features of neighboring nodes and the time embeddings of the
edges connecting them. For a neighbor node 𝑣 𝑗 and an edge 𝑒𝑖 𝑗 , the
update formula is:

h𝑖 (𝑡) = AGGREGATE
({
h𝑗 (𝑡)∥t𝑒𝑖 𝑗 | 𝑣 𝑗 ∈ N (𝑣𝑖 )

})
, (6)

where AGGREGATE is the aggregation function, ∥ denotes the
feature concatenation operation, andN(𝑣𝑖 ) represents the neighbor
set of node 𝑣𝑖 .

Finally, in the node embedding update stage, the embedding
h𝑖 (𝑡) of each node at the end of time step 𝑡 is updated to a new
time-aware embedding. The update function typically involves a
fully connected layer and an activation function to fuse the state
from the previous time step with the current time step features.
The update formula is:

h𝑖 (𝑡 + 1) = ReLU (𝑊 · h𝑖 (𝑡) + 𝑏) , (7)
By these steps, TGN generates time-aware node embeddings

h𝑖 (𝑡) that reflect the dynamic behavior and temporal evolution of
nodes in the graph. These time-aware embeddings are further en-
hanced by multi-head self-attention mechanisms to better capture
long-term temporal dependencies.

4
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3.4 Multi-dimensional Feature Fusion
To effectively integrate the spatial features derived from both se-
mantic vectors (via Word2Vec) and structural features (via GAT),
along with the temporal features extracted using TGN, we apply a
multi-head self-attention mechanism. The motivation behind this
approach is to ensure that the combined spatial-temporal features
can fully capture the temporal relationships between nodes while
preserving the rich information in both the spatial and temporal do-
mains. By utilizing multi-head self-attention, we enable the model
to focus on different aspects of the spatial-temporal features from
various perspectives, leading to more accurate and robust represen-
tations for anomaly detection.

Formally, given the spatial vector𝑋𝑠 (comprising bothWord2Vec
and GAT features) and the temporal vector 𝑋𝑡 derived from TGN,
we compute the query, key, and value matrices for each attention
head ℎ:

𝑄ℎ =𝑊𝑄ℎ
[𝑋𝑠 ∥𝑋𝑡 ], 𝐾ℎ =𝑊𝐾ℎ

[𝑋𝑠 ∥𝑋𝑡 ], 𝑉ℎ =𝑊𝑉ℎ [𝑋𝑠 ∥𝑋𝑡 ],
(8)

where𝑊𝑄ℎ
,𝑊𝐾ℎ

, and𝑊𝑉ℎ are the learned projection matrices
for head ℎ, and ∥ denotes concatenation.

For each head, the attention scores are computed using the scaled
dot-product attention mechanism:

Attentionℎ (𝑄ℎ, 𝐾ℎ,𝑉ℎ) = softmax

(
𝑄ℎ𝐾

⊤
ℎ√︁

𝑑𝑘

)
𝑉ℎ, (9)

where 𝑑𝑘 is the dimension of the key vectors. The attention
scores allow the model to assign different weights to various tempo-
ral and spatial features, dynamically focusing on the most relevant
aspects.

After calculating the attention output for each head, we concate-
nate the outputs from all heads and project them to form the final
representation:

𝑍 =𝑊𝑂

[𝐻
ℎ=1Attentionℎ (𝑄ℎ, 𝐾ℎ,𝑉ℎ)

]
, (10)

where𝑊𝑂 is the learned output projection matrix, and 𝐻 repre-
sents the number of attention heads.

The final output𝑍 represents the fused spatial-temporal features,
capturing multiple relationships across temporal and spatial dimen-
sions. This multi-head mechanism enhances the model’s ability
to learn spatial-temporal feature patterns, improving the perfor-
mance in downstream anomaly detection tasks. Specifically, this
mechanism helps in detecting anomalies by capturing long-term
dependencies across time and space, which is crucial for detecting
slow, evolving cyberattacks that might span across multiple time
steps.

3.5 Anomaly Detection
In our approach, anomaly detection is a critical component for
identifying potential anomalies and malicious activities within the
system. To achieve this, we have selected the lightweight detector
XGBoost [10] as the core module for anomaly detection.

XGBoost iteratively trains decision trees, where each tree cor-
rects the errors of the previous ones to reduce overall prediction
error. In our task, the input features for XGBoost include the fused

spatial and temporal features extracted from Word2Vec, GAT, and
TGN. Instead of directly predicting if a node is malicious or normal,
XGBoost is used to predict the node type. By predicting node types,
the system can identify behavior deviations from typical patterns,
which can indicate potential anomalies.

The trained XGBoost model leverages these multi-dimensional
features to enhance the accuracy and robustness of anomaly de-
tection. By focusing on predicting node types, the model is able
to identify subtle deviations in node behavior that could indicate
potential anomalies, offering a more precise method for detecting
malicious activities within the system.

4 Evaluation
4.1 Experiments Setup
Dataset. The DARPA Transparent Computing (TC) dataset is a
high-fidelity cybersecurity dataset designed to simulate complex
enterprise environments and advanced persistent threats (APTs).
This dataset focuses on multi-stage attacks within a realistic net-
work architecture, capturing detailed host and network events,
including both normal and malicious activities. It is ideal for evalu-
ating anomaly detection methods and analyzing real-world attack
behaviors, providing rich metadata such as timestamps, event types,
and related naming information for comprehensive threat analysis.
Considering our need for semantic information, we selected the
more comprehensive Trace, Theia, and Cadets subsets. The detail
of dataset is illustrated in table 2.

For more details on the experimental setup and baselines setup,
please refer to Appendix A.

4.2 Comparison Experiments
In this section, we evaluate the performance of STGAN across three
datasets and compare it with previous detectors. Table 1 presents
our experimental results, where STGAN consistently performs the
best in the Trace, Cadets, and Theia scenarios, with F1 scores ex-
ceeding 97%. In contrast, the F1 score of the static feature-based
detector HOLMES is only 2.45%, the spatial feature-based detector
FLASH achieves a maximum of 95%, and the temporal feature-based
detector TGN reaches 95% as well. We explain the reasons behind
these results as follows: The early HOLMES detector, based on
the Apt lifecyle model [4], constructs a set of TTP rules to match
patterns in the graph, which results in high recall but low pre-
cision (less than 5%) because these rules are often triggered by
normal behaviors, leading to a high false positive rate. Among the
spatial feature-based detectors, Threatrace performed the worst
because it relies on GraphSAGE to capture spatial features but ne-
glects semantic and spatial-temporal features, which weakens its
detection performance. FLASH performs better as it first captures
semantic features through Word2Vec and then uses these as initial
embeddings fed into GCN to capture structural features. Among the
spatial-temporal feature-based detectors, Unicorn and AnoGraph
detect anomalies by modeling frequency information in temporal
graphs, but these features are inherently low-dimensional and lack
rich spatial information, resulting in poor outcomes (with an av-
erage F1 score below 50%). Our implementation of the traditional
TGN model shows better results than Unicorn and AnoGraph due
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Table 1: Comparison Experiments

Model Theia Cadets Trace
Precision Accuracy Recall F1 Precision Accuracy Recall F1 Precision Accuracy Recall F1

HOLMES [32] 0.0120 0.9961 0.9900 0.0230 0.0126 0.9557 1.0000 0.0245 0.0120 0.9825 1.0000 0.0220
Unicorn [18] 0.6700 0.8000 0.6700 0.6700 0.3100 0.4400 1.0000 0.4700 0.2800 0.4300 1.0000 0.3400
AnoGraph [9] 0.2319 0.9066 0.4619 0.3088 0.0606 0.8895 0.4698 0.2133 0.0294 0.7597 0.4698 0.0553
Threatrace [44] 0.7156 0.9968 0.9999 0.8336 0.9035 0.9903 0.9997 0.9526 0.8701 0.9994 0.9963 0.9415
FLASH [38] 0.9203 0.9944 0.9987 0.9519 0.9412 0.9998 0.9999 0.9605 0.9501 0.9989 0.9999 0.9703
TGN [39] 0.9091 0.9967 1.0000 0.9524 0.8000 0.9940 1.0000 0.8889 0.8732 0.9911 1.0000 0.9284
GCN [26] 0.8294 0.9844 0.9983 0.9060 0.8959 0.9925 0.9984 0.9444 0.9090 0.9937 0.9840 0.9381

STGAN(ours) 0.9449 0.9956 0.9983 0.9709 0.9840 0.9994 0.9983 0.9911 0.9950 0.9991 0.9883 0.9916

Table 2: DARPA E3 Dataset Description

Dataset Edges Nodes Malicious Size (GB)
Trace 4,080,457 3,220,596 68,082 18.6
Cadets 3,303,264 1,614,189 12,846 16.8
Theia 10,929,710 3,505,326 25,362 31.6
Total 18,313,431 8,340,111 106,290 67

to its improved modeling of node spatial information (achieving an
F1 score greater than 90%).

Overall, STGAN achieved the best performance, attributed to
its pioneering use of spatial-temporal graphs to model provenance
graphs, effectively integrating spatial and temporal features to pro-
duce higher-quality and more discriminative feature representa-
tions.

4.3 Ablation Study
In this section, we conduct an ablation study on STGAN to explore
the impact of each component on the overall performance. Specifi-
cally, we removed or replaced certain components of STGAN and
performed evaluations. Table 3 presents our experimental results,
where X, Y, A, and B represent the major components of STGAN,
namely: X: GAT encoder, Y: Word2Vec, A: TGN encoder, and B:
Multi-Head Attention mechanism.

As the results show, the absence of any component leads to a
decline in detection performance, highlighting the rationality of
STGAN’s design. For provenance graphs, both structural and seman-
tic information contain rich characteristics of malicious and benign
behaviors. This is reflected in the performance of groups (X, A, B)
and (Y, A, B), where the lack of structural or semantic information
leads to a decrease in detection accuracy. Spatial-temporal features
capture the evolving characteristics of the provenance graph over
time, and the results of group (X, Y) demonstrate that the spatial-
temporal characteristics of malicious behavior differ from those of
benign behavior. Benign behaviors tend to exhibit stable temporal
patterns, while malicious behaviors often adopt irregular changes,
such as launching multiple actions within a short period during
scanning activities, which leads to significant differences in the tem-
poral feature space. Feature fusion is equally important for STGAN.
After removing the Multi-Head Attention mechanism, the results of
group (X, Y, A) show a decrease in detection performance, indicat-
ing that feature fusion helps the model better weigh the importance

of multiple features, resulting in improved detection performances.
Furthermore, we replaced some components to further evaluate
STGAN, using GCN instead of GAT and Self-Attention instead of
Multi-Head Attention. The results show a decrease in detection
performance, which can be attributed to GAT’s ability to capture
more complex node relationships compared to GCN, and Multi-
Head Attention’s ability to handle multiple feature perspectives
more effectively than Self-Attention.

Feature visualisation analysis. To illustrate STGAN’s compre-
hensiveness and explainability in feature extraction, we performed
a t-SNE visualization on node embeddings from the TRACE dataset.
Figure 4 reveals that the full STGAN model (a) achieves the clearest
separation of benign and malicious nodes, indicating that the com-
bination of all components—GAT, Word2Vec, TGN, and Multi-Head
Attention—effectively captures spatial, temporal, and semantic fea-
tures.

When examining the partial models that exclude one component,
shown in (b) through (e), we observe weaker clustering and less
distinct separation, which underscores the importance of each mod-
ule. Specifically, in (b), the exclusion of GAT hinders the model’s
ability to capture structural relationships, as nodes lose the context
of their connectivity patterns, leading to dispersed clusters. In (c),
the absence of Word2Vec affects the model’s capacity to discern se-
mantic nuances between nodes, resulting in reduced clarity in how
nodes are grouped. Similarly, in (d), the removal of TGN limits the
model’s temporal encoding, which diminishes its ability to capture
behavioral changes over time, making benign and malicious nodes
more intermixed. Finally, in (e), without Multi-Head Attention, the
model struggles to effectively integrate the spatial and temporal
features, weakening its overall feature representation and making
the boundaries between benign and malicious nodes less defined.

Overall, STGAN achieves the best results by effectively extract-
ing and fusing the spatial-temporal and temporal features of the
provenance graph for detection. Through the ablation study, we
have also demonstrated the rationality of the key module designs
in STGAN.

4.4 Parameter Sensitivity Analysis
In this section, we evaluate the impact of hyper-parameter settings
on the performance of STGAN. We mainly focus on the batch
processing size 𝑘 , learning rate 𝑙𝑟 , and embedding dimension 𝑑 .
To ensure fairness, the TRACE dataset is primarily used for our
experiments. Figure 5 provides the experimental results.
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Table 3: Ablation Experiments, X,Y,A,B denote GAT encoder, Word2Vec, TGN, and Multi-Head Attention, respectively.

Method Theia Cadets Trace
Precision Accuracy Recall F1 Precision Accuracy Recall F1 Precision Accuracy Recall F1

X,Y,A 0.6142 0.9512 0.9984 0.7605 0.8126 0.9904 0.9995 0.8964 0.9160 0.9942 0.9884 0.9509
X,Y 0.7830 0.9786 0.9983 0.8777 0.8152 0.9909 0.9995 0.8980 0.8450 0.9890 0.9884 0.9111
Y,A,B 0.8213 0.9833 0.9983 0.9012 0.8186 0.9916 0.9995 0.9000 0.6644 0.9710 0.9884 0.7949
X,A,B 0.3123 0.8249 0.9984 0.4758 0.4701 0.9446 0.9995 0.6394 0.5473 0.9523 0.9884 0.7045

X,Y,A,B (Self-Attention) 0.8294 0.9844 0.9983 0.9060 0.8959 0.9956 0.9984 0.9444 0.9032 0.9933 0.9884 0.9439
X (GCN),Y,A,B 0.3943 0.8789 0.9984 0.5654 0.8273 0.9922 0.9988 0.9050 0.6648 0.9710 0.9884 0.7949
STGAN(ours) 0.9449 0.9956 0.9983 0.9709 0.9840 0.9994 0.9983 0.9911 0.9950 0.9991 0.9883 0.9911
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Figure 4: We demonstrate the feature extraction effectiveness under different components (X: GAT, Y: Word2Vec, A: TGN, B:
Multi-HeadAttention) through t-SNE visualization. It can be observed that STGANachieves the best feature space differentiation.
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Figure 5: (a),(b),(c) show the result of batch-size k, learn rate
lr,and embedding dimension d, respectively.

Batch size k. From these results, it is evident that batch-size
significantly influences model performance. As batch-size increases,
the model’s Accuracy and Precision first increase and then decrease,
while Recall remains relatively stable. The model performs rela-
tively well with smaller batch-sizes (5000 to 10000), with Precision
and F1score gradually improving as the batch-size grows. When the
batch-size reaches 25000, the model shows the best balance, with
Precision reaching 0.995 and F1score reaching 0.9916, indicating
that the model’s anomaly detection capability is strongest at this
point. However, when the batch-size increases to 50000, both Preci-
sion and F1score drop significantly. This may be due to the large
batch-size reducing the model’s sensitivity to subtle differences.
Therefore, selecting a moderate batch-size (such as 25000) during
STGAN training can achieve optimal detection performance, while
an overly large batch-size may lead to performance degradation.

Learning rate 𝑙𝑟 . As for the learning rate 𝑙𝑟 , when the learning
rate decreases from 0.1 to 0.01 and 0.001, the model’s Precision
and F1 Score increase rapidly, reaching high performance levels.
Notably, when the learning rate is 0.01, the model demonstrates
optimal performance balance, with Precision reaching 0.9831 and F1

Score at 0.9857. However, when the learning rate is further reduced
to 0.0005 and 0.0001, both Precision and F1 Score decline. This may
be due to the fact that a too-low learning rate leads to very small
update steps, resulting in slow convergence and the model being
easily trapped in local optima, without effectively jumping out of
these regions to approach the global optimum. Therefore, selecting
a moderate learning rate (such as 0.01) during STGAN training can
achieve optimal detection performance, while excessively high or
low learning rates may lead to performance degradation.

Embedding dimension d. As for the embedding dimension d,
we observe that as the embedding dimension increases, the perfor-
mance metrics improve consistently, with the optimal performance
achieved at 128 dimensions. Beyond this point, such as at 256 di-
mensions, further increases do not yield significant gains and may
introduce diminishing returns. Therefore, an embedding dimension
of 128 offers the best balance between performance and compu-
tational efficiency, capturing sufficient feature richness without
unnecessary complexity.

5 Discussion and Limitations
Multi-level feature extraction. In provenance-based anomaly
detection, static features such as structural features [24, 44], sta-
tistical features [21, 28], and prior knowledge [22, 32] have been
widely used. Dynamic features have been mentioned more recently,
but they either focus solely on dynamic statistical features [18] or
consider only the dynamic changes in the graph [11, 47], neglect-
ing spatial features. As attackers’ behavior becomes increasingly
complex, with long-term temporal variations, it is crucial to com-
prehensively model and extract information that captures both rich
temporal and spatial characteristics. In this work, we introduce
the concept of spatial-temporal graphs, extracting rich sequential,
semantic, and structural information in both spatial and temporal
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dimensions. Through feature fusion, we obtain high-quality em-
bedding vectors, thereby achieving optimal detection performance.
Specifically, by leveraging multi-head self-attention mechanisms,
STGAN can capture complex temporal dependencies alongside
spatial patterns, which allows it to effectively detect sophisticated
multi-stage attacks. The attention mechanism ensures that the
model can dynamically focus on the most relevant spatial-temporal
features over time, providing effective detection even in evolving
attack scenarios.
Graph manipulation attack. Graph manipulation attacks [16, 33,
40] have recently posed significant challenges for provenance-based
anomaly detectors, as attackers may manipulate both the graph
structure and its attributes, leading to evasion attacks. Therefore,
it is essential to discuss the robustness of STGAN against such
attacks. STGAN jointly models spatial and temporal features, en-
suring that our detection vectors incorporate semantic information,
structural information, and temporal variations. Evading STGAN
would require mimicking and manipulating all three dimensions
simultaneously, which is highly challenging for attackers. Even if
attackers disrupt the structure by abusing system calls with mal-
ware, the semantic space can still flag anomalies, as it is difficult
for attackers to imitate benign behavior in terms of semantics (e.g.,
system process names). The multi-head self-attention mechanism
further strengthens STGAN’s robustness, as it allows the model to
focus on the most relevant interactions over both space and time,
making it harder for attackers to fool the system across multiple
dimensions. Hence, our multi-dimensional feature extraction and
fusion confer robustness against graph manipulation attacks.
Limitation. Although STGAN is capable of fully extracting and
fusing the features of provenance graphs across multiple dimen-
sions, we must acknowledge the resource consumption of STGAN,
despite employing batch graphs, lightweight anomaly detectors,
and encoders. Efficiency and accuracy in host anomaly detection
often involve a trade-off, where more precise detection typically
comes with higher model complexity. Furthermore, we are explor-
ing recent advancements in vector caching techniques [38], where
pre-trained node embeddings can be stored in a cache for rapid
reuse, reducing the need for retraining and accelerating inference
times. While STGAN shows promise in terms of accuracy, practical
deployment in resource-constrained environments would benefit
from these ongoing optimizations.

6 Related Work
Host ProvenanceGraph-basedAnomalyDetection.Host Prove-
nance graphs have been widely applied in attack detection due
to their rich semantic and contextual information [12, 23]. Re-
cently, they have been categorized into three main types: dynamic
graph learning approaches (temporal level), static graph learning
approaches (spatial level), and approaches based on low-level static
features (including statistical based and rule based methods). Sta-
tistical based methods [14, 21, 36] model the anomaly degree of
nodes using features such as temporal correlation, degree distribu-
tion, and rarity. Rule-based methods [20, 22, 31, 32, 51] create rules
based on external knowledge to incrementally match patterns in
the provenance graph for anomaly detection. Static graph learning
approaches [6, 19, 24, 41, 44, 49] include sequence learning methods

that extract and model sequence features for anomaly detection, as
well as deep graph learning techniques like GAT [42] or GraphSAGE
[17] to extract structural features for detection, along with node
interaction features [49] for graph-level and edge-level detection.
Dynamic graph learning approaches include sketch-based defenses
and dynamic graph learning schemes. For example, Unicorn models
the statistical characteristics of dynamic graphs, capturing tempo-
ral feature variations to detect anomalies, while ProGrapher [47]
adopts Graph2Vec [34] to learn embeddings of streaming graphs
and detects anomalies by comparing feature differences between
consecutive graph snapshots. Overall, these approaches learn differ-
ent feature representations of host provenance graphs from various
dimensions to perform anomaly detection tasks. Compared to ex-
isting methods, STGAN maximally captures graph features across
multiple dimensions, significantly enhancing the discriminative
power of the learned embeddings in the feature space, resulting in
more accurate and robust detection performance.
Spatial Temporal Graph Neural Network. Spatial-Temporal
Graph Neural Networks (STGNNs) have gained significant trac-
tion in recent years for handling complex time-varying graph data
across tasks such as traffic prediction, social network analysis, and
recommendation systems [45]. STGODE [15] and PDFormer[25]
have introduced advanced techniques to better capture spatial-
temporal patterns. While early approaches like STGCN [48] relied
on pre-defined graphs using domain-specific knowledge, recent
work has shifted towards more flexible, self-learned methods. For
example, Graph WaveNet [46] and AGCRN [7] dynamically gen-
erate adjacency matrices based on the underlying data, offering
greater adaptability. Despite these advancements, most of these
models are applied in domains such as transportation or communi-
cation networks, focusing on structural and temporal dependencies
without considering deeper semantic layers.

Our approach differs from previous STGNN methods used in
tasks like traffic prediction. We thoroughly analyzed the character-
istics of provenance graphs and introduced semantic features using
Word2Vec. By combining spatial and temporal, information, we
comprehensively capture the interaction patterns of system entities
within the provenance graph, enabling more effective detection of
complex attack patterns that are often overlooked by traditional
methods that rely solely on spatial-temporal features.

7 Conclusion
In this paper, we propose a novel method STGAN, which employs
spatial-temporal graphs to model Host Provenance Graphs (HPGs)
for enhanced anomaly detection. We observed that provenance
graphs contain rich spatial and temporal information, which has
not been fully leveraged in previous research. To address this,
STGAN utilizes spatial and temporal encoders to comprehensively
extract spatial-temporal features, including semantic, structural,
and temporal characteristics. These features are then fused using a
self-attention mechanism, resulting in a more robust feature repre-
sentation. Our method demonstrated superior performance across
four datasets, outperforming existing state-of-the-art methods in
detecting advanced cyber threats.
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A More Experiments Details
A.1 Implementation
During the graph data construction phase, we used a batch-based
approach, setting the batch size to 20,000 log entries.We constructed
a Word2Vec model [30] by forming sentences from the first-order
neighbors of nodes and edge types. For structural feature extraction,
we employed a two-layer GAT architecture. Overall, we used DGL
[43] to build and train the graph model. For downstream detection
tasks, we utilized scikit-learn [37] to build the classification model.
The detailed training and detection process for STGAN is presented
in Appendix B.

A.2 Baseline Detector and Metrics.
We compared STGAN with several baseline methods, including
the Graph Sketching-based Unicorn [18] and Anograph [9] ap-
proach, spatial feature-based methods such as Threatrace [44] and
FLASH [38], and static low-dimensional feature-based HOLMES
[32]. These methods represent approaches focusing on spatial fea-
tures and those that incorporate temporal aspects. Additionally,
we also implemented a GAT-based [42] and TGN-based [39] anom-
aly detection method for comparison. More descriptions of these
baseline methods as follows.

• HOLMES [32]: This detector utilizes the APT lifecycle
model to define a set of TTP rules for matching in the
provenance graph, identifying nodes that conform to these
rules as anomalous.

• Unicorn [18]: This detector employs sketching techniques,
leveraging historical information to model and identify
anomalous activities.

• AnoGraph [9]: Also based on sketching techniques, this
detector defines a set of higher-order CMS structures and
detects anomalous edges and subgraphs by identifying
changes in local or global densities.

• Threatrace [44]: This detector uses GraphSAGE [17] to
learn node embeddings and performs anomaly detection.

• FLASH [38]: This detector extracts semantic features of
nodes using Word2Vec and then applies GAT for structural
feature extraction, followed by anomaly detection.

• GAT [42]: This is a detector we implemented, which first
learns node embeddings through GAT and then performs
anomaly detection.

• TGN [39]: Another detector we implemented, it uses one-
hot encoding for node types and learns node embeddings
through TGN, followed by anomaly detection.

We evaluated the model using accuracy, precision, recall, and F1
score. Since DARPA did not provide well-labeled data for the TC
dataset, but only raw log data and operational report files, we used
the labeled data from previous studies [44] for model evaluation.
Additionally, as the rule-based labeling system [32] does not have
publicly available code, we implemented and tested the system
based on the complete table provided in [32].

B Pseudo-codes of STGAN
The overall framework of STGAN is available in Algorithm 1.
This Pseudo-code implements STGAN that extracts spatial, tem-
poral, and semantic features of graph nodes using GAT, TGN, and
Word2Vec, respectively. It then combines these features via a multi-
head self-attention mechanism to classify and detect malicious
nodes in the graph.

Algorithm 1 STGAN Feature Extraction and Detection
Require: Dataset D, Word2Vec model𝑤2𝑣𝑚𝑜𝑑𝑒𝑙 , GAT model 𝐺 ,

TGN model 𝑇 , epochs 𝑛, node phrases 𝑃 , labels Y, graph edges
E, temporal edge attributes T

Ensure: Detected malicious nodesM
1: Initialize GAT𝐺 , TGN𝑇 , and Multi-Head Self-Attention model

A
2: Split dataset D into training set D𝑡𝑟𝑎𝑖𝑛 and test set D𝑡𝑒𝑠𝑡

3: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑛 do
4: for each node 𝑣 ∈ D𝑡𝑟𝑎𝑖𝑛 do
5: Extract phrase 𝑝𝑣 ∈ 𝑃 for node 𝑣
6: Compute Word2Vec embedding w𝑣 = 𝑤2𝑣𝑚𝑜𝑑𝑒𝑙 (𝑝𝑣)
7: Apply positional encoding: w′

𝑣 = PosEnc(w𝑣)
8: Concatenate GAT output h𝑣 and w′

𝑣 : z𝑣 = [h𝑣 ∥ w′
𝑣]

9: Pass z𝑣 through TGN: z′𝑣 = 𝑇 (z𝑣, E,T)
10: Fuse features via multi-head self-attention: o𝑣 = A(z′𝑣)
11: end for
12: end for
13: Evaluate the model on D𝑡𝑒𝑠𝑡

14: for each node 𝑣 ∈ D𝑡𝑒𝑠𝑡 do
15: Extract phrase 𝑝𝑣 ∈ 𝑃 and compute embeddings as in train-

ing
16: Classify node 𝑣 and rank predictions
17: end for
18: return Detected malicious nodesM

C Time Complexity of STGAN
The time complexity of STGAN can be assessed by analyzing its
key operations for feature extraction and detection on each node
within the provenance graph. First, the complexity for computing
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Word2Vec embeddings is 𝑂 ( |𝑉 | × 𝑑), where |𝑉 | represents the vo-
cabulary size and 𝑑 the embedding dimension, which are constant
post-training. In the GAT, each node interacts with 𝑘 neighbors,
leading to a complexity of 𝑂 (𝑘 × 𝑑 × 𝑑′); for the entire graph,
this scales to 𝑂 ( |𝑁 | × 𝑘 × 𝑑 × 𝑑′), where |𝑁 | is the total num-
ber of nodes. Temporal features are extracted via the TGN with
a complexity of 𝑂 (𝑚 × 𝑡 × 𝑑′′), where𝑚 is the edge count, 𝑡 the
number of time steps, and 𝑑′′ the transformed feature dimension.

The multi-head self-attention mechanism for feature fusion has a
complexity of 𝑂 (ℎ × 𝑑 × |𝑁 |), where ℎ is the number of attention
heads. Therefore, the overall time complexity per epoch for STGAN
is: 𝑂 (𝑛 × (|𝑁 | × 𝑘 × 𝑑 × 𝑑′ +𝑚 × 𝑡 × 𝑑′′ + ℎ × 𝑑 × |𝑁 |)) This struc-
ture allows STGAN to scale effectively for streaming provenance
graph environments, with adjustable batch sizes that help manage
computational costs efficiently.
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