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Abstract: In complex real-world tasks such as robotic manipulation and au-
tonomous driving, collecting expert demonstrations is often more straightfor-
ward than specifying precise learning objectives and task descriptions. Learn-
ing from expert data can be achieved through behavioral cloning or by learn-
ing a reward function, i.e., inverse reinforcement learning. The latter allows
for training with additional data outside the training distribution, guided by the
inferred reward function. We propose a novel approach to construct compact
and transparent reward models from automatically selected state features. These
inferred rewards have an explicit form and enable the learning of policies that
closely match expert behavior by training standard reinforcement learning algo-
rithms from scratch. We validate our method’s performance in various robotic
environments with continuous and high-dimensional state spaces. Webpage:
https://sites.google.com/view/transparent-reward.
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1 Introduction

Imitation learning (IL) involves learning policies from expert demonstrations. It has been success-
fully applied in many real-world robotics applications such as household tasks [1, 2], manipulation
[3, 4, 5], and autonomous driving [6, 7]. It is more straightforward for humans to demonstrate task
execution than to precisely specify task descriptions and/or learning objectives [8]. More broadly,
IL can be addressed by either behavioral cloning [9] or inverse reinforcement learning (IRL) [10].
The first approach learns the mapping from state to action using supervised learning but suffers from
compounding errors outside of the training distribution [11]. Reinforcement learning (RL) [12] ben-
efits from exploration of the environment and learns through experience. RL has been applied in
robotic applications [13, 14, 15, 16, 17], but it requires a well-defined reward function to solve the
task. Manually specifying a reward function poses additional challenges for complex tasks, creat-
ing a need for the automatic construction of rewards from data. We propose to construct reward
by automatically selecting its component features and retrieving reward using inverse reinforcement
learning (IRL) setting [18, 10]. IRL benefits from expert demonstrations while utilizing more ex-
ploration.

One of the prominent approaches for learning rewards is maximum entropy inverse reinforcement
learning (Max-ent IRL), which addresses the reward ambiguity problem using a probabilistic model
of the behavior [19, 20, 21]. Max-ent IRL can learn an explicit reward model, but typically the
features that compose the reward are specified beforehand. Both linear [22, 23, 24] and non-linear
[25, 26] functions of features have been used to learn the reward. As depicted in Fig. 1 our method
does not rely on hand-picked features as in current IRL methods, but finds relevant set of features
from large candidate set. We learn transparent reward model such that the relationship between

∗Corresponding Author

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://sites.google.com/view/transparent-reward


Figure 1: Current IRL methods require hand-picked features to use as reward components. Adver-
sarial methods learn the reward using neural networks which are less transparent and not amendable.
But, the proposed method finds automatically relevant set of state features and constructs transparent
reward models.

state features and the resulting reward is direct, and reward function is compact and amendable if
preferred.

In this work, we propose to construct a reward function from state features using unsupervised
feature selection without requiring access to ground truth rewards. To achieve this, we use the
maximum entropy formulation for stochastic policies, in which the probability of a trajectory is
proportional to its cumulative reward. This approach mitigates the need for an exhaustive search for
suitable features and produces an explicitly represented reward model. As only state features are
used for reward components, this reward formulation is also referred to as disentangled rewards and
is robust to changes in the environment dynamics, as presented in [27]. Our contributions are as
follows:

1. We develop a method for learning a compact and transparent reward function for use in
reinforcement learning algorithms.

2. We demonstrate the effectiveness of our proposed method through validation on various
continuous control systems with high-dimensional, continuous state spaces.

2 Related Works

2.1 Feature construction for IRL

Inverse reinforcement learning methods can retrieve rewards if their structure is specified accord-
ingly. Many works have considered manually designed features [28, 23, 20, 29, 30] for reward.
While human-specified rewards are effective in some scenarios, given only demonstrations, it is
challenging to design a reward function that matches the true intent or reward of an expert. The
literature on automatically learning compact reward structures is limited. Reward construction from
atomic features using regression trees was proposed in [31]. This method iteratively constructs the
features and corresponding rewards. Another work [26] considered Gaussian processes for mod-
eling nonlinear function approximation for the reward. A Bayesian approach using similar atomic
features that constructs logical conjunctions of features was presented in [32]. Authors in [33]
pre-train feature vector using self-supervised loss, but uses trajectory rankings to learn the reward
function. Compared to previous approaches, we do not assume to have relevant atomic features or
preference labels. Instead, we use states only from expert trajectories and consider nonlinear basis
functions of states as reward components. This results in an explicitly represented reward model
that consists of a small number of features.
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2.2 Adversarial IRL

An alternative approach for imitation learning, effective in high-dimensional tasks, is enhanced with
adversarial methods as presented in [27, 34, 35, 36]. These methods adopt the generative adversarial
networks (GANs) [37] training scheme to generate trajectories similar to those of experts. The cost
of the discriminator is usually referred to as a learned cost or reward. While adversarial methods
achieve state-of-the-art performance for a wide range of applications [38, 39, 40], the retrieved
reward function is a neural network and not an explicitly represented reward model.

3 Problem Statement

Reinforcement learning (RL) is an approach to solve Markov Decision Processes (MDP) defined as
a tuple M = ⟨S,A,R, T , γ⟩, where S is the set of states, A the set of actions, R is the reward
function, T represents transition dynamics, and γ is a discount factor. The solution represented by
an optimal policy is defined as the one maximizing the expected discounted cumulative reward of
the trajectory:

π∗ = argmax
π

Ep(st+1|st,at),π

[ ∞∑
t=0

γtR(st)

]
(1)

Here, γ is a discount factor, transition probability p(s′|s, a) is fixed but unknown, and the policy is
learned to optimize this objective from experience.

Now we consider MDP setting, where in addition to transition probabilities, the task reward is un-
known. Our objective is to reconstruct this reward function from observational data. As proposed in
[10], we represent the reward as a linear combination of features which can consists of any nonlinear
function of the state.

R(s) = θTϕ(s) (2)
where s is the state, ϕ ∈ Rd is the feature function, mapping the state s to a d-dimensional feature
vector, and θ ∈ Rd is the weight vector of features. The reward construction problem then translates
to finding suitable features and their corresponding weights.

4 Proposed Method

In this section, we present our method for learning a reward model, which consists of two aspects:
finding the feature set and its weight vector. As ground truth rewards are not available, we use
unsupervised feature selection by generating pseudo labels from expert data. Then, we adopt the
max-ent IRL framework for learning feature weights. The overview of the algorithm is provided in
Appendix C.

4.1 Trajectory probability under maximum entropy

According to the maximum entropy formulation for stochastic policies [19], the probability of a
trajectory is proportional to the exponential of the reward of that trajectory. That is,

P (τi|θ) =
eR(τi)

Z(θ)
(3)

where the partition function Z(θ) normalizes the reward function over all possible trajectories. After
taking logarithm of both sides of (3), we get

logP (τi|θ) = R(τi)− logZ(θ), (4)

and noting that the partition term Z is constant:

logP (τi|θ) ∝ R(τi). (5)

Due to the linearity from Eq. 2, the cumulative reward of a trajectory can then be defined as

R(τ) = θTϕ(τ), (6)
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where ϕ(τ) =
∑

si∈τ ϕ(si). Thus, the log probability of trajectories is proportional to a linear
combination of features that compose the reward.

logP (τi|θ) ∝ θTϕ(τi) (7)

Based on this proportionality, to determine whether a specific feature contributes to the reward,
we evaluate the correlation between feature’s expectation and log probability of trajectories. Since
ground truth rewards are not available, we use log probabilities of trajectories as pseudo-labels.

4.2 Pseudo labels

We generate pseudo labels by computing log probabilities of trajectories empirically from training
data D = {τ1, τ2, . . . , τk}. The probability of trajectory τ = {s1, s2, · · · , sn} is given as

P (τ) = P (s1)P (s2|s1)P (s3|s2) . . . P (sn|sn−1). (8)

We simplify the computation of conditional probabilities by decomposing them into the marginal
and joint probabilities of consecutive states. After applying the logarithm to both sides and simpli-
fying the terms, we get

logP (τ) = logP (s1) +

n−1∑
t=1

(logP (st, st+1)− logP (st)) (9)

The derivation of the Eq. 14 is included in the Appendix D.1. Using the entire training dataset, we
perform multivariate kernel density estimation (KDE), to obtain marginal P (s) and the joint density
of sequential states P (st, st+1). KDE provides a non-parametric way to estimate the probability
density function of the states and requires substantial less training data, unlike neural networks.

4.3 Candidate features

To perform feature selection using Eq.7, a finite set of candidate state features is required, as eval-
uating all possible features may be computationally infeasible. According to the moment matching
method [41], the probability of the state s can be approximated by their higher moments. Using
moments up to the third order, we can approximate state probability as

logP (s) ≈ Φ1(s) + Φ2(s) + Φ3(s)

where Φ1(s) represents the first-order moments (mean), Φ2(s) represents the second-order moments
(covariance), Φ3(s) represents the third-order moments (skewness), s is a state vector. As proposed
features are evaluated on their predictive power of the log probabilities of trajectories, which in
turn consist of state trajectories, we include all covariance terms in the candidate set of features
Φ(s) ∈ {Φ1(s),Φ2(s),Φ3(s)}. However, due to the curse of dimensionality and the finite set of
demonstrations, using all features as reward components is impractical. Feature matching with IRL
may fail due to noise and spurious correlations, leading to false correlations that do not exist in
the original data distribution. Therefore, we present an efficient method to select only the relevant
features.

4.4 Feature selection

After computing the probability and feature expectations of trajectories, we obtain the following
data.

X =


ϕ1(τ0) ϕ2(τ0) · · · ϕK(τ0)
ϕ1(τ1) ϕ2(τ1) · · · ϕK(τ1)

...
...

. . .
...

ϕ1(τN ) ϕ2(τN ) · · · ϕK(τN )

 Y =


logP (τ0)
logP (τ1)

...
logP (τN )


One way to perform feature selection is to utilize a univariate feature selection method based
on statistical tests. First, for each feature separately, we apply F-statistics between trajectory
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feature expectations and trajectory probabilities, i.e., between each column of X and the vec-
tor Y . This gives the feature importance metric, which we can use for ranking the features.
Then, the features with higher F-statistics are selected and included in the feature extractor
ϕ(·). Univariate feature selection is more suitable when the number of samples is much smaller
(K ≫ N ) than the size of the candidate set, which is often the case for high-dimensional
states. Therefore, directly using linear regression for X and Y results in overfitting. Recur-
sive feature elimination methods may be used here, but they are computationally demanding.

(a) Hopper-v4 (b) Ant-v4

(c) Walker2d-v1 (d) HalfCheetah-v4

Figure 2: Benchmark tasks used in this
paper.

Although the univariate feature selection method does
not account for interactions between features, these
interactions will be considered while learning the re-
ward function through inverse reinforcement learning.
Additionally, to reduce overfitting, we employ cross-
validation and noise addition methods. Specifically, we
add multiple non-expert trajectories by labeling them
with uniformly sampled log probability values from the
bottom 10th percentile of expert log probabilities. The
time complexity of the feature selection algorithm is
O(N) with respect to the size of the candidate set Φ.
This approach is efficient, as it does not involve itera-
tive search of features and policy learning, which would
be the case with manual feature construction. The next
step to fully recover the reward function is to find the
weights of each of the features, which is covered in the
next part.

4.5 Reward and policy retrieval

We employ the maximum entropy IRL [19] to learn the weights of the selected features. To maxi-
mize the log probability of the observed data, we formulate the optimization problem as follows:

θ∗ = argmax
θ

∑
τ∈D

logP (τ |θ) (10)

To find the optimal weights θ, we take the derivative of log-likelihood that is given by:

∇L(θ) = ∇
∑
τ∈D

log

(
eθ

Tϕ(τ)

Z(θ)

)
=
∑
τ∈D

ϕ(τ)−
∑
τ∈T

p(τ |θ)ϕ(τ) ≈ µe −
m∑
i=1

∑
si∈τ

ϕ(si) (11)

Here, µe represents the feature expectation of the training data, m is the number of trajectories from
current policy. The weights of the reward can then be updated by using the gradient descent as
follows:

θ ← θ + α∇L(θ) (12)
where α is the learning rate. The full derivations are included in Appendix D.2. The learned reward
function has an explicit form allowing us to apply any value iteration algorithm to obtain a policy.
We utilize the Soft Actor-Critic (SAC)[42] to learn the expert policy by optimizing Eq. 1.

5 Experiments

In this section, we consider different continuous control tasks and learn their reward functions from
expert data. Then, using the learned rewards, we learn the policy and compare it against the expert
performance. We will investigate the following research questions:

1. Is the proposed methodology effective in reconstructing ground truth rewards solving vari-
ous robotic tasks?

2. Are the learned rewards transparent and amendable?
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Linear Random Manual Proposed Expert
Ant 1681.47±1000.39 -777.41±372.42 1095.32±552.3 2236±987.46 1970.048 ± 938
Hopper 1222.38±606.11 470.65±815.62 974.89±382.07 2110±197.57 2901.09±16.09
Walker2d 1157.47±382.79 45.50±150.99 1233.16±208.76 3108±296.14 4241.83±31.07
HalfCheetah 4922.94±903.50 -213.11±598.35 4991.05±149.02 5514±204.02 6806.2±113.35

Table 2: Mean cumulative rewards for policies trained using various feature sets, calculated across
10 test simulations under varying initial conditions. The last column shows the expert RL policy
with ground truth reward of the environment. The cells with bold values indicate highest scores.

5.1 Setup

We conduct experiments on different environments with continuous state space, particularly Mu-
JoCo environments such as Ant, HalfCheetah, Walker2d, and Hopper from the Gymnasium [43]
benchmark (see Fig.2). The descriptions of the tasks and ground truth reward formulations are
provided in Appendix A.

5.2 Data collection

To collect the expert or training data, we train RL algorithms for the above environments. Specifi-
cally, we used SAC for all the environments with a continuous action space. We train RL algorithms
to maximize the cumulative ground truth reward function of the environment. After reaching estab-
lished benchmark results as presented in Stable Baselines3 [44] for these tasks, we refer to the RL
policy as an expert policy and deploy it for data collection. For each of the environments, we col-
lected N trajectories with random starting states, and the simulated trajectories were saved in dataset
D. Thus, in our IRL method, as shown in Algorithm 1, only dataset D is used, and we assume that
the expert policy or ground truth reward function is unknown. We trained the SAC algorithm for a
very limited time–40,000 simulation steps–to generate sensible but suboptimal(non-expert) trajec-
tories for feature selection phase. More implementation details are provided in Appendix B.

5.3 Baselines

In this work, we propose a feature selection mechanism aimed at recovering the reward function that
corresponds to the expert’s behavior, given the dataset. Therefore, we compare our method against
various baseline feature selection strategies: manual features, randomly selected features, direct use
of all states as features (referred to as linear features). For manual feature construction, we evaluated
several hand-crafted features and selected the best ones for final experiment. Similarly, the random
projection method evaluates a random subset of features from the candidate set. Given that com-
paring reward functions directly across baselines does not yield a meaningful performance metric in
terms of completing a task, we focus on comparing the policies derived from these reward functions.
To this end, we conduct two comparative analyses. First, we execute the derived policies in multiple
testing environments configured by ground truth reward functions and observe cumulative rewards.
This evaluation is valid because our training data comes from an expert trained with ground truth
reward function as well. Second, we compare the state distributions of the training data from expert
and testing data from the extracted policies. For the divergence measure of multivariate distribu-
tions, we exploited the 2D Wasserstein distance metric [45]. Also, we compared the performance
of the method against SOTA adversarial inverse reinforcement learning methods such as AIRL[27]
and GAIL [35].

6 Results

Task HalfCheetah Walker2d Hopper Ant
Advers. 609 609 609 609

Ours 12 16 10 20

Table 1: Number of reward network parameters.

The cumulative episodic rewards of poli-
cies trained using different rewards using
baseline methods are shown in Table 2.
The results show the average for 10 trajec-
tories with three random seeds. The per-
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(a) Mean cumulative rewards of the learner using dif-
ferent baseline methods.

(b) 2D Wasserstein distance between state distribu-
tions of expert and learner.

Figure 3: IRL training curves for the Walker2d task comparing different feature selection baselines.

formance of the proposed reward model outperforms the baselines for all of the tasks.

Next, we compare the performance of our method to AIRL and GAIL algorithms from the imitation
learning library [46]. Table 3 presents the mean cumulative rewards for the tasks studied. We can see
that our method achieves higher cumulative rewards in all domains, with significant improvement
on the Walker2d, Hopper, and Ant tasks. While adversarial IRL methods achieve state-of-the-art
(SOTA) performance, they require a large amount of training data to perform well. Table 1 shows
the number of parameters in the reward model. In adversarial IRL methods, a two-layer MLP with 32
nodes is used, while proposed method uses linear reward model with significantly less parameters.
This enables to simplify learning process of the reward and therefore, proposed method performs
better than adversarial methods with less data.

Task HalfCheetah Walker2d Hopper Ant
GAIL 2186 ± 287 872 ± 336 628 ± 59 -389 ± 229
AIRL 5264 ± 88 1856 ± 89 1289 ± 165 -1189 ± 570
Ours 5514±204.02 3108±296.14 2110±197.57 2236±987.46

Table 3: Mean cumulative rewards for different IRL algorithms

Expert Fast Slow
vx 0.12± 0.1 0.17± 0.18 0.09± 0.08

Table 4: Velocity of the HalfCheetah
along the x-axis changes accordingly af-
ter modifying the weights of the reward
component s8.

The learning curves of the IRL for Walker2d are shown
for different reward models in Fig. 3a. Similarly, the 2D
Wasserstein distance metric [45] between expert and
learner state distributions during training is shown in
Fig. 3b. To compute the divergence metric, we use 40
trajectories of expert and learner. The divergence met-
ric between expert and learner policies clearly demon-
strates that for the proposed reward, not only does the
policy achieve high cumulative rewards, but it also bet-
ter matches the expert state distribution compared to other baseline methods. Next, Fig. 4a shows
the correlation plot between ground truth rewards and recovered rewards for 150 trajectories with
random initial conditions. The Pearson correlation score is reported in the figure for the HalfCheetah
environment. We observe a strong correlation between recovered and ground truth rewards, with a
Pearson correlation coefficient of 0.78. This finding is noteworthy, as no ground truth reward sig-
nal was provided during reward learning; only expert demonstrations, specifically state trajectories,
were used to infer rewards. This suggests that the obtained rewards not only result in behaviors
similar to those of the expert but also achieve this by constructing a reward signal that closely re-
sembles the ground truth reward signal. In addition, Fig. 4b shows the full RL training loop with
the recovered reward, suggesting the compatibility of the recovered rewards with the RL framework,
meaning that RL can be trained from scratch using this reward function.
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(a) Ground truth and recovered cumulative episodic
rewards for trajectories in the expert data

(b) RL learning curve with ground truth reward (ex-
pert) and recovered reward functions (learner).

Figure 4: Comparison of training with ground truth and recovered reward functions for HalfCheetah.

Next, we examine the characteristics of the rewards obtained. Let’s consider the inferred reward
model for HalfCheetah:

R = (1.59− 0.03s0 + 0.57s11 − 0.06s16 + 0.21s20 + 0.21s0s11)s8

+ (0.31s1 − 0.38s2 − 0.83s0s2)s6 − 1.24s29 + 1.03s210s5 + 0.57s1s3

The transparency of the reward can be seen from the reward representation which consists of mono-
mials. This enables the analysis of which features of the expert contributes to reward and interaction
between state features. We observe that the reward terms focus on state s8, which represents the ve-
locity along the x-axis, directly relating to the agent’s original reward. Additionally, there is a high
negative gain for s9, the angular velocity along the y-axis, which is sensible since the HalfChee-
tah should primarily move along the x-axis. Negative gains for the angular velocity of the rotors,
specifically s2 and s16, are also evident, aligning with the control penalty in the ground truth reward.

One important benefit of this compact and explicit representation of the reward is the possibility of
fine-tuning the reward function to generate different behaviors. The Table 4 below shows the mean
and standard deviation of the HalfCheetah’s velocity along the x-axis after multiplying coefficient of
one of the terms, s8, in the reward function by 2 and 0.5, respectively. As a result of amending reward
components, faster and slower motion was achieved, which can be expected as state s8 accounts for
the velocity along the x-coordinate of the front tip.

One limitation of this paper is its applicability to other high-dimensional inputs, such as images. We
anticipate that pre-learning features, possibly through the use of autoencoders, and combining with
proposed method could be a viable approach to overcoming this limitation, and we plan to explore
this direction in future work. Another limitation is our experimental design. We have not conducted
experiments with real robots and human demonstrations. However, we validated our method using
complex robotic environments. In future work, we plan to apply the method to real-world tasks and
learn rewards from demonstrations.

7 Conclusion

This paper presented a method for constructing a transparent reward model with an explicitly rep-
resented form using non-linear state features. Reward components were selected using an unsuper-
vised learning method from observational data by incorporating the maximum entropy formulation
for the behavior. As shown above, selecting the features that allow predicting trajectory probabilities
results in a higher match with ground truth rewards and enables the retrieval of policies more similar
to those of an expert. Learning rewards from data alleviates the challenge of manual reward specifi-
cation for complex tasks and allows for training with exploration outside of the training data using
the reinforcement learning framework. We have demonstrated that across different environments,
recovered rewards outperform other baseline methods.
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Appendix

A Details of Experiments

Below are the short descriptions of the benchmark tasks and the corresponding ground-truth reward
functions:

1. Hopper-v4 The task of this one-legged robot is to move forward by applying torques to
three hinges. The true reward is calculated using distance moved forward and high torque
values are penalised.

2. Ant-v4 The task of this robot consisting of three links is to move forward by applying
torques to rotors. The true reward is calculated using distance moved forward and high
torque values are penalised.

3. Walker2d-v4 The task of this robot is to move forward by applying torques to its six
hinges. The true reward is calculated using distance moved forward and high torque values
are penalised.

4. Half-Cheetah-v4 The task of this two-dimensional robot consisting of 9 body parts is to
move forward by applying torques to joints, hinges, and feet. The true reward is calculated
using distance moved forward and high torque values are penalised.

Tasks dim(S) dim(A)
Hopper 11 3
Walker 17 6

HalfCheetah 17 6
Ant 27 8

Table 5: State-action dimensionality of the tasks

An additional challenge in reward learning is that the features composing the ground-truth rewards
are not directly available. For example, the direct components of the ground-truth reward, partic-
ularly the x-coordinate and torque values, are hidden from the states and, consequently, from the
reward model. Instead, we infer the reward from the available indirect features like velocity or joint
angles.

B Implementation details

The source code was implemented in Python 3.8, and the source code will be publicly available
upon acceptance. We utilized the Stable-baselines3 library [44] for the training of RL algorithms.
As a policy network, we used a multi-layer perceptron (MLP) with two hidden layers. Furthermore,
we conducted a thorough hyperparameter optimization for both the RL and inverse reinforcement
learning (IRL) parameters. A table with the hyperparameters used during the training is included in
the supplementary materials. The total number of training iterations for IRL is 50, and the training
dataset consists of 150 trajectories. To facilitate the training, we parallelized data collection and
environment simulation using multi-processing techniques. During the feature selection process,
we normalize each state feature to have a mean of zero and a standard deviation of one. We apply
the same normalization for reward computation. However, for policy learning, we use the raw state
inputs. We employed the Optuna[47] library with grid search to tune hyperparameters, and Adam
optimizer[48] was used to learn reward model.
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C Algorithm

Algorithm 1: Inverse Reinforcement Learning with Unsupervised Feature Selection
input :M\r, expert data D, simulator E, iterations M , learning rate α, number of trajs N
output: Reward r, policy π

1 Φ← Generate candidate feature set
2 Generate pseudo labels Y
3 Compute feature expectations X
4 H ← rank features(X,Y )
5 ϕ(·)← select topk(H, k)
6 µe ← compute features(D,ϕ)
7 Initialize θ ∼ Unif [−1, 1]
8 for i = 0 to M do
9 r ← construct reward(θ, ϕ)

10 Configure simulator E with new r
11 π ← learn policy(E, r)
12 G← collect rollouts(π,E,N)
13 µa ← compute features(G)
14 ∇L(θ) = µe − µa ; // loss gradient

15 θ ← θ + α∇L(θ) ; // update θ

16 end

D Proofs

D.1 Computation of trajectory probability

The probability of trajectory τ = {s1, s2, · · · , sn} is given as

P (τ) = P (s1)P (s2|s1)P (s3|s2) . . . P (sn|sn−1). (13)

After applying the logarithm to both sides and simplifying the terms, we get

logP (τ) = logP (s1) +

n−1∑
t=1

(logP (st, st+1)− logP (st)) (14)

Here, conditional state probability P (st+1|st) can be written as P (st+1|st) = P (st, st+1)/P (st).
Then:

P (τ) = P (s1)
P (s1, s2)

P (s1)

P (s2, s3)

P (s2)
. . .

P (sn−1, sn)

P (sn−1)
(15)

After applying the logarithm to both sides, we get:

logP (τ) = logP (s1) + log
P (s1, s2)

P (s1)
+ log

P (s2, s3)

P (s2)
+ . . .+ log

P (sn−1, sn)

P (sn−1)
(16)

= logP (s1) +

n−1∑
t=1

log
P (st, st+1)

P (st)
(17)

= logP (s1) +

n−1∑
t=1

(logP (st, st+1)− logP (st)) (18)

(19)

D.2 Learning of reward weights

θ∗ = argmax
θ

∑
τ∈D

logP (τ |θ) (20)
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To find the optimal weights θ, we take the derivative of log-likelihood that is given by:

∇L(θ) = ∇
∑
τ∈D

log

(
eθ

Tϕ(τ)

Z(θ)

)
(21)

= ∇
∑
τ∈D

(
θTϕ(τ)− logZ(θ)

)
(22)

=
∑
τ∈D

ϕ(τ)−∇ logZ(θ) (23)

=
∑
τ∈D

ϕ(τ)− 1

Z(θ)

∑
τ ′∈T

ϕ(τ ′)eθ
Tϕ(τ ′) (24)

=
∑
τ∈D

ϕ(τ)−
∑
τ∈T

p(τ |θ)ϕ(τ) (25)

≈ µe −
m∑
i=1

∑
si∈τ

ϕ(si) (26)

E Hyperparameters

HalfCheetah Walker Hopper Ant
Number of expert trajs 150 150 100 150
Number of iterations 50 50 50 50
Learning rate 0.05 0.03 0.05 0.03
Learning decay 0.985 0.99 0.99 0.985
RL timestep 1e6 1e6 1e6 1e6
Discount factor 0.99 0.99 0.99 0.99
Number of parallel envs 4 4 4 4
Batch size 1024 256 512 256
Number of nodes (MLP) 256x2 256x2 256x2 256x2

Table 6: Training hyperparameters.
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