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ABSTRACT
Ad hoc teamwork (AHT) is concerned with developing an AI agent

who learns to collaborate with different previously unseen partners.

We consider a setting where the AI agent is provided with a hypoth-

esis set of partners’ policies. Several online algorithms that take the

hypothesis set as input can be applied to solve the AHT problem.

One way to speed up these online learning algorithms is to elimi-

nate the redundant policies, i.e., partner models sharing the same

collaborating policy, from the hypothesis set. Nevertheless, we show

whether this elimination should be applied depends on the learning

algorithm used by the AI agent. Specifically, we identify a property

of a learning algorithm: redundancy-aware. When the learning algo-

rithm is redundancy-aware, redundancy elimination is unnecessary.

In other words, redundancy-aware algorithms can ignore similar

agents in the hypothesis set. We demonstrate through an example

that an online algorithm with redundancy-aware property exists

when the hypothesis set contains the true partner policy. We test

our approach on a team Markov game of two players. Comparative

numerical analyses reveal that the redundancy-aware algorithm

outperforms other standard no-regret learning algorithms including

upper confidence bound (UCB), 𝑄-learning with UCB exploration,

and the optimistic posterior sampling algorithm when the set of

partner policies contains many redundant policies.
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1 INTRODUCTION
Interaction with unknown agents is a vital capability of an AI agent.

For example, autonomous vehicles must interpret and react to the

movements of other vehicles on the road, all of which are unknown

entities with potentially varying driving patterns. Without know-

ing the exact policy adopted by the partner, the AI agent cannot

determine the environment in which it operates. Furthermore, the

AI agent cannot assume that all partners take an optimal policy,

especially when collaborating with human agents.

Ad hoc teamwork (AHT) [1, 6, 7] is the problem of developing an

AI agent capable of collaborating with previously unseen partners,

i.e., agents without prior coordination with the AI agent such as

shared tasks, communication protocols, and joint training.

The AHT problem considered in this paper is a team Markov

game involving two players: an AI agent under our control and a

partner with an uncontrolled policy. The potential partner’s policy

belongs to an unknown set H∗
. The AI agent starts with a hypoth-

esis set H that approximates H∗
. An online learning algorithm

takes H as the input and generates a series of policies for the AI

agent during episodic interactions with the unknown partner. The

online algorithm solves the AHT problem if its regret is sublinear.

A method to speed up the online learning is to reduce the size

ofH while maintaining as many distinct partners, characterized

by partner types. This method is called redundancy elimination. In

this work, we show the existence of an online algorithm whose

sample complexity only depends on the number of partner types

instead of the number of partner policies. Thus, with this algorithm,

redundancy elimination is unnecessary. To be more clear, we call

online algorithms with such a property redundancy-aware algo-
rithms. To show the existence of redundancy-aware algorithms,

we take a specific algorithm called the Maximize to Explore (MEX)

developed in [5] as an example. We show that the MEX algorithm is

redundancy-aware both in theory and in practice. Therefore, there

is no need to eliminate every redundant policy inH , because the

sample complexity only depends on the number of partner types.

2 METHOD
We take a two-player team Markov game as the collaboration envi-

ronment. Player 1 is the AI agent we wish to train, and player 2 is

the partner.

2.1 Ad Hoc Teamwork as Team Markov Game
A two-player team Markov game is defined as (2, 𝑆, 𝐴, P, 𝐻, 𝐾, 𝑟, 𝛾),
where 𝑆 is the joint state space and 𝐴 is the action space for both

players. In this paper, we only consider the tabular setting, i.e.,
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|𝑆 | < ∞ and |𝐴| < ∞. The transition kernel P and the reward 𝑟

are defined as: P : 𝑆 × 𝐴 × 𝐴 → Δ(𝑆), 𝑟 : 𝑆 × 𝐴 × 𝐴 → Δ( [0, 1]),
where Δ(𝑆) is the probability distribution over 𝑆 and Δ( [0, 1]) is
the probability distribution over [0, 1]. We also define the model

𝑀 : 𝑆 ×𝐴 ×𝐴 → Δ(𝑆 × [0, 1]) as:
𝑀 (𝑠′, 𝑅 | 𝑠, 𝑎, 𝑏) ≜ P(𝑠′ | 𝑠, 𝑎, 𝑏) · 𝑟 (𝑅 | 𝑠, 𝑎, 𝑏) .

The time horizon and the total number of episodes are denoted by

𝐻 and 𝐾 , respectively. The game is discounted by a discount factor

0 < 𝛾 ≤ 1. The term 𝑠𝑘
ℎ
denotes the joint state of episode 𝑘 at time

ℎ. We use 𝑎𝑘
ℎ
and 𝑏𝑘

ℎ
to denote the actions of episode 𝑘 at time ℎ

for player 1 and player 2, respectively. The immediate reward of

episode 𝑘 at time ℎ is denoted as 𝑟𝑘
ℎ
. The initial state is fixed for all

episodes and denoted as 𝑠0, i.e., 𝑠
𝑘
0
= 𝑠0 for all 𝑘 ∈ {1, 2, . . . , 𝐾}. The

policy of player 1 is denoted as 𝜇 and defined as 𝜇 : 𝑆×[𝐻 ] → Δ(𝐴),
where [𝐻 ] = {0, 1, . . . , 𝐻 −1}. The policy of player 2 is denoted as 𝜋
and defined as 𝜋 : 𝑆 × [𝐻 ] → Δ(𝐴) . The set of all policies available
to player 1 is denoted byU and the set of all policies available to

player 2 is denoted by Π. Now, we define the cumulative reward

given policies (𝜇, 𝜋) as
𝑉 (𝜇, 𝜋) = E𝑎ℎ∼𝜇 (𝑠ℎ,ℎ),𝑏ℎ∼𝜋 (𝑠ℎ,ℎ)[

𝐻−1∑︁
ℎ=0

𝛾ℎE(𝑟 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ))

| 𝑠0 = 𝑠0, 𝑠ℎ+1 ∼ P(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)] .
We denote the set of potential partner policies asH∗

, which is

a subset of Π. The AI agent collaborates across 𝐾 episodes with a

fixed yet unknown policy 𝜋∗ fromH∗
. However, the AI agent does

not know H∗
exactly. Instead, an online learning algorithm that

solves the AHT problem is provided with a prior hypothesis set

H that approximatesH∗
. The algorithm that takesH 𝐾 as input

is denoted as Alg. The algorithm produces a series of AI agent

policies {𝜇𝑘 }𝑘∈[𝐾 ] , i.e., {𝜇𝑘 }𝑘∈[𝐾 ] = Alg(𝐾,H) .We also use the

term 𝑉 ∗ (𝜋) to represent the optimal collaboration reward if the

true policy is 𝜋 , i.e.,𝑉 ∗ (𝜋) ≜ max𝜇∈U 𝑉 (𝜇, 𝜋) . The regret function
for an algorithm Alg is defined as

RegAlg (𝐾,H , 𝜋∗) =
∑︁
𝑘∈[𝐾 ]

[𝑉 ∗ (𝜋∗) −𝑉 (𝜇𝑘 , 𝜋∗)] .

Therefore, the goal of the ad hoc teamwork (AHT) problem is defined

as: “Generating a hypothesis setH and developing an algorithm

Alg such that for all 𝜋∗ ∈ H∗
, the regret RegAlg (𝐾,H , 𝜋∗) is sub-

linear.”

The potential partner policy setH∗
may contain policies that,

while distinct, lead to an identical optimal cumulative reward and

best responses. This motivates us to categorize these policies into

the same type. For any 𝜋 ∈ Π, define the set of best response policies
to 𝜋 by BR(𝜋) ≜ argmax𝜇∈U 𝑉 (𝜇, 𝜋) .We assume the existence of

an oracle that can return a best response from BR(𝜋).

Definition 2.1 (Best response oracle). A function 𝜓 : Π → U is

called a best response oracle if𝜓 (𝜋) ∈ BR(𝜋) for any 𝜋 ∈ Π.

The best response oracle is a choice function that selects one

single AI agent policy within the set of best response policies. In this

way, we can define the equivalence relation which only requires

the values of their best response oracle to be the same.

Definition 2.2 (𝜓 -type). Two policies 𝜋 and 𝜋 ′ are said to be of

the same type under oracle𝜓 (or simply the same𝜓 -type) if

𝜓 (𝜋) = 𝜓 (𝜋 ′) and 𝑉 ∗ (𝜋) = 𝑉 ∗ (𝜋 ′).

The equivalence relationship is denoted as 𝜋
𝜓∼ 𝜋 ′. When two

policies 𝜋 and 𝜋 ′ are not of the same𝜓 -type, their relationship is

denoted as 𝜋
𝜓
≁ 𝜋 ′.

Following the definition of𝜓 -type, we introduce the concept of

type independence for a hypothesis set.

Definition 2.3 (Type independence). A set Π of policies is called

type-independent under oracle𝜓 if for all 𝜋, 𝜋 ′ ∈ Π such that 𝜋 ≠ 𝜋 ′,

we have 𝜋
𝜓
≁ 𝜋 ′.

Type independence gives rise to a characterization of the intrinsic

complexity of a set of partner policies, called the type number.

Definition 2.4 (Type number). Given a policy set H ⊆ Π, the

type number 𝑛𝜓 (H) under oracle𝜓 is the size of any largest type-

independent subset of H .

Intuitively, the sample complexity of an online algorithm Alg in-

creases as |H | increases. However, there exists an online algorithm

whose sample complexity increases as |𝑛𝜓 (H)| increases. Thus, the
sample complexity is independent of |H |.

2.2 Ignoring Similarity: Redundancy-Aware
Definition 2.5 (Redundancy awareness). We say an online algo-

rithm is redundancy-aware if the regret of this algorithm depends

only on 𝑛𝜓 (H) instead of |H |. In other words, RegAlg (𝐾,H , 𝜋) <
𝜙 (𝑛𝜓 (H)) for some function 𝜙 .

Redundancy awareness implies that the sample complexity de-

pends only on the type number.

Theorem 2.6. The Maximize to Explore (MEX) algorithm devel-
oped in [5] is redundancy-aware.

The above theorem shows the existence of a redundancy-aware

algorithm.

3 EXPERIMENT
We benchmarked the MEX algorithm against several other algo-

rithms, including the Upper Confidence Bound algorithm [4], 𝑄-

learning with UCB exploration [2, 3], and the optimistic posterior

sampling algorithm [9]. Building on the approach in [8], we gen-

erated different types of partner policies to form a hypothesis set.

The true partner policy was chosen from the hypothesis set. Our

findings suggest that the MEX algorithm outperforms these algo-

rithms on a large hypothesis set with a small type number. This

demonstrates that the MEX algorithm is redundancy-aware.

4 CONCLUSION
We present the existence of a redundancy-aware algorithm, i.e., the

sample complexity of this algorithm depends only on the number

of types in the hypothesis set instead of the number of policies.

Thus, eliminating the same type of policies from the hypothesis set

is unnecessary if the learning algorithm is redundancy-aware.
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