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Abstract

Contrastive learning (CL) methods effectively learn data representations in a self-supervision
manner, where the encoder contrasts each positive sample over multiple negative samples via
a one-vs-many softmax cross-entropy loss. By leveraging large amounts of unlabeled image
data, recent CL methods have achieved promising results when pretrained on large-scale
datasets, such as ImageNet. However, most of them consider the augmented views from
the same instance are positive pairs, while views from other instances are negative ones.
Such binary partition insufficiently considers the relation between samples and tends to
yield worse performance when generalized on images in the wild. In this paper, to further
improve the performance of CL and enhance its robustness on various datasets, we propose
a doubly CL strategy that contrasts positive samples and negative ones within themselves
separately. We realize this strategy with contrastive attraction and contrastive repulsion
(CACR), which makes the query not only exert a greater force to attract more distant positive
samples but also do so to repel closer negative samples. Theoretical analysis reveals that
CACR generalizes CL’s behavior by positive attraction and negative repulsion. It further
considers the intra-contrastive relation within the positive and negative pairs to narrow the
gap between the sampled and true distribution, which is important when datasets are less
curated. Extensive large-scale experiments on standard vision tasks show that CACR not
only consistently outperforms existing CL methods on benchmark datasets, but also shows
better robustness when generalized on imbalanced image datasets.

1 Introduction

The conventional Contrastive Learning (CL) loss (Oord et al.,2018;|Poole et al., [2018]) has achieved remarkable
success in representation learning, benefiting downstream tasks in a variety of areas (Misra & Maaten) 2020;
He et al.l 2020; |Chen et al.l 2020a} [Fang & Xie, 2020; |Giorgi et al., |2020). This loss typically appears in
a one-vs-many softmax form to make the encoder distinguish the positive sample within multiple negative
samples. In image representation learning, this scheme is widely used to encourage the encoder to learn
representations that are invariant to unnecessary details in the representation space, for which the unit
hypersphere is the most common assumption (Wang et al., |2017; |Davidson et al., [2018; |Hjelm et al., |2018;
Tian et al.,|2019; Bachman et al.,|2019)). Meanwhile, the contrast with negative samples is demystified as
avoiding the collapse issue, where the encoder outputs a trivial constant, and uniformly distributing samples
on the hypersphere (Wang & Isolay, [2020). Beyond the usage of negative samples, several non-contrastive
methods in parallel considers using momentum encoders, stop gradient operation (Caron et al., 2020; |Chen &
Hel, 2021} |(Chen et al.l [2020a; (Caron et al.| [2021), etc.

To improve the quality of the contrast, various methods, such as large negative memory bank (Chen et al.,
2020c), hard negative mining (Chuang et al., |2020; [Kalantidis et al.| 2020), and using strong or multi-view
augmentations (Chen et al., 2020aj |Tian et al.,[2019; |[Caron et al.,|2020)), are proposed and succeed in learning
powerful representations. Since the conventional CL loss achieves the one-vs-many contrast with a softmax
cross-entropy loss, a notable concern is that the contrast could be sensitive to the sampled positive and
negative pairs (Saunshi et al.l |2019; |Chuang et al.l 2020). Given a sampled query, conventional CL methods
usually randomly take one positive sample and multiple negative samples, and equally treat them in a softmax
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Figure 1: Comparison of conventional contrastive learning (CL) and the proposed Contrastive Attraction and
Contrastive Repulsion (CACR) framework. For conventional CL, given a query, the model randomly takes one positive
sample to form a positive pair and compares it against multiple negative pairs, with all samples equally treated. For
CACR, using multiple positive and negative pairs, the weight of a sample (indicated by point scale) is contrastively
computed to allow the query to not only more strongly pull more distant positive samples, but also more strongly
push away closer negative samples.

cross-entropy form, regardless of how informative they are to the query. The sampled positive pair could make
the contrast either easy or difficult, while trivially selecting hard negative pairs could make the pretraining
inefficient, making the pretraining become less effective when generalized to real-world data, where the labels
are rarely distributed in a balanced manner (Li et al] [2020b} 2021)). In recent studies, a large of negative
sample manipulation is proposed to make the contrast more effective, such as ring annealing (Wu et al.|
2021)), maximizing margin within negatives (Shah et al., [2022), hard/soft nearest neighbor selection
et al.l [2021} |GE et al.] [2023]).

Considering the CL loss aims to train the encoder to distinguish the positive sample from multiple negative
samples, an alternative intuition is that the positive samples need to be pulled close, while negative samples
need to be pushed far away from the given query in the representation space. In addition to such a push-pull
diagram, the intra-relation within positive and negative samples should also be considered. This motivates
the construction of Contrastive Attraction and Contrastive Repulsion (CACR), a doubly CL framework where
the positive and negative samples are first contrasted within themselves before getting pulled and pushed
from the query, respectively. As shown in Figure [} unlike conventional CL, which equally treats samples and
pulls/pushes them in the softmax cross-entropy contrast, CACR not only considers moving positive/negative
samples close/away, but also models two conditional distributions to guide the movement of different samples.
The conditional distributions apply a doubly-contrastive strategy to compare the positive samples and the
negative ones within themselves separately. As an interpretation, if a selected positive sample is far from
the query, it indicates the encoder does not sufficiently capture some information. CACR will then assign a
higher probability for the query to pull this positive sample. Conversely, if a selected negative sample is too
close to the query, it indicates the encoder has difficulty distinguishing them, and CACR will assign a higher
probability for the query to push away this negative sample. This double-contrast method contrast positive
samples from negative samples, in a context of the relation within positives and negatives. We theoretically
analyze CACR is universal under general situations or conditions, without the need for modification, and
empirically demonstrate the learned representations are more effective and robust in various tasks. Our main
contributions include:

i) We propose CACR, which achieves contrastive learning and produces useful representations by attracting
the positive samples towards the query and repelling the negative samples away from the query, guided by
two conditional distributions.

ii) Our theoretical analysis shows that CACR generalizes the conventional CL loss. The conditional
distributions help treat the samples differently by modeling the intra-relation of positive/negative samples,
which is proved to be important when the datasets are less curated.

iii) Our experiments show that CACR consistently outperforms existing CL methods in a variety of settings,
achieving state-of-the-art results on various benchmark datasets. Moreover, in the case where the dataset has
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an imbalanced label distribution, CACR has better robustness and provides consistent better pretraining
results than conventional CL.

2 Related work

Plenty of unsupervised representation learning (Bengio et al., [2013) methods have been developed to learn
good data representations, e.g., PCA (Tipping & Bishop)| [1999), RBM (Hinton & Salakhutdinovl, 2006,
VAE (Kingma & Welling), [2014). Among them, CL (Oord et al. 2018) is investigated as a lower bound
of mutual information in early-stage (Gutmann & Hyvérinen, 2010; Hjelm et al., 2018)). Recently, many
studies reveal that the effectiveness of CL is not just attributed to the maximization of mutual information
(Tschannen et al 2019; Tian et all [2020a)). In vision tasks, SImCLR (Chen et al.| [2020a3b) studies extensive
augmentations for positive and negative samples and intra-batch-based negative sampling. A memory bank
that caches representations and a momentum update strategy are introduced to enable the
use of an enormous number of negative samples (He et al., 2020; |Chen et al.,|2020c)). Tian et al.| (2019; 2020b)
consider the image views in different modalities and minimize the irrelevant mutual information between
them. Empirical researches observe the merits of using “hard” negative samples in CL, motivating additional
techniques, such as Mixup and adversarial noise (Bose et al. 2018; (Cherian & Aeron 20205 [Li et al., |2020a)).
CL has also been developed in learning representations for text (Logeswaran & Lee, 2018)), sequential data
(Oord et all 2018; Hénaff et al., |2019)), structural data like graphs (Sun et al. [2020a; |[Li et al., 2019; |[Hassani
|& Khasahmadil, [2020; [Velickovic et all [2019), reinforcement learning (Srinivas et al., |2020), and few-shot
scenarios (Khosla et all 2020} [Sylvain et al 2020)). Besides vision tasks, CL methods are widely applied to
benefit in a variety of areas such as NLP, graph learning, and cross-modality learning (Misra & Maaten, [2020

He et al. 2020} [Chen et al [2020d} [Fang & Xie| 2020} [Giorgi et al., 2020} [Gao et al [2021; [Korbar et al.
2018 Jiao et al., [2020; [Monfort et all, [2021)).

RCR

In a view that not all negative pairs are “true” negatives (Saunshi et al. [2019), |Chuang et al.| (2020 propose
a decomposition of the data distribution to approximate the true negative distribution. RingCL
proposes to use “neither too hard nor too easy” negative samples by predefined percentiles, and
HN-CL (Robinson et all) [2021)) applies Monte-Carlo sampling for selecting hard negative samples.
selects negatives as the sparse support vectors and optimize in a max-margin manner. Besides, hard/soft
nearest neighbor selection are also consider as an effective way to select useful negative samples
let al., 2021} |GE et al., [2023)). Following works like Wang & Isola| (2020)), which reveal the contrastive scheme is
optimizing the alignment of positive samples and keeping the uniformity of negative pairs, instead of abusively
using negative pairs, recent self-supervised methods do not necessarily require negative pairs, avoiding the
collapse issue with stop gradient or a momentum updating strategy (Chen & Hel [2021} |Grill et al., 2020;
|Caron et al., 2021). In addition, |Zbontar et al.| (2021) propose to train the encoder to make positive feature
pairs have higher correlation and decrease the cross-correlation in different feature dimensions to avoid the
collapse. Another category is based on clustering, |Caron et al| (2020]) and [Li et al. (2020c¢) introduce the
prototypes as a proxy and train the encoder by learning to predict the cluster assignment. CACR is closely
related to the previous methods, and additionally consider the relation within positive samples and negative
samples. In our work, we leverage two conditional distribution to describe the relation between both positives
and negatives with respect to the query samples.

3 The proposed approach

In CL, for observations ®o.ps ~ Pdata (), we commonly assume that each x; can be transformed in certain
ways, with the samples transformed from the same and different data regarded as positive and negative samples,
respectively. Specifically, we denote T (x;, ¢;) as a random transformation of x;, where €; ~ p(€) represents
the randomness injected into the transformation. In computer vision, ¢; often represents a composition of
random cropping, color jitter, Gaussian blurring, etc. For each xg, with query @ = T (o, €p), we sample a
positive pair (z,z1), where ™ = T (2o, €e"), and M negative pairs {(z,z; ) }1.m, where x; = T (z;,¢€; ).
Denote 7 € RT, where Rt := {z : z > 0}, as a temperature parameter. With encoder fg : R® — S%! where
we follow the convention to restrict the learned d-dimensional features with a unit norm, we desire to have
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Figure 2: Tllustration of the CACR framework. The encoder extracts features from samples and the conditional
distributions help weigh the samples differently given the query, according to the distance of a query x and its
*,x~. ® means element-wise multiplication between costs and conditional weights.
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similar and distinct representations for positive and negative pairs, respectively, via the contrastive loss as

@x T ﬂl+ T
E [—ln efo(@) ' fol ,)/ __ ‘| ) (1)

; T z )T =
(@t @] ,,) efo (@) f9<w+>/r+2iefe( i) Te@)/T

Note by construction, the positive sample ™ is independent of @ given x, and the negative samples x;
are independent of . Intuitively, this 1-vs-M softmax cross-entropy encourages the encoder to not only
pull the representation of a randomly selected positive sample closer to that of the query, but also push the
representations of M randomly selected negative samples away from that of the query.

3.1 Contrastive attraction and contrastive repulsion

In the same spirit of letting the query attract positive samples and repel negative sam-
ples, Contrastive Attraction and Contrastive Repulsion (CACR) directly models the cost
of moving from the query to positive/negative samples with a doubly contrastive strategy:

Loacr = Banp@) Bt o (- 2,20) [c(fo(x), fo(z™T))]
Contrastive Attraction
+ ]Ea:fvp(:c)waNﬂ;(A | &) [70(]09(33)’ fg(ﬂ}'_))] )

Contrastive Repulsion

= Lca + Lcr, (2)

where we denote wT and 7~ as the conditional distributions of intra-positive contrasts and intra-negative
contrasts, respectively, and ¢(z1, z2) as the point-to-point cost of moving between two vectors z; and zs, e.g.,
the squared Euclidean distance ||z; — 22||? or the negative inner product —z7 z5. In the following we explain
the doubly contrastive components with more details.

Contrastive attraction: The intra-positive contrasts is defined in a form of the conditional probability,
where the positive samples compete to gain a larger probability to be moved from the query. Here we adapt
to CACR a Bayesian strategy in|Zheng & Zhou| (2021)), which exploits the combination of an energy-based
likelihood term and a prior distribution, to quantify the difference between two implicit probability distributions
given their empirical samples. Specifically, denoting dy+ (-, ) as a distance metric with temperature t+ € RT,
e.g., dp+ (21, z9) = tT||z1 — 222, given a query = T (x0, ), we define the conditional probability for moving
it to positive sample ™ = T (xg,e") as

ed 4+ (fo(=),fo(=T)) +
W;(CC+ |z, x0) = ¢ =] moﬁ(m [%0)
QT (x| xo) = /edw(fe(w),fs(m*))p(ﬁ | wo)da™, )
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where fg(-) is an encoder parameterized by 6 and QT (x) is a normalization term. This construction makes
it more likely to pull  towards a positive sample that is more distant in their latent representation space.
With equation [3] the contrastive attraction loss Lca measures the expected cost of moving a query to its
positive samples, as defined in equation [2] which more heavily weighs c(fo(x), fo(x™)) if fo(x) and fg(z™)
are further away from each other.

Contrastive repulsion: On the contrary of the contrastive attraction shown in equation [3| we define the
conditional probability for moving query x to a negative sample as

— _ —d,— (fg(®),fg(=7)) _
To (CC | 13) = € @ p(z ),
Q ()= [t e e 0

where t~ € RT is the temperature. This construction makes it more likely to move query x to a negative
sample that is closer from it in their representation space. With equation [d] the contrastive repulsion loss
Lcr measures the expected cost to repel negative samples from the query shown in equation [2] which more
heavily weighs c¢(fo(x), fo(x™)) if fo(x) and fo(z ™) are closer to each other.

Choice of ¢(-,-), di+(+,-) and d;-(+,-). There could be various choices for the point-to-point cost function
c(+,-), distance metric dy+ (-, -) in equation [3| and d;- (-, -) in equation 4| Considering the encoder fg outputs
normalized vectors on the surface of a hypersphere, maximizing the inner product is equivalent to minimizing
squared FEuclidean distance. Without loss of generality, we define them as

o(z,y) = |z -yl
de (z,y) = th e —y|3; 17 € Ry,
di-(z,y) =t |z —y[3; t € Ry

where tT,¢t~ € RT. There are other choices for c(+,-) and we show the ablation study in Appendix

3.2 Mini-batch based stochastic optimization

Under the CACR loss as in equation [2| to make the learning of fg(-) amenable to mini-batch stochastic
gradient descent (SGD) based optimization, we draw (', €;) ~ pgata(x)p(€) for i = 1,..., M and then

K3
approximate the distribution of the query using an empirical distribution of M samples as

pla) = & S0 6 — @); @ = T(@d™e, ¢;).

where the 6(-) denotes the Dirac delta function. With query x; and €1.x (S p(€), we approximate p(x; ) for
Eqn. equation 4 and p(x; | zd2t) for Eqn. equation 3| with @, = T (xzdat ¢;):

R _ A ata K
P(a;) = 371 DjpiOnyr Dl |28%) = £ 3050, 0, )

Note we may improve the accuracy of p(z; ) in equation [5| by adding previous queries into the support of this
empirical distribution. Other more sophisticated ways to construct negative samples (Oord et al., |2018; [He
et al., |2020; Khosla et al. |2020) could also be adopted to define p(z; ). We will elaborate these points when
describing experiments.

Plugging equation [§] into equation [3] and equation [l we approximate the conditional distributions
with discrete distributions and obtain a mini-batch based CACR loss as Lcacr = Lca + Lcr, where

ot Go@o) fo(f )

— LM K +
Loa = 77 2im1 2k T Ayt Go@dg (@i, ) xelfo(@:), fo(@iy)),
k'=1

M —d,_ (fg(x;).fg (@)
Lcr = *ﬁ Zi:l Zj;ﬁz’ S < ;—dt,<f;<mi>,f;(wj/)> x C(fe(wi)»fe(mj))~
!4

J'#

We optimize 6 via SGD using Vgﬁc ACR, With the framework instantiated as in Figure
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Table 1: Comparison with representative CL methods. K and M denotes the number of positive and negative
samples, respectively.

Intra-positive Intra-negative
Method Contrast Loss
contrast contrast

CL (Oord et al.||2018) 1-vs-M cross-entropy X X
AU-CL (Wang & Isola| [2020) 1-vs-M cross-entropy X X
HN-CL (Robinson et al.|[2021) 1-vs-M cross-entropy X v
CMC (Tian et al.|[2019) (12() x (1-vs-M cross-entropy) X X
CACR (ours) Intra- K-positive vs Intra-M-negative v v

Relation with typical CL loss: As shown in equation 2} with both the contrastive attraction component
and contrastive repulsion component, CACR loss shares the same intuition of conventional CL in pulling
positive samples closer to and pushing negative samples away from the query in their representation space.
However, CACR realizes this intuition by introducing the double-contrast strategy on the point-to-point
moving cost, where the contrasts appear in the intra-comparison within positive and negative samples,
respectively. The use of the double-contrast strategy clearly differs the CACR loss in equation [2] from the
conventional CL loss in equation [I} which typically relies on a softmax-based contrast formed with a single
positive sample and multiple equally-weighted independent negative samples. A summary of the comparison
between some representative CL losses and CACR is shown in Table

4 Property analysis of CACR

4.1 On contrastive attraction

We first analyze the effects w.r.t. the positive samples. With contrastive attraction, the property below
suggests that the optimal encoder produces representations invariant to the noisy details.

Property 1. The contrastive attraction loss Lca is optimized if and only if all positive samples of a query share
the same representation as that query. More specifically, for query @ that is transformed from xg ~ paata (),
its positive samples share the same representation with it, which means

fo(x1) = fo(x) for any = ~ w(zt |z, ). (6)

This property coincides with the characteristic (learning invariant representation) of the CL loss in [Wang &
Isolay (2020) when achieving the optima. However, the optimization dynamic in contrastive attraction evolves
in the context of & ~ mwg(x™ | &, x(), which is different from that in the CL.
Lemma 4.1. Let us instantiate c(fo(x), fo(xT)) = —fo(x)" fo(x). Then, the contrastive attraction loss
Lca in equation[d can be re-written as
i (2T | z,x0)

BaoBaatwp(- | 20) —fo(w)Tfe(-’B’L)ep(wim)o]a
which could further reduce to the alignment 10ss Egyrp,.,. (@) Eaat ~p(- | 20) [ffg(m)ng(er))] in |Wang €
Isola (2020), iff 74 (zF |z, 20) = p(zt | o).

Property [I| and Lemma [4.1] jointly show contrastive attraction in CACR and the alignment loss in CL
reach the same optima, while working in different sampling mechanism. In practice + and = are usually
independently sampled augmentations in a mini-batch, as shown in Section which raises a gap between
the empirical distribution and the true distribution. Our method makes the alignment more efficient by
considering the intra-relation of these positive samples to the query.

4.2 On contrastive repulsion

Next we analyze the effects w.r.t. the contribution of negative samples. \Wang & Isolal (2020) reveal that a
perfect encoder will uniformly distribute samples on a hypersphere under an uniform isometric assumption,
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i.e., for any uniformly sampled x, ™ ud p(x), their latent representations z = fg(x) and z— = fg(x ™) also
satisfy p(z) = p(z~). We follow their assumption to analyze contrastive repulsion via the following lemma.

Lemma 4.2. Without loss of generality, we define the moving cost and metric in the conditional distribution
as ¢(z1,22) = d(z1,22) = ||z1 — 22||3. When we are with an uniform prior, namely p(x) = p(xz~) for

any T, x" wd p(x) and p(z) = p(z~) given their latent representations z = fo(x) and z— = fo(x™), then
optimizing @ with Lcr in equation [ is the same as optimizing 6 to minimize the mutual information between
x and x~:

I(X;X7) = Eamp(o) E e, (7)

o=~y (-| @) @)

and is also the same as optimizing @ to mazximize the conditional differential entropy of *~ given x:
H(X™ | X) = Bampo By n (||~ 75 (2 |2)]. (8)

Here the minimizer 0* of Lcr is also that of I(X; X ™), whose global minimum zero is attained iff X and X~
are independent, and the equivalent mazimum of H(X ™| X) indicates the optimization of Lor is essentially
aimed towards the uniformity of representation about negative samples.

We notice that one way to reach the optimum suggested in the above lemma is optimizing @ by contrastive
repulsion until that for any x ~ p(x), d(fe(x), fo(x™)) is equal for all = ~ 7, (- | ). This means for any
sampled negative samples, their representations are also uniformly distributed after contrastive repulsion.
Interestingly, this is consistent with the uniformity property achieved by CL (Wang & Isolay [2020]), which
connects contrastive repulsion with CL in the perspective of negative sample effects.

Note that, although the above analysis builds upon the uniform isometric assumption, our method actually
does not rely on it. Here, we formalize a more general relation between the contrastive repulsion and the
contribution of negative samples in CL without this assumption as follows.

Lemma 4.3. As the number of negative samples M goes to infinity, the contribution of the negative samples
to the CL loss become the Uniformity Loss in AU-CL (Wang & Isold, |2020), termed as Luniform for simplicity.
It can be expressed as an upper bound of Lor by adding the mutual information I(X; X ) in equation @

Earp(a) [mEE,NP(E,)efeu*)Tfe(m)/T LI(XX) > Lon,

Luniform

As shown in Lemma, the mutual information I(X; X ™) helps quantify the difference between L, piform and
Lcr. The difference between drawing €~ ~ 7, (™ | ) (in CR) and drawing ~ independently in a mini-
batch (in CL) is non-trivial as long as I(X; X ) is non-zero. In practice, this is true almost everywhere since
we have to handle the skewed data distribution in real-world applications, e.g., the label-shift scenarios (Garg
et al., [2020)). In this view, CR does not require the representation space to be uniform like CL does, and is
more robust to the complex cases through considering the intra-contrastive relation within negative samples.

5 Experiments and empirical analysis

In this section, we first study the CACR behaviors with small-scale experiments, where we use CIFAR-10,
CIFAR-100 (Hintonl |2007) and create two class-imbalanced CIFAR datasets as empirical verification of
our theoretical analysis. We mainly compare with representative CL methods, divided into two different
categories according to their positive sampling size: K = 1 and K = 4. For methods with a single positive
sample (K = 1), the baseline methods include the conventional CL loss (Oord et al., [2018), AlignUniform CL
loss (AU-CL) (Wang & Isola), 2020), and the CL loss with hard negative sampling (HN-CL) (Robinson et al.,
2021)). In the case of K = 4, we take contrastive multi-view coding (CMC) loss (Tian et al.| |2019)) (align with
our augmentation settings and use augmentation views instead of channels) as the comparison baseline. For
a fair comparison, we keep for all methods with the same experiment setting including learning-rate, training
epochs, etc., but use their best temperature parameters; the mini-batch size for K = 4 is divided by 4 from
those when K =1 to make sure the encoder leverages same samples in each iteration.
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Figure 3: Conditional entropy H(X ~|X) w.r.t. epoch on CIFAR-10 (left) and linearly label-imbalanced CIFAR-10
(right). The maximal possible conditional entropy is marked by a dotted line.

For large-scale datasets, we use ImageNet-1K (Deng et al., 2009) and compare with the state-of-the-art
frameworks (He et al., [2020; Zbontar et al 2021; |Chen et al.l 2020a; |Caron et al., 2020; |Grill et al., |2020;
Huynh et al.l 2020 on linear probing, where we report the Top-1 validation accuracy on ImageNet-1K
data. We also report the results of object detection/segmentaion following the transfer learning protocol.
To further justify our analysis, we also leverage two large-scale but label-imbalanced datasets (Webvision
vl and ImageNet-22K) for linear probing pretraining. The reported numbers for baselines are from the
original papers if available, otherwise we report the best ones reproduced with the settings according to their
corresponding papers. Please refer to Appendix [C| for detailed experiment setups.

5.1 Studies and analysis on small-scale datasets

Classification accuracy: To facilitate the analysis, we apply all methods with an AlexNet-based encoder
following the setting in |Wang & Isola (2020), trained in 200 epochs. We pretrained the encoder on regular
CIFAR-10/100 data and create class-imbalanced cases by randomly sampling a certain number of samples from
each class with a “linear” or “exponentional” rule by following the setting in |Kim et al.| (2020). Specifically,
given a dataset with C classes, for class [ € {1,2,...,C}, we randomly take samples with proportion Léj
for “linear” rule and proportion exp(LéJ) for “exponential” rule. For evaluation we keep the standard
validation/testing datasets. Thus there is a label-shift between the training and testing data distributions.

Summarized in Table [2] are the results on both regular and class-imbalanced datasets. The first two columns
show the results pretrained with curated data, where we can observe that in the case of K = 1, where the
intra-positive contrast of CACR degenerates, CACR slightly outperforms all CL methods. When K =4, it
is interesting to observe an obvious boost in performance, where CMC improves CL by around 2-3% while
CACR improves CL by around 3-4%, which supports our analysis that CA is helpful when the intra-positive
contrast is not degenerated. The right four columns present the linear probing results pretrained with
class-imbalanced data, which show all the methods have a performance drop. It is clear that CACR has the
least performance decline in most cases. Especially, when K = 4, CACR shows better performance robustness
due to the characteristic of doubly contrastive within positive and negative samples. For example, in the
“exponentional” setting of CIFAR-100, CL and HN-CL drop 12.57% and 10.73%, respectively, while CACR
(K =4) drops 9.24%. It is also interesting to observe HN-CL is relatively better among the baseline methods.
According to [Robinson et al.| (2021), in HN-CL the negative samples are sampled according to the “hardness”
w.r.t. the query samples with an intra-negative contrast. Its loss could converge to CACR (K = 1) with
infinite negative samples. This performance gap indicates that directly optimizing the CACR loss could be
superior when we have a limited number of samples. With this class-imbalanced datasets, we provide the
empirical support to our analysis: When the condition in Lemma [£.2] is violated, CACR shows a clearer
difference than CL and a better robustness with its unique doubly contrastive strategy within positive and
negative samples.

On the effect of CA and CR: To further study the contrasts within positive and negative samples, in
each epoch, we calculate the conditional entropy with equation [§] on every mini-batch of the validation
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Table 2: The linear classification accuracy (%) of different contrastive objectives on small-scale datasets, pretrained
on regular and label-imbalanced CIFAR10/100 with AlexNet backbone. “Linear” and “Exponentional” indicate
the number of samples in each class are chosen by following a linear rule or an exponential rule, respectively. The
performance drops compared with the performance in regular CIFAR data are shown next to each result.

Label imbalance Regular Linear Exponential
Dataset CIFAR-10 CIFAR-100 | CIFAR-10 CIFAR-100| CIFAR-10 CIFAR-100
SimCLR (CL) 83.47 55.41 79.88359; 92.29357) | 71.7411.73; 43.2912.57
AU-CL 83.49 55.31 80.253.14; 52.7T4257) | 71.6211.76; 44.3810.93;
HN-CL 83.67 55.87 80.51315, 52.72314) | 72.7410.93, 45.1310.73;
CACR (K =1)| 83.73 56.52 80.463.97, 54.12340) |73.0210.71] 46.599 93
CMC (K =4) 85.54 58.64 82.203.34y 55.383.26) | 74771077y 48.879.77;
CACR (K =4)| 86.54 59.41 [83.62292 56.91350; |75.891065, 50.179.24;

Table 3: The top-1 classification accuracy (%) of different contrastive objectives with different training epochs
on small-scale datasets, following SimCLR setting and applying the AlexNet-based encoder.

Dataset Trained with 400 epochs Trained with 200 epochs
CL AU-CL HN-CL CACR(K=1)|CMC(K=4) CACR(K=4)
CIFAR-10 |83.61 83.57 83.72 83.86 85.54 86.54
CIFAR-100|55.41 56.07 55.80 56.41 58.64 59.41
STL-10 [83.49 83.43 8241 84.56 84.50 85.59

data and take the average across mini-batches. Then, we illustrate in Figure [3] the evolution of conditional
entropy H(X |X) w.r.t. the training epoch on regular CIFAR-10 and class-imbalanced CIFAR-10. As
shown, H(X ~|X) is getting maximized as the encoder is getting optimized, indicating the encoder learns
to distinguish the negative samples from given query. It is also interesting to observe that in the case with
multiple positive samples, this process is much more efficient, where the conditional entropy reaches the
possible biggest value rapidly. This implies the CA module can further boost the repulsion of negative
samples. From the gap between CACR and CMC, we can learn although CMC uses multiple positive in CL
loss, the lack of intra-positive contrast shows the gap of repulsion efficiency. In the right panel of Figure 3| the
difference between CACR and baseline methods are more obvious, where we can find the conditional entropy
of baselines is slightly lower than pretrained with regular CIFAR-10 data. Especially for vanilla CL loss, we
can observe the conditional entropy has a slight decreasing tendency, indicating the encoder hardly learns to
distinguish negative samples in this case. Conversely, CACR still shows to remain the conditional entropy at
a higher level, which explains the robustness shown in Table 2| and indicating a superior learning efficiency of
CACR. See Appendix for similar observations on CIFAR-100 and exponential label-imbalanced cases. In
that part, we provide more quantitative and qualitative studies on the effects of conditional distributions.

Does CACR(K > 2) outperform by seeing more samples? To address this concern, in our main
paper, we intentionally decrease the mini-batch size as M = 128. Thus the total number of samples used per
iteration is not greater than those used when K = 1. To further justify if the performance boost comes from
seeing more samples when using multiple positive pairs, we also let the methods allowing single positive pair
train with double epochs. As shown in Table[3] we can observe even trained with 400 epochs, the performance
of methods using single positive pair still have a gap from those using multiple positive pairs.

5.2 Comparison with SOTAs on large-scale datasets

For large-scale experiments, following the convention, we adapt CACR loss to the MoCo-v2 framework and
pretrain ResNet50 encoder with batch size 256 on ImageNet-1K.

Linear probing: Table 4] summarizes the results of linear classification, where a linear classifier is trained
on ImageNet-1K on top of fixed representations of the pretrained ResNet50 encoder. Similar to the case
on small-scale datasets, CACR consistently shows better performance than the baselines using contrastive
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Table 4: Top-1 classification accuracy (%) comparison with Table 5: Top-1 classification accuracy (%) on ImageNet-
SOTAs including non-contrastive and contrastive methods, 1K, with the pre-trained ResNet50 on large-scale regu-
pretrained with ResNet50 encoder on ImageNet-1K dataset. lar (200 epochs) and label-imbalanced (100/20 epochs)
We mark Top-3 best results in bold and highlight CL. meth- datasets. The performance drops are shown next to each

ods. result.
Methods Batch-size| Accuracy Pretrained data | Methods Accuracy
Non-Contrastive SBizrllrllgci)xzwms 1205264 ;ig MoCov2 67.5
(o, Negatives) |SWAY (wo/w multiccrop)| 4096|718 / 75.3 ImageNet-1K | CACR (K=1)169.5
wo. Negatives) | gy, 4096 74.3 CACR (K=4)|70.4
Contrastive SimCLR 4096 717 MoCov2 62.35.2;
MoCov2 256 72.2 Webvision vl |CACR (K=1)|64.55,
FNC (w multi-crop) 4096 74.4 CACR (K:4) 66.14.3]
(w. Negatives) |CACR (K=1) 256 73.7 MoCov?2 59.9 .
CACR (K=4) 256 74.4 oov 99-97.6)
ImageNet-22K | CACR (K=1)|61.97¢,
CACR (K=4)|64.55.0,
2 = p 2 5 2
z g ¢ g, = g .
= s = £ g § - A D
= S S R\ 13} ) o] < — s [ o 5 ° < e
i | § 2 =2 £ ¢ 5 o 2 g82::og o:o:z$ idis|i &
= S £ £ § 3 ¢ E z Tz T E 2 £ & %2 %oz %oy |3 #
a § 8 © &8 & & & E €& v £ 2 5§ &8 &8 & & B & 2 |5 %

MoCov3 | 73.7 703 174 2.3 456 60.0 13.5 27.6 16.5 50.8 43.5 18.1 65.7 77.1 50.9 50.7 58.2 11.2 25.7 |39.3 4
CACR 84.8  67.6 243 25 51.2 73.6 230 21.4 17.0 23.7 51.8 454 44.0 81.1 79.4 584 51.2 49.1 10.8 69.0 |46.5 16
Gains | 4+11.1 -27 +46.9 +0.24+5.6 +13.6 +9.5 +14.2 -10.6 +7.2 +1.0 +1.9 +25.9 +15.4 +2.3 +7.5 +0.4 -9.1 -0.3 +43.3 |+7.2

N
¥

MoCov3 80.8 785 60.5 4.8 57.1 77.1 20.5 11.8 36.6 31.4 50.7 46.7 64.1 79.5 76.2 54.7 50.0 61.1 13.4 47.9 |50.2 4

CACR 79.3 854 629 4.7 57.1 76.1 18.3 21.6 40.9 32.9 50.9 50.3 69.2 84.6 81.2 56.9 51.8 61.7 21.1 744 |54.1 15
Gains 15 46.9 4+2.4 -0.1 +0.0 -1.0 -2.2 +9.8 +4.34+1.5+0.24+3.6 +5.1 +5.1 +5.042.2 +1.8 +0.6 +7.7 +26.5 |+3.9

Linear Finetune

Table 6: Comparison of CACR and MoCov3 pre-trained ViT-B/16 encoder on ELEVATER benchmark (Li et al.)
2022|) . We conduct 5-shot fine-tuning and linear-probing on 20 datasets. We calculate the gains marked in green for
positive results. The mean score and number of wins are reported in the last two columns.

loss, improving SimCLR and MoCov2 by 2.7% and 2.2% respectively. Compared with other non-contrastive
self-supervised SOTAs, CACR also shows on par performance.

Label-imbalanced case: To strengthen our analysis on small-scale label-imbalanced data, we specially
deploy two real-world, but less curated datasets Webvision vl and ImageNet-22K that have long-tail label
distributions for encoder pretraining and evaluate the linear classification accuracy on ImageNet-1K. We
pretrain encoder with 100/20 epochs on Webvision v1/ImageNet-22K and compare with the encoder pretrained
with 200 epochs on ImageNet-1K to make sure similar samples have been seen in the pretraining. The results
are shown in Table [5] where we can see CACR still outperforms the MoCov2 baseline and shows better
robustness when generalized to wild image data.

Few-shot image classification: To measure the efficiency in adapting the pre-trained model to a wide
range of downstream data-sets (Kornblith et al.| |2021), we employ the recently developed ELEVATER
benchmark (Li et al., [2022) to consider a 5-shot transfer learning setting: the pre-trained ViT-B/16 is
evaluated with fine-tuning and linear probing on 20 public image classification data sets, where for each
data set 5 training samples are randomly selected to train the model for 50 epochs before the test score is
reported, and 3 random seeds are considered for each data set. We deploy the automatic hyper-parameter
tuning pipeline implemented in ELEVATER to make a fair fine-tuning and linear probing comparison of
pre-trained models. The original metrics of each dataset are used with more details provided in [Li et al.
(2022) and Appendix |Cl To measure the overall performance, we consider the average scores over 20 datasets,
and “# Wins' indicates the number of data sets on which the current model outperforms its counterpart. As
shown in Table [6] we observe our CACR outperforms MoCov3 in 75% of the downstream datasets, indicating
the representation efficiency of transferring in downstream applications.

Object detection and segmentation: Besides the linear classification evaluation, following the protocols
in previous works (Tian et al., 2019; [He et al.| 2020; |Chen et al., |2020c; [Wang & Isolal, |2020)), we use the
pretrained ResNet50 on ImageNet-1K for object detection and segmentation task on Pascal VOC (Everingham
et al.; |2010) and COCO (Lin et al., [2014) by using detectron2 (Wu et al., [2019). The experimental setting
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Table 7: Results of transferring features to object detection and segmentation task on Pascal VOC, with the pre-trained
ResNet50 on ImageNet-1k. Contrastive learning methods are highlighted.

VOC 07412 detection| COCO detection | COCO instance seg.

Method AD., AP  AD.. [AP:g AD AD. AP, AP AP

scratch 602 338 331 | 440 264 278|469 293 308
supervised $13 535 588 |58.2 382 412|547 333 352
oo [BYOL S14 553 611 | 578 379 409|543 332 350
SwAV $15 554 614 | 57.6 37.6 40.3 | 542 331 351

(o, Nogatives) |SHSim | 824 570 637 | 503 302 421560 344 367
Barlow Twins| 82.6 56.8 634 | 50.0 39.2 425 |56.0 34.3  36.5

como o |SmCLR S18 555 614 | 577 37.0 409|546 333 353
MoCov2 823 570 633 |588 39.2 425|555 343 366

AU-CL 825 57.2 638 |584 391 42.2|557 341  36.3

(w. Negatives) |CACR(K=1) |82.8 57.8 642 |589 30.3 425|556 344 367
CACR(K=4) | 82.8 57.9 64.9 |59.8 40.0 42.7|55.8 35.0 37.0

details are shown in Appendix and kept the same as [He et al.| (2020]) and |Chen et al| (2020c). The
test AP, AP5g, and AP75 of bounding boxes in object detection and test AP, AP5q, and AP75 of masks in
segmentation are reported in Table [7] We can observe that the performances of CACR is consistently better

than baselines using contrastive objectives, and better than recent non-contrastive self-supervised learning
SOTAs.

6 Conclusion

In this paper, we rethink the limitation of conventional contrastive learning (CL) methods that use the
contrastive loss but merely consider the intra-relation between samples. We introduce a novel Contrastive
Attraction and Contrastive Repulsion (CACR) loss with a doubly contrastive strategy, which constructs
for two conditional distributions to respectively model the importance of a positive sample and that of a
negative sample to the query according to their distances to the query. Our theoretical analysis and empirical
results show that the CACR loss can effectively attract positive samples and repel negative ones from the
query as CL intends to do, but is more robust in more general cases. Extensive experiments on small,
large-scale, and imbalanced datasets consistently demonstrate the superiority and robustness of CACR over
the state-of-the-art methods in contrastive representation learning and related downstream tasks.

Broader Impact Statement

Contrastive learning (CL) is effective in learning data representations without label supervision and has led to
notable recent progresses in a variety of research areas, such as computer vision. Recently proposed advanced
CL methods often require a huge amount of data and thus cost large computational energy. Especially in the
case where one needs to use multiple positive pairs in the contrast. Instead of contrasting each positive pair
over multiple negative pairs with the classic softmax cross-entropy, our work discovers that the contrastive
attraction within positives and contrastive repulsion within negatives bring new insight in self-supervised
representation learning. CACR, which naturally takes multiple positive samples in the contrast without
making the contrast complexity become combinatorial in the number of positive pairs, has demonstrated
clear improvements over existing CL methods. However, the same as existing CL methods, our method is not
designed to resist the potential biases existing in the dataset, e.g. the false negatives in data. At the current
stage, CACR relies on the positive contrast to implicitly alleviate this issue: if a false negative sample is
repelled too far away from the query, in the positive attraction, it will be assigned with larger probability to
be pulled back. This raises the risk of the quality of learned representations. In the future work, we aim
and also encourage other researchers to consider the resistance of these potential risks to make the learned
representations more robust and powerful.
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Appendix
A Proofs and detailed derivation

Proof of Property (i By definition, the point-to-point cost ¢(z1, z2) is always non-negative. Without loss
of generality, we define it with the Euclidean distance. When equation [6] is true, the expected cost of moving
between a pair of positive samples, as defined as Lca in equation [2] will reach its minimum at 0. When
equation [6] is not true, by definition we will have Lca > 0, i.e., Lca = 0 is possible only if equation [6] is
true. O

Proof of Lemma [4.1] By changing the reference distribution of the expectation from 74 (- |z, o) to
p(-| o), we can directly re-write the CA loss as:

Lcoa = Ea:Np(w)Ew+~7r;r(' | ,20) [C(fg(:c), fﬂ(m+))]

ot (xt |z,
= EaoBaatp( 20 {—fe(w)Tfe(:ch)M} ,

p(xt [zo)

which complete the proof. O
Proof of Lemvma [{.2 Denoting

Z(x) = /e—d(fe(m)vfe(w*))p(x—)dw—’
we have

Inmg (@~ |x) = —d(fo(z), fo(z™)) + Inp(z™) — In Z(x).

Thus we have

Ler =Eonp@) By or () ayn7e (@7 |2) —Inp(z”) +In Z(z)]

2}

=C1+Cy —H(X | X) 9)

where C = EwNp(w)Em,Nﬂe_(. \zyInp(x7)] and C2 = —~Egp(z) In Z(2). Under the assumption of a uniform
prior on p(x), C; becomes a term that is not related to 8. Under the assumption of a uniform prior on p(z),
where z = fg(z), we have
Z2(x) = Ep p(a) [e—d(fe(m%fe(ﬂf))]
=E. p(a) [~z 2" (="~2)]

z=~p
oc/ef(szz)T(szz)dzf
- (10)

which is also not related to 8. Therefore, under the uniform prior assumption on both p(x) and p(z),
minimizing Lcg is the same as maximizing H(X ~ | X), as well as the same as minimizing I(X, X ).

O

Proof of Lemma [4.5 The CL loss can be decomposed as an expected dissimilarity term and a log-sum-exp
term:

Ly = E

(.2t ®],,)

M
1 _
=E ot [_Tfe(ﬂﬂ)Tfe(er)] t B [ln <ef9(m)Tf"(‘””+)/ Ty el )Tfe(mwﬂ :

+ 2 ;
C A Y i=1

1 ofo(@) T fola)/r
T @) S @ 1y elo(@ )T fo(@)/T
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where the positive sample ™ is independent of @ given @ and the negative samples x; are independent of
. As the number of negative samples goes to infinity, following Wang & Isolal (2020), the normalized CL loss
is decomposed into the sum of the align loss, which describes the contribution of the positive samples, and
the uniform loss, which describes the contribution of the negative samples:

3 1 ™)’ x)/T
]\}gnOOECL —InM =Eq .+ {Tfe(ic)Tfe(er)} + E : {ln E efol@) fol@)/

ep(@) | @ ~pla-)

contribution of positive samples contribution of negative samples

With importance sampling, the second term in the RHS of the above equation can be further derived into:
E {m E efe(w)Tfe(w)/-r:|
x~p(x) x~~p(x~)
= E [m E [efe(m_)Tfe(w)/Tp(w):|:|
z~p(x) x— ~mo(z— |x) 7o(z~|x)

Apply the Jensen inequality, the second term is decomposed into the negative cost plus a log density ratio:

E {m E efe(m)Tfe(m)/T]
wp@) [ 2 ~ple)

> E [ E [fe(fv‘)Tfe(w)/T]]+ E [ B o) {lnp(w_)”

a~p(a) |z~ ~mo(z|2) zrp(a) (@ ~me (@ mo(z~ | )

e~p(@) Lz~ ~mo(z— | )

[fe<w->Tfo<w>/Tﬂ (XX

Defining the point-to-point cost function between two unit-norm vectors as c(z1, 22) = —z{ 22 (same as the
Euclidean cost since ||z1 — 22]|3/2 =1 — 2] 23 ), we have

E {111 E efe(“”_)Tf"(w)/T}JrI(X;X)
x)

@~p( x~ ~p()

> E [ E [fe(w)Tfe(l‘)/T]]

z~p(x) Lo ~mo (x| T)

xz~p(x) e~ (™ | @)

(e(fo(z"), fe<w>>/r]]

= Lcr-

This concludes the relation between the contribution of the negative samples in CL and that in CACR.
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B Additional experimental results

In this section, we provide additional results in our experiments, including ablation studies, and corresponding
qualitative results.

B.1 Additional results with AlexNet and ResNet50 encoder on small-scale datasets

Following benchmark works in contrative learning, we add STL-10 dataset to evaluate CACR in small-scale
experiments. As an additional results on small-scale datasets, we test the performance of CACR two different
encoder backbones. Here we strictly follow the same setting of Wang & Isola| (2020) and [Robinson et al.
(2021), and the results are shown in Table [§] and @ We can observe with ResNet50 encoder backbone, CACR
with single positive or multiple positive pairs consistently outperform the baselines. Compared with the
results in Table [§] the CACR shows a more clear improvement over the CL baselines.

Table 8: The top-1 classification accuracy (%) of different contrastive objectives with SimCLR framework on
small-scale datasets. All methods follow SImCLR setting and apply AlexNet encoder and trained with 200
epochs.

Dataset | CL AU-CL HN-CL CACR(K=1)|CMC(K=4) CACR(K=4)

CIFAR-10 |83.47 83.39 83.67 83.73 85.54 86.54
CIFAR-100|55.41 55.31  55.87 56.52 58.64 59.41
STL-10 |83.89 84.43 83.27 84.51 84.50 85.59

Table 9: The top-1 classification accuracy (%) of different contrastive objectives with SimCLR framework on
small-scale datasets. All methods follow SimCLR setting and apply a ResNet50 encoder and trained with 400
epochs.

Dataset | CL AU-CL HN-CL CACR(K=1)|CMC(K=4) CACR(K=4)

CIFAR-10 |88.70 88.63 89.02 90.97 90.05 92.89
CIFAR-100|62.00 62.57 62.96 62.98 65.19 66.52
STL-10 |84.60 83.81 84.29 88.42 91.40 93.04

B.2 On the effects of conditional distribution

Supplementary studies of CA and CR: As a continuous ablation study shown in Figure [3] we also
conduct similar experiments on CIFAR-100, where we study the evolution of conditional entropy H(X ~|X)
w.r.t. the training epoch. The results are shown in Figure 4l and the results of exponential label-imbalanced
data are shown in Figure [5] Similar to the observation on CIFAR-10, shown in Figure [3] we can observe
H(X|X) is getting maximized as the encoder is getting optimized with these methods, as suggested in
Lemma In the right panel, We can observe baseline methods have lower conditional entropy, which
indicates the encoder is less effective in distinguish the nagative samples from query, while CACR consistently
provides better performance than the other methods indicating the better robustness of CACR.

As a qualitative verification, we randomly take a query from a mini-batch, and illustrate its positive and
negative samples and their conditional probabilities in Figure [6] As shown, given this query of a dog image,
the positive sample with the largest weight contains partial dog information, indicating the encoder to focus on
texture information; the negatives with larger weights are more related to the dog category, which encourages
the encoder to focus on distinguishing these “hard” negative samples. In total, the weights learned by CACR
enjoy the interpretability compared to the conventional CL.

We study different definition of the conditional distribution. From Table we can observe that the results
are not sensitive to the distance space. In addition, as we change 7 to assign larger probability to closer
samples, the results are similar to those using single positive pair (K=1). Moreover, the performance drops if
we change m_ to assign larger probability to more distant negative samples.

Uniform Attraction and Uniform Repulsion: A degenerated version of CACR
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Figure 4: (Supplementary to Figure @ Conditional entropy H(X ~|X) w.r.t. training epoch on CIFAR-100
(left) and linear label-imbalanced CIFAR-100 (right). The maximal possible conditional entropy is indicated
by a dotted line.
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Figure 5: (Supplementary to Figure @ Conditional entropy H(X ~|X) w.r.t. training epoch on exponential
label-imbalanced CIFAR-10 (left) and CIFAR-100 (right). The maximal possible conditional entropy is
indicated by a dotted line.

To reinforce the necessity of the contrasts within positives and negatives before the attraction and repulsion,
we introduce a degenerated version of CACR here, where the conditional distributions are forced to be
uniform. Remind c¢(z1, 22) as the point-to-point cost of moving between two vectors z; and za, e.g., the
squared Euclidean distance ||z1 — 22||? or the negative inner product —z{ z5. In the same spirit of equation
we have considered a uniform attraction and uniform repulsion (UAUR) without doubly contrasts within
positive and negative samples, whose objective is

i { B (@) Beo.ctmpie) [(fo(@), fo(@T)] = Bao-np) [c(fo(@), fo(@7))]} - (11)

The intuition of UAUR is to minimize/maximize the expected cost of moving the representations of posi-
tive/negative samples to that of the query, with the costs of all sample pairs being uniformly weighted. While
equation [I] has been proven to be effective for representation learning, our experimental results do not find
equation to perform well, suggesting that the success of representation learning is not guaranteed by
uniformly pulling positive samples towards and pushing negative samples away from the query.

Distinction between CACR and UAUR: Compared to UAUR in equation [11] that uniformly weighs
different pairs, CACR is distinct in considering the dependency between samples: as the latent-space distance
between the query and its positive sample becomes larger, the conditional probability becomes higher,
encouraging the encoder to focus more on the alignment of this pair. In the opposite, as the distance between
the query and its negative sample becomes smaller, the conditional probability becomes higher, encouraging
the encoder to push them away from each other.
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Bottom 4 Negative samples

Figure 6: Illustration of positive/negative samples and their corresponding weights. (Left) For a query augmented
from the original dog image, 4 positive samples are shown, with their weights visualized as the blue distribution.
(Right) The sampling weights for negative samples are visualized as the red distribution; we visualize 4 negative
samples with the highest and 4 with the lowest weights, with their original images shown below.

Table 10: Linear classification performance (%) of different variants of conditional probability. This experiment
is done on CIFAR-10, with K = 4 and mini-batch size M = 128.

T+
e+dt+(f3(m)’f9(w+)>p(:c+ |fc0) e_dt+(f9(w)’f9(w+))p(:c+ |w0)
fe+dt+(f9(w);f9(m+))p(m+ | 2o)dz+ fe*dtJr(f@(m):fg(er))p(mJr | 2o)dz+
—d,_ (fg(®),fo(z7)) -
A 86.48 83.91
- fe t—Jeix)Je p(x—)dxe—
+d,_ (fg (=), fg(=7)) -
e pl@) 79.46 74.91
fe t—Jer=hIe p(z=)dz—

In order to further explore the effects of the conditional distribution, we conduct an ablation study to
compare the performance of different variants of CACR with/without conditional distributions. Here,
we compare 4 configurations of CACR (K = 4): (i) CACR with both positive and negative conditional
distribution; (#) CACR without the positive conditional distribution; (é7) CACR without the negative
conditional distribution; (iw) CACR without both positive and negative conditional distributions, which
refers to UAUR model (see Equation . As shown in Table when discarding the positive conditional
distribution, the linear classification accuracy slightly drops. As the negative conditional distribution is
discarded, there is a large performance drop compared to the full CACR objective. With the modeling
of neither positive nor negative conditional distribution, the UAUR shows a continuous performance drop,
suggesting that the success of representation learning is not guaranteed by uniformly pulling positive samples
closer and pushing negative samples away. The comparison between these CACR variants shows the necessity
of the conditional distribution.

Table 11: Linear classification performance (%) of different variants of our method. “CACR” represents
the normal CACR configuration, “w/o 74 ” means without the positive conditional distribution, “w/o
means without the negative conditional distribution. “UAUR” indicates the uniform cost (see the model we
discussed in Equation, i.e. without both positive and negative conditional distribution. This experiment

is done on all small-scale datasets, with K = 4 and mini-batch size M = 128.

Methods CIFAR-10 CIFAR-100 STL-10
CACR 85.94 59.51 85.59

Y

w/o s  85.22 58.74 85.06
w/om, 7849 47.88 72.94
UAUR  77.17 44.24 71.88
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As qualitative illustrations, we randomly fix one mini-batch, and randomly select one sample as the query.
Then we extract the features with the encoder trained with CL loss and CACR (K = 1) loss at epochs 1,
20, and 200, and visualize the (four) positives and negatives in the embedding space with ¢-SNE (van der
Maaten & Hinton, [2008). For more clear illustration, we center the query in the middle of the plot and only
show samples appearing in the range of [—10,10] on both x and y axis. The results are shown in Figure
from which we can find that as the the encoder is getting trained, the positive samples are aligned closer
and the negative samples are pushed away for both methods. Compared to the encoder trained with CL, we
can observe CACR shows better performance in achieving this goal. Moreover, we can observe the distance
between any two data points in the plot is more uniform, which confirms that CACR. shows better results in
the maximization of the conditional entropy H (X ~|X).
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Figure 7: The ¢-SNE visualization of the latent space at different training epochs, learned by CL loss (top)
and CACR loss (bottom). The picked query is marked in green, with its positive samples marked in blue
and its negative samples marked in red. The circle with radius ¢~ is shown as the black dashed line. As the
encoder gets trained, we can observe the positive samples are aligned closer to the query (Property , and the
conditional differential entropy H (X ~|X) is progressively maximized, driving the distances d(fg(x), fo(z ™))
towards uniform (Lemma .

B.3 Ablation study

On the effects of negative sampling size: We investigate the model performance and robustness with
different sampling size by varying the mini-batch size used in the training. On all the small-scale datasets, the
mini-batches are applied with size 64, 128, 256, 512, 768 and the corresponding linear classification results are
shown in Figure|8] From this figure, we can see that CACR (K = 4) consistently achieves better performance
than other objectives. For example, when mini-batch size is 256, CACR (K = 4) outperforms CMC by about
0.4%-1.2%. CACR (K = 1) shows better performance in most of the cases, while slightly underperforms
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than the baselines with mini-batch size 64. A possible explanation could be the estimation of the conditional
distribution needs more samples to provide good guidance for the encoder.
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Figure 8: The linear classification results of training with different sampling size on small-scale datasets. The
training batch size is proportional to the negative sampling size.

On the effects of positive sampling size: We conduct experiments to investigate the model performance
with different positive sampling size by using different K values in the pretraining: K € {1,2,4,6,8,10} on
CIFAR-10/100 and K € {1,2,3,4} on ImageNet-1K. Similar to our experiment setting, in 200 epochs, we
apply AlexNet encoder on CIFAR-10 and CIFAR-100 and apply ResNet50 encoder on ImageNet-1K. Shown
in Figure [0] we can observe as K increases, the linear classification accuracy increases accordingly.
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Figure 9: The linear classification results of training with different positive sampling size on CIFAR-10,
CIFAR-100 and ImageNet-1K. An AlexNet encoder is applied on CIFAR-10 and CIFAR-100; ResNet50
encoder is applied on ImageNet.

On the effects of hyper-parameter ¢, t7: Remind in the definition of positive and negative conditional
distribution, two hyper-parameters t* and ¢t~ are involved as following:

2
et te@—Fo =yt | o)
etT o (@) —fo (@D p(p+ | zg)dat’

et Ife@—fo@ )% (5

Tg (™ |T) = [e=t o —fo@ % p(z—)da—"

g (xt |z, @) = T

In this part, we investigate the effects of tT and ¢t~ on representation learning performance on small-scale
datasets, with mini-batch size 768 (K = 1) and 128 (K = 4) as an ablation study. We search in a range
{0.5,0.7,0.9,1.0,2.0,3.0}. The results are shown in Table [12] and Table

As shown in these two tables, from Table we observe the CACR shows better performance with smaller
values for ¢T. Especially when ¢T increases to 3.0, the performance drops up to about 1.9% on CIFAR-100.
For analysis, since we have K = 4 positive samples for the computation of positive conditional distribution,
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Table 12: The classification accuracy(%) of CACR (K =4, M = 128) with different hyper-parameters ¢ on
small-scale datasets.

Method | Dataset | 0.5 0.7 09 10 20 30

CIFAR-10 | 86.07 85.78 85.90 86.54 84.85 84.76
CACR (K =4) | CIFAR-100 | 59.47 59.61 59.41 59.41 57.82 57.55
STL-10 85.90 85.91 85.81 85.59 85.65 85.14

using a large value for ¢+ could result in an over-sparse conditional distribution, where the conditional
probability is dominant by one or two positive samples. This also explains why the performance when
t* = 3.0 is close to the classification accuracy of CACR (K = 1).

Similarly, from Table we can see that a small value for ¢t~ will lead to the degenerated performance. Here,
since we are using mini-batches of size 768 (K = 1) and 128 (K = 4), a small value for ¢t~ will flatten the
weights of the negative pairs and make the conditional distribution closer to a uniform distribution, which
explains why the performance when ¢~ = 0.5 is close to those without modeling 7, . Based on these results,
the values of ¢t € [0.5,1.0] and ¢~ € [0.9,2.0] could be good empirical choices according to our experiment
settings on these datasets.

B.4 Additional comparisons

In this part we provide more comparisons with baseline methods. For small-scale experiments, we still
compare with contrastive learning methods, conventional CL loss, align-uniform loss, and hard negative
sampling CL loss. For large-scale experiments, we continue to compare with contrastive learning loss on
ImageNet-100 and ImagNet-1K with MoCov2 framework, and provide comparisons with SOTAs pretrained
with different epochs.

Training efficiency on small-scale datasets: On CIFAR-10, CIFAR-100 and STL-10, we pretrained
AlexNet encoder in 200 epochs and save linear classification results with learned representations every 10
epochs. Shown in Figure[I0] CACR consistently outperforms the other methods in linear classification with the
learned representations at the same epoch, indicating a superior learning efficiency of CACR. Correspondingly,
we also evaluate the GPU time of CACR loss with different choices of K, as shown in Table

Comparison with contrastive learning methods on ImageNet: For large-scale experiments, following
the convention, we adapt all methods into the MoCo-v2 framework and pre-train a ResNet50 encoder in
200 epochs with mini-batch size 128/256 on ImageNet-100/ImageNet-1k. Table [15|summarizes the results
of linear classification on these two large-scale datasets. Similar to the case on small-scale datasets, CACR
consistently shows better performance, improving the baselines at least by 1.74% on ImageNet-100 and 0.71%
on ImageNet-1K. In MoCo-v2, with multiple positive samples, CACR improves the baseline methods by
2.92% on ImageNet-100 and 2.75% on ImageNet-1K. It is worth highlighting that the improvement of CACR
is more significant on these large-scale datasets, where the data distribution could be much more diverse
compared to these small-scale ones. This is not surprising, as according to our theoretical analysis, CACR’s

Table 13: The classification accuracy(%) of CACR (K =1, M = 768) and CACR (K =4, M = 128) with
different hyper-parameters t~ on small-scale datasets.

Methods ‘ Dataset ‘ 0.5 0.7 0.9 1.0 2.0 3.0

CIFAR-10 | 81.66 82.40 83.07 82.74 83.73 83.11
CACR (K =1) | CIFAR-100 | 51.42 52.81 53.36 54.20 56.21 56.52
STL-10 80.37 81.47 84.46 82.16 84.21 84.51

CIFAR-10 | 85.67 86.19 86.54 86.41 85.94 85.69
CACR (K =4) | CIFAR-100 | 58.17 58.63 59.37 59.35 59.41 59.31
STL-10 83.81 84.42 84.71 8525 85.59 8541
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Figure 10: Comparison of training efficientcy: Linear classification with learned representations w.r.t. training
epoch on CIFAR-10, CIFAR-~100 and STL-10.

Table 14: GPU time (s) per iteration of CACR w.r.t. different K on CIFAR-10 with AlexNet framework (mini-batch
size is 128), tested on Tesla-v100 GPU.

K 1 2 4 6 8 10
GPU time (s) / iteration |0.0021 0.0026 0.0035 0.0045 0.0054 0.0064

double-contrast within samples enhances the effectiveness of the encoder’s optimization. Moreover, we can
see CACR (K = 1) shows a clear improvement over HN-CL. A possible explanation is that although both
increasing the negative sample size and selecting hard negatives are proposed to improve the CL loss, the
effectiveness of hard negatives is limited when the sampling size is increased over a certain limit. As CACR
targets to repel the negative samples away, the conditional distribution still efficiently guides the repulsion
when the sampling size becomes large.

Table 15: Comparison with contrastive learning Table 16: Comparison with state-of-the-arts on linear
methods: Top-1 classification accuracy (%) of differ-  probe classification accuracy, pretrained with differ-
ent contrastive learning objectives on MoCo-v2 frame-  ent epochs, using ResNet50 encoder backbone on
work and ResNet50 encoder, pretrained on ImageNet-  ImageNet-1k.

1K d.ataset with 200 epochs. The results from paper Epochs 100 200 400 800 1000
or Github page are marked by *. BYOL 665 70.6 732 74.3 -
Methods ‘ImageNet—lOO ImageNet-1K BarlowTwins _ _ _ _ 73.9
MoCov2 (CL) 77.54* 67.50* SWAV 66.5 69.1 70.7 71.8 -
AU-CL 77.66% 67.69* Simsiam 68.1 70.0 70.8 71.3 -
HN-CL 76.34 67.41 SimCLR 66.5 68.3 69.8 70.4 71.7
CACR (K =1) 79.40 68.40 MoCov2 67.4 69.9 TLO T72.2 -
CMC (CL, K =4) 78.84 69.45 FNC (multi-crop) | 70.4 - - - 74.4
CACR (K =14) 80.46 70.35 CACR 68.3 70.4 73.8 740 T4.4

Comparison with other SOTAs: Besides the methods using contrastive loss, we continue to compare
with the self-supervised learning methods like BYOL, SWaV, SimSiam, etc. that do not involve the contrasts
with negative samples. Table [I6] provides more detailed comparison with all state-of-the-arts in different
epochs and could better support the effectiveness of CACR: We can observe CACR achieves competitive
results and generally outperforms most of SOTAs at the same epoch in linear classification tasks. We also
compare the computation complexity. Table reports computation complexity to provide quantitative
results in terms of positive number K, where we can observe the computation cost of CACR slightly increases
as K increase, but does not increase as that when using multi-positives in CL loss.
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Table 17: GPU time (s) per iteration of different loss on MoCov2 framework, tested on 32G-V100 GPU

Methods |CL  AU-CL HN-CL CACR(K=1) CL (K=4) CACR(K=2) CACR(K=3) CACR(K=4)
Batch size M 256 256 256 256 64 128 64 64

# samples (KxM) / iteration|256 256 256 256 256 256 192 256

GPU time (s) / iteration  |0.837 0.840 0.889  0.871 3.550 0.996 1.017 1.342

ResNet50 | ViT-B/16
FT Lin-cls|FT Lin-cls
SimCLRv2|77.2 71.7 [83.1 73.9
MoCov3 |77.0 73.8 |[83.2 76.5
CACR 78.1 74.7 |83.4 76.8
SWAVT 77.8 753 [82.8 71.6
CACR' 78.4 753 |83.4 77.1

Method

Table 18: Comparison with state-of-the-arts on fine-tuning and linear probing classification accuracy (%),
pre-trained using ResNet50 and ViT-Base/16 encoder backbone on ImageNet-1k. T indicates using SWAV
multi-crops.

Comparison with advanced architectures: Beyond the conventional evaluation on linear probing,
recent self-supervised learning methods use advanced encoder architecture such as Vision Transformers
(ViT) (Dosovitskiy et al., [2020), and are evaluated with end-to-end fine-tuning. We incorporate these
perspectives with CACR for a complete comparison. Table [I8]provides a comparison with the state-of-the-arts
using ResNet50 and ViT-Base/16 as backbone, where we follow their experiment settings and pre-train
ResNet50 with 800 epochs and ViT-B/16 with 300 epochs. We can observe CACR generally outperforms
these methods in both fine-tuning and linear probing classification tasks.

CLIP [Radford et al.|(2021) | CLIP-reproduced | CACR
19.8 \ 19.2 | 22.7

Table 19: Top-1 zero-shot classification accuracy (%) on ImageNet1K, pre-trained using ResNet50 on CC3M dataset.

Multi-modal contrastive learning: Besides self-supervised learning on vision tasks, we follow CLIP |Rad;
ford et al.[(2021)) to evaluate CACR on multi-modal representation learning. We compare CACR’s performance
with CLIP, with our reproduced result and the results reported in |Li et al.| (2022) in Table All methods
are pre-trained on CC3M dataset with ResNet50 backbone for 32 epochs. We can observe CACR surpasses
CLIP by 2.9% in terms of zero-shot accuracy on ImageNet.

B.5 Connection to other representation learning methods

Results of different cost metrics

Recall that the definition of the point-to-point cost metric is usually set as the quadratic Euclidean distance:

c(fo(x), fo(y)) = Il fo(x) — fo(y)ll3. (12)

In practice, the cost metric defined in our method is flexible to be any valid metrics. Here, we also investigate
the performance when using the Radial Basis Function (RBF) cost metrics:

crer(fo(@), fo(y)) = —e~HITe@-foWIE, (13)

where t € RT is the precision of the Gaussian kernel. With this definition of the cost metric, our method is
closely related to the baseline method AU-CL (Wang & Isola), 2020), where the authors calculate pair-wise
RBF cost for the loss w.r.t. negative samples. Following |Wang & Isolal (2020)), we replace the cost metric
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when calculate the negative repulsion cost with the RBF cost and modify Log as:

M
A 1 o~ d— (Fo(=i). fo ()
Lcr-rpF = In [M SN ST T x crpr(fo(xi), fo(x;))] (14)

i=1 j#i “i'#i

M
4. D )
1 [i == Uo @) fo(=;)) " e_ter(wi)_fe(ij]
M _dt—(je(mi)vfe(mj/)) .
- . § . €
i=1 j#i J'#i

Here the negative cost is in log scale for numerical stability. When using the RBF cost metric, we use the
same setting in the previous experiments and evaluate the linear classification on all small-scale datasets.
The results of using Euclidean and RBF cost metrics are shown in Table 20} From this table, we see that
both metrics achieve comparable performance, suggesting the RBF cost is also valid in our framework. In
CACR, the cost metric measures the cost of different sample pairs and is not limited on specific formulations.
More favorable cost metrics can be explored in the future.

Table 20: The classification accuracy (%) of CACR (K = 1) and CACR (K = 4) with different cost metrics
on CIFAR-10, CIFAR-100 and STL-10. Euclidean indicates the cost defined in and RBF indicates the
cost metrics defined in [[3]

Methods ‘Cost Metric‘CIFAR—lO CIFAR-100 STL-10

Euclidean 83.73 56.21 83.55

A K=1
CACR( ) RBF 83.08 55.90 84.20
Euclidean 85.94 59.41 85.59
CACR(K =4) RBF 86.20 58.81 85.80

Discussion: Relation to triplet loss CACR is also related to the widely used triplet loss (Schroff et al.|
2015; |[Sun et al., [2020b)). A degenerated version of CACR where the conditional distributions are all uniform
can be viewed as triplet loss, while underperform the proposed CACR, as discussed in Section In the
view of triplet loss, CACR is dealing with the margin between expected positive pair similarity and negative
similarity:

‘CCACR = [Eﬂ‘t+ (zt|z) [C(wv $+)] - Ewtf (z—|x) [C(a}a 13_)] + m]+
which degenerates to the generic triplet loss if the conditional distribution degenerates to a uniform distribution:

Luavr = [Epet)c(z, x| — Epele(x,27)] +m]; = [c(=, ") —c(z,x7) +m]4
This degeneration also highlights the importance of the Bayesian derivation of the conditional distribution.
The experimental results of the comparison between CACR and the degenerated uniform version (equivalent

to generic triplet loss) are presented in Table

Moreover, CACR loss can degenerate to a triplet loss with hard example mining if 7+ (x 7 |z) and m+ (27 |2)
are sufficiently concentrated, where the density shows a very sharp peak:

Lcacr = [max(c(z,zh)) — min(c(z, 7)) +m]4

which corresponds to the loss shown in [Schroff et al.| (2015). As shown in Table 12| and when varying
t* and ¢~ to sharpen/flatten the conditional distributions. Based on our observations, when ¢+ = 3 and
t~ = 3, the conditional distributions are dominated by 1-2 samples, where CACR can be regarded as the
above-mentioned triplet loss, and this triplet loss with hard mining slightly underperforms CACR. From
these views, CACR provides a more general form to connect the triplet loss. Meanwhile, it is interesting to
notice CACR explains how triplet loss is deployed in the self-supervised learning scenario.

Relation to CT. The CT framework of [Zheng & Zhou (2021) is primarily focused on measuring the difference
between two different distributions, which are referred to as the source and target distributions, respectively.
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It defines the expected CT cost from the source to target distributions as the forward CT, and that from the
target to source as the backward CT. Minimizing the combined backward and forward CT cost, the primary
goal is to optimize the target distribution to approximate the source distribution with both mode-covering
and mode-seeking properties. In CACR, we did not find any performance boost by modeling the reverse
conditional transport, since the marginal distributions of @ and ™ are the same and these of  and =~ are
also the same, there is no need to differentiate the transporting directions. In addition, the primary goal
of CACR is not to regenerate the data but to learn fg(-) that can provide good latent representations for
downstream tasks.
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C Experiment details

On small-scale datasets, all experiments are conducted on a single GPU, including NVIDIA 1080 Ti and
RTX 3090; on large-scale datasets, all experiments are done on 8 Tesla-V100-32G GPUs.

C.1 Small-scale datasets: CIFAR-10, CIFAR-100, and STL-10

For experiments on CIFAR-10, CIFAR-100, and STL-10, we use the following configurations:

o Data Augmentation: We strictly follow the standard data augmentations to construct positive and
negative samples introduced in prior works in contrastive learning (Wu et al., 2018; [Tian et al.l [2019;
Hjelm et all 2018; Bachman et al., |2019; |(Chuang et al.l 2020} [He et al., |2020; [Wang & Isolal [2020).
The augmentations include image resizing, random cropping, flipping, color jittering, and gray-scale
conversion. We provide a Pytorch-style augmentation code in Algorithm [T} which is exactly the same
as the one used in Wang & Isola (2020)).

Algorithm 1 PyTorch-like Augmentation Code on CIFAR-10, CIFAR-100 and STL-10

import torchvision.transforms as transforms

# CIFAR-10 Transformation
def transform_cifar10(Q):
return transforms.Compose ([
transforms.RandomResizedCrop(32, scale=(0.2, 1)),
transforms.RandomHorizontalFlip() ,# by default p=0.5
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(), # normalize to value in [0,1]
transforms.Normalize(
(0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010),
)
D

# CIFAR-100 Transformation
def transform_cifar100():
return transforms.Compose ([
transforms.RandomResizedCrop(32, scale=(0.2, 1)),
transforms.RandomHorizontalFlip() ,# by default p=0.5
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(), # normalize to value in [0,1]
transforms.Normalize(
(0.5071, 0.4867, 0.4408),
(0.2675, 0.2565, 0.2761),

D

# STL-10 Transformation
def transform_stl110():
return transforms.Compose ([
transforms.RandomResizedCrop(64, scale=(0.08, 1)),
transforms.RandomHorizontalFlip() ,# by default p=0.5
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(), # normalize to value in [0,1]
transforms.Normalize(
(0.4409, 0.4279, 0.3868),
(0.2683, 0.2610, 0.2687),
)
D

o Feature Encoder: Following the experiments in |Wang & Isola) (2020), we use an AlexNet-based
encoder as the feature encoder for these three datasets, where encoder architectures are the same
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Table 21: The 100 randomly selected classes from ImageNet forms the ImageNet-100 dataset. These classes
are the same as (Wang & Isolal [2020; |Tian et al., 2019).

ImageNet-100 Classes
102869837 |n01749939 |n02488291 |n02107142|n13037406 |n02091831|n04517823 |n04589890 |n03062245 |n01773797
n01735189|n07831146 |n07753275 |n03085013 |n04485082 |n02105505|n01983481 | n02788148 |n03530642|n04435653
102086910 |n02859443 |n13040303 |n03594734 |n02085620 |In02099849 | n01558993 |n04493381 |n02109047 |n04111531
n02877765|n04429376 |n02009229 |n01978455 |n02106550 |In01820546 |n01692333 |n07714571 |n02974003 |n02114855
n03785016 |n03764736 |n03775546 |n02087046 |n07836838 |n04099969 | n04592741|n03891251 |n02701002|n03379051
1n02259212|n07715103 |n03947888 |n04026417 |n02326432 |n03637318|n01980166 |n02113799 |n02086240 |n03903868
n02483362|n04127249 |n02089973 |n03017168 |n02093428 |In02804414|n02396427 |[n04418357 |n02172182|n01729322
n02113978|n03787032 |n02089867 |n02119022 |n03777754 |n04238763 | n02231487 |[n03032252 | n02138441 |n02104029
n03837869|n03494278 |n04136333 |n03794056 | n03492542 |n02018207 |n04067472 |n03930630 |n03584829 | n02123045
104229816 |n02100583 |n03642806 |n04336792|n03259280 |n02116738|n02108089 |n03424325|n01855672|n02090622

as those used in the corresponding experiments in [Tian et al. (2019) and Wang & Isolal (2020).
Moreover, we also follow the setups in |Robinson et al|(2021) and test the performance of CACR
with a ResNet50 encoder (results are shown in Table [9).

e Model Optimization: We apply the mini-batch SGD with 0.9 momentum and le-4 weight decay.
The learning rate is linearly scaled as 0.12 per 256 batch size (Goyal et al.,|2017). The optimization is
done over 200 epochs, and the learning rate is decayed by a factor of 0.1 at epoch 155, 170, and 185.

o Parameter Setup: On CIFAR-10, CIFAR-100, and STL-10, we follow \Wang & Isola; (2020) to set
the training batch size as M = 768 for baselines. The hyper-parameters of CL, AU-CL', and HN-CL?
are set according to the original paper or online codes. Specifically, the temperature parameter of CL
is 7 = 0.19, the hyper-parameters of AU-CL are ¢t = 2.0,7 = 0.19, and the hyper-parameter of HN-CL
are 7 = 0.5, 8 = 1.03, which shows the best performance according to our tuning. For CMC and
CACR with multiple positives, the positive sampling size is K = 4. To make sure the performance
is not improved by using more samples, the training batch size is set as M = 128. For CACR, in
both single and multi-positive sample settings, we set tT = 1.0 for all small-scale datasets. As for
t—, for CACR (K =1), ¢t is 2.0, 3.0, and 3.0 on CIFAR-10,CIFAR100, and STL-10, respectively.
For CACR (K =4), t~ is 0.9, 2.0, and 2.0 on CIFAR-10, CIFAR100, and STL-10, respectively. For
further ablation studies, we test t* and ¢t~ with the search in the range of [0.5,0.7,0.9,1.0, 2.0, 3.0],
and we test all the methods with several mini-batch sizes M € {64, 128,256,512, 768}.

e Evaluation: The feature encoder is trained with the default built-in training set of the datasets. In
the evaluation, the feature encoder is frozen, and a linear classifier is trained and tested on the default
training set and validation set of each dataset, respectively. Following Wang & Isola, (2020)), we train
the linear classifier with Adam optimizer over 100 epochs, with 5, = 0.5, 82 = 0.999, € = 1078, and
128 as the batch size. The initial learning rate is 0.001 and decayed by a factor of 0.2 at epoch 60 and
epoch 80. Extracted features from “fc7” are employed for the evaluation. For the ResNet50 setting
in [Robinson et al.| (2021)), the extracted features are from the encoder backbone with dimension 2048.

C.2 Large-scale datasets

For large-scale datasets, the Imagenet-1K is the standard ImageNet dataset that has about 1.28 million images
of 1000 classes. The ImageNet-100 contains randomly selected 100 classes from the standard ImageNet-1K
dataset, and the classes used here are the same with [Tian et al|(2019) and Wang & Isola) (2020)), listed in
Table For pretraining with less curated data®*, considering Webvision v1 and ImageNet-22k respectively
have 2.4 and 14.2 million images, we decrease the training epoch to 1/2 and 1/10 when pretraining on these
two datasets as done in |Li et al.| (2021). We follow the standard settings in these works and describe the
experiment configurations as follows:

Lhttps://github.com/SsnL/align_ uniform

2https://github.com/joshr17/HCL

3Please refer to the original paper for the specific meanings of the hyper-parameter in baselines.
4https://data.vision.ee.ethz.ch/cvl/webvision /dataset2017.html
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Algorithm 2 PyTorch-like Augmentation Code on ImageNet-100 and ImageNet-1K

import torchvision.transforms as transforms
# ImageNet-100 and ImageNet-1K Transformation
# MoCo v2’s aug: similar to SimCLR https://arxiv.org/abs/2002.05709
def transform_imagenet():
return transforms.Compose ([
transforms.RandomResizedCrop (224, scale=(0.2, 1.)),
transforms.RandomApply ([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)
1, p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply ([moco.loader.GaussianBlur([.1, 2.]1)], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
ID)

o Data Augmentation: Following [Tian et al. (2019; [2020b)); [Wang & Isola| (2020); (Chuang et al.
(2020)); [He et al.[(2020), and |Chen et al.| (2020c), the data augmentations are the same as the standard
protocol, including resizing, 1x image cropping, horizontal flipping, color jittering, and gray-scale
conversion with specific probability. The full augmentation combination is shown in Algorithm [2]

e Feature Encoder: For the main experiments, we apply MoCo-v3 setting, where the framework
consists of a teacher and a student encoder. The teacher encoder follows a EMA updating strategy
and all experiment settings follows the MoCo-v3 paper (Chen et all [2021)). We apply the MoCo-v2
framework (Chen et al.| [2020c) for further justification that CACR is also applicable with framework
including a large queue, where the ResNet50 (He et al.l [2016]) is a commonly chosen feature encoder
architecture. The output dimension of the encoder is set as 128.

o Model Optimization: Following the standard setting in [He et al.| (2020)); |Chen et al.[(2020c); Wang
& Isolal (2020)), the training mini-batch size is set as 128 on ImageNet-100 and 256 on ImageNet-1K.
We use a mini-batch stochastic gradient descent (SGD) optimizer with 0.9 momentum and le-4
weight decay. The total number of training epochs is set as 200. The learning rate is initialized as
0.03, decayed by a cosine scheduler for MoCo-V2 at epoch 120 and epoch 160. In all experiments,
the momentum of updating the offline encoder is 0.999.

e Parameter Setup: On ImageNet-100 and ImageNet-1K, for all methods, the queue size for negative
sampling is 65,536. The training batch size is 128 on ImageNet-100 and 256 on ImageNet. For
CACR, we train with two positive sampling sizes K = 1 and K = 4 and the parameters in the
conditional weight metric are respectively set as t¥ = 1.0, ¢t~ = 2.0. For baselines, according to
their papers and Github pages (Tian et al., [2019; Wang & Isolay, [2020 [Robinson et al., 2021)), the
temperature parameter of CL is 7 = 0.2, the hyper-parameters of AU-CL are ¢t = 3.0, 7 = 0.2, and
the hyper-parameters of HN-CL are 7 = 0.5, 8 = 1.0. Note that CMC (K = 1) reported in the main
paper is trained with 240 epochs and with its own augmentation methods (Tian et al., [2019). For
CMC (K = 4), the temperature is set 7 = 0.07 according to the setting in |Tian et al.|(2019) and
the loss is calculated with Equation (8) in the paper, which requires more GPU resources than 8
Tesla-V100-32G GPUs with the setting on ImageNet-1K.

o Linear Classification Evaluation: Following the standard linear classification evaluation (He
et al. |2020; |Chen et all |2020c; [Wang & Isolal |2020), the pre-trained feature encoders are fixed, and
a linear classifier added on top is trained on the train split and test on the validation split. The
linear classifier is trained with SGD over 100 epochs, with the momentum as 0.9, the mini-batch size
as 256, and the learning rate as 30.0, decayed by a factor of 0.1 at epoch 60 and epoch 80.

o Feature Transferring Evaluation (Detection and Segmentation): The pre-trained models
are transferred to various tasks including PASCAL VOC?® and COCOS datsets. Strictly following the

Shttp://host.robots.ox.ac.uk/pascal/VOC /index.html
Shttps://cocodataset.org/#download
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same setting in |He et al.| (2020)), for the detection on Pascal VOC, a Faster R-CNN (Ren et al., 2016])
with an R50-C4 backbone is first fine-tuned end-to-end on the VOC 07+12 trainval set and then
evaluated on the VOC 07 test set with the COCO suite of metrics (Lin et al., [2014). The image
scale is [480, 800] pixels during training and 800 at inference. For the detection and segmentation on
COCO dataset, a Mask R-CNN (He et al.| [2017)) with C4 backbone (1x schedule) is applied for the
end-to-end fine-tuning. The model is tuned on the train2017 set and evaluate on val2017 set, where
the image scale is in [640, 800] pixels during training and is 800 in the inference.

o Image-Text representation learning: Following the CLIP setting (Radford et al., 2021)), we
adopt ResNet50 as the vision encoder backbone. All methods are pre-trained for 32 epochs, with the
mini-batch size as 2048, and the learning rate as 5e-4, with cosine annealing scheduler.

« Estimation of 7, with MoCo-v2: Following the strategy in [ Wang & Isola, (2020), we estimate 7,
with not only the cost between queries and keys, but also with the cost between queries. Specifically,
at each iteration, let M be the mini-batch size, N be the queue size, { fql.}f\il be the query features,
and { fi, };V:I be the key features. The conditional distribution is calculated as:

.~ —d, (-, fq;)
7T0 (|flh) = ZN e—d,t, (fk-;fqit)"rz.#. e—dt,(fq].,fqi)
j#i

j=1

To be clear, the Pytorch-like pseudo-code is provided in Algorithm [3] In MoCo-v2 framework, as the
keys are produced from the momentum encoder, this estimation could help the main encoder get
involved with the gradient from the conditional distribution, which is consistent with the formulation

in Section 3.2
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Algorithm 3 PyTorch-like style pseudo-code of CACR with MoCo-v2 at each iteration.

Inputs
t_pos, t_neg: hyper-parameters in CACR

m: momentum

im_list=[BO, B2, ..., BK] list of mini-batches of length (K+1)

B: mini-batches (Mx3x224x224), M denotes batch_size

encoder_q: main encoder; encoder_k: momentum encoder

queue: dictionary as a queue of N features of keys (dxN); d denotes the feature dimension

H*HHHE R

######## compute the embeddings of all samples ###########IHH##H

q_list = [encoder_q(im) for im in im_list] # a list of (K+1) queries q: M x d
k_list = [encoder_k(im) for im in im_list]

stacked_k = torch.stack(k_list, dim=0) # keys k: (K+1) x M x d

#EFAREE compute the loss
CACR_loss_pos, CACR_loss_neg = 0.0, 0.0
for k in range(len(im_list)): #load a mini-batch with M samples as queries

q = q_list[k]

mask = list(range(len(im_list)))

mask.pop(k) # the rest mini-batches are used as positive and negative samples

compute the positive cost
# calculate the cost of moving positive samples: M x K
cost_for_pos = (q - stacked_k[mask]).norm(p=2, dim=-1).pow(2).transpose(l, 0) # point-to-point cost
with torch.no_grad(): # the calculation involves momentum encoder, so with no grad here.

# calculate the conditional distribution: M x K

weights_for_pos = torch.softmax(cost_for_pos.mul(t_pos), dim=1) # calculate the positive conditional distribution
# calculate the positive cost with the empirical mean
CACR_loss_pos += (cost_for_pos*weights_for_pos).sum(1) .mean()

compute the loss of negative samples
# calculate the cost and weights of negative samples from the queue: M x K
sq_dists_for_cost = (2 - 2 * mm(q, queue))

sq_dists_for_weights = sq_dists_for_cost

if with_intra_batch: # compute the distance of negative samples in the mini-batch: Mx(M-1)
intra_batch_sq_dists = torch.norm(q[:,None] - g, dim=-1).pow(2) .masked_select(~torch.eye(q.shape[0], dtype=bool).
cuda()) .view(q.shape[0], q.shape[0] - 1)
# combine the distance of negative samples from the queue and intra-batch: Mx(K+M-1)
sq_dists_for_cost = torch.cat([sq_dists_for_cost, intra_batch_sq_dists], dim=1)
sq_dists_for_weights = torch.cat([sq_dists_for_weights, intra_batch_sq_dists], dim=1)

# calculate the negative conditional distribution: if with_intra_batch==True Mx(K+M-1), else MxK
weights_for_neg = torch.softmax(sq_dists_for_weights.mul(-t_neg), dim=1)

# calculate the negative cost with the empirical mean

CACR_loss_neg += (sq_dists_for_cost.mul(-1.0)*weights_for_neg) .sum(1) .mean()

# combine the loss of positive cost and negative cost and update main encoder

CACR_loss = CACR_loss_pos/len(im_list)+CACR_loss_neg/len(im_list)

CACR_loss.backward ()

update(encoder_q.params) # SGD update: main encoder

encoder_k.params = m¥encoder_k.params+(1-m)*encoder_q.params #momentum update: key encoder

# update the dictionary, dequeue and enqueue
enqueue (queue, k_list[-1]) # enqueue the current minibatch
dequeue (queue) # dequeue the earlist minibatch

pow: power function; mm: matrix multiplication; cat: concatenation.
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