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Abstract

Instruction finetuned large language models001
(LLMs) have shown impressive performance002
solving a diverse range of natural language pro-003
cessing (NLP) tasks involving classification004
and reasoning. However, this can be partic-005
ularly challenging in low-data regimes. Recent006
methods have shown boosting via iterative full007
finetuning to be an effective method to augment008
the training data by using the incorrect exam-009
ples to generate synthetic data using a teacher010
LLM. However, data generation at scale using a011
teacher LLM can be costly, and full finetuning012
can be computationally expensive. To address013
this, we introduce SELF–BOOST, an iterative014
data augmentation and instruction finetuning015
strategy that has no external dependence on any016
teacher models. SELF–BOOST uses parameter017
efficient finetuning (PEFT) with Llama 3 8B to018
instruction finetune a model using the seed data,019
uses the same model to generate examples sim-020
ilar to the misclassifications, and also the same021
model to verify and filter the generated exam-022
ples. Our experiments show that performance023
on TREC, GSM8K, and CaseHOLD improves024
by 21.6%, 5.6% and 1.3% respectively, when025
compared to our baseline.026

1 Introduction027

LLMs have made significant advancements across028

diverse benchmarks, operating based on custom029

directives or example-based prompts. However,030

real-world applications reveal limitations in their031

adaptability to specialized domains and memory032

capacity for long prompts. Fine-tuning can be ef-033

fective but requires substantial training data.034

Recently, Lee et al. (2024) introduced a novel035

strategy, LLM2LLM, for improving the perfor-036

mance of pre-trained LLMs using boosting. This037

approach leverages a teacher LLM to iteratively038

augment a seed dataset with synthetic data, specifi-039

cally addressing areas where the model underper-040

forms. During each iteration, the teacher LLM041

generates new training examples that target the 042

student model’s errors for further refinement. This 043

method has demonstrated significant improvements 044

across various NLP tasks, illustrating that targeted, 045

iterative training can effectively enhance model 046

performance even in settings with low seed data. 047

However, the LLM2LLM approach employs expen- 048

sive teacher models and full finetuning. This leads 049

to high computational costs and are expensive to 050

scale; for instance, the token cost for GPT-4 can 051

range from $10 to $30 per million tokens. 052

To address this, we introduce SELF-BOOST, 053

a cost-effective alternative that enhances LLMs 054

through iterative self-generated data. We draw 055

inspiration from the analogy of a motivated learner 056

who is able to identify their own weaknesses, come 057

up with more practice questions that exemplify 058

these weaknesses, and use them for additional 059

practice to get better. Similarly, SELF–BOOST 060

enhances a model through a cyclic process 061

involving instruction fine-tuning, evaluation, data 062

augmentation, and verification over multiple itera- 063

tions. It identifies errors, generates new examples, 064

and rigorously verifies them using task-specific 065

prompts and majority voting. Only high-quality 066

examples are retained for subsequent iterations, 067

effectively enhancing model performance without 068

extensive data collection. 069

070

Our key contributions are as follows: 071

1. Introducing SELF–BOOST, utilizing the 072

model itself for generating and verifying data, 073

reducing computational costs. 074

2. Demonstrating success using PEFT tech- 075

niques on a single GPU. 076

3. Introducing a novel self-verification process 077

and running ablations to show its value in effi- 078

ciency and scalability. 079
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Figure 1: An visual explanation of our method, SELF–BOOST. At each iteration, we instruction finetune the
pretrained model using the current training dataset and evaluate the seed examples using the trained data. The
finetuned model is used to generate examples similar to the incorrect seed examples, and verify that they are
consistent. The verified examples are added back to the training dataset, and the cycle continues.

4. Conducting experiments showing the effec-080

tiveness of SELF–BOOST, with increasing081

boosting cycles significantly improving model082

performance.083

2 Related Work084

In this section, we present a literature review of085

prior work that is relevant to our method.086

Boosting: Freund and Schapire (1997) propose087

boosting method to improve learning algorithms088

by combining weak classifiers. The boosting algo-089

rithm calls this weak learner repeatedly, and each090

iteration generates a new weak prediction rule. Fi-091

nally the algorithm combines all the weak rules092

into a single one that is likely to achieve higher093

accuracy. Wang et al. (2023a) propose a Chain-of-094

Knowledge (CoK) prompting method that applies095

a boosting-style algorithm to improve the reason-096

ing capabilities of large language models. The097

CoK method applys a boosting-style algorithm to098

improve LLMs’ reasoning capabilities through it-099

erative rethinking and knowledge re-weighting, al-100

lowing CoK to boost reasoning performance on101

reasoning tasks like commonsense QA, arithmetic,102

and symbolic reasoning.103

LLM2LLM: As our baseline, Lee et al. (2024)104

introduce an innovative approach to enhance pre-105

trained LLMs using a teacher LLM to iteratively106

augment a seed dataset with synthetic data targeting107

the model’s weaknesses. At each round, the teacher108

LLM generates new, targeted training examples109

based on the student’s errors, which are used for110

further training. This cycle continues, iteratively111

enhancing the student’s ability to handle previously 112

challenging examples. This method shows signifi- 113

cant improvements but relies on access to a strong 114

teacher model and full finetuning. 115

Self-Verify: Weng et al. (2023) propose a self- 116

verification method that leverages LLMs’ inher- 117

ent ability to self-verify, enhancing their reasoning 118

without additional verifier training. It employs a 119

two-step process: forward reasoning and backward 120

verification, using True-False Item Verification and 121

Condition Mask Verification. 122

Self-Consistency: Wang et al. (2023b) present 123

a method called Self-Consistency, which improves 124

LLMs’ reasoning on complex tasks using a three- 125

step approach: chain-of-thought prompting, sam- 126

pling multiple reasoning paths, and evaluating con- 127

sistency to choose the final answer. 128

Self-Instruct: In the Self-Instruct method 129

(Wang et al., 2023c), the authors propose an au- 130

tomatic data generation and fine-tuning process for 131

LLMs. Initially, instruction data is defined to gener- 132

ate tasks that an LLM can understand and perform. 133

The LLM then creates new instructions, generates 134

instances, filters low-quality content, and is fine- 135

tuned on the resulting high-quality data to enhance 136

its ability to follow instructions accurately. The 137

Self-Instruct approach is designed to significantly 138

reduce the dependency on human-annotated data, 139

leveraging the LLM’s own generative capabilities 140

to improve its performance on a broader range of 141

instructional tasks. 142

Instruction Finetuning (FLAN): Wei et al. 143

(2022) introduce a method called instruction fine- 144
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tuning, which is designed to boost the zero-shot145

learning abilities of language models. This ap-146

proach involves finetuning a pre-trained language147

model with 137 billion parameters across an array148

of datasets. This process enhances the model’s abil-149

ity to perform on tasks it hasn’t seen before. The150

resultant model undergoes evaluation through a se-151

ries of unseen tasks, demonstrating its improved152

zero-shot learning capabilities. Also, it shows that153

instruction tuning leads to better performance on154

tasks naturally verbalized as instructions, and it is155

less effective on tasks directly formulated as lan-156

guage modeling, like commonsense reasoning and157

co-reference resolution.158

3 Methodology159

3.1 Baseline160

Following the terminology defined by Lee et al.161

(2024), we assume we are given an instruction fine-162

tuned LLM model M0 that is pretrained and in-163

struction finetuned on some large corpus. In all164

of our experiments, M is an instruction tuned165

Llama 3 8B model, the most recent iteration of166

the Llama model family (Touvron et al., 2023) re-167

leased by Meta 1. We also have access to D0, a168

domain specific seed dataset for which pre-trained169

or finetuned performance is unsatisfactory either170

due to the complex domain, lack of data availabil-171

ity, or inability to collect more data. To improve on172

pre-trained model performance, in our baseline we173

instruction finetuneM0 with D0 using low-rank174

adaptation (LoRA) (Hu et al., 2021), which is a175

PEFT method that can achieve near full-finetuning176

performance with a fraction of trainable parame-177

ters. LoRA adapters with rank r = 16, α = 32,178

and dropout 0.1 are added to all the linear layers.179

We obtain the trained model M1 by training for180

3 epochs with a learning rate of 3 × 10−4 and an181

AdamW (Loshchilov and Hutter, 2019) optimizer.182

M1 is then evaluated on an unseen test dataset D′183

from the same domain.184

3.2 SELF–BOOST185

We outline the approach for our method186

SELF–BOOST in Algorithm 1. The steps involved187

in each iteration i are briefly described below.188

Instruction Finetuning: We instruction tune189

M0 on data Di for 3 epochs with the same train-190

ing hyperparameters as the baseline method out-191

lined in Section 3.1 to obtain the finetuned model192

1https://llama.meta.com/llama3/

Mi. Ablation studies from Lee et al. (2024) show 193

that finetuningM0 from scratch shows significant 194

improvements in performance when compared to 195

continuous finetuning onMi−1 due to overfitting. 196

Evaluation: We evaluate Mi on the original 197

seed data D0. An exact match of an extracted an- 198

swer is used to identify the training examples in 199

D0 that are incorrectly predicted byMi. The ex- 200

traction process varies by task. For example, for 201

GSM8K, only text after the "####" string is con- 202

sidered, and for TREC and CaseHOLD, everything 203

after the assistant role header is considered. 204

Data Augmentation: We sample k times from 205

Mi by conditioning on a task-specific prompt to 206

generate k similar examples for each incorrect ex- 207

ample in D0. Ablation studies from Lee et al. 208

(2024) show that generating examples using previ- 209

ously generated examples could propagate errors 210

in data augmentation. Since this is likely true in 211

our setting as well, we only generate samples using 212

only the incorrect seed examples. 213

Verification: To ensure that the new training 214

data is of high quality, for each newly generated ex- 215

ample, we conditionMi on a task-specific prompt 216

and sample m times to verify if the provided reason- 217

ing and answer are correct for the generated ques- 218

tion. This approach is inspired by chain-of-thought 219

reasoning (Wei et al., 2023), self-verify (Weng 220

et al., 2023), and self-consistency (Wang et al., 221

2023b), which show that complex reasoning admits 222

different paths of thinking, and correct reasoning 223

processes tend to have greater agreement in the 224

final answer that incorrect processes. Using a min- 225

imum threshold t, we take a majority vote of the 226

m verifications and reject the examples that do not 227

meet the threshold. 228

Iteration: Finally, the verified, generated exam- 229

ples are added back to the dataset Di to obtain the 230

augmented dataset Di+1. This process is repeated 231

for n iterations until we get the final modelMn. 232

4 Experimental Setup 233

In this section, we outline the experimental setup 234

for our results. In addition to demonstrating empir- 235

ical results, we also perform an extensive ablation 236

study to understand the settings that work well for 237

our framework. All experiments are performed on 238

either a single NVIDIA RTX 4090 or A10 GPU. 239

The prompts used for example generation and veri- 240

fication for each of the benchmarks can be found 241

in Appendix A. 242
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Algorithm 1 Given a small seed dataset D0, SELF–BOOST uses the same modelMi at each step to
finetune with an augmented dataset, evaluate training examples, generate new examples that are similar to
the incorrect one, and verify that the new examples are consistent. The new examples are added back to
the dataset and used to finetune the model in the next iteration.

1: procedure SELF–BOOST(M0, D0)
2: i← 0
3: while i < n do
4: Mi ← Finetune(M0, Di)
5: Ei ← Evaluate(Mi, D0) ▷ Evaluate on seed data
6: W i ← Filter(Ei,D0) ▷ Keep wrong answers
7: Ai ← {Generate1(Mi, W i), ..., Generatek(Mi, W i)} ▷ Self-augment
8: Ci ←Majority Vote{Verify1(Mi, Ai), ..., Verifym(Mi, Ai)} ▷ Ensure self-consistency
9: Di+1 ← Di + Ci ▷ Append to data

10: i← i+ 1
11: end while
12: Evaluate Mn

13: end procedure

4.1 Methods243

We compare our method SELF–BOOST to the base-244

line method of a single iteration of finetuning with-245

out any data augmentation, similar to the evaluation246

methodology by Lee et al. (2024). However, unlike247

their evaluation, for our method we present results248

ofMn (the final model) instead ofM∗ (the best249

performing model on a validation held-out set), as250

we believe that this is a more robust measure of the251

method.252

4.2 Benchmarks253

To evaluate the improvement that our framework254

offers over the baseline, we present the perfor-255

mance of both methods on three benchmarks:256

GSM8K (Cobbe et al., 2021), TREC (Li and Roth,257

2002) and CaseHOLD (Zheng et al., 2021), all of258

which involve very different tasks. GSM8K is an259

open-ended generation task involving complex rea-260

soning over grade school math problems. TREC is261

a 6-way classification task involving assigning the262

intent of a question to a category such as abbrevi-263

ation, entity, or location. CaseHOLD is multiple264

choice task involving determination of a court’s265

holding on a cited case. To evaluate the methods in266

a low data setting, we sample a seed dataset of 1 -267

10% (uniformly sampled) of the training data for268

GSM8K, 1.1 - 2.2% of training data for TREC (10-269

20 instances per class), and 0.1 - 0.5% of training270

data for CaseHOLD.271

4.3 Hyperparameters 272

In our ablation studies, we experiment with a few 273

hyperparameters and settings that our method of- 274

fers. Specifically, we explore generation sam- 275

ple size k ∈ {1, 3, 5}, verification sample size 276

m ∈ {1, 3}, number of boosting iterations n ∈ 277

{3, 5, 10}, and whether verification is enabled. 278

4.4 Measurement 279

For all benchmarks, we measure and report the ex- 280

act match accuracy between the label and parsed 281

predicted response for the entire test set. For ended- 282

tasks such as GSM8K, the parsing involves the 283

extraction of just the final answer. For classifica- 284

tions tasks like TREC and CaseHOLD, the class is 285

extracted. 286

5 Results 287

5.1 Main Results 288

We apply the SELF–BOOST framework on the 289

newly released instruction tuned Llama 3 8B model 290

on various benchmarks, including GSM8K (Cobbe 291

et al., 2021), TREC (Li and Roth, 2002) and Case- 292

HOLD (Zheng et al., 2021). Due to limited com- 293

puting resources, we present results for a subset of 294

sample rates from 0.5% to 10% to emulate a low- 295

data regime and test the efficacy of our framework. 296

We present the accuracy ofM10 on the test split 297

of each benchmark dataset after 10 iterations of 298

SELF–BOOST, as well as the baseline method (as 299

outlined in Section 3.1) in Table 1. On 1.1% of the 300

TREC dataset, the baseline achieves 69% accuracy. 301
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With our SELF-BOOST framework, the accuracy302

goes up to 90.6% (improved by 21.6%) by itera-303

tively generating 118 additional examples based304

on the seed examples. With double the available305

data of 2.2% of TREC, our method still achieves306

93.3% accuracy, improved by 8.8%. These are307

hard examples for which the model failed to give308

the correct answer. We only generate new exam-309

ples similar to examples in the seed training set,310

according to the ablation study in (Lee et al., 2024)311

which suggests that generating using non-seed ex-312

amples may cause drifting, introduce more inac-313

curate examples, and eventually hurt the model’s314

performance. Other than generating new data, we315

also found verifying the generated data could help316

further boost the performance, which we will dis-317

cuss later in Section 5.3. We observe a similar trend318

for GSM8K and CaseHOLD, though with smaller319

improvements than on TREC. We further analyze320

these results in Section 5.4.321

5.2 Effect of Boosting Iterations322

We compare the performance of our method by323

varying the number of boosting iterations n. The324

results are shown in Figure 2. For both TREC and325

GSM8K, we observe that increasing the number326

of iterations allows the performance to continue327

improving. We hypothesize that this is because328

at each iteration, we are augmenting the training329

dataset with generated examples that are similar to330

training examples that the model got wrong. This331

leads to the difficult patterns and concepts being332

weighed more in the loss during the forward pass,333

and LoRA parameters being optimized towards bet-334

ter understanding these patterns and concepts in335

the backward pass. This could allow the model to336

generalize better to similar unseen examples. We337

also hypothesize that the improvements in perfor-338

mance across iterations could be due to the fact that339

at each iteration i, modelMi is trained on a richer340

dataset Di, and thus has the ability to generate bet-341

ter quality examples than the model from previous342

iterationMi−1. A possible ablation to validate this343

hypothesis, which we leave to our future work, is344

to compare performance with using modelM0 to345

generate the examples at each iteration instead.346

5.3 Effect of Verification347

We show the results of some ablations exploring348

the effects of verification as part of our method.349

Presence of Verification: For both TREC and350

GSM8K, we enable verification with m = 1, t =351

1.0 (i.e. we sample once and reject the generated 352

example if the answer is different). We observe that 353

when verifications are enabled (Verifications), there 354

is a drop in the test accuracy ofMn as compared to 355

when verifications are disabled (No Verifications). 356

We hypothesize that this is due to the fact that the 357

total number of training examples is lower when 358

verifications are enabled, since inconsistent exam- 359

ples are filtered out. To account for this, we test a 360

setting in which the number of generated examples 361

per incorrect training example is increased from 362

1 to 3 (Verifications + More Generations). This 363

setting results in the best performance. This ab- 364

lation reveals an interesting tradeoff between the 365

quantity and quality of training examples. Clearly, 366

both quantity and quality are necessary to improve 367

performance. These results are shown in Figure 3. 368

Consistency in Verifications: We also test the 369

effect of increasing consistency in verification by 370

varying the number m ∈ {1, 3}, which is the num- 371

ber of times each generated example is verified by 372

the model. Both settings use t = 1.0, meaning 373

that if any of the verifications are unsuccessful, the 374

example is rejected. Intuitively, we would assume 375

that a higher m in this setting would mean that there 376

is greater agreement in verifications, resulting in 377

higher quality examples being retained, and that the 378

higher quality in training examples would results in 379

improved performance on the test set. However, we 380

observe that this is true only for GSM8K but not for 381

TREC. Although increasing m led to fewer exam- 382

ples being generated in both GSM8K and TREC, 383

it led to better performance for GSM8K but poorer 384

performance for TREC. We hypothesize that trade- 385

off between quantity of examples and the quality 386

of examples may vary based on the type of task. 387

For a simpler classification task such as TREC, it 388

is possible that having more examples, even if they 389

are not completely accurate, could be helpful in 390

allowing the model to learn simpler patterns such 391

as the possible output classes in the classification 392

task. However, for more complex open-ended tasks 393

such as GSM8K, the addition of inaccurate exam- 394

ples may confuse the model and result in poorer 395

reasoning, leading to worse performance. These 396

results are shown in Figure 4. 397

In Figure 5, we show an example of our verifi- 398

cation process with m = 3 and t = 1.0, as well as 399

the reasoning provided by the sample which was 400

not verified. In this case, the other samples missed 401

out the fact that the three inline skates were col- 402
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Figure 2: Our ablations show that continued boosting improves performance. With continued boosting, the number
of generated examples that similar to incorrect training examples increases, allowing the model to learn more
difficult patterns.

Figure 3: Our ablations show that simply adding verification is insufficient to improving performance, as there is a
risk of insufficient training data. Additional generated examples are also required to ensure there is enough data.

lectively 3/4 the price of the roller skates (due to403

this word each being missing in the question), but404

the last verification was able to successfully iden-405

tify this. In tricky cases like this, leveraging more406

verifications results in a higher chance to filter out407

wrong examples to maintain the high quality of the408

training set.409

5.4 Effect of More Data 410

Our ablations also show that the SELF-BOOST 411

framework is most effective in low-data settings, 412

since it can self-generate new examples based on 413

the wrong examples and self-verify the quality of 414

the generated examples. This is best illustrated by 415

experiments on TREC – even though we achieve 416

a higher test accuracy on 2.2% sample rate than 417

on 1.1%, the accuracy gain compared with base- 418

line is much more significant on 1.1%, the lower 419
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Figure 4: Our ablations show that the tradeoff of data quantity and quality may be task dependent. For simpler tasks
like TREC, more training data matters more than data quality. For complex reasoning tasks such as GSM8K, data
quality is much more important.

Dataset % Data # Seed Examples # Augmented
Test Accuracy (%)

Pretrained Baseline SELF–BOOST

TREC 1.1% 60 118 0.0 69.0 90.6 (+21.6)
TREC 2.2% 120 131 0.0 84.8 93.6(+8.8)

GSM8K 1% 74 302 0.0 55.3 60.9 (+5.6)
GSM8K 10% 747 888 0.0 63.9 59.1 (-4.8)

CaseHOLD 0.1% 45 32 1.4 61.5 62.0(+0.5)
CaseHOLD 0.5% 204 114 1.4 68.9 70.2 (+1.3)

Table 1: The results of our method, SELF–BOOST, compared to zero-shot and baseline performance on the test sets of
TREC, GSM8K, CaseHOLD. The columns % Data and # Seed Examples describe the amount of seed data available
at the start of boosting. The column # Augmented describes the total number of examples generated during the
boosting process. Pretrained performance is evaluated onM0 without any instruction tuning. Baseline performance
is evaluated onM1 after finetuning with only the original seed examples. SELF–BOOST performance is evaluated
onM10 after 10 iterations of boosting. Overall, we observe that test accuracy improves with SELF–BOOST.

subsample rate, as shown in Table 1. This shows420

that when SELF-BOOST can generate enough ex-421

amples (in TREC’s case, for both subsample rates422

our method has more augmented examples than the423

seed training set), it can largely boost the finetuning424

accuracy.425

For both subsample rates on CaseHOLD, our426

method generates fewer augmented examples than427

the original seed training set, which could explain428

why the accuracy gains on CaseHOLD are less sig- 429

nificant than on TREC. In our experiments, due 430

to the large number of tokens in CaseHOLD, we 431

only try to generate 5 new examples per wrong 432

example. We hypothesize that even higher num- 433

bers of generations per wrong example (e.g. 10, 434

50) could improve performance further. TREC 435

and CaseHOLD are both multi-classification task 436

benchmarks, while GSM8K is a quite challenging 437
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For newly generated example:
Maria buys one set of roller skates for $120 and three sets of inline 
skates for 3/4rds of the price of the roller skates. How much does 
she pay total?', 'output': 'First find the cost of one set of inline 
skates: $120 * 3/4 = $<<120*3/4=90>>90\nThen find the total cost 
of the inline skates: $90/set * 3 sets = 
$<<90*3=270>>270\nThen add that amount to the cost of 
the roller skates to find the total cost: $270 + $120 = 
$<<270+120=390>>390\n#### 390
CORRECT: CORRECT
CORRECT: CORRECT
NOT VERIFIED (2 / 3.0):  it got 1/3 verifications wrong:
#Judgement: WRONG
The student's answer is incorrect because they added the cost of 
the inline skates to the cost of the roller skates, but they did not 
take into account the fact that the cost of the inline skates is 
already three times the cost of the roller skates. Therefore, the 
total cost is actually $120 + $90 = $210, not $390.

Figure 5: Multiple verifications help filter out incor-
rectly generated examples. In this example, the question
is missing the word each, which leads to a different
answer that the one in the generated example.

math reasoning task benchmark. On GSM8K, we438

see an unusual accuracy drop on a higher sample439

rate with 10%. We hypothesize that this is because440

the 10% subsampling provides 10x more examples441

in the seed training set, and the quality of our self-442

generated and self-verified examples by Llama 3443

8B is poorer than the human-labeled GSM8K ex-444

amples in the seed dataset. For challenging reason-445

ing tasks like GSM8K, adding more, poor quality446

examples to the finetuning process may hurt the447

accuracy when given enough seed examples. For448

such tasks, we might need a teacher model with449

stronger reasoning capability to replace the self-450

generation and self-verification steps.451

6 Future Work452

Building upon our results for SELF-BOOST, we453

propose a few directions for future research.454

Hybrid Teachers Models: Our current method455

leverages student models as the teacher models and456

performs self-augmentation. The combination of457

SELF-BOOST with other successful methodologies458

like LLM2LLM could prove to be beneficial. For459

example, employing a low-cost teacher model to460

guide the self-boosting process might strike a bal-461

ance between computational efficiency and the ro-462

bustness of generated examples, providing a more463

refined dataset for training.464

Teacher Model Capabilities: Another poten-465

tial direction is to thoroughly investigate the im-466

pact of teacher models’ varying capabilities on the467

quality of data generation, and the consequent per-468

formance of student models. This analysis will469

involve systematically varying the complexity and 470

instructional capacity of teacher models to see how 471

these variations influence the quality of the syn- 472

thetic training data they produce. We will explore 473

metrics such as fidelity, diversity, and relevance 474

of the generated data, and assess how these quali- 475

ties affect the learning outcomes in student models. 476

Ultimately, this will allow us to identify optimal 477

characteristics and configurations of teacher mod- 478

els that most effectively enhance student model 479

performance, potentially leading to more efficient 480

and targeted training methodologies. 481

Tradeoff between Quantity and Quality: As 482

described in Section 5.3, our ablations suggest that 483

the tradeoff between the amount of data generated 484

and the quality of data generated may be task spe- 485

cific. To this end, a potential future direction could 486

build upon our method to make this determina- 487

tion part of the method. In other words, perhaps 488

the method could determine if data quantity is re- 489

quired (in which case it may be fine to use a cheaper 490

teacher model to generate the data), if data quality 491

is required (in which case the method can invoke 492

a more expensive teacher model to generate the 493

data). 494

7 Conclusion 495

The SELF–BOOST methodology represents a sig- 496

nificant step forward in the autonomous enhance- 497

ment of large language models (LLMs) through 498

iterative self-generated data. By eliminating the 499

dependence on costly teacher models and lever- 500

aging the model’s own errors for data augmen- 501

tation, SELF–BOOST not only reduces computa- 502

tional expenses but also enhances model accuracy 503

effectively. This process is particularly valuable 504

in resource-constrained scenarios where acquiring 505

large amounts of annotated data is impractical. The 506

empirical results indicate that SELF–BOOST can 507

substantially improve model performance, particu- 508

larly in challenging tasks like GSM8K and TREC. 509

Moreover, the method’s ability to refine and expand 510

its training dataset autonomously makes it a promis- 511

ing approach for ongoing model improvement in 512

various AI applications. 513
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Limitations514

Our choices of experimental setups were limited in515

several ways:516

Model Selection Given our limited computational517

resources, we only try our SELF-BOOST frame-518

work with pretrained checkpoints of Llama 3 8B-519

Instruct. It would be better to validate our frame-520

work on other popular model series like the PaLM521

series with sizes from 8B to 540B, or Llama 2 from522

7B to 70B, and the 70B version of Llama 3.523

Framework Hyper-parameters Exploration In524

our SELF-BOOST, we have considered and525

supported modification of the following hyper-526

parameters:527

1. n_iters: the number of iterations in the boost-528

ing process, also the number of weak learners529

2. n_epochs_per_iter: the fine-tuning epochs530

during each iteration of the boosting531

3. n_generations_per_incorrect_example:532

for each incorrect example, the number of533

newly generated examples534

4. enable_verification: whether to verify the535

newly generated examples536

5. min_verify_threshold: the threshold for a537

generated example to pass the verification538

6. n_voting_verify: for each new example,539

how many times it has to be verified540

7. seed_generation_only: whether to add gen-541

erated examples that are based on non-seed542

examples to the training set543

For hyper-parameters like n_iters and544

seed_generation_only, we set them to 10 and545

true respectively, based on the results and analysis546

in the ablation study of (Lee et al., 2024). We547

did explore enable_verification with true and548

false, n_generations_per_incorrect_example549

from 1 to 5, and n_voting_verify from 1 to550

5 on our own, although in a relatively limited551

range. In the final results, we were using one552

value for all benchmarks based on our obser-553

vation. For the remaining n_epochs_per_iter554

and min_verify_threshold, they seem trivial555

to the framework so we did not explore how556

exactly these two hyper-parameters will change557

the results. Given more computation resources, it558

would be helpful to thoroughly explore all these559

hyper-parameters on our own. Using grid search 560

would be costly, so we propose to use Bayesian 561

optimization to find the proper hyper-parameter 562

settings in the future work. 563

Finetuning Dataset Sampling Rate For three of 564

our benchmarks, we use two sample rates on each 565

of them to randomly sample a small subset to sim- 566

ulate the low-data regime. In (Lee et al., 2024), 567

they conduct experiments on 4-9 different sam- 568

pling rates, even including 100% to show that the 569

method helps improve metrics under data-sufficient 570

regimes. Given our computational resources, we 571

only focused on 2 lowest sampling rates so we 572

might neglect some vital trends in slightly higher 573

sampling rates. 574
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Appendix 642

A Prompt Examples 643

TREC Generation System Prompt:
You are QuestionGPT, an AI agent who knows the class of different question. You are training
someone how to classify different questions based on what the questions are asking form. You are
trying to give the user assistance by giving them more practice questions for the questions that
they get wrong. Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at 5pm or set a reminder because it cannot perform any action.
2. The question should be in english.
3. The questions that you generate should have only 1 of the following intents: - ABBR (Abbrevia-
tion) - ENTY (Entity) - DESC (Description/Concept) - HUM (Human) - LOC (Location) - NUM
(Number)
4. The questions should always have 1 specific class.
5. The intent of the question must come from the list above.
6. Don’t make any mistakes with your answer yourself.
7. Try not to copy too much information from the original problem. You don’t want the user to just
memorize the practice problems.
8. Make the class the same as the question that the user got wrong.
9. The question should be something that an ASR model could output: it must sound like
something a human could say.

Always return your instructions in the form:

#Question: What are the requirements to become a pilot?
#Class: DESC

TREC Generation User Prompt: The following is a question.
Classify the question into the following categories:
- ABBR
- ENTY
- DESC
- HUM
- LOC
- NUM
Question: Who is the author of the novel "To Kill a Mockingbird"?
Class: HUM
Give me another 1 similar question with the same class HUM.
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GSM8K Generation System Prompt:
You are a educational A.I. whose purpose is to take math problems that students get wrong and
generate new problems to help them practice their mathematical skills. Your goal is to generate
a set of new math problems that reflect the different skills and techniques found in the example
problem.
Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at 5pm or set a reminder because it cannot perform any action.
2. The math problem should be in English.
3. The output should be an appropriate response to the question. Make sure the output is less than
100 words.
4. The answer to the problem should be expressed as a number, not a fraction. For example, if the
answer is one-half, return 0.5, not 1/2 or "one half".
5. The answer to the problem should not have units i.e. if the answer is 6 cups, just write 6 as the
[ANSWER]
6. Always include some calculation to show your work for how you got your ANSWER.
7. Don’t make any mathematical mistakes of your own!
8. Try not to copy too much information from the original problem. If you must, try and replace
names and numbers so that we can test the student’s understanding, rather than their ability to
memorize previous test questions. Always return your instructions in the form:
#Question: [QUESTION]
#Answer: [CALCULATION]
#### [ANSWER]

GSM8K Generation User Prompt:
The student was given the following question:

Chrystal’s vehicle speed is 30 miles per hour. Ascending the mountain decreases its
speed by fifty percent, and descending the mountain increases its speed by twenty percent.
If the distance going to the top of the mountain is 60 miles and the distance going down to
the foot of the mountain is 72 miles, how many hours will Crystal have to pass the whole mountain?

The answer key has this as the rationale and answer:

The vehicle’s speed decreases to 30 x 0.50 = «30*0.50=15»15 miles per hour when ascending
to the top of the mountain. So, the total time Crystal will have to spend going to the top of the
mountain is 60 / 15 = «60/15=4»4 hours. And the speed of the vehicle increases by 30 x 0.20 =
«30*0.20=6»6 miles per hour when going down to the foot of the mountain. So, the total speed of
the vehicle when going down is 30 + 6 = «30+6=36»36 miles per hour. Thus, Chrystal will have to
spend 72 / 36 = «72/36=2»2 hours to descend from the mountain. Therefore, the total hours she
will spend to pass the whole mountain is 4 + 2 = «4+2=6»6 hours.
#### 6

Please generate 1 similar question, along with the correct calculations and rationale.
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CaseHOLD Generation System Prompt:
You are LawGPT, an AI agent who knows everything there is to know about U.S. law. You know
the result of every court case and you know every law in the lawbook. The user is trying to choose
the correct holding of the case given the context and argument of the court. You are trying to give
the user assistance by giving them more practice questions for the questions that they get wrong.
Here are the requirements:
1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at 5pm or set a reminder because it cannot perform any action.
2. The context, holding, and options should be in English.
3. The questions that you generate should test for whether the user understands the case names and
their holdings and whether the user can re-frame relevant holdings to backup the argument in the
context.
4. The context should always end with a citation such as "See United States v. Newman, 125 F.3d
863 (10th Cir.1997) (unpublished) (<HOLDING>); United States v. Dodge, 846 F.Supp. 181,"
5. The citation absolutely needs to have the mask phrase <HOLDING> which is the place where
the legal holding would normally be.
6. The questions should always be multiple choice.
7. There should always be 5 options: 1 options should be a holding that backs up the argument
in the context, the other 4 should be sufficiently different. Each option has to start with the word
"holding"
8. There can only be 1 answer: A, B, C, D, or E.
9. Don’t make any mistakes matching the holdings yourself.
10. Try not to copy too much information from the original problem. You don’t want the user to
just memorize their answer.
11. Make the context similar to the context in question, make sure that the holding that is being
tested is the same.
12. The wrong answer choices can be any other reasonable holding, but it should be sufficiently
different from the correct answer.
13. Do not make your context too short. Remember, these arguments in the context are being
made by judges and should look like they were written by a judge.

Always return your instructions in the form:

#Context: [CONTEXT]
Please select the correct holding statement from the options below.
#A. [OPTION 1]
#B. [OPTION 2]
#C. [OPTION 3]
#D. [OPTION 4]
#E. [OPTION 5]
#Answer: [ANSWER]

13



CaseHOLD Generation User Prompt: The following context is from a judicial decision where
the holding statement has been masked out as <HOLDING>.
Context: MCI’s third-party action against Marcopolo. In MCI’s appeal of the special appearance
ruling, we affirmed the trial court’s decision. See Motor Coach Indus., Inc. v. Marcopolo, S.A.,
2007 WL 4157241 (Tex.App.-Waco Nov.21, 2007, no pet.). MCI’s eighth issue contends that, if
the trial court erred by granting Marcopolo’s special appearance, its severance of MCI’s third-party
action against Mar-copolo would have been erroneous and the judgment should be reversed.
Because we affirmed the trial court’s decision on Marco-polo’s special appearance, we overrule
MCI’s eighth issue. 2. Two Texas Supreme Court decisions have addressed the implied preemption
of state common-law tort claims by federal motor vehicle safety standards: Hyundai Motor Co. v.
Alvarado, 974 S.W.2d 1, 13 (Tex.1998) (<HOLDING>); and Great Dane Trailers, Inc. v. Estate of

Please select the correct holding statement from the options below.

A: holding that a state common law claim seeking to require automobile manufacturers to install
airbags would frustrate the purposes of the federal safety standard regulations adopted under the
federal motor vehicle safety act which did not require manufacturers to do so and therefore was
preempted by conflict
B: holding that the safety act and fmvss 108 did not impliedly preempt commonlaw conspicuity
tort based on inadequate lighting and reflectors on truck trailer
C: holding that the coast guards decision not to regulate propeller guards did not impliedly preempt
petitioners tort claims
D: holding that the safety act and fmvss 208 did not expressly or impliedly preempt a tort claim
based on the manufacturers failure to install lap belts
E: holding that claims were nothing more than a backdoor attempt to attack once again the
manufacturers exercise of one of the restraint options under fmvss 208 and the court will not permit
it
Answer: B

Please generate 1 similar question, along with 5 different holding options and the correct answer.
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TREC Verification System Prompt:
You are QuestionGPT, an AI agent who is able to determine if the class of a given question is
correct.
Here are the requirements:
1. You should be able to determine if the class of a given question is correct.
2. Start each response by clearly giving your [REASONING] about the given question and the
given class.
3. Your [JUDGEMENT] should either be CORRECT or WRONG based on your [REASONING].
4. The class of the question could only be one of the following: - ABBR (Abbreviation) - ENTY
(Entity) - DESC (Description/Concept) - HUM (Human) - LOC (Location) - NUM (Number)
5. Include any steps in your [REASONING] that justify your answer.
6. In your reasoning, you could talk about the given question and mention the given class, and
your analysis on the question type.
7. Then give your predicted classification in [CLASS] based on your reasoning.
8. Finally give your judgement in [JUDGEMENT]. If your classification is the same as the
provided class, your judgement should be CORRECT. If your classification is different from the
provided class, your judgement should be WRONG.

Always return your instructions in the form:

#Reasoning: [REASONING]
#Class: [CLASS]
#Judgement: [JUDGEMENT]

TREC Verification User Prompt:
Below is the provided question and class: What is this question asking about? Classify the question
into the following categories:
- ABBR (Abbreviation)
- ENTY (Entity)
- DESC (Description/Concept)
- HUM (Human)
- LOC (Location)
- NUM (Number)
Question: What type of fruit has the most seeds?
Class: ENTY
Please determine if the provided class is correct for the provided question.
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GSM8K Verification System Prompt:
You are a QuestionGPT. You are given a question and an answer by a student, and your goal is
to analyze the question, give your predicted answer and then determine if the student’s answer is
correct. Here are the requirements:
1. Start each response by clearly giving your [REASONING] to determine if the answer is
CORRECT or WRONG.
2. Your [JUDGEMENT] should either be CORRECT or WRONG.
3. Present your reasoning in English.
4. Numerical answers should be provided in decimal form, e.g., represent one-half as 0.5 instead
of 1/2 or "one half".
5. Exclude units from numerical answers (e.g., for ’6 cups’, the answer should be ’6’).
6. In [REASONING], include calculations that justify the answer to demonstrate your reasoning.
7. Avoid mathematical errors in your reasoning.
8. Then give your predicted answer in [ANSWER] based on your reasoning, in numerical format.
9. Finally, by comparing your [ANSWER] with the student’s answer, put your judgement in
[JUDGEMENT].

Always return your instructions in the form:

#Reasoning: [REASONING]
#Answer: [ANSWER]
#Judgement: [JUDGEMENT]

GSM8K Verification User Prompt:
The student was given the following question below:

Maria is planning a road trip to visit her friend. She spends 1.5 hours packing her bags, 2.5 times
the packing time getting gas, and 15 minutes saying goodbye to her family. What percentage of the
total time she spent on all those activities was spent getting gas, rounded to the nearest percent?

The student gave the following reasoning and answer (right after ####) below:

First convert Maria’s packing time to minutes: 1.5 hours * 60 minutes/hour = «1.5*60=90»90
minutes
Then find the time Maria spends getting gas: 2.5 * 90 minutes = «2.5*90=225»225 minutes
Then add the time she spends on each activity to find the total time: 225 minutes + 15 minutes +
90 minutes = «225+15+90=330»330 minutes Then divide the time Maria spends getting gas by the
total time and multiply by 100% to express the answer as a percentage: 225 minutes / 330 minutes
= 68.181..., which rounds down to 68%
#### 68

Please determine if the provided numerical answer is correct.
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CaseHOLD Verification System Prompt:
You are LawGPT, an AI agent who knows everything there is to know about U.S. law. You know
the result of every court case and you know every law in the lawbook. The user is trying to choose
the correct holding of the case given the context and argument of the court. You are trying to give
the user assistance by determining if the user’s answer is correct.

Here are the requirements:

1. You should be able to determine if the user’s answer is correct.
2. Start each response by clearly giving your [REASONING] about the given context and the given
holding.
3. Your [JUDGEMENT] should either be CORRECT or WRONG based on your [REASONING].
4. The answer to the problem should only be: A, B, C, D, or E.
5. Include any steps in your [REASONING] that justify your answer.
6. In your reasoning, you could talk about the given context and mention the holding selected by
the student, and your analysis on each of the 5 holdings.
7. Then give your predicted answer in [ANSWER] based on your reasoning.
8. Finally give your judgement in [JUDGEMENT]. If your answer is the same as the provided
answer, your judgement should be CORRECT. If your answer is different from the provided
answer, your judgement should be WRONG.

Always return your instructions in the form:

#Reasoning: [REASONING]
#Answer: [ANSWER]
#Judgement: [JUDGEMENT]
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CaseHOLD Verification User Prompt:
The following context is from a judicial decision where the holding statement has been masked out
as <HOLDING>. The following is a multiple choice question about the holding statements of a
judicial decision that the user got wrong including the correct answer from the answer sheet:

Context: In an action for damages under the Fair Labor Standards Act (FLSA), the Supreme Court
held that a state law claim for defamation based on an employer’s allegedly false statements about
an employee’s termination was not preempted by the FLSA. The court noted that the FLSA does
not preempt state law claims that are not related to the underlying employment relationship, and
that the defamation claim at issue was based on a personal injury rather than a labor dispute. See,
e.g., Republic Steel Corp. v. Maddox, 379 U.S. 650, 656, 85 S.Ct. 614, 618, 13 L.Ed.2d 580
(1965) (<HOLDING>).

Please select the correct holding statement from the options below.

A. holding that the FLSA preempts state law claims related to the underlying employment relation-
ship
B. holding that a state law claim for defamation is preempted by the FLSA
C. holding that a state law claim for defamation based on an employer’s allegedly false statements
about an employee’s termination is not preempted by the FLSA
D. holding that the FLSA does not preempt state law claims that are related to the underlying
employment relationship
E. holding that the FLSA does not preempt state law claims that are not related to the underlying
employment relationship
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