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Abstract

Instruction finetuned large language models
(LLMs) have shown impressive performance
solving a diverse range of natural language pro-
cessing (NLP) tasks involving classification
and reasoning. However, this can be partic-
ularly challenging in low-data regimes. Recent
methods have shown boosting via iterative full
finetuning to be an effective method to augment
the training data by using the incorrect exam-
ples to generate synthetic data using a teacher
LLM. However, data generation at scale using a
teacher LLM can be costly, and full finetuning
can be computationally expensive. To address
this, we introduce SELF—BOOST, an iterative
data augmentation and instruction finetuning
strategy that has no external dependence on any
teacher models. SELF-BOOST uses parameter
efficient finetuning (PEFT) with Llama 3 8B to
instruction finetune a model using the seed data,
uses the same model to generate examples sim-
ilar to the misclassifications, and also the same
model to verify and filter the generated exam-
ples. Our experiments show that performance
on TREC, GSM8K, and CaseHOLD improves
by 21.6%, 5.6% and 1.3% respectively, when
compared to our baseline.

1 Introduction

LLMs have made significant advancements across
diverse benchmarks, operating based on custom
directives or example-based prompts. However,
real-world applications reveal limitations in their
adaptability to specialized domains and memory
capacity for long prompts. Fine-tuning can be ef-
fective but requires substantial training data.
Recently, Lee et al. (2024) introduced a novel
strategy, LLM2LLM, for improving the perfor-
mance of pre-trained LLMs using boosting. This
approach leverages a teacher LLM to iteratively
augment a seed dataset with synthetic data, specifi-
cally addressing areas where the model underper-
forms. During each iteration, the teacher LLM

generates new training examples that target the
student model’s errors for further refinement. This
method has demonstrated significant improvements
across various NLP tasks, illustrating that targeted,
iterative training can effectively enhance model
performance even in settings with low seed data.
However, the LLM2LLM approach employs expen-
sive teacher models and full finetuning. This leads
to high computational costs and are expensive to
scale; for instance, the token cost for GPT-4 can
range from $10 to $30 per million tokens.

To address this, we introduce SELF-BOOST,
a cost-effective alternative that enhances LLMs
through iterative self-generated data. We draw
inspiration from the analogy of a motivated learner
who is able to identify their own weaknesses, come
up with more practice questions that exemplify
these weaknesses, and use them for additional
practice to get better. Similarly, SELF-BOOST
enhances a model through a cyclic process
involving instruction fine-tuning, evaluation, data
augmentation, and verification over multiple itera-
tions. It identifies errors, generates new examples,
and rigorously verifies them using task-specific
prompts and majority voting. Only high-quality
examples are retained for subsequent iterations,
effectively enhancing model performance without
extensive data collection.

Our key contributions are as follows:

1. Introducing SELF-BOOST, utilizing the
model itself for generating and verifying data,
reducing computational costs.

2. Demonstrating success using PEFT tech-
niques on a single GPU.

3. Introducing a novel self-verification process
and running ablations to show its value in effi-
ciency and scalability.
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Figure 1: An visual explanation of our method, SELF-BOOST. At each iteration, we instruction finetune the
pretrained model using the current training dataset and evaluate the seed examples using the trained data. The
finetuned model is used to generate examples similar to the incorrect seed examples, and verify that they are
consistent. The verified examples are added back to the training dataset, and the cycle continues.

4. Conducting experiments showing the effec-
tiveness of SELF—-BOOST, with increasing
boosting cycles significantly improving model
performance.

2 Related Work

In this section, we present a literature review of
prior work that is relevant to our method.

Boosting: Freund and Schapire (1997) propose
boosting method to improve learning algorithms
by combining weak classifiers. The boosting algo-
rithm calls this weak learner repeatedly, and each
iteration generates a new weak prediction rule. Fi-
nally the algorithm combines all the weak rules
into a single one that is likely to achieve higher
accuracy. Wang et al. (2023a) propose a Chain-of-
Knowledge (CoK) prompting method that applies
a boosting-style algorithm to improve the reason-
ing capabilities of large language models. The
CoK method applys a boosting-style algorithm to
improve LLMs’ reasoning capabilities through it-
erative rethinking and knowledge re-weighting, al-
lowing CoK to boost reasoning performance on
reasoning tasks like commonsense QA, arithmetic,
and symbolic reasoning.

LLM2LLM: As our baseline, Lee et al. (2024)
introduce an innovative approach to enhance pre-
trained LL.Ms using a teacher LLM to iteratively
augment a seed dataset with synthetic data targeting
the model’s weaknesses. At each round, the teacher
LLM generates new, targeted training examples
based on the student’s errors, which are used for
further training. This cycle continues, iteratively

enhancing the student’s ability to handle previously
challenging examples. This method shows signifi-
cant improvements but relies on access to a strong
teacher model and full finetuning.

Self-Verify: Weng et al. (2023) propose a self-
verification method that leverages LLMs’ inher-
ent ability to self-verify, enhancing their reasoning
without additional verifier training. It employs a
two-step process: forward reasoning and backward
verification, using True-False Item Verification and
Condition Mask Verification.

Self-Consistency: Wang et al. (2023b) present
a method called Self-Consistency, which improves
LLMs’ reasoning on complex tasks using a three-
step approach: chain-of-thought prompting, sam-
pling multiple reasoning paths, and evaluating con-
sistency to choose the final answer.

Self-Instruct: In the Self-Instruct method
(Wang et al., 2023c), the authors propose an au-
tomatic data generation and fine-tuning process for
LLMs. Initially, instruction data is defined to gener-
ate tasks that an LLM can understand and perform.
The LLM then creates new instructions, generates
instances, filters low-quality content, and is fine-
tuned on the resulting high-quality data to enhance
its ability to follow instructions accurately. The
Self-Instruct approach is designed to significantly
reduce the dependency on human-annotated data,
leveraging the LLM’s own generative capabilities
to improve its performance on a broader range of
instructional tasks.

Instruction Finetuning (FLAN): Wei et al.
(2022) introduce a method called instruction fine-



tuning, which is designed to boost the zero-shot
learning abilities of language models. This ap-
proach involves finetuning a pre-trained language
model with 137 billion parameters across an array
of datasets. This process enhances the model’s abil-
ity to perform on tasks it hasn’t seen before. The
resultant model undergoes evaluation through a se-
ries of unseen tasks, demonstrating its improved
zero-shot learning capabilities. Also, it shows that
instruction tuning leads to better performance on
tasks naturally verbalized as instructions, and it is
less effective on tasks directly formulated as lan-
guage modeling, like commonsense reasoning and
co-reference resolution.

3 Methodology

3.1 Baseline

Following the terminology defined by Lee et al.
(2024), we assume we are given an instruction fine-
tuned LLM model M" that is pretrained and in-
struction finetuned on some large corpus. In all
of our experiments, M is an instruction tuned
Llama 3 8B model, the most recent iteration of
the Llama model family (Touvron et al., 2023) re-
leased by Meta !. We also have access to D?, a
domain specific seed dataset for which pre-trained
or finetuned performance is unsatisfactory either
due to the complex domain, lack of data availabil-
ity, or inability to collect more data. To improve on
pre-trained model performance, in our baseline we
instruction finetune M with D° using low-rank
adaptation (LoRA) (Hu et al., 2021), which is a
PEFT method that can achieve near full-finetuning
performance with a fraction of trainable parame-
ters. LoRA adapters with rank » = 16, o = 32,
and dropout 0.1 are added to all the linear layers.
We obtain the trained model M by training for
3 epochs with a learning rate of 3 x 10~* and an
AdamW (Loshchilov and Hutter, 2019) optimizer.
MU is then evaluated on an unseen test dataset D’
from the same domain.

3.2 SELF-BOOST

We outline the approach for our method
SELF—-BOOST in Algorithm 1. The steps involved
in each iteration ¢ are briefly described below.
Instruction Finetuning: We instruction tune
M?O on data D' for 3 epochs with the same train-
ing hyperparameters as the baseline method out-
lined in Section 3.1 to obtain the finetuned model

"https://1lama.meta.com/1lama3/

M. Ablation studies from Lee et al. (2024) show
that finetuning M from scratch shows significant
improvements in performance when compared to
continuous finetuning on M*~! due to overfitting.

Evaluation: We evaluate M? on the original
seed data D°. An exact match of an extracted an-
swer is used to identify the training examples in
DV that are incorrectly predicted by M?. The ex-
traction process varies by task. For example, for
GSMBK, only text after the "####" string is con-
sidered, and for TREC and CaseHOLD, everything
after the assistant role header is considered.

Data Augmentation: We sample k times from
M by conditioning on a task-specific prompt to
generate k similar examples for each incorrect ex-
ample in D°. Ablation studies from Lee et al.
(2024) show that generating examples using previ-
ously generated examples could propagate errors
in data augmentation. Since this is likely true in
our setting as well, we only generate samples using
only the incorrect seed examples.

Verification: To ensure that the new training
data is of high quality, for each newly generated ex-
ample, we condition M? on a task-specific prompt
and sample m times to verify if the provided reason-
ing and answer are correct for the generated ques-
tion. This approach is inspired by chain-of-thought
reasoning (Wei et al., 2023), self-verify (Weng
et al., 2023), and self-consistency (Wang et al.,
2023b), which show that complex reasoning admits
different paths of thinking, and correct reasoning
processes tend to have greater agreement in the
final answer that incorrect processes. Using a min-
imum threshold ¢, we take a majority vote of the
m verifications and reject the examples that do not
meet the threshold.

Iteration: Finally, the verified, generated exam-
ples are added back to the dataset D’ to obtain the
augmented dataset D**!. This process is repeated
for n iterations until we get the final model M™".

4 Experimental Setup

In this section, we outline the experimental setup
for our results. In addition to demonstrating empir-
ical results, we also perform an extensive ablation
study to understand the settings that work well for
our framework. All experiments are performed on
either a single NVIDIA RTX 4090 or A10 GPU.
The prompts used for example generation and veri-
fication for each of the benchmarks can be found
in Appendix A.
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Algorithm 1 Given a small seed dataset D° SELF-BOOST uses the same model M’ at each step to
finetune with an augmented dataset, evaluate training examples, generate new examples that are similar to
the incorrect one, and verify that the new examples are consistent. The new examples are added back to
the dataset and used to finetune the model in the next iteration.

1: procedure SELF-B0o0sT(M?, DY)
2 140

3 while i < n do

4: M’ « Finetune(M", D%)
5: E' + Evaluate(M*, DY)

6 W' « Filter(E*,D°)

7

8

9

A" — {Generate;(M?, W), ..., Generate,(M?, W)}

C' < Majority Vote({ Verify;(M?, A%, ..., Verify,,(M?, A%)}

: Dl « Dt 4
10: 11+ 1
11: end while
12: Evaluate M™
13: end procedure

> Evaluate on seed data
> Keep wrong answers

> Self-augment

> Ensure self-consistency
> Append to data

4.1 Methods

We compare our method SELF—-BOOST to the base-
line method of a single iteration of finetuning with-
out any data augmentation, similar to the evaluation
methodology by Lee et al. (2024). However, unlike
their evaluation, for our method we present results
of M™ (the final model) instead of M* (the best
performing model on a validation held-out set), as
we believe that this is a more robust measure of the
method.

4.2 Benchmarks

To evaluate the improvement that our framework
offers over the baseline, we present the perfor-
mance of both methods on three benchmarks:
GSMSK (Cobbe et al., 2021), TREC (Li and Roth,
2002) and CaseHOLD (Zheng et al., 2021), all of
which involve very different tasks. GSM8K is an
open-ended generation task involving complex rea-
soning over grade school math problems. TREC is
a 6-way classification task involving assigning the
intent of a question to a category such as abbrevi-
ation, entity, or location. CaseHOLD is multiple
choice task involving determination of a court’s
holding on a cited case. To evaluate the methods in
a low data setting, we sample a seed dataset of 1 -
10% (uniformly sampled) of the training data for
GSMBK, 1.1 - 2.2% of training data for TREC (10-
20 instances per class), and 0.1 - 0.5% of training
data for CaseHOLD.

4.3 Hyperparameters

In our ablation studies, we experiment with a few
hyperparameters and settings that our method of-
fers. Specifically, we explore generation sam-
ple size k € {1,3,5}, verification sample size
m € {1,3}, number of boosting iterations n €
{3,5, 10}, and whether verification is enabled.

4.4 Measurement

For all benchmarks, we measure and report the ex-
act match accuracy between the label and parsed
predicted response for the entire test set. For ended-
tasks such as GSMS8K, the parsing involves the
extraction of just the final answer. For classifica-
tions tasks like TREC and CaseHOLD, the class is
extracted.

5 Results

5.1 Main Results

We apply the SELF-BOOST framework on the
newly released instruction tuned Llama 3 8B model
on various benchmarks, including GSM8K (Cobbe
et al., 2021), TREC (Li and Roth, 2002) and Case-
HOLD (Zheng et al., 2021). Due to limited com-
puting resources, we present results for a subset of
sample rates from 0.5% to 10% to emulate a low-
data regime and test the efficacy of our framework.

We present the accuracy of M0 on the test split
of each benchmark dataset after 10 iterations of
SELF-BOOST, as well as the baseline method (as
outlined in Section 3.1) in Table 1. On 1.1% of the
TREC dataset, the baseline achieves 69% accuracy.



With our SELF-BOOST framework, the accuracy
goes up to 90.6% (improved by 21.6%) by itera-
tively generating 118 additional examples based
on the seed examples. With double the available
data of 2.2% of TREC, our method still achieves
93.3% accuracy, improved by 8.8%. These are
hard examples for which the model failed to give
the correct answer. We only generate new exam-
ples similar to examples in the seed training set,
according to the ablation study in (Lee et al., 2024)
which suggests that generating using non-seed ex-
amples may cause drifting, introduce more inac-
curate examples, and eventually hurt the model’s
performance. Other than generating new data, we
also found verifying the generated data could help
further boost the performance, which we will dis-
cuss later in Section 5.3. We observe a similar trend
for GSM8K and CaseHOLD, though with smaller
improvements than on TREC. We further analyze
these results in Section 5.4.

5.2 Effect of Boosting Iterations

We compare the performance of our method by
varying the number of boosting iterations n. The
results are shown in Figure 2. For both TREC and
GSMSK, we observe that increasing the number
of iterations allows the performance to continue
improving. We hypothesize that this is because
at each iteration, we are augmenting the training
dataset with generated examples that are similar to
training examples that the model got wrong. This
leads to the difficult patterns and concepts being
weighed more in the loss during the forward pass,
and LoRA parameters being optimized towards bet-
ter understanding these patterns and concepts in
the backward pass. This could allow the model to
generalize better to similar unseen examples. We
also hypothesize that the improvements in perfor-
mance across iterations could be due to the fact that
at each iteration i, model M is trained on a richer
dataset D?, and thus has the ability to generate bet-
ter quality examples than the model from previous
iteration M*~!. A possible ablation to validate this
hypothesis, which we leave to our future work, is
to compare performance with using model M to
generate the examples at each iteration instead.

5.3 Effect of Verification

We show the results of some ablations exploring

the effects of verification as part of our method.
Presence of Verification: For both TREC and

GSMBSK, we enable verification with m = 1,¢t =

1.0 (i.e. we sample once and reject the generated
example if the answer is different). We observe that
when verifications are enabled (Verifications), there
is a drop in the test accuracy of M™ as compared to
when verifications are disabled (No Verifications).
We hypothesize that this is due to the fact that the
total number of training examples is lower when
verifications are enabled, since inconsistent exam-
ples are filtered out. To account for this, we test a
setting in which the number of generated examples
per incorrect training example is increased from
1 to 3 (Verifications + More Generations). This
setting results in the best performance. This ab-
lation reveals an interesting tradeoff between the
quantity and quality of training examples. Clearly,
both quantity and quality are necessary to improve
performance. These results are shown in Figure 3.

Consistency in Verifications: We also test the
effect of increasing consistency in verification by
varying the number m € {1, 3}, which is the num-
ber of times each generated example is verified by
the model. Both settings use ¢ = 1.0, meaning
that if any of the verifications are unsuccessful, the
example is rejected. Intuitively, we would assume
that a higher m in this setting would mean that there
is greater agreement in verifications, resulting in
higher quality examples being retained, and that the
higher quality in training examples would results in
improved performance on the test set. However, we
observe that this is true only for GSM8K but not for
TREC. Although increasing m led to fewer exam-
ples being generated in both GSM8K and TREC,
it led to better performance for GSM8K but poorer
performance for TREC. We hypothesize that trade-
off between quantity of examples and the quality
of examples may vary based on the type of task.
For a simpler classification task such as TREC, it
is possible that having more examples, even if they
are not completely accurate, could be helpful in
allowing the model to learn simpler patterns such
as the possible output classes in the classification
task. However, for more complex open-ended tasks
such as GSM8K, the addition of inaccurate exam-
ples may confuse the model and result in poorer
reasoning, leading to worse performance. These
results are shown in Figure 4.

In Figure 5, we show an example of our verifi-
cation process withm = 3 and ¢t = 1.0, as well as
the reasoning provided by the sample which was
not verified. In this case, the other samples missed
out the fact that the three inline skates were col-
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Figure 2: Our ablations show that continued boosting improves performance. With continued boosting, the number
of generated examples that similar to incorrect training examples increases, allowing the model to learn more

difficult patterns.
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Figure 3: Our ablations show that simply adding verification is insufficient to improving performance, as there is a
risk of insufficient training data. Additional generated examples are also required to ensure there is enough data.

lectively 3/4 the price of the roller skates (due to
this word each being missing in the question), but
the last verification was able to successfully iden-
tify this. In tricky cases like this, leveraging more
verifications results in a higher chance to filter out
wrong examples to maintain the high quality of the
training set.

5.4 Effect of More Data

Our ablations also show that the SELF-BOOST
framework is most effective in low-data settings,
since it can self-generate new examples based on
the wrong examples and self-verify the quality of
the generated examples. This is best illustrated by
experiments on TREC — even though we achieve
a higher test accuracy on 2.2% sample rate than
on 1.1%, the accuracy gain compared with base-
line is much more significant on 1.1%, the lower
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Figure 4: Our ablations show that the tradeoff of data quantity and quality may be task dependent. For simpler tasks
like TREC, more training data matters more than data quality. For complex reasoning tasks such as GSM8K, data

quality is much more important.

| | | | Test Accuracy (%)
Dataset % Data ' # Seed Examples ' # Augmented
| | | | Pretrained Baseline SELF-BOOST
TREC 1.1% 60 118 0.0 69.0 90.6 (+21.6)
TREC 2.2% 120 131 0.0 84.8 93.6(+8.8)
GSMSK 1% 74 302 0.0 55.3 60.9 (+5.6)
GSMSK 10% 747 888 0.0 63.9 59.1 (-4.8)
CaseHOLD 0.1% 45 32 1.4 61.5 62.0(+0.5)
CaseHOLD 0.5% 204 114 1.4 68.9 70.2 (+1.3)

Table 1: The results of our method, SELF-BOOST, compared to zero-shot and baseline performance on the test sets of
TREC, GSM8K, CaseHOLD. The columns % Data and # Seed Examples describe the amount of seed data available
at the start of boosting. The column # Augmented describes the total number of examples generated during the
boosting process. Pretrained performance is evaluated on M without any instruction tuning. Baseline performance
is evaluated on M! after finetuning with only the original seed examples. SELF-BOOST performance is evaluated
on M19 after 10 iterations of boosting. Overall, we observe that test accuracy improves with SELF~-BOOST.

subsample rate, as shown in Table 1. This shows
that when SELF-BOOST can generate enough ex-
amples (in TREC’s case, for both subsample rates
our method has more augmented examples than the
seed training set), it can largely boost the finetuning
accuracy.

For both subsample rates on CaseHOLD, our
method generates fewer augmented examples than
the original seed training set, which could explain

why the accuracy gains on CaseHOLD are less sig-
nificant than on TREC. In our experiments, due
to the large number of tokens in CaseHOLD, we
only try to generate 5 new examples per wrong
example. We hypothesize that even higher num-
bers of generations per wrong example (e.g. 10,
50) could improve performance further. TREC
and CaseHOLD are both multi-classification task
benchmarks, while GSM8K is a quite challenging



For newly generated example:
Maria buys one set of roller skates for $120 and three sets of inline

skates for 3/4rds of the price of the roller skates. How much does
she pay total?, 'output': 'First find the cost of one set of inline
skates: $120 * 3/4 = $<<120*3/4=90>>90\nThen find the total cost
of the inline skates: $90/set * 3 sets =
$<<90*3=270>>270\nThen add that amount to the cost of
the roller skates to find the total cost: $270 + $120 =
$<<270+120=390>>390\n#### 390

CORRECT: CORRECT

CORRECT: CORRECT

NOT VERIFIED (2 / 3.0): it got 1/3 verifications wrong:

#Judgement: WRONG

The student's answer is incorrect because they added the cost of
the inline skates to the cost of the roller skates, but they did not
take into account the fact that the cost of the inline skates is

already three times the cost of the roller skates. Therefore, the
total costis actually $120 + $90 = $210, not $390.

Figure 5: Multiple verifications help filter out incor-
rectly generated examples. In this example, the question
is missing the word each, which leads to a different
answer that the one in the generated example.

math reasoning task benchmark. On GSM8K, we
see an unusual accuracy drop on a higher sample
rate with 10%. We hypothesize that this is because
the 10% subsampling provides 10x more examples
in the seed training set, and the quality of our self-
generated and self-verified examples by Llama 3
8B is poorer than the human-labeled GSMS8K ex-
amples in the seed dataset. For challenging reason-
ing tasks like GSM8K, adding more, poor quality
examples to the finetuning process may hurt the
accuracy when given enough seed examples. For
such tasks, we might need a teacher model with
stronger reasoning capability to replace the self-
generation and self-verification steps.

6 Future Work

Building upon our results for SELF-BOOST, we
propose a few directions for future research.

Hybrid Teachers Models: Our current method
leverages student models as the teacher models and
performs self-augmentation. The combination of
SELF-B0OOST with other successful methodologies
like LLM2LLM could prove to be beneficial. For
example, employing a low-cost teacher model to
guide the self-boosting process might strike a bal-
ance between computational efficiency and the ro-
bustness of generated examples, providing a more
refined dataset for training.

Teacher Model Capabilities: Another poten-
tial direction is to thoroughly investigate the im-
pact of teacher models’ varying capabilities on the
quality of data generation, and the consequent per-
formance of student models. This analysis will

involve systematically varying the complexity and
instructional capacity of teacher models to see how
these variations influence the quality of the syn-
thetic training data they produce. We will explore
metrics such as fidelity, diversity, and relevance
of the generated data, and assess how these quali-
ties affect the learning outcomes in student models.
Ultimately, this will allow us to identify optimal
characteristics and configurations of teacher mod-
els that most effectively enhance student model
performance, potentially leading to more efficient
and targeted training methodologies.

Tradeoff between Quantity and Quality: As
described in Section 5.3, our ablations suggest that
the tradeoff between the amount of data generated
and the quality of data generated may be task spe-
cific. To this end, a potential future direction could
build upon our method to make this determina-
tion part of the method. In other words, perhaps
the method could determine if data quantity is re-
quired (in which case it may be fine to use a cheaper
teacher model to generate the data), if data quality
is required (in which case the method can invoke
a more expensive teacher model to generate the
data).

7 Conclusion

The SELF-B0OOST methodology represents a sig-
nificant step forward in the autonomous enhance-
ment of large language models (LLMs) through
iterative self-generated data. By eliminating the
dependence on costly teacher models and lever-
aging the model’s own errors for data augmen-
tation, SELF—BOOST not only reduces computa-
tional expenses but also enhances model accuracy
effectively. This process is particularly valuable
in resource-constrained scenarios where acquiring
large amounts of annotated data is impractical. The
empirical results indicate that SELF-BOOST can
substantially improve model performance, particu-
larly in challenging tasks like GSM8K and TREC.
Moreover, the method’s ability to refine and expand
its training dataset autonomously makes it a promis-
ing approach for ongoing model improvement in
various Al applications.



Limitations

Our choices of experimental setups were limited in
several ways:

Model Selection Given our limited computational
resources, we only try our SELF-BOOST frame-
work with pretrained checkpoints of Llama 3 8B-
Instruct. It would be better to validate our frame-
work on other popular model series like the PalLM
series with sizes from 8B to 540B, or Llama 2 from
7B to 70B, and the 70B version of Llama 3.

Framework Hyper-parameters Exploration In
our SELF-B0OOST, we have considered and
supported modification of the following hyper-
parameters:

1. n_iters: the number of iterations in the boost-
ing process, also the number of weak learners

2. n_epochs_per_iter: the fine-tuning epochs
during each iteration of the boosting

3. n_generations_per_incorrect_example:
for each incorrect example, the number of
newly generated examples

4. enable_veri fication: whether to verify the
newly generated examples

5. min_verify_threshold: the threshold for a
generated example to pass the verification

6. n_voting_verify: for each new example,
how many times it has to be verified

7. seed_generation_only: whether to add gen-
erated examples that are based on non-seed
examples to the training set

For hyper-parameters like n_iters and
seed_generation_only, we set them to 10 and
true respectively, based on the results and analysis
in the ablation study of (Lee et al., 2024). We
did explore enable_verification with true and
false, n_generations_per_incorrect_example
from 1 to 5, and n_voting_verify from 1 to
5 on our own, although in a relatively limited
range. In the final results, we were using one
value for all benchmarks based on our obser-
vation. For the remaining n_epochs_per_iter
and min_verify_threshold, they seem trivial
to the framework so we did not explore how
exactly these two hyper-parameters will change
the results. Given more computation resources, it
would be helpful to thoroughly explore all these

hyper-parameters on our own. Using grid search
would be costly, so we propose to use Bayesian
optimization to find the proper hyper-parameter
settings in the future work.

Finetuning Dataset Sampling Rate For three of
our benchmarks, we use two sample rates on each
of them to randomly sample a small subset to sim-
ulate the low-data regime. In (Lee et al., 2024),
they conduct experiments on 4-9 different sam-
pling rates, even including 100% to show that the
method helps improve metrics under data-sufficient
regimes. Given our computational resources, we
only focused on 2 lowest sampling rates so we
might neglect some vital trends in slightly higher
sampling rates.
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Appendix
A Prompt Examples

TREC Generation System Prompt:

You are QuestionGPT, an Al agent who knows the class of different question. You are training
someone how to classify different questions based on what the questions are asking form. You are
trying to give the user assistance by giving them more practice questions for the questions that
they get wrong. Here are the requirements:

1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at Spm or set a reminder because it cannot perform any action.

2. The question should be in english.

3. The questions that you generate should have only 1 of the following intents: - ABBR (Abbrevia-
tion) - ENTY (Entity) - DESC (Description/Concept) - HUM (Human) - LOC (Location) - NUM
(Number)

4. The questions should always have 1 specific class.

5. The intent of the question must come from the list above.

6. Don’t make any mistakes with your answer yourself.

7. Try not to copy too much information from the original problem. You don’t want the user to just
memorize the practice problems.

8. Make the class the same as the question that the user got wrong.

9. The question should be something that an ASR model could output: it must sound like
something a human could say.

Always return your instructions in the form:

#Question: What are the requirements to become a pilot?
#Class: DESC

TREC Generation User Prompt: The following is a question.
Classify the question into the following categories:

- ABBR

- ENTY

- DESC

- HUM

-LOC

- NUM

Question: Who is the author of the novel "To Kill a Mockingbird"?
Class: HUM

Give me another 1 similar question with the same class HUM.
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GSMBSK Generation System Prompt:

You are a educational A.I. whose purpose is to take math problems that students get wrong and
generate new problems to help them practice their mathematical skills. Your goal is to generate
a set of new math problems that reflect the different skills and techniques found in the example
problem.

Here are the requirements:

1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at Spm or set a reminder because it cannot perform any action.

2. The math problem should be in English.

3. The output should be an appropriate response to the question. Make sure the output is less than
100 words.

4. The answer to the problem should be expressed as a number, not a fraction. For example, if the
answer is one-half, return 0.5, not 1/2 or "one half".

5. The answer to the problem should not have units i.e. if the answer is 6 cups, just write 6 as the
[ANSWER]

6. Always include some calculation to show your work for how you got your ANSWER.

7. Don’t make any mathematical mistakes of your own!

8. Try not to copy too much information from the original problem. If you must, try and replace
names and numbers so that we can test the student’s understanding, rather than their ability to
memorize previous test questions. Always return your instructions in the form:

#Question: [QUESTION]

#Answer: [CALCULATION]

###H [ANSWER]

GSMSK Generation User Prompt:
The student was given the following question:

Chrystal’s vehicle speed is 30 miles per hour. Ascending the mountain decreases its
speed by fifty percent, and descending the mountain increases its speed by twenty percent.
If the distance going to the top of the mountain is 60 miles and the distance going down to
the foot of the mountain is 72 miles, how many hours will Crystal have to pass the whole mountain?

The answer key has this as the rationale and answer:

The vehicle’s speed decreases to 30 x 0.50 = «30%0.50=15»15 miles per hour when ascending
to the top of the mountain. So, the total time Crystal will have to spend going to the top of the
mountain is 60 / 15 = «60/15=4»4 hours. And the speed of the vehicle increases by 30 x 0.20 =
«30*0.20=6»6 miles per hour when going down to the foot of the mountain. So, the total speed of
the vehicle when going down is 30 + 6 = «304+6=36»36 miles per hour. Thus, Chrystal will have to
spend 72 / 36 = «72/36=2»2 hours to descend from the mountain. Therefore, the total hours she
will spend to pass the whole mountain is 4 + 2 = «4+2=6»6 hours.

#iHHE 6

Please generate 1 similar question, along with the correct calculations and rationale.
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CaseHOLD Generation System Prompt:

You are LawGPT, an Al agent who knows everything there is to know about U.S. law. You know
the result of every court case and you know every law in the lawbook. The user is trying to choose
the correct holding of the case given the context and argument of the court. You are trying to give
the user assistance by giving them more practice questions for the questions that they get wrong.
Here are the requirements:

1. A GPT language model should be able to complete the problem. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at 5pm or set a reminder because it cannot perform any action.

2. The context, holding, and options should be in English.

3. The questions that you generate should test for whether the user understands the case names and
their holdings and whether the user can re-frame relevant holdings to backup the argument in the
context.

4. The context should always end with a citation such as "See United States v. Newman, 125 F.3d
863 (10th Cir.1997) (unpublished) (<HOLDING>); United States v. Dodge, 846 F.Supp. 181,"
5. The citation absolutely needs to have the mask phrase <HOLDING> which is the place where
the legal holding would normally be.

6. The questions should always be multiple choice.

7. There should always be 5 options: 1 options should be a holding that backs up the argument
in the context, the other 4 should be sufficiently different. Each option has to start with the word
"holding"

8. There can only be 1 answer: A, B, C, D, or E.

9. Don’t make any mistakes matching the holdings yourself.

10. Try not to copy too much information from the original problem. You don’t want the user to
just memorize their answer.

11. Make the context similar to the context in question, make sure that the holding that is being
tested is the same.

12. The wrong answer choices can be any other reasonable holding, but it should be sufficiently
different from the correct answer.

13. Do not make your context too short. Remember, these arguments in the context are being
made by judges and should look like they were written by a judge.

Always return your instructions in the form:

#Context: [CONTEXT]

Please select the correct holding statement from the options below.
#A. [OPTION 1]

#B. [OPTION 2]

#C. [OPTION 3]

#D. [OPTION 4]

#E. [OPTION 5]

#Answer: [ANSWER]
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CaseHOLD Generation User Prompt: The following context is from a judicial decision where
the holding statement has been masked out as <HOLDING>.

Context: MCI’s third-party action against Marcopolo. In MCI’s appeal of the special appearance
ruling, we affirmed the trial court’s decision. See Motor Coach Indus., Inc. v. Marcopolo, S.A.,
2007 WL 4157241 (Tex.App.-Waco Nov.21, 2007, no pet.). MCI’s eighth issue contends that, if
the trial court erred by granting Marcopolo’s special appearance, its severance of MCI’s third-party
action against Mar-copolo would have been erroneous and the judgment should be reversed.
Because we affirmed the trial court’s decision on Marco-polo’s special appearance, we overrule
MCT’s eighth issue. 2. Two Texas Supreme Court decisions have addressed the implied preemption
of state common-law tort claims by federal motor vehicle safety standards: Hyundai Motor Co. v.
Alvarado, 974 SW.2d 1, 13 (Tex.1998) (<HOLDING>); and Great Dane Trailers, Inc. v. Estate of

Please select the correct holding statement from the options below.

A: holding that a state common law claim seeking to require automobile manufacturers to install
airbags would frustrate the purposes of the federal safety standard regulations adopted under the
federal motor vehicle safety act which did not require manufacturers to do so and therefore was
preempted by conflict

B: holding that the safety act and fmvss 108 did not impliedly preempt commonlaw conspicuity
tort based on inadequate lighting and reflectors on truck trailer

C: holding that the coast guards decision not to regulate propeller guards did not impliedly preempt
petitioners tort claims

D: holding that the safety act and fmvss 208 did not expressly or impliedly preempt a tort claim
based on the manufacturers failure to install lap belts

E: holding that claims were nothing more than a backdoor attempt to attack once again the
manufacturers exercise of one of the restraint options under fmvss 208 and the court will not permit
1t

Answer: B

Please generate 1 similar question, along with 5 different holding options and the correct answer.
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TREC Verification System Prompt:

You are QuestionGPT, an Al agent who is able to determine if the class of a given question is
correct.

Here are the requirements:

1. You should be able to determine if the class of a given question is correct.

2. Start each response by clearly giving your [REASONING] about the given question and the
given class.

3. Your [JUDGEMENT] should either be CORRECT or WRONG based on your [REASONING].
4. The class of the question could only be one of the following: - ABBR (Abbreviation) - ENTY
(Entity) - DESC (Description/Concept) - HUM (Human) - LOC (Location) - NUM (Number)

5. Include any steps in your [REASONING] that justify your answer.

6. In your reasoning, you could talk about the given question and mention the given class, and
your analysis on the question type.

7. Then give your predicted classification in [CLASS] based on your reasoning.

8. Finally give your judgement in [JUDGEMENT]. If your classification is the same as the
provided class, your judgement should be CORRECT. If your classification is different from the
provided class, your judgement should be WRONG.

Always return your instructions in the form:
#Reasoning: [REASONING]

#Class: [CLASS]
#Judgement: [JUDGEMENT]

TREC Verification User Prompt:

Below is the provided question and class: What is this question asking about? Classify the question
into the following categories:

- ABBR (Abbreviation)

- ENTY (Entity)

- DESC (Description/Concept)

- HUM (Human)

- LOC (Location)

- NUM (Number)

Question: What type of fruit has the most seeds?

Class: ENTY

Please determine if the provided class is correct for the provided question.
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GSMSK Verification System Prompt:

You are a QuestionGPT. You are given a question and an answer by a student, and your goal is
to analyze the question, give your predicted answer and then determine if the student’s answer is
correct. Here are the requirements:

1. Start each response by clearly giving your [REASONING] to determine if the answer is
CORRECT or WRONG.

2. Your [JUDGEMENT] should either be CORRECT or WRONG.

3. Present your reasoning in English.

4. Numerical answers should be provided in decimal form, e.g., represent one-half as 0.5 instead
of 1/2 or "one half".

5. Exclude units from numerical answers (e.g., for ’6 cups’, the answer should be *6’).

6. In [REASONING], include calculations that justify the answer to demonstrate your reasoning.
7. Avoid mathematical errors in your reasoning.

8. Then give your predicted answer in [ANSWER] based on your reasoning, in numerical format.
9. Finally, by comparing your [ANSWER] with the student’s answer, put your judgement in
[JUDGEMENT].

Always return your instructions in the form:
#Reasoning: [REASONING]

#Answer: [ANSWER]
#Judgement: [JUDGEMENT]

GSMSK Verification User Prompt:
The student was given the following question below:

Maria is planning a road trip to visit her friend. She spends 1.5 hours packing her bags, 2.5 times
the packing time getting gas, and 15 minutes saying goodbye to her family. What percentage of the
total time she spent on all those activities was spent getting gas, rounded to the nearest percent?

The student gave the following reasoning and answer (right after ####) below:

First convert Maria’s packing time to minutes: 1.5 hours * 60 minutes/hour = «1.5%60=90»90
minutes

Then find the time Maria spends getting gas: 2.5 * 90 minutes = «2.5%90=225»225 minutes
Then add the time she spends on each activity to find the total time: 225 minutes + 15 minutes +
90 minutes = «225+15+90=330»330 minutes Then divide the time Maria spends getting gas by the
total time and multiply by 100% to express the answer as a percentage: 225 minutes / 330 minutes
= 68.181..., which rounds down to 68%

###H 68

Please determine if the provided numerical answer is correct.
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CaseHOLD Verification System Prompt:

You are LawGPT, an Al agent who knows everything there is to know about U.S. law. You know
the result of every court case and you know every law in the lawbook. The user is trying to choose
the correct holding of the case given the context and argument of the court. You are trying to give
the user assistance by determining if the user’s answer is correct.

Here are the requirements:

1. You should be able to determine if the user’s answer is correct.

2. Start each response by clearly giving your [REASONING] about the given context and the given
holding.

3. Your [JUDGEMENT] should either be CORRECT or WRONG based on your [REASONING].
4. The answer to the problem should only be: A, B, C, D, or E.

5. Include any steps in your [REASONING] that justify your answer.

6. In your reasoning, you could talk about the given context and mention the holding selected by
the student, and your analysis on each of the 5 holdings.

7. Then give your predicted answer in [ANSWER] based on your reasoning.

8. Finally give your judgement in [JUDGEMENT]. If your answer is the same as the provided
answer, your judgement should be CORRECT. If your answer is different from the provided
answer, your judgement should be WRONG.

Always return your instructions in the form:
#Reasoning: [REASONING]

#Answer: [ANSWER]
#Judgement: [JUDGEMENT]
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CaseHOLD Verification User Prompt:

The following context is from a judicial decision where the holding statement has been masked out
as <HOLDING>. The following is a multiple choice question about the holding statements of a
judicial decision that the user got wrong including the correct answer from the answer sheet:

Context: In an action for damages under the Fair Labor Standards Act (FLSA), the Supreme Court
held that a state law claim for defamation based on an employer’s allegedly false statements about
an employee’s termination was not preempted by the FLSA. The court noted that the FLSA does
not preempt state law claims that are not related to the underlying employment relationship, and
that the defamation claim at issue was based on a personal injury rather than a labor dispute. See,
e.g., Republic Steel Corp. v. Maddox, 379 U.S. 650, 656, 85 S.Ct. 614, 618, 13 L.Ed.2d 580
(1965) (<HOLDING>).

Please select the correct holding statement from the options below.

A. holding that the FLSA preempts state law claims related to the underlying employment relation-
ship

B. holding that a state law claim for defamation is preempted by the FLSA

C. holding that a state law claim for defamation based on an employer’s allegedly false statements
about an employee’s termination is not preempted by the FLSA

D. holding that the FLSA does not preempt state law claims that are related to the underlying
employment relationship

E. holding that the FLSA does not preempt state law claims that are not related to the underlying
employment relationship
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