
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal
Features in Host Provenance Graphs

Anonymous Author(s)∗

Abstract
As the complexity and frequency of cyberattacks, such as Advanced
Persistent Threats (APTs) and ransomware, continue to escalate,
traditional anomaly detection methods have proven inadequate
in addressing these sophisticated, multi-faceted threats. Recently,
Host Provenance Graphs (HPGs) have played a crucial role in ana-
lyzing system-level interactions, detecting anomalous behaviors,
and tracing attack chains. However, existing provenance-based
detection methods primarily rely on single-dimensional feature
analysis, which fails to capture the dynamic and multi-dimensional
patterns of modern APT attacks, resulting in insufficient detection
performance. To overcome this limitation, we introduce STGAN, a
model that integrates spatial-temporal graphs into host provenance
graph modeling. STGAN applies temporal and spatial encoding to
dynamic provenance graphs to extract temporal, spatial, and seman-
tic features, constructing a comprehensive feature representation.
This representation is further fused and enhanced using a multi-
head self-attention mechanism, followed by anomaly detection.
Through extensive evaluations on three widely-used provenance
graph datasets, we demonstrate that our approach consistently
outperforms current state-of-the-art techniques in terms of de-
tection performance. Additionally, we contribute to the research
community by releasing our datasets and code, facilitating further
exploration and validation.

Keywords
Network Security, Host Provenance Graph, Graph Anomaly Detec-
tion

ACM Reference Format:
Anonymous Author(s). 2018. STGAN: Detecting Host Threats via Fusion
of Spatial-Temporal Features in Host Provenance Graphs. In . ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The complexity and frequency of cyberattacks are rapidly increas-
ing, posing unprecedented threats to businesses, government agen-
cies, and society at large [1]. Modern cyberattacks are no longer
confined to malware propagation and data theft but have evolved
into highly complex attack chains, encompassing Advanced Persis-
tent Threats (APTs), ransomware attacks, and supply chain attacks.
These attacks not only result in substantial economic losses but

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

also jeopardize the security of critical infrastructure. Traditional
anomaly detection methods [22, 32], such as signature-based and
rule-based intrusion detection systems, have become inadequate in
addressing the challenges posed by these sophisticated attacks.

Host Provenance Graphs (HPGs) are gradually becoming a pow-
erful tool in the field of detecting host threats [6, 13, 27, 47, 49].
By recording and analyzing the interactions between files, net-
work connections, and processes within a host, HPGs construct a
comprehensive activity map that helps security analysts identify
anomalous behaviors, trace the origins of attacks, and enhance sys-
tem security. They reveal the attacker’s activities within the host
and can link multiple attack events, providing critical insights into
understanding the attack chain. Recent researchers have proposed
various types of provenance-based anomaly detection methods,
including static feature analysis, spatial feature analysis, and tem-
poral feature analysis. However, these existing methods still flaw
to following limitations:

• Static Low-Dimensional Feature Analysis: Early studies
[21, 22, 36] extracted statistical features from HPGs or de-
signed heuristic rules for anomaly detection in nodes and
edges. However, rules and statistical feature-based mecha-
nisms can easily be mistakenly triggered by benign nodes,
so these methods tend to have high false alarm rates and
rely heavily on expert knowledge.

• Temporal FeatureAnalysis: Some time-series-based graph
methods [18, 29] utilized Graph Sketch to extract statistical
feature changes from flow graphs for detecting anomalous
nodes or edges. However, these methods focus solely on
the statistical information of dynamic graphs, overlooking
the rich spatial information within the graph structure.

• Spatial Feature Analysis: Some previous research [11, 24,
44] utilized graph embedding methods to extract topologi-
cal and node features from provenance graphs to identify
anomalous nodes and connections. Yet, these methods often
overlook the dynamic nature of attacks, making it challeng-
ing to capture the temporal evolution of attack behaviors.

Given these limitations, our core idea is to enhance detection
performance by integrating temporal and spatial features. This in-
tegration poses challenges, as spatial features require whole-graph
input for extraction, while temporal features rely on accurate mod-
eling of event sequences. To address these challenges, we propose
STGAN, which introduces the concept of spatio-temporal graphs
into host anomaly detection for the first time. STGAN combines spa-
tial, temporal, and semantic dimensions to generate comprehensive
node representations, enabling more accurate and thorough iden-
tification of potential anomalous nodes and malicious behaviors.
Specifically, we divide the streaming host audit logs into multiple
time steps. Within each time step, we extract edge information
from each log entry using regular expressions to form quadruples
<src, dst, type, timestamp> and construct a provenance graph. For

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

each time step, we employ Word2Vec [30] and GAT [42] to extract
structural and semantic features, respectively, and fuse them into
unified spatial features. Temporal features are captured using TGN
[39]. To further enhance feature representation, we fuse the spatial
and temporal features using a multi-head self-attention mechanism,
creating unified feature representations for node anomaly classifi-
cation. For anomaly detection, we design a lightweight XGBoost
detector for downstream anomalous node identification.

In designing STGAN, we specifically addressed the challenges
faced by previous methods. (1) STGAN constructs sentences for
semantic extraction by using a node’s neighbors and edge types,
effectively capturing the semantic differences between malicious
and benign nodes. This helps us overcome the issue of neglecting
semantic features in prior research, ensuring more comprehen-
sive and accurate node embeddings, thereby improving detection
performance. (2) We are the first to jointly model and represent
both spatial and temporal information of the provenance graph.
This enables us to overcome the limitations of earlier research,
where single-dimensional feature analysis could not comprehen-
sively capture all relevant characteristics of cyberattacks. (3) The
self-attention mechanism further enhances our model by effectively
fusing spatial-temporal data, creating a comprehensive feature rep-
resentation that surpasses previous single-dimensional methods.

We have implemented a prototype of STGAN and conducted
extensive evaluations on three three widely-used provenance graph
datasets from the DARPA TC E3 [2], including Theia, Trace, and
Cadets. Additionally, we selected five state-of-the-art (SOTA) meth-
ods as benchmarks, including Threatrace [44], Anograph [9],
Unicorn [18], FLASH [38], and HOLMES [32]. The experimen-
tal results demonstrate that our method outperforms the current
state-of-the-art techniques in terms of performance metrics such
as precision and F1 score (exceeding 97%). Furthermore, we con-
ducted ablation studies to validate the rationality and necessity
of STGAN’s module design. Additionally, we evaluated STGAN’s
parameter settings to highlight how different configurations affect
its performance. In summary, our contributions include:

• Novel Perspective: We introduce the concept of spatial-
temporal graphs into provenance-based detection for the
first time, offering a novel detection perspective for anom-
aly detection in host provenance graphs.

• Multi-Dimensional Feature Capture and Fusion: We
leverage spatial and temporal encoders to extract spatio-
temporal features from streaming provenance graphs, which
are then fused through a multi-head self-attention mecha-
nism to produce more expressive feature representations.

• Better detection performance: We built a prototype of
STGAN and conducted a comprehensive evaluation on
three datasets. The experiments demonstrated that STGAN’s
detection performance surpasses five different types of
SOTA methods, including HOLMES [32], Threatrace [44],
Unicorn [18], AnoGraph [9], and FLASH [38].

• Open-Source Resources: Contributing to the research com-
munity by providing open-source datasets and code. 1

1STGAN is available at https://anonymous.4open.science/r/STGAN-anonymous.

p1

1.recv 3.read

s1 f1

2.read

f2

p2
4.forkp1

1.recv 3.read

s1 f1

2.read

f2

p2 p3
6.fork

f3 5.write

4.fork
p1

1.recv
3.read

s1
f1

2.read

f2

p2 p3

6.fork

f3
5.write

p4

p6

p5
9.clone

8.fork

p4

7.fork

4.forkp1

1.recv 3.read

s1 f1

2.read

f2

p2 p3
6.forkf3

5.write

p4

p6

p5
9.clone

8.fork

7.fork

f4

10.write

p511.fork

s2

12.send

Timestamp:1~3 Timestamp:3~6

Timestamp:6~9 Timestamp:9~12

Figure 1: The example of host provenance graph.

Ethics and Privacy: All datasets are sourced from public web-
sites, and experiments were conducted in a controlled environment
to minimize potential ethical and privacy risks.

2 Background
2.1 Host Provenance Graph
Host Provenance Graphs have recently been widely used for net-
work threat detection. A host provenance graph represents the
activity of processes within a host and is constructed from audit
logs (e.g., Windows ETW [5] or Linux Audit [3]). It comprises three
types of nodes: process nodes, file nodes, and network nodes, with
edges representing system events such as reads, sends, and dele-
tions. Researchers collect audit logs from the target host and extract
the basic graph tuples <src, dst, type, timestamp> to construct the
host provenance graph.

Figure 1 provides an example of a provenance graph where dif-
ferent shape represent different types of nodes, and the edges illus-
trate the relationships between them. For instance, the relationships
between two process nodes may include fork or clone; between
process and file nodes, the relationships may include write, read,
open, and unlink; and between process and network nodes, the re-
lationships include sendmsg and recvmsg. Overall, the provenance
graph records the sequence of activities within the host system,
containing rich semantic and spatial information.

2.2 Provenance-based IDS
Since the provenance graph can express the relationship between
system operating entities in time, existing research has used this
feature to build an IDS based on the provenance graph. Including
detection schemes based on knowledge labels [20, 22, 32], these
schemes construct a series of matching rules based on expert knowl-
edge to match in the origin graph to detect anomalies. Based on
the statistics IDS scheme [14, 21, 28], they use the structural fea-
ture information of the graph, including: abnormality, discrepancy,
time correlation and other features to analyze in the graph to de-
tect anomalies. Recently, more learning-based IDS solutions have
been proposed [6, 19, 24, 41, 47, 49]. These solutions use models
such as graph representation learning and sequence learning to
extract high-dimensional features from graphs to perform anomaly
detection in downstream tasks.

2

https://anonymous.4open.science/r/STGAN-anonymous

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal Features in Host Provenance Graphs Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

TGN

Multi-Head
Attention

Layer(Q,K,V)Concat

thresholds

passwdbash read （"bash read passwd"）
Sentence Construction

...

batch-1

batch-2

batch-n

B
at

ch
 P

ro
ve

n
an

ce
 G

ra
p

h

Word2Vec
Senmantic Feature

GAT

Structural Feature

Spatial Feature

Temporal Feature

time series

Spatial Feature

S-T Feature

Anomaly Detector

Figure 2: Overview of STGAN’s architecture.

2.3 Threat Model
Our experiment environment relies on a Trusted Computing Base
(TCB) comprising an operating system, an auditing framework, and
provenance analysis tools. All components in the TCB are assumed
to be fully functional from installation to completion, which is
standard among existing provenance-based detectors. Hardware
trojans and side-channel attacks that cannot be captured by audit
are not considered in this paper. Additionally, the integrity of output
audit data is assumed to be ensured by existing secure provenance
and integrity audit systems [8, 35, 36, 50].

3 Design of STGAN
The overall workflow of STGAN is illustrated in Figure 2. STGAN
receives streaming audit log input and segments the log information
into multiple parts. For each subgraph within a segment, STGAN
models and extracts both spatial and temporal information. In terms
of spatial information extraction, STGAN encodes both semantic
and structural features separately. First, it constructs sentences
based on each node’s first-hop neighbors and uses Word2Vec to
learn the semantic features of the nodes. Then, GAT is applied
to extract structural features, thereby forming a comprehensive
spatial feature representation. For temporal information extraction,
STGAN uses TGN to model temporal information and capture
the temporal features of the nodes. Finally, STGAN employs a
multi-head self-attention mechanism to fuse spatial and temporal
features, generating a complete spatial-temporal graph embedding
to support anomaly detection tasks. During the anomaly detection
phase, STGAN utilizes XGBoost as the anomaly detector to perform
anomaly detection.

3.1 Batch Provenance Graph Construction
STGAN first needs to convert system audit logs into a provenance
graph. This graph represents the internal process interactions (such
as bash ->shell), file operations (e.g., bash -> /etc/passwd), and net-
work connections (e.g., firefox ->101.162.12.201:8080) within the host
system. STGAN processes logs from Windows ETW or Linux Au-
dit, which record process executions, file operations, and network
connections on the host. To facilitate both temporal and spatial
feature processing and support streaming detection, we designed a
batch processing mechanism. Specifically, STGAN processes logs in

passwdbash passwdztmp

bash net ztmp net

read read

fork fork

(a) Event semantic example

passwdbash

bash net

read

fork

（src，type，dst）

（"bash read passwd"）

（"bash fork net"）

Provenance Edges

(b) Node sentence construction

Figure 3: Event semantic examples (a) and semantic informa-
tion extraction (b)

configurable batches, where the batch size k represents the number
of audit logs processed per batch, and then converts each batch into
a provenance graph.

3.2 Spatial Encoder
Nodes in a provenance graph contain rich attribute information that
must first be mapped into a vector space for utilization by the model.
Previous encoding schemes for provenance graphs have employed
one-hot encoding for node and edge types or have utilized methods
such as GAT and Graph Convolutional Networks (GCN)[24, 44],
which are based on the assumption of homogeneity and primarily
focus on structural features. However, these approaches have not
fully leveraged the rich semantic information inherent in the graph.
Unlike homogeneous graphs, such as social networks, the nodes
and edges in a provenance graph possess specific naming informa-
tion that often encapsulates significant behavioral semantics. For
instance, as illustrated in Figure 3.(a), there is a notable distinction
between a bash process (a user process) reading the passwd file and
a ztmp process (a malicious process) accessing the same file. Al-
though both instances represent a process reading a file within the
provenance graph, their semantics are markedly different. There-
fore, it is essential to consider this semantic information.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2.1 Semantic Encoder. We use a word2vec model for capturing
semantic features of nodes. The training objective of Word2Vec can
be expressed as maximizing the following log-likelihood function:

𝐿 =
∑︁
𝑤𝑡 ∈𝑉

∑︁
−𝑐≤ 𝑗≤𝑐,𝑗≠0

log 𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡), (1)

where 𝑉 is the vocabulary, 𝑤𝑡 is the target word, 𝑤𝑡+𝑗 is the
context word, 𝑐 is the context window size, and 𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡) is the
probability of predicting the context word 𝑤𝑡+𝑗 given the target
word𝑤𝑡 . This probability is typically computed using the softmax
function:

𝑃 (𝑤𝑡+𝑗 | 𝑤𝑡) =
exp(𝑣𝑇𝑤𝑡+𝑗 · 𝑣𝑤𝑡

)∑
𝑤∈𝑉 exp(𝑣𝑇𝑤 · 𝑣𝑤𝑡

)
, (2)

where 𝑣𝑤 is the vector representation of word𝑤 .

3.2.2 Structural Encoder. After extracting the semantic features,
we further capture the structural features of nodes using Graph
Attention Network (GAT). Unlike traditional graph convolutional
networks, GAT introduces an attention mechanism that allows the
model to aggregate information based on the importance of different
neighbors. Initially, the attributes of nodes are one-hot encoded and
mapped into a high-dimensional sparse vector space. Subsequently,
for each node, GAT performs weighted aggregation of its feature
vector through linear transformations and the attention mechanism
to generate new node representations.

In STGAN, for each node 𝑣𝑖 , we perform a linear transforma-
tion𝑊 on its feature vector ℎ𝑖 to obtain the linear representation
ℎ′
𝑖
= 𝑊ℎ𝑖 . Then, GAT computes the attention coefficient 𝛼𝑖 𝑗 be-

tween node 𝑣𝑖 and its neighbor 𝑣 𝑗 , which reflects the importance of
neighbor node 𝑣 𝑗 to node 𝑣𝑖 . The attention coefficient 𝛼𝑖 𝑗 is com-
puted considering the similarity and relevance of node features, as
follows:

𝛼𝑖 𝑗 =
exp(LeakyReLU(𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ 𝑗]))∑

𝑘∈N(𝑖) exp(LeakyReLU(𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ𝑘]))
, (3)

where 𝑎 is a trainable attention weight vector, N(𝑖) represents
the neighbor set of node 𝑣𝑖 , ∥ denotes the vector concatenation op-
eration, and LeakyReLU is used as a nonlinear activation function.

Finally, GAT aggregates the feature vectors of nodes and their
neighbors using these attention coefficients to generate new node
feature representations:

ℎ′′𝑖 = 𝜎
©«

∑︁
𝑗∈N(𝑖)

𝛼𝑖 𝑗ℎ
′
𝑗
ª®¬ , (4)

where 𝜎 is a nonlinear activation function.
By combining the semantic information extracted fromWord2Vec

with the structural information captured by GAT, we form a com-
prehensive spatial feature representation. This representation con-
siders both the semantic features of the nodes and their positional
relationships within the graph, providing a more thorough founda-
tion for subsequent temporal encoding and anomaly detection.

3.3 Temporal Encoder
Due to the inherently dynamic nature of network attacks, it is essen-
tial to model the temporal information within provenance graphs

to effectively capture these evolving activities. To achieve this, we
employ the Temporal Graph Network (TGN) for temporal encoding.
TGN is a network model specifically designed for dynamic graphs,
allowing it to account for the influence of temporal information
on the relationships between nodes and edges in graph-structured
data. By using TGN, we can obtain temporal representations of
each node at various time points, thereby enhancing our ability to
track behavioral evolution and changes in anomaly patterns over
time.

Specifically, TGN processes the spatial features of each batch
graph organized in a time series. With its time-aware mechanism,
TGN monitors interaction histories between nodes and aggregates
this historical information to create time-aware node embeddings.
These embeddings not only capture dynamic interactions among
nodes but also reveal temporal behavior patterns within the system.

For each batch graph, a dynamic graph𝐺 (𝑡) is given, where𝐺 (𝑡)
represents the graph at time 𝑡 and consists of a node set V and an
edge set E. Each edge 𝑒 ∈ E has a timestamp 𝑡𝑒 indicating when it
occurred. TGN performs temporal encoding through the following
steps:

First, in the time embedding generation stage, the timestamp
𝑡𝑒 of each edge is embedded into a vector t𝑒 . This is done using
positional encoding methods, where timestamps are mapped into a
high-dimensional space using sine and cosine functions. Specifically,
for a timestamp 𝑡𝑒 , the time embedding t𝑒 is calculated as:

t𝑒 =
[
sin

(
𝑡𝑒

100002𝑖/𝑑

)
, cos

(
𝑡𝑒

100002𝑖/𝑑

)]𝑑/2
𝑖=1

, (5)

where 𝑑 is the dimension of the embedding space and 𝑖 is the
positional encoding dimension index.

Next, in the time-aware information aggregation process, the
time-aware feature h𝑖 (𝑡) of each node 𝑣𝑖 is updated by aggregating
the information from its neighboring nodes. Specifically, the feature
representation h𝑖 (𝑡) of node 𝑣𝑖 at time 𝑡 is updated by aggregating
the features of neighboring nodes and the time embeddings of the
edges connecting them. For a neighbor node 𝑣 𝑗 and an edge 𝑒𝑖 𝑗 , the
update formula is:

h𝑖 (𝑡) = AGGREGATE
({
h𝑗 (𝑡)∥t𝑒𝑖 𝑗 | 𝑣 𝑗 ∈ N (𝑣𝑖)

})
, (6)

where AGGREGATE is the aggregation function, ∥ denotes the
feature concatenation operation, andN(𝑣𝑖) represents the neighbor
set of node 𝑣𝑖 .

Finally, in the node embedding update stage, the embedding
h𝑖 (𝑡) of each node at the end of time step 𝑡 is updated to a new
time-aware embedding. The update function typically involves a
fully connected layer and an activation function to fuse the state
from the previous time step with the current time step features.
The update formula is:

h𝑖 (𝑡 + 1) = ReLU (𝑊 · h𝑖 (𝑡) + 𝑏) , (7)
By these steps, TGN generates time-aware node embeddings

h𝑖 (𝑡) that reflect the dynamic behavior and temporal evolution of
nodes in the graph. These time-aware embeddings are further en-
hanced by multi-head self-attention mechanisms to better capture
long-term temporal dependencies.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal Features in Host Provenance Graphs Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.4 Multi-dimensional Feature Fusion
To effectively integrate the spatial features derived from both se-
mantic vectors (via Word2Vec) and structural features (via GAT),
along with the temporal features extracted using TGN, we apply a
multi-head self-attention mechanism. The motivation behind this
approach is to ensure that the combined spatial-temporal features
can fully capture the temporal relationships between nodes while
preserving the rich information in both the spatial and temporal do-
mains. By utilizing multi-head self-attention, we enable the model
to focus on different aspects of the spatial-temporal features from
various perspectives, leading to more accurate and robust represen-
tations for anomaly detection.

Formally, given the spatial vector𝑋𝑠 (comprising bothWord2Vec
and GAT features) and the temporal vector 𝑋𝑡 derived from TGN,
we compute the query, key, and value matrices for each attention
head ℎ:

𝑄ℎ =𝑊𝑄ℎ
[𝑋𝑠 ∥𝑋𝑡], 𝐾ℎ =𝑊𝐾ℎ

[𝑋𝑠 ∥𝑋𝑡], 𝑉ℎ =𝑊𝑉ℎ [𝑋𝑠 ∥𝑋𝑡],
(8)

where𝑊𝑄ℎ
,𝑊𝐾ℎ

, and𝑊𝑉ℎ are the learned projection matrices
for head ℎ, and ∥ denotes concatenation.

For each head, the attention scores are computed using the scaled
dot-product attention mechanism:

Attentionℎ (𝑄ℎ, 𝐾ℎ,𝑉ℎ) = softmax

(
𝑄ℎ𝐾

⊤
ℎ√︁

𝑑𝑘

)
𝑉ℎ, (9)

where 𝑑𝑘 is the dimension of the key vectors. The attention
scores allow the model to assign different weights to various tempo-
ral and spatial features, dynamically focusing on the most relevant
aspects.

After calculating the attention output for each head, we concate-
nate the outputs from all heads and project them to form the final
representation:

𝑍 =𝑊𝑂

[𝐻
ℎ=1Attentionℎ (𝑄ℎ, 𝐾ℎ,𝑉ℎ)

]
, (10)

where𝑊𝑂 is the learned output projection matrix, and 𝐻 repre-
sents the number of attention heads.

The final output𝑍 represents the fused spatial-temporal features,
capturing multiple relationships across temporal and spatial dimen-
sions. This multi-head mechanism enhances the model’s ability
to learn spatial-temporal feature patterns, improving the perfor-
mance in downstream anomaly detection tasks. Specifically, this
mechanism helps in detecting anomalies by capturing long-term
dependencies across time and space, which is crucial for detecting
slow, evolving cyberattacks that might span across multiple time
steps.

3.5 Anomaly Detection
In our approach, anomaly detection is a critical component for
identifying potential anomalies and malicious activities within the
system. To achieve this, we have selected the lightweight detector
XGBoost [10] as the core module for anomaly detection.

XGBoost iteratively trains decision trees, where each tree cor-
rects the errors of the previous ones to reduce overall prediction
error. In our task, the input features for XGBoost include the fused

spatial and temporal features extracted from Word2Vec, GAT, and
TGN. Instead of directly predicting if a node is malicious or normal,
XGBoost is used to predict the node type. By predicting node types,
the system can identify behavior deviations from typical patterns,
which can indicate potential anomalies.

The trained XGBoost model leverages these multi-dimensional
features to enhance the accuracy and robustness of anomaly de-
tection. By focusing on predicting node types, the model is able
to identify subtle deviations in node behavior that could indicate
potential anomalies, offering a more precise method for detecting
malicious activities within the system.

4 Evaluation
4.1 Experiments Setup
Dataset. The DARPA Transparent Computing (TC) dataset is a
high-fidelity cybersecurity dataset designed to simulate complex
enterprise environments and advanced persistent threats (APTs).
This dataset focuses on multi-stage attacks within a realistic net-
work architecture, capturing detailed host and network events,
including both normal and malicious activities. It is ideal for evalu-
ating anomaly detection methods and analyzing real-world attack
behaviors, providing rich metadata such as timestamps, event types,
and related naming information for comprehensive threat analysis.
Considering our need for semantic information, we selected the
more comprehensive Trace, Theia, and Cadets subsets. The detail
of dataset is illustrated in table 2.

For more details on the experimental setup and baselines setup,
please refer to Appendix A.

4.2 Comparison Experiments
In this section, we evaluate the performance of STGAN across three
datasets and compare it with previous detectors. Table 1 presents
our experimental results, where STGAN consistently performs the
best in the Trace, Cadets, and Theia scenarios, with F1 scores ex-
ceeding 97%. In contrast, the F1 score of the static feature-based
detector HOLMES is only 2.45%, the spatial feature-based detector
FLASH achieves a maximum of 95%, and the temporal feature-based
detector TGN reaches 95% as well. We explain the reasons behind
these results as follows: The early HOLMES detector, based on
the Apt lifecyle model [4], constructs a set of TTP rules to match
patterns in the graph, which results in high recall but low pre-
cision (less than 5%) because these rules are often triggered by
normal behaviors, leading to a high false positive rate. Among the
spatial feature-based detectors, Threatrace performed the worst
because it relies on GraphSAGE to capture spatial features but ne-
glects semantic and spatial-temporal features, which weakens its
detection performance. FLASH performs better as it first captures
semantic features through Word2Vec and then uses these as initial
embeddings fed into GCN to capture structural features. Among the
spatial-temporal feature-based detectors, Unicorn and AnoGraph
detect anomalies by modeling frequency information in temporal
graphs, but these features are inherently low-dimensional and lack
rich spatial information, resulting in poor outcomes (with an av-
erage F1 score below 50%). Our implementation of the traditional
TGN model shows better results than Unicorn and AnoGraph due

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison Experiments

Model Theia Cadets Trace
Precision Accuracy Recall F1 Precision Accuracy Recall F1 Precision Accuracy Recall F1

HOLMES [32] 0.0120 0.9961 0.9900 0.0230 0.0126 0.9557 1.0000 0.0245 0.0120 0.9825 1.0000 0.0220
Unicorn [18] 0.6700 0.8000 0.6700 0.6700 0.3100 0.4400 1.0000 0.4700 0.2800 0.4300 1.0000 0.3400
AnoGraph [9] 0.2319 0.9066 0.4619 0.3088 0.0606 0.8895 0.4698 0.2133 0.0294 0.7597 0.4698 0.0553
Threatrace [44] 0.7156 0.9968 0.9999 0.8336 0.9035 0.9903 0.9997 0.9526 0.8701 0.9994 0.9963 0.9415
FLASH [38] 0.9203 0.9944 0.9987 0.9519 0.9412 0.9998 0.9999 0.9605 0.9501 0.9989 0.9999 0.9703
TGN [39] 0.9091 0.9967 1.0000 0.9524 0.8000 0.9940 1.0000 0.8889 0.8732 0.9911 1.0000 0.9284
GCN [26] 0.8294 0.9844 0.9983 0.9060 0.8959 0.9925 0.9984 0.9444 0.9090 0.9937 0.9840 0.9381

STGAN(ours) 0.9449 0.9956 0.9983 0.9709 0.9840 0.9994 0.9983 0.9911 0.9950 0.9991 0.9883 0.9916

Table 2: DARPA E3 Dataset Description

Dataset Edges Nodes Malicious Size (GB)
Trace 4,080,457 3,220,596 68,082 18.6
Cadets 3,303,264 1,614,189 12,846 16.8
Theia 10,929,710 3,505,326 25,362 31.6
Total 18,313,431 8,340,111 106,290 67

to its improved modeling of node spatial information (achieving an
F1 score greater than 90%).

Overall, STGAN achieved the best performance, attributed to
its pioneering use of spatial-temporal graphs to model provenance
graphs, effectively integrating spatial and temporal features to pro-
duce higher-quality and more discriminative feature representa-
tions.

4.3 Ablation Study
In this section, we conduct an ablation study on STGAN to explore
the impact of each component on the overall performance. Specifi-
cally, we removed or replaced certain components of STGAN and
performed evaluations. Table 3 presents our experimental results,
where X, Y, A, and B represent the major components of STGAN,
namely: X: GAT encoder, Y: Word2Vec, A: TGN encoder, and B:
Multi-Head Attention mechanism.

As the results show, the absence of any component leads to a
decline in detection performance, highlighting the rationality of
STGAN’s design. For provenance graphs, both structural and seman-
tic information contain rich characteristics of malicious and benign
behaviors. This is reflected in the performance of groups (X, A, B)
and (Y, A, B), where the lack of structural or semantic information
leads to a decrease in detection accuracy. Spatial-temporal features
capture the evolving characteristics of the provenance graph over
time, and the results of group (X, Y) demonstrate that the spatial-
temporal characteristics of malicious behavior differ from those of
benign behavior. Benign behaviors tend to exhibit stable temporal
patterns, while malicious behaviors often adopt irregular changes,
such as launching multiple actions within a short period during
scanning activities, which leads to significant differences in the tem-
poral feature space. Feature fusion is equally important for STGAN.
After removing the Multi-Head Attention mechanism, the results of
group (X, Y, A) show a decrease in detection performance, indicat-
ing that feature fusion helps the model better weigh the importance

of multiple features, resulting in improved detection performances.
Furthermore, we replaced some components to further evaluate
STGAN, using GCN instead of GAT and Self-Attention instead of
Multi-Head Attention. The results show a decrease in detection
performance, which can be attributed to GAT’s ability to capture
more complex node relationships compared to GCN, and Multi-
Head Attention’s ability to handle multiple feature perspectives
more effectively than Self-Attention.

Feature visualisation analysis. To illustrate STGAN’s compre-
hensiveness and explainability in feature extraction, we performed
a t-SNE visualization on node embeddings from the TRACE dataset.
Figure 4 reveals that the full STGAN model (a) achieves the clearest
separation of benign and malicious nodes, indicating that the com-
bination of all components—GAT, Word2Vec, TGN, and Multi-Head
Attention—effectively captures spatial, temporal, and semantic fea-
tures.

When examining the partial models that exclude one component,
shown in (b) through (e), we observe weaker clustering and less
distinct separation, which underscores the importance of each mod-
ule. Specifically, in (b), the exclusion of GAT hinders the model’s
ability to capture structural relationships, as nodes lose the context
of their connectivity patterns, leading to dispersed clusters. In (c),
the absence of Word2Vec affects the model’s capacity to discern se-
mantic nuances between nodes, resulting in reduced clarity in how
nodes are grouped. Similarly, in (d), the removal of TGN limits the
model’s temporal encoding, which diminishes its ability to capture
behavioral changes over time, making benign and malicious nodes
more intermixed. Finally, in (e), without Multi-Head Attention, the
model struggles to effectively integrate the spatial and temporal
features, weakening its overall feature representation and making
the boundaries between benign and malicious nodes less defined.

Overall, STGAN achieves the best results by effectively extract-
ing and fusing the spatial-temporal and temporal features of the
provenance graph for detection. Through the ablation study, we
have also demonstrated the rationality of the key module designs
in STGAN.

4.4 Parameter Sensitivity Analysis
In this section, we evaluate the impact of hyper-parameter settings
on the performance of STGAN. We mainly focus on the batch
processing size 𝑘 , learning rate 𝑙𝑟 , and embedding dimension 𝑑 .
To ensure fairness, the TRACE dataset is primarily used for our
experiments. Figure 5 provides the experimental results.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal Features in Host Provenance Graphs Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Ablation Experiments, X,Y,A,B denote GAT encoder, Word2Vec, TGN, and Multi-Head Attention, respectively.

Method Theia Cadets Trace
Precision Accuracy Recall F1 Precision Accuracy Recall F1 Precision Accuracy Recall F1

X,Y,A 0.6142 0.9512 0.9984 0.7605 0.8126 0.9904 0.9995 0.8964 0.9160 0.9942 0.9884 0.9509
X,Y 0.7830 0.9786 0.9983 0.8777 0.8152 0.9909 0.9995 0.8980 0.8450 0.9890 0.9884 0.9111
Y,A,B 0.8213 0.9833 0.9983 0.9012 0.8186 0.9916 0.9995 0.9000 0.6644 0.9710 0.9884 0.7949
X,A,B 0.3123 0.8249 0.9984 0.4758 0.4701 0.9446 0.9995 0.6394 0.5473 0.9523 0.9884 0.7045

X,Y,A,B (Self-Attention) 0.8294 0.9844 0.9983 0.9060 0.8959 0.9956 0.9984 0.9444 0.9032 0.9933 0.9884 0.9439
X (GCN),Y,A,B 0.3943 0.8789 0.9984 0.5654 0.8273 0.9922 0.9988 0.9050 0.6648 0.9710 0.9884 0.7949
STGAN(ours) 0.9449 0.9956 0.9983 0.9709 0.9840 0.9994 0.9983 0.9911 0.9950 0.9991 0.9883 0.9911

40 20 0 20 40 60

40

20

0

20

40

60 malicious
benign

(a) STGAN

60 40 20 0 20
40

30

20

10

0

10

20

30 malicious
benign

(b) Y,A,B

40 20 0 20 40

40

20

0

20

40

60
malicious
benign

(c) X,A,B

40 20 0 20 40
60

40

20

0

20

40 malicious
benign

(d) X,Y

60 40 20 0 20 40 60

50

40

30

20

10

0

10

20
malicious
benign

(e) X,Y,A

Figure 4: We demonstrate the feature extraction effectiveness under different components (X: GAT, Y: Word2Vec, A: TGN, B:
Multi-HeadAttention) through t-SNE visualization. It can be observed that STGANachieves the best feature space differentiation.

0
50
100
150
200
250
300
350

M
em

or
y

Us
ag

e
(M

B)

5000 10000 15000 20000 25000 50000
Batchsize k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rfo

rm
an

ce
 M

et
ric

s

Accuracy
Precision
Recall
F1 Score

(a)

10 1 10 2 10 3 5 × 10 4 10 4

Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 M

et
ric

s

Accuracy
Precision

Recall
F1 Score

(b)

32 64 96 128 256
Embedded Dimension

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce
 M

et
ric

s

Accuracy
Precision

Recall
F1 Score

(c)

Figure 5: (a),(b),(c) show the result of batch-size k, learn rate
lr,and embedding dimension d, respectively.

Batch size k. From these results, it is evident that batch-size
significantly influences model performance. As batch-size increases,
the model’s Accuracy and Precision first increase and then decrease,
while Recall remains relatively stable. The model performs rela-
tively well with smaller batch-sizes (5000 to 10000), with Precision
and F1score gradually improving as the batch-size grows. When the
batch-size reaches 25000, the model shows the best balance, with
Precision reaching 0.995 and F1score reaching 0.9916, indicating
that the model’s anomaly detection capability is strongest at this
point. However, when the batch-size increases to 50000, both Preci-
sion and F1score drop significantly. This may be due to the large
batch-size reducing the model’s sensitivity to subtle differences.
Therefore, selecting a moderate batch-size (such as 25000) during
STGAN training can achieve optimal detection performance, while
an overly large batch-size may lead to performance degradation.

Learning rate 𝑙𝑟 . As for the learning rate 𝑙𝑟 , when the learning
rate decreases from 0.1 to 0.01 and 0.001, the model’s Precision
and F1 Score increase rapidly, reaching high performance levels.
Notably, when the learning rate is 0.01, the model demonstrates
optimal performance balance, with Precision reaching 0.9831 and F1

Score at 0.9857. However, when the learning rate is further reduced
to 0.0005 and 0.0001, both Precision and F1 Score decline. This may
be due to the fact that a too-low learning rate leads to very small
update steps, resulting in slow convergence and the model being
easily trapped in local optima, without effectively jumping out of
these regions to approach the global optimum. Therefore, selecting
a moderate learning rate (such as 0.01) during STGAN training can
achieve optimal detection performance, while excessively high or
low learning rates may lead to performance degradation.

Embedding dimension d. As for the embedding dimension d,
we observe that as the embedding dimension increases, the perfor-
mance metrics improve consistently, with the optimal performance
achieved at 128 dimensions. Beyond this point, such as at 256 di-
mensions, further increases do not yield significant gains and may
introduce diminishing returns. Therefore, an embedding dimension
of 128 offers the best balance between performance and compu-
tational efficiency, capturing sufficient feature richness without
unnecessary complexity.

5 Discussion and Limitations
Multi-level feature extraction. In provenance-based anomaly
detection, static features such as structural features [24, 44], sta-
tistical features [21, 28], and prior knowledge [22, 32] have been
widely used. Dynamic features have been mentioned more recently,
but they either focus solely on dynamic statistical features [18] or
consider only the dynamic changes in the graph [11, 47], neglect-
ing spatial features. As attackers’ behavior becomes increasingly
complex, with long-term temporal variations, it is crucial to com-
prehensively model and extract information that captures both rich
temporal and spatial characteristics. In this work, we introduce
the concept of spatial-temporal graphs, extracting rich sequential,
semantic, and structural information in both spatial and temporal

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

dimensions. Through feature fusion, we obtain high-quality em-
bedding vectors, thereby achieving optimal detection performance.
Specifically, by leveraging multi-head self-attention mechanisms,
STGAN can capture complex temporal dependencies alongside
spatial patterns, which allows it to effectively detect sophisticated
multi-stage attacks. The attention mechanism ensures that the
model can dynamically focus on the most relevant spatial-temporal
features over time, providing effective detection even in evolving
attack scenarios.
Graph manipulation attack. Graph manipulation attacks [16, 33,
40] have recently posed significant challenges for provenance-based
anomaly detectors, as attackers may manipulate both the graph
structure and its attributes, leading to evasion attacks. Therefore,
it is essential to discuss the robustness of STGAN against such
attacks. STGAN jointly models spatial and temporal features, en-
suring that our detection vectors incorporate semantic information,
structural information, and temporal variations. Evading STGAN
would require mimicking and manipulating all three dimensions
simultaneously, which is highly challenging for attackers. Even if
attackers disrupt the structure by abusing system calls with mal-
ware, the semantic space can still flag anomalies, as it is difficult
for attackers to imitate benign behavior in terms of semantics (e.g.,
system process names). The multi-head self-attention mechanism
further strengthens STGAN’s robustness, as it allows the model to
focus on the most relevant interactions over both space and time,
making it harder for attackers to fool the system across multiple
dimensions. Hence, our multi-dimensional feature extraction and
fusion confer robustness against graph manipulation attacks.
Limitation. Although STGAN is capable of fully extracting and
fusing the features of provenance graphs across multiple dimen-
sions, we must acknowledge the resource consumption of STGAN,
despite employing batch graphs, lightweight anomaly detectors,
and encoders. Efficiency and accuracy in host anomaly detection
often involve a trade-off, where more precise detection typically
comes with higher model complexity. Furthermore, we are explor-
ing recent advancements in vector caching techniques [38], where
pre-trained node embeddings can be stored in a cache for rapid
reuse, reducing the need for retraining and accelerating inference
times. While STGAN shows promise in terms of accuracy, practical
deployment in resource-constrained environments would benefit
from these ongoing optimizations.

6 Related Work
Host ProvenanceGraph-basedAnomalyDetection.Host Prove-
nance graphs have been widely applied in attack detection due
to their rich semantic and contextual information [12, 23]. Re-
cently, they have been categorized into three main types: dynamic
graph learning approaches (temporal level), static graph learning
approaches (spatial level), and approaches based on low-level static
features (including statistical based and rule based methods). Sta-
tistical based methods [14, 21, 36] model the anomaly degree of
nodes using features such as temporal correlation, degree distribu-
tion, and rarity. Rule-based methods [20, 22, 31, 32, 51] create rules
based on external knowledge to incrementally match patterns in
the provenance graph for anomaly detection. Static graph learning
approaches [6, 19, 24, 41, 44, 49] include sequence learning methods

that extract and model sequence features for anomaly detection, as
well as deep graph learning techniques like GAT [42] or GraphSAGE
[17] to extract structural features for detection, along with node
interaction features [49] for graph-level and edge-level detection.
Dynamic graph learning approaches include sketch-based defenses
and dynamic graph learning schemes. For example, Unicorn models
the statistical characteristics of dynamic graphs, capturing tempo-
ral feature variations to detect anomalies, while ProGrapher [47]
adopts Graph2Vec [34] to learn embeddings of streaming graphs
and detects anomalies by comparing feature differences between
consecutive graph snapshots. Overall, these approaches learn differ-
ent feature representations of host provenance graphs from various
dimensions to perform anomaly detection tasks. Compared to ex-
isting methods, STGAN maximally captures graph features across
multiple dimensions, significantly enhancing the discriminative
power of the learned embeddings in the feature space, resulting in
more accurate and robust detection performance.
Spatial Temporal Graph Neural Network. Spatial-Temporal
Graph Neural Networks (STGNNs) have gained significant trac-
tion in recent years for handling complex time-varying graph data
across tasks such as traffic prediction, social network analysis, and
recommendation systems [45]. STGODE [15] and PDFormer[25]
have introduced advanced techniques to better capture spatial-
temporal patterns. While early approaches like STGCN [48] relied
on pre-defined graphs using domain-specific knowledge, recent
work has shifted towards more flexible, self-learned methods. For
example, Graph WaveNet [46] and AGCRN [7] dynamically gen-
erate adjacency matrices based on the underlying data, offering
greater adaptability. Despite these advancements, most of these
models are applied in domains such as transportation or communi-
cation networks, focusing on structural and temporal dependencies
without considering deeper semantic layers.

Our approach differs from previous STGNN methods used in
tasks like traffic prediction. We thoroughly analyzed the character-
istics of provenance graphs and introduced semantic features using
Word2Vec. By combining spatial and temporal, information, we
comprehensively capture the interaction patterns of system entities
within the provenance graph, enabling more effective detection of
complex attack patterns that are often overlooked by traditional
methods that rely solely on spatial-temporal features.

7 Conclusion
In this paper, we propose a novel method STGAN, which employs
spatial-temporal graphs to model Host Provenance Graphs (HPGs)
for enhanced anomaly detection. We observed that provenance
graphs contain rich spatial and temporal information, which has
not been fully leveraged in previous research. To address this,
STGAN utilizes spatial and temporal encoders to comprehensively
extract spatial-temporal features, including semantic, structural,
and temporal characteristics. These features are then fused using a
self-attention mechanism, resulting in a more robust feature repre-
sentation. Our method demonstrated superior performance across
four datasets, outperforming existing state-of-the-art methods in
detecting advanced cyber threats.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal Features in Host Provenance Graphs Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] [n. d.]. Apt notes. https://github.com/kbandla/APTnotes, Last accessed on 2024-

6-25.
[2] [n. d.]. Transparent Computing Engagement 3 DataRelease. https://github.com/

darpa-i2o/TransparentComputing/blob/master/README-E3.md, Last accessed
on 2024-5-21.

[3] 2023. Linux Kernel Audit Subsystem. https://github.com/linux-audit/auditkernel,
Last accessed on 2024-5-25.

[4] 2023. MANDIANT: Exposing One of China’s Cyber Espionage Units.
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-
apt1-report.pdf, Last accessed on 2024-5-11.

[5] 2023. Windows ETW. https://learn.microsoft.com/zh-cn/windowshardware/
drivers/devtest/event-tracing-for-windowsâĂŞetw-, Last accessed on 2024-5-21.

[6] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, GregoryWalkup, Z Berkay
Celik, Xiangyu Zhang, and Dongyan Xu. 2021. ATLAS: A Sequence-based
Learning Approach for Attack Investigation.. In USENIX Security Symposium.
3005–3022.

[7] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph
convolutional recurrent network for traffic forecasting. Advances in neural
information processing systems 33 (2020), 17804–17815.

[8] AdamBates, Dave Jing Tian, Kevin RB Butler, and ThomasMoyer. 2015. Trustwor-
thy {Whole-System} provenance for the linux kernel. In 24th USENIX Security
Symposium (USENIX Security 15). 319–334.

[9] Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S Yu, and
Bryan Hooi. 2023. Sketch-based anomaly detection in streaming graphs. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining.

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting Sys-
tem. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2016).

[11] Zijun Cheng, Qiujian Lv, Jinyuan Liang, Yan Wang, Degang Sun, Thomas
Pasquier, and Xueyuan Han. 2024. KAIROS: Practical intrusion detection and in-
vestigation using whole-system provenance. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 3533–3551.

[12] Feng Dong, Shaofei Li, Peng Jiang, Ding Li, Haoyu Wang, Liangyi Huang,
Xusheng Xiao, Jiedong Chen, Xiapu Luo, Yao Guo, et al. 2023. Are we there
yet? an industrial viewpoint on provenance-based endpoint detection and re-
sponse tools. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 2396–2410.

[13] Feng Dong, Liu Wang, Xu Nie, Fei Shao, Haoyu Wang, Ding Li, Xiapu Luo, and
Xusheng Xiao. 2023. {DISTDET}: A {Cost-Effective} Distributed Cyber Threat
Detection System. In 32nd USENIX Security Symposium (USENIX Security 23).
6575–6592.

[14] Pengcheng Fang, Peng Gao, Changlin Liu, Erman Ayday, Kangkook Jee, Ting
Wang, Yanfang Fanny Ye, Zhuotao Liu, and Xusheng Xiao. 2022. {Back-
Propagating} System Dependency Impact for Attack Investigation. In 31st
USENIX Security Symposium (USENIX Security 22). 2461–2478.

[15] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. 2021. Spatial-
temporal graph ode networks for traffic flow forecasting. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining. 364–373.

[16] Akul Goyal, Xueyuan Han, Gang Wang, and Adam Bates. 2023. Sometimes, You
Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion
Detection Systems. In 30th Network and Distributed System Security Symposium.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[18] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime provenance-based detector for advanced persistent
threats. NDSS (2020).

[19] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li, Junghwan Rhee, James Mick-
ens, Margo Seltzer, and Haifeng Chen. 2021. SIGL: Securing software installations
through deep graph learning. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). 2345–2362.

[20] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance
analysis for endpoint detection and response systems. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 1172–1189.

[21] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. Nodoze: Combatting threat alert fatigue
with automated provenance triage. In network and distributed systems security
symposium.

[22] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott D Stoller, and VN Venkatakrishnan. 2017. SLEUTH:
Real-time Attack Scenario Reconstruction from COTS Audit Data.. In USENIX
Security Symposium. 487–504.

[23] Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jaron Mink, Noor
Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan. 2022. SoK: History is
a Vast Early Warning System: Auditing the Provenance of System Intrusions.

In 2023 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
307–325.

[24] Zian Jia, Yun Xiong, Yuhong Nan, Yao Zhang, Jinjing Zhao, and Mi Wen. 2024.
MAGIC: Detecting Advanced Persistent Threats via Masked Graph Representa-
tion Learning. In 33rd USENIX Security Symposium (USENIX Security 24). 5197–
5214.

[25] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023.
Pdformer: Propagation delay-aware dynamic long-range transformer for traffic
flow prediction. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 37. 4365–4373.

[26] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[27] Yushan Liu, Xiaokui Shu, Yixin Sun, Jiyong Jang, and PrateekMittal. 2022. RAPID:
Real-Time Alert Investigation with Context-aware Prioritization for Efficient
Threat Discovery. In Proceedings of the 38th Annual Computer Security Applica-
tions Conference. 827–840.

[28] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security.. In NDSS.

[29] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. 2016. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. 1035–1044.

[30] Tomas Mikolov. 2013. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781 (2013).

[31] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. Poirot: Aligning attack behavior with kernel audit records for cyber threat
hunting. In Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security. 1795–1812.

[32] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and
VN Venkatakrishnan. 2019. Holmes: real-time apt detection through correlation
of suspicious information flows. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 1137–1152.

[33] Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen,
Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee. 2023. Evading Provenance-
Based ML Detectors with Adversarial System Actions. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 1199–1216.
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee

[34] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed
representations of graphs. arXiv preprint arXiv:1707.05005 (2017).

[35] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher
Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical tamper-evident
auditing of operating systems using trusted execution. In Network and distributed
system security symposium.

[36] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical whole-system provenance capture.
In Proceedings of the 2017 Symposium on Cloud Computing. 405–418.

[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[38] Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Hassan. 2024. FLASH: A Compre-
hensive Approach to Intrusion Detection via Provenance Graph Representation
Learning. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 139–139.

[39] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. 2020. Temporal graph networks for deep learning
on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020).

[40] Anyuan Sang, Yuchen Wang, Li Yang, Junbo Jia, and Lu Zhou. 2024. Obfuscating
Provenance-Based Forensic Investigations with Mapping System Meta-Behavior.
In Proceedings of the 27th International Symposium on Research in Attacks, Intru-
sions and Defenses (Padua, Italy) (RAID ’24).

[41] Yun Shen and Gianluca Stringhini. 2019. Attack2vec: Leveraging temporal word
embeddings to understand the evolution of cyberattacks. 28 st USENIX Security
Symposium (USENIX Security 2019) (2019).

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[43] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[44] Su Wang, Zhiliang Wang, Tao Zhou, Hongbin Sun, Xia Yin, Dongqi Han, Han
Zhang, Xingang Shi, and Jiahai Yang. 2022. Threatrace: Detecting and tracing
host-based threats in node level through provenance graph learning. IEEE
Transactions on Information Forensics and Security 17 (2022), 3972–3987.

9

https://github.com/kbandla/APTnotes
https://github.com/darpa-i2o/Transparent Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent Computing/blob/master/README-E3.md
https://github.com/linux-audit/audit kernel
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://learn.microsoft.com/zh-cn/windowshardware/drivers/devtest/event-tracing-for-windows–etw-
https://learn.microsoft.com/zh-cn/windowshardware/drivers/devtest/event-tracing-for-windows–etw-
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan
Jia, and Jian Yu. 2020. Traffic flow prediction via spatial temporal graph neural
network. In Proceedings of the web conference 2020. 1082–1092.

[46] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the
28th International Joint Conference on Artificial Intelligence. 1907–1913.

[47] Fan Yang, Jiacen Xu, Chunlin Xiong, Zhou Li, and Kehuan Zhang. 2023. PROGRA-
PHER: An Anomaly Detection System based on Provenance Graph Embedding.
In 32nd USENIX Security Symposium (USENIX Security 23). 4355–4372.

[48] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convolu-
tional networks: a deep learning framework for traffic forecasting. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence. 3634–3640.

[49] Jun Zeng, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua,
and Zheng Leong Chua. 2022. Shadewatcher: Recommendation-guided cyber
threat analysis using system audit records. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 489–506.

[50] Jun Zeng, Chuqi Zhang, and Zhenkai Liang. 2022. PalanTír: Optimizing Attack
Provenance with Hardware-enhanced System Observability. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
3135–3149.

[51] Tiantian Zhu, Jinkai Yu, Chunlin Xiong, Wenrui Cheng, Qixuan Yuan, Jie Ying,
Tieming Chen, Jiabo Zhang, Mingqi Lv, Yan Chen, et al. 2023. APTSHIELD: A
Stable, Efficient and Real-time APT Detection System for Linux Hosts. IEEE
Transactions on Dependable and Secure Computing (2023).

A More Experiments Details
A.1 Implementation
During the graph data construction phase, we used a batch-based
approach, setting the batch size to 20,000 log entries.We constructed
a Word2Vec model [30] by forming sentences from the first-order
neighbors of nodes and edge types. For structural feature extraction,
we employed a two-layer GAT architecture. Overall, we used DGL
[43] to build and train the graph model. For downstream detection
tasks, we utilized scikit-learn [37] to build the classification model.
The detailed training and detection process for STGAN is presented
in Appendix B.

A.2 Baseline Detector and Metrics.
We compared STGAN with several baseline methods, including
the Graph Sketching-based Unicorn [18] and Anograph [9] ap-
proach, spatial feature-based methods such as Threatrace [44] and
FLASH [38], and static low-dimensional feature-based HOLMES
[32]. These methods represent approaches focusing on spatial fea-
tures and those that incorporate temporal aspects. Additionally,
we also implemented a GAT-based [42] and TGN-based [39] anom-
aly detection method for comparison. More descriptions of these
baseline methods as follows.

• HOLMES [32]: This detector utilizes the APT lifecycle
model to define a set of TTP rules for matching in the
provenance graph, identifying nodes that conform to these
rules as anomalous.

• Unicorn [18]: This detector employs sketching techniques,
leveraging historical information to model and identify
anomalous activities.

• AnoGraph [9]: Also based on sketching techniques, this
detector defines a set of higher-order CMS structures and
detects anomalous edges and subgraphs by identifying
changes in local or global densities.

• Threatrace [44]: This detector uses GraphSAGE [17] to
learn node embeddings and performs anomaly detection.

• FLASH [38]: This detector extracts semantic features of
nodes using Word2Vec and then applies GAT for structural
feature extraction, followed by anomaly detection.

• GAT [42]: This is a detector we implemented, which first
learns node embeddings through GAT and then performs
anomaly detection.

• TGN [39]: Another detector we implemented, it uses one-
hot encoding for node types and learns node embeddings
through TGN, followed by anomaly detection.

We evaluated the model using accuracy, precision, recall, and F1
score. Since DARPA did not provide well-labeled data for the TC
dataset, but only raw log data and operational report files, we used
the labeled data from previous studies [44] for model evaluation.
Additionally, as the rule-based labeling system [32] does not have
publicly available code, we implemented and tested the system
based on the complete table provided in [32].

B Pseudo-codes of STGAN
The overall framework of STGAN is available in Algorithm 1.
This Pseudo-code implements STGAN that extracts spatial, tem-
poral, and semantic features of graph nodes using GAT, TGN, and
Word2Vec, respectively. It then combines these features via a multi-
head self-attention mechanism to classify and detect malicious
nodes in the graph.

Algorithm 1 STGAN Feature Extraction and Detection
Require: Dataset D, Word2Vec model𝑤2𝑣𝑚𝑜𝑑𝑒𝑙 , GAT model 𝐺 ,

TGN model 𝑇 , epochs 𝑛, node phrases 𝑃 , labels Y, graph edges
E, temporal edge attributes T

Ensure: Detected malicious nodesM
1: Initialize GAT𝐺 , TGN𝑇 , and Multi-Head Self-Attention model

A
2: Split dataset D into training set D𝑡𝑟𝑎𝑖𝑛 and test set D𝑡𝑒𝑠𝑡

3: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑛 do
4: for each node 𝑣 ∈ D𝑡𝑟𝑎𝑖𝑛 do
5: Extract phrase 𝑝𝑣 ∈ 𝑃 for node 𝑣
6: Compute Word2Vec embedding w𝑣 = 𝑤2𝑣𝑚𝑜𝑑𝑒𝑙 (𝑝𝑣)
7: Apply positional encoding: w′

𝑣 = PosEnc(w𝑣)
8: Concatenate GAT output h𝑣 and w′

𝑣 : z𝑣 = [h𝑣 ∥ w′
𝑣]

9: Pass z𝑣 through TGN: z′𝑣 = 𝑇 (z𝑣, E,T)
10: Fuse features via multi-head self-attention: o𝑣 = A(z′𝑣)
11: end for
12: end for
13: Evaluate the model on D𝑡𝑒𝑠𝑡

14: for each node 𝑣 ∈ D𝑡𝑒𝑠𝑡 do
15: Extract phrase 𝑝𝑣 ∈ 𝑃 and compute embeddings as in train-

ing
16: Classify node 𝑣 and rank predictions
17: end for
18: return Detected malicious nodesM

C Time Complexity of STGAN
The time complexity of STGAN can be assessed by analyzing its
key operations for feature extraction and detection on each node
within the provenance graph. First, the complexity for computing

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

STGAN: Detecting Host Threats via Fusion of Spatial-Temporal Features in Host Provenance Graphs Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Word2Vec embeddings is 𝑂 (|𝑉 | × 𝑑), where |𝑉 | represents the vo-
cabulary size and 𝑑 the embedding dimension, which are constant
post-training. In the GAT, each node interacts with 𝑘 neighbors,
leading to a complexity of 𝑂 (𝑘 × 𝑑 × 𝑑′); for the entire graph,
this scales to 𝑂 (|𝑁 | × 𝑘 × 𝑑 × 𝑑′), where |𝑁 | is the total num-
ber of nodes. Temporal features are extracted via the TGN with
a complexity of 𝑂 (𝑚 × 𝑡 × 𝑑′′), where𝑚 is the edge count, 𝑡 the
number of time steps, and 𝑑′′ the transformed feature dimension.

The multi-head self-attention mechanism for feature fusion has a
complexity of 𝑂 (ℎ × 𝑑 × |𝑁 |), where ℎ is the number of attention
heads. Therefore, the overall time complexity per epoch for STGAN
is: 𝑂 (𝑛 × (|𝑁 | × 𝑘 × 𝑑 × 𝑑′ +𝑚 × 𝑡 × 𝑑′′ + ℎ × 𝑑 × |𝑁 |)) This struc-
ture allows STGAN to scale effectively for streaming provenance
graph environments, with adjustable batch sizes that help manage
computational costs efficiently.

11

	Abstract
	1 Introduction
	2 Background
	2.1 Host Provenance Graph
	2.2 Provenance-based IDS
	2.3 Threat Model

	3 Design of STGAN
	3.1 Batch Provenance Graph Construction
	3.2 Spatial Encoder
	3.3 Temporal Encoder
	3.4 Multi-dimensional Feature Fusion
	3.5 Anomaly Detection

	4 Evaluation
	4.1 Experiments Setup
	4.2 Comparison Experiments
	4.3 Ablation Study
	4.4 Parameter Sensitivity Analysis

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References
	A More Experiments Details
	A.1 Implementation
	A.2 Baseline Detector and Metrics.

	B Pseudo-codes of STGAN
	C Time Complexity of STGAN

